Yoshiaki Muroya és Sérine Damak szemináriumi előadást tart a Matematika Tanszéken.
Pannon Egyetem Matematika Tanszékének és a VEAB Matematikai és Fizikai Szakbizottsága Matematikai Analízis és Alkalmazási Munkabizottságának szervezésében
Prof. Yoshiaki Muroya
Waseda University, Tokió, Japán
Global stability of SIRS epidemic models and related models
és
Dr. Sérine Damak
Szegedi Tudományegyetem, Bolyai Intézet
Stability analysis for difference equations with distributed delay
címmel előadást tart a Pannon Egyetem Matematika Tanszéken (Veszprém, Egyetem utca 10., I épület 4. emelet 416-os terem)
2015. február 3-án (kedd) 11:00 órakor
Az előadásokra minden érdeklődőt szeretettel várunk!
Yoshiaki Muroya
Global stability of SIRS epidemic models and related models
Abstract: There is an open question on global dynamics of an SIRS (Susceptible-Infected-Recovery-Susceptible) epidemic model. We partially solve this by applying Lyapunov functional techniques for a delayed SIRS epidemic model and monotone iterative techniques for a multi-group epidemic SIRS model. We also talk about some related our recent works. Joint work with Toshikazu Kuniya (Kobe University) and Yoichi Enatsu (Tokyo University).
References
[1] Y. Enatsu, Y. Nakata and Y. Muroya, Lyapunov functional techniques for the global stability analysis of a delayed SIRS epidemic model, Nonlinear Analysis RWA 13 (2012) 2120-2133.
[2] Y. Muroya, Y. Enatsu and T. Kuniya, Global stability for a multi-group SIRS epidemic model with varying population sizes, Nonlinear Analysis RWA 14 (2013) 1693-1704.
[3] Y. Muroya, Y. Enatsu and Y. Nakata, Monotone iterative techniques to SIRS epidemic models with nonlinear incidence rates and distributed delays, Nonlinear Analysis RWA 12 (2011) 1897-1910.
[4] Y. Muroya and T. Kuniya, Further stability analysis of a multi-group SIRS epidemic model with varying total population sizes, Appl. Math. Letters 38 (2014) 73-78.
Sérine Damak
Stability analysis for difference equations with distributed delay
Abstract: The aim of the presentation is to present new conditions for stability for the class of system governed by linear difference equations with distributed delay, by using the Lyapunov-Krasovskii approach. This approach consists to involve stability conditions of the form of a convex optimization problem. So, I propose sufficient conditions providing the decay estimate of the response of linear difference equations with distributed delay. These conditions are less conservative than previous results in the literature. This stability analysis is extended also to the case of systems with time-varying delays.