Jan Čermak, Brno University of Technology, Csehország)  szemináriumi előadást tart a Matematika Tanszéken.

 

 


Pannon Egyetem Matematika Tanszékének és a VEAB Matematikai és Fizikai Szakbizottsága Matematikai Analízis és Alkalmazási Munkabizottságának szervezésében

 

 

Prof. Jan Čermak

Brno University of Technology, Csehország

2010. november 30. (kedd) 12:15 órakor

Stability and asymptotic properties of the discretized pantograph equation: a uniform mesh versus a quasi-geometric mesh

címmel előadást tart a Pannon Egyetem Matematika Tanszék Könyvtárában (Veszprém, Egyetem utca 10., E épület, földszint)

 

Abstract. This contribution discusses and analyzes a numerical solution of the delay di erential equation

y'(t) = a y(t) + b y(qt),       t ≥ 0

(usually referred to as the pantograph equation), where  a, b  are nonzero complex numbers and  0 < q < 1 is a real number. We give a brief review of the equation's basic stability and asymptotic properties and analyze these characteristics for its Θ-methods discretizations. Doing this, we consider the corresponding Θ-method on a mesh with a constant stepsize (which is essentially a di erence equation of in nite order) as well as on a mesh with a speci c variable stepsize (giving rise to a special fi nite order Poincare di erence equation). Further, we discuss the consequences of our results for numerical investigations of the pantograph equation, especially with respect to a possible correspondence between the asymptotics of exact and numerical solutions. Some illustrating examples, calculations and comparisons will be presented as well.

 

Az előadásra minden érdeklődőt szeretettel várunk!