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We investigate physical and chemical quantitative characteristics of species, reactions and
mechanisms which are linear (additive and homogeneous) in general, using linear algebraic
methods. We call such characteristics here \aduation operators After revealing the
properties of these operators we reach to some practical consequences at the end of our paper
which could be used either for calculating or forecasting the behaviour and the magnitude of
these characteristics.

Though these results might have already been used by experts for a long time, the present
paper could serve as a firm theoretical background for their computation methods.
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1. Introduction and preliminaries

Using and extending the ideas of Pethd [1,2], of the present author [3] and in-
dependently Happel and Sellers [4,5] we can interpret the vectors afdimaensional
Euclidean spacR” in several ways as species (groups of atoms), reactions, mechanisms,
measure units, etc. (We give definitions below shortly, for details see our survey paper
[6].) After then any linear (additive and homogeneous) quantity (we call tredoation
operatorg of any of these interpretations are, in fact, a linear functiahakR” — R.

Using the theory of linear functionals (especially the representation theorem of F. Riesz)
we can investigate the structure of these linear functionals and may draw further conclu-
sions. These conclusions are mentioned in each cases just after their theoretical back-
ground, but are also listed in the last section.

2.  Vectors

The following examples of interpretations of vectors are separate ones though (lin-
ear) combinations of reactions are mechanisms, reactions are built up from species, etc.
These and other connections of this “hierarchy” are extensively studied in our works
[3,7-10] and are surveyed in [6].
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Example 2.1 (Species). If the species (either active or chemical or groups of atoms
only) Ay, ..., A, consist of the atomgy, ..., E,, asA; = > i, a; ; E;, whereq; ; € N
forj=1,...,nandi =1,...,m, and the setE, ..., E,} is fixed, we can assign the
speciesA ; to thevectors

Aj = [al,j,az,j,---,am,j]-r e R™
or in other wordsA; = > a; ;E; for j = 1,...,n assuming thatg,, ..., E,}
R™ is a (natural) base iR™.

We can use the same model when the compongnts. ., E,, denote (functional)
groups of atoms which is widely used in practice.

Example 2.2 (Reactions). If we are given the reactiaks, . . ., X, which use the (fixed

set of) specieds, ..., A, asX; = ) .., b; ;- A; then we can correspond these reactions
to the vectorsX ; :=[byj,.... b, ;1" € R",i.e, X, =Y " b;;. A, whereb, ; € Z for
j=1,....kandi =1,...,n if the base vectors were chosgp, ..., A, € R".2

Example 2.3 (Mechanisms). Any linear combinations of (the fixed set of) reactions

{X4,..., X;} are called mechanisms, and similarly we can assign these mechanisms
M, =Y 1 n - X;tothe vectorsn, := [A 1. ... AulT iem, =35 & ;- X; € RF
where, of coursel, ; € Zfort =1,...,fandj =1,..., k.2 The base in this case is

{Xl’---vzk} CRk

Example 2.4 (Measure units). Every (composite) measure Wit . .., M, is built up

from elementary unit&, ..., E,, (such as length, mass, time, etc.)Ms= ]_[;.”:l Ej.”"
whereq; ; € Zfori =1,...,nandj = 1,...,m. Clearly we again can assign the
measure unitd/; to thevectorsM,; = [a; 1, ..., a; .17 € R™ since anyproductof the

powers of the unitd/; corresponds to a linear combination of the vecturs(see, e.g.,
the Reynold’s numbers).

One could find many more such examples (e.g., how atoms are built up from atomic
parts) where our theory below could also be applied.

Let us remark that we have to fix the set of buildicgmponentgatoms/species/
reactions) to build more complicatsttucturegas species/reactions/mechanisms)d-
vancesince this set gives not only the base of the space but the dimension or even the
space itself in which our investigations take place. For our further reference we fix these
concepts into a precise definition.

1 We will not emphasize the difference between the spetieand the vectors ;.

2 Moving the terms with negative coefficientis ; to the left-hand side of the equality (initial materials of
the reaction) and leaving the others in the right-hand side (resulting materials) we get the usual form of
the mechanism.

3 Negative coefficients mean that the corresponding reactions take place in reverse order.
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Definition 2.5. All the elements of an arbitrary but fixed and finite §€t, ..., Cy} are
calledcomponentsand any (possibly only formal) linear combinations

N
S= si - Ci
i=1

of its elements with arbitrary real numbeytse R are calledstructures

At the end of this paper we discuss the cassudisequent addingew structures
containing new components, i.e. how to extend the dimension of the space we are in and
how to continue the calculations in the extended space without giving up our old results.

3. Valuation operators and linearity

We call any linear mapping of real value (i.e., a linear functional) which maps from
(the above) structuresvaluation operator

Definition 3.1. Any linear mapping (or functionalf :R” — R is called avaluation
operator.

Continuing the above examples in section 2 let us mention some valuation opera-
tors on them. These and others are described, for example, in [11] or in Pethd’s works,
widely used already in practice and are caleslimation and correlation methods of
thermodynamic parameteins thermodynamics and thermophysics.

The molar volumeof species is usually computed as the sum (i.e. linear combi-
nation) of the components’ data. This is a typical example where we can assume that
the molecular quantitative property (increment) can be added linearly from the amount
of that property (increment) of the components (functional groups or bonds). Other
examples are thenthalpy of formatioror the heat capacity.Practical methods and ap-
plications are described, e.g., in the book [11].

The standard Gibbs free energy change5° (or free enthalpy) of a reaction is
the sum (linear combination) of the standard chemical potentiatsf the components
(species) involved in the reaction as

n

AG°® = Z Vi ;.
i=1

The heat of reactionsvhen studying mechanisms: Hess’ well-known law states
that the resulting heat is again the sum (linear combination) of the heat of single reactions
taking part in the mechanism. (This example is studied in [2,12].)

Clearly, the long list could be continued up to infinity.

For properties which are not linear but multiplicative instead, we can use the loga-
rithm function for getting linear correspondence — among the logarithm of the property
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of the parts, as we did in example 2.4 in section 2 (see also [1]) or is applied, e.g., in [13]
for drawing Pourbaix diagrams.

4, Rieszstheorem

Using our terminology all valuation operators are linear functionals of the form
L:V — R for some vector spac¥, so we can apply the following deep theorem of
Frigyes Riesz which (and all the other results cited in the subsequent sections) can be
found in any linear algebraic book.

Theorem 4.1 (Representation theorem of F. Riesz)Vlis any finite-dimensional linear
space with an arbitrary scalar prodyct:) : V x V — R then for every linear functional
L:V — Rthere is a (unique) fixed vectare V (depending only or) such that

L) = (a,v) (1)

holds for every vectoo € V.

Since Riesz’s theorem is valid f@ny scalar product-, -) (symmetric, positive
definite and bilinear function fro x V to R) on the spacé&’, for applications we may
choose first the Euclidean product

n
(w,v) =Y wivy,
i=1

where[us, ..., u,]" and[vy, ..., v,]" denote the coordinates @fndv with respect to a
fixedbaseB C V. (We discuss all the possible scalar product®dand the connections
among them in section 6.)

So we get the below special case of Riesz’s theorem:

Theorem 4.2. If V is any finite-dimensional linear space with any fixed bgse. . .,
b,} < V then for every linear functional : V" — R there is a (unique) fixed vector
a € V (depending only o) such that

n

L(v) = Zai Vi (2

i=1
holds for every vectov € V where[ay, ..., a,] and[vy, ..., v,] denote the coordinates
of ¢ anduv with respect to the base.

Using (2) this latter variant of Riesz’s theorem tells us for valuation operators (e.g.,
in our examples above) the following:
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Corollary 4.3. If the linear spac&R” is determined by the componer(i§y, ..., Cy}
then for any valuation operatat : R¥ — R there is a unique vectar := [ay, ...,
ay]" € RY such thatC can be computed as

N
L(S) = Zai s 3)
i=1

for any structureS = Zf\’zl s; - C;. (Recall definition 2.5 for the notion of components
and structures.)

This clearly means that the valuesesferyvaluation operator oany structures in
all of the examplesnot only is determined by the components involved but simply it is
the weighted sum of the numbers of the components in the striucture

This observation might facilitate the investigations of any valuation operators in
any of our (or other) examples. For example, we have to determine only the coefficient
vectora € RY for the given valuation operator and after this we can trivially count (or
further investigate) its value on the basis of (3).

The above result might be not new for chemists: trivially the linearitg ahplies

N N
L(S) = L(Z i - ci) = s L(C) 4)

i=1 i=1

which clearly implies (3) choosing; := £(C;) fori = 1,..., N. Let us remark here
that the above computation assumes haan be computed for componends on the
same way as for structurés

However, the real power of Riesz’ theorem lies in the fact that it is valicafor
scalar product oanylinear spacé/. We used it only in the very special case of Euclid-
ean scalar produetith respect tahe basgCy, ..., Cy} of our interested components!
The variety of and the connections among different scalar products and bd&egsin
explained in section 6.

One surprising application of the above results is a one-sentence proof of Hess
law in thermochemistry: if a linear combination of the reactiaghs. .., X, results the
zero (or void) mechanisiM then the sum (the same linear combination) of the reaction
heatsH (X ) of the reactionsX; will also be 0. This is trivial since i§"_; A;X; = M
then

k
H(Z MXJ-) =H(M) =0. (5)
j=1

O
The following theorem is also well known, using it we can give bounds for the
values of£(S) in advance:



382 I. Szalkai / On valuation operators in stoichiometry and in reaction syntheses

Theorem 4.4 (Cauchy—Bunyakowsky—Schwarz). For any linear sp¥cand scalar
product(-,-):V x V — R onV the equality

l{a, x)| < llall - llx| (6)

holds for every vectorg, x € V where| x| := /{(x, x) is the norm of all the vectors
xeV.

Corollary 4.5. For any linear spac¥ with the arbitrary scalar produ¢t, ) : V x V —
R on it and for any linear functional : V. — R we have

LS| <c-11S] (7)

for any vectorS € V wherec € R is a fixed constant depending @i and on the scalar
product(-, -} only (but not the vectos itself).

Using (7) we can estimate the magnitude4ifS). For example, if(-, -) is the
Euclidean (quadratic) scalar productBA then we have

ILS)| < c-yfs2+ -+ 5%, (8)

wherec = ,/a? + - - - + a2 (the quadratic sum of thé-values of the components) and
a is defined in (2) in theorem 4.2.

5. Direct sums

In all of the above results we had to fix the dimension of the space in advance. This
clearly fixes the number of components which can be used.

In this section we explain the possibility of later (subsequent) adding new structures
containing new components, i.e., how to extend the dimension of the space we are in,
and continue the calculations without giving up the old ones. Though the below results
solve this problem we must be careful in practical computations.

Extending the dimension by introducing new base vectors (components in our ex-
amples) can be handled witlrect sumf linear spaces and of linear operators.

Let us recall here that thdirect sumV = V; @ V, means thaeachvectorv € V
can be writteruniquelyin the formv = v, + v, for somev; € V; andv, € V, (which
clearly impliesVy; N Vo, = {0}). Further,L := £1 & £, meansL(v) = L1(v;) + L2(vy)
for the linear operator&: vV — R, £1:V; — R, £,:V, — R and for any vectors,

v;, v, above.

Statement 5.1. If V is any linear space which is a direct sum of the two spaces
V1® Vs, then every linear functional : V — R can be written in the fornf = £, £,
wherel; : V; — R are linear functionals far= 1, 2.

On the other hand, if; : V; — R are linear functionals for = 1, 2 then the
functional £ := £, ® L5, L:V — Ris also linear.
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Using Riesz’s theorem 4.1 for all the vector spated/; andV, separately, clearly
we have thatC(v) = (a,v), L1(v)) = (a5, v;) and La(v,) = (a,, v,) hold for all
vectorsv € V, v, € Vi andy, € V, for some fixed special vectotse V, a; € V1
anda, € V,. Let us emphasize, however, thats not the (direct) sum of:; anda, in
general. This latter requirement can be ensured, e.g., when the subBpaces/, are
orthogonalto each other (with respect to the scalar produc)) which meang; Lv,
(i.e., (vq, v,) = 0) forall v, € V4, v, € Vo. We state the exact result below.

Statement 5.2. If V = Vi1 @ Vo and L = L, & L, are arbitrary as in statement 5.1,
(-,-):V x V — Ris an arbitrary scalar product such thatandV, are orthogonal to
each other (with respect to this scalar product) and further the vecter¥, a, € V4
anda, € V; satisfy

L) =(a,v), Li1(vy) =(a;,vy) and Ly(v,) = (a2, v,)
forallv e V, v, € V1 andy, € V, then
a=a,®da,=a, +a,. 9)

In order to formulate extensions of valuation operators we need the concept and the
notation ofrestriction L|y : H — W of any linear mappingC: V — W and subspace
H of V (in our applicationsV = R andW = R). Clearly

L= ‘ClVl @‘Cle

holds for any linear mapping : V — W and subspaceg,, Vo, of Vif V = V; & V>.

Corollary 5.3. If the vectorsa € RY, b € RM are determined by the arbitrary but dis-
joint sets of componenty, ..., Cy} and{D4, ..., Dy} and by the (arbitrary) valua-
tion operatorsC; : RY — R, £,:RM — R, which are restrictions of the same valuation
operatorl : RV*M — R, then

N M
E(S):Zai-si—{—ij-sNﬂ (10)
i=1 j=1

holds for any structur = > "t"s; - C; e RV*M,

The above result allows us just to add the value£ ;) and £(S>) to get the
value of £L(S) if S = S; + S, is any but disjoint partitioning (concerning the involved
components) of the structur® In other words, applying newer components (either
atoms or species or reactions, etc.) we are allowed just only to extend our previous
databases, thknearity of £ ensures thaho new data or computational methods are
necessary.



384 I. Szalkai / On valuation operators in stoichiometry and in reaction syntheses

6. Scalar products

We give here a brief summary of scalar products in any finite-dimensional linear
space, revealing both the variety and boundary of them and also the connections among
them. This helps us to find the exact role of the Euclidean scalar product we used in
section 4 for a fixed base of the space. All notions and results can be found in any
standard graduate level linear algebraic textbook.

First we have to clarify some notions.

Definition 6.1. The matrixA € R"*" is symmetrigf AT = A, in other wordsy; ; = a;;
fori, j =1,...,n whereg; ; are the entries oA.

Fori < n theith main subdeterminardr main minord; € R of A is the determi-
nant of the left-upper submatrix of size< i of A formed by the firsi many rows and
columns ofA.

The matrix ispositive definiteff all its main minorsda, .. ., d, have thesamesign
(either all of them are positive or all of them are negative).

In what follows letV be any fixed finite dimensional linear space of dimension
n € N with any fixed baseB = {b1,...,b,} C V. (No special role at all will possess
in what follows the base we chose.) In what follows, we will not force any distinction
of the vectors: € V and their coordinateB1, ..., u,]" € R” with respect to the fixed
baseB.

Theorem 6.2. The mappingd:V x V — R,

s

A, v) = u'Ap = ai Ui v,

is bilinear for any matriA € R"*". A is symmetric if and only ifA is symmetric.A is
positive definite (i.e.A(u, u) > Oforu € V,u # 0) if and only if A is positive definite.

The below two results together give a complete characterization of scalar products
on any finite-dimensional vector space.

Corollary 6.3. The mapping4:V x V — R, A(u,v) = u'Av is always a scalar
product onV for any symmetric and positive definite matdxe R"*",

Theorem 6.4. For any scalar productl: V x V — R there is a (unique) matrik €
R™" such thatA(u, v) = u'Auv.

A clearly depends on the bageC V of the space but there are simple formulae
for transforming the above matrices of a fixed scalar produat any different bases.
Even special bases can easily be found by the below result.
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Theorem 6.5 (Gram—Schmidt). Foany scalar productd: V x V — R in anyfinite
dimensional linear space there is a basé' = {il, ... ,Ll} C V which elements are
orthogonal to4, i.e.,A(L,ij) =0fori # j.

Corollary 6.6. If AandF are as in the above theorem then the mahrjixorresponding
to A and F, is diagonal with positive entries, that is, for everyw € V we have

n
Au,v) = ZTAQ = Z a; iu;v;

i=1
where the coefficients;; € R are all positive.

The next (and last) result summarizes the connections among difteiaat prod-
uctson a given finite dimensional linear space: theraddlifference at all among dif-
ferent scalar products on a fixed linear spate- from topological point of view, at
least.

Theorem 6.7. For any two scalar producid, B:V x V — R there is an automorphism
Z:V — V such that

A, v) = B(Z(w), Z(v))

holds for any vectors, v € V. MoreoverZ is continuous with respect to the topologies
induced byA andB, i.e.,Z: (V, A) — (V, B) is a (topological) homeomorphism.

Ouir first application of the above result is to the Euclidean scalar product, of course.
Theorem 6.7 says especially, among other, that any valuation operator can be measured
in any measure unit, up to a scalar factor.

7. Conclusions

We presented a theoretical investigation and background for calculation methods
already in use concerning valuation operators (increments/linear functionals/quantitative
characteristics) in several fields of chemistry and physics.

As direct consequences we proved, e.g., that linear increments really can be com-
puted as weighted sum of the increments of the components (see equation (3) in corol-
lary 4.3), or we presented a one-sentence proof of Hess’ law in thermochemistry in (5),
we gave estimates for the magnitudeZgfS) in (8), etc.
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