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We discuss here a new general linear algebraic method (both model and algorithm) for
describing and generating (among others) minimalreactionsand also minimalmechanismsin
stoichiometry, or dimensionless groups in physics as well. (Further applications inprocess
network syntheseswill be discussed in [1].) With some minor modifications of theinput this
method can be extended forseveralrelated questions: for generating direct and overall reac-
tions, direct (steady state) mechanisms, for finding the possible resulting (overall) reactions
among all possible mechanisms, etc.

Computational results in section 4 show the speed of our algorithm.
We give also mathematical background and results in sections 3, 5 and 6. However, we do

not restrict ourselves to mathematics only, we also talk on the language of chemistry, too.
The theoretical results in sections 3.2, 3.3, 5 and the computational examples in section 4

are completely new, further theoretical results will appear in [1,2] and in [3].

KEY WORDS: linear algebraic method, minimal reaction, direct mechanism, simplexes

1. Introduction and history

Mathematical formulation and even algorithmic approaches of finding minimal (di-
rect) and overall reactions and mechanisms grew a great literature in the last decade. We
refer here only to the works of Happel, Sellers and Otarod [4–6], of Pethő [7–9], of
Bertók [10], Fishtik, Alexander and Datta [11,12] and of the present author [1,2,13–16]
and [3].

The main purpose of the present paper is to highlight the versatility of our math-
ematical model and the algorithm based on it. Our theory is based on Prof. Pethő’s
work [7] and is applied for several examples in section 2. For fully understanding of
the generality of our method and algorithm we devote section 2 for the mathematical
approach and examples of different types (asatoms, reactions, mechanisms, process
network syntheses or dimensionless units in physics). Though the mathematical notion
(‘simplex’) we introduce has its own curiosity in mathematics, here we focus on chem-
ical aspects of its applications only. The mathematical investigations of simplexes are
published in [14–16] and are continued in [2] and in [3]. In section 3 we introduce our
new general algorithm which idea was first published in [13] in 1991. Our algorithm
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differs in its basis from Happel’s et al. in [6] and Bertók’s [10], it is fully automatic, and
computer experiments show that it is considerably fast (see section 4).

Now in this present paper we apply this method for many further applications.
Surprisingly enough only slight modifications were necessary of theinput setfor many
different and effective further applications. These modifications are discussed in sec-
tion 3.2.

Let us remark also for readers of nonmathematical interest that the results of [14]
and [15] give sharp bounds for thenumberof simplexes in a given vector set. In other
words, these formulas give immediately bounds for thenumberof chemicalminimal
reactions/direct mechanismsin a given set ofspecies(groups of atoms or functional
bonds)/reactionssince the number of the involved elements/species is known and fixed.
For the readers’ convenience we list these formulas in the last section, in the appendix.

Finally, in section 5 we deal with some other general mathematical questions.
Special thanks are given to Prof. Árpád Pethő, Universität Hannover and Prof. Ferenc
Friedler, University of Veszprém.

2. Mathematical formulation

Our mathematical model is standard and quite well-known, first described in [7]
and [13], partly similar to Sellers and others [5,6]. Let us highlight in advance that our
method is exactly thesameboth for reactions, mechanisms,anddimensionless groups.
We can describe all these problems in the language of linear combinations of vectors,
and in order to find the desired object (minimal reactions/mechanisms/dimensionless
groups) we need to find, in all of the three above cases, minimallinearly dependent
subsets of these vectors. We call these subsets of vectorssimplexes.Since our algorithm
findsall simplexes inany set of given vectors, it can be applied immediately for all of
the three problems above.

2.1. Reactions

If the chemical species (or groups of atoms, i.e., functional bonds only)A1, . . . , An

consists of the atomsE1, . . . , Em as

Aj =
m∑
i=1

ai,j · Ei,

whereai,j ∈ N for j = 1, . . . , n and i = 1, . . . , m, and the sets{A1, . . . , An} and
{E1, . . . , Em} are fixed, then we canassignthe speciesAj to the vector

Aj := [a1,j , . . . , am,j ]T
for j = 1, . . . , n, which vectors1 are elements of them-dimensional linear space, where
a (natural) set of base vectors is{E1, . . . , Em}. Now, a (possible) chemicalreaction

1 We will not emphasize the difference between the speciesAj and the vectorsAj .
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among the species{Aj : j ∈ S} does exists for anyS ⊆ {1, . . . , n} if and only if the
system of homogen linear equations∑

j∈S
xj · Aj = 0 (0)

has nontrivial solution forxj ∈ R (j ∈ S) by the law of mass balance (conservation
of material). A solution{xj : j ∈ S} easily determines uniquely a chemical reaction
among the species{Aj : j ∈ S}.2,3 (The structure of the solutions of homogeneous
linear equations is discussed in [17].)

For example, consider the speciesA1 = C,A2 = O,A3 = CO andA4 = CO2, that
is we use the elementsE1 = C andE2 = O. Som = 2 (= the number of atoms= the
dimension), andn = 4 (= the number of species/vectors). The columns of the following
table represent the vectorsA1 throughA4:

A1 A2 A3 A4

C 1 0 1 1

O 0 1 1 2

C O CO CO2

(1)

Now, for example, takingS = {A1, A2, A3} we get the solution4

X1 = [x1, x2, x3, x4]T = [1,1,−1,0]T
which corresponds to the reaction

C+ O= CO

The assumption that the equation (0)hasnontrivial solutions5 is equivalent to that
the vector-set{Aj : j ∈ S} is linearly dependent.The corresponding reaction is called
minimal iff for no T ⊂ S, T = S there might be any reaction among the species
{Aj : j ∈ T }. That is, the vector-set{Aj : j ∈ T } is linearly independentfor T ⊂ S,
T = S.

This motivates the following definition (see [8], [13] or [14]):

Definition 2.1. A set of vectorsB = {bj : j ∈ S} ⊆ Rn is called asimplex iff B is
linearly dependent but all of its proper subsets{bj : j ∈ T } are linearly independent for
anyT ⊂ S, T = S.

2 Species (groups of atoms or functional bonds) with positive coefficients represent the right-hand side of
the reaction equality while species with negative coefficients are moved to the left-hand side.

3 All the solutions for the unknownsxj for j ∈ S are rational since the componentsai,j of the vectorsAj

– the coefficients of the homogeneous linear equation (0) – are all integers.
4 The coordinates ofX, corresponding to vectorsAj which do NOT belong to the simplexS, are always 0.
5 Of course the reactions obtained in the described way are only possibilities, since, for example, the

reaction 2Au+ 6HCl= 2AuCl3 + 3H2 does not yield under normal conditions!
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The only simplexes in the above example are (we write the sub-indexes of the
vectorsAi only) S1 = {1,2,3}, S2 = {1,2,4}, S3 = {1,3,4} andS4 = {2,3,4}. After
solving the corresponding equations (0) we get the following (complete) list of minimal
reactions:

X1 = [1,1,−1,0]T : C+O= CO
X2 = [1,2,0,−1]T : C+O2 = CO2

X3 = [1,0,−2,1]T : C+ CO2 = 2CO
X4 = [0,1,1,−1]T : O+ CO= CO2

(2)

(We continuethis example in the next section.)

2.2. Mechanisms

We can build upmechanisms (and alsominimal ones) from any set of reactions
just on the same way as we built up reactions from species in the previous subsection.
(Mechanisms are the main topic of our present research, we investigate them in more
detail in sections 3.2 and 4.)

Well, if we are given the reactionsX1, . . . , Xk which use the species (groups of
atoms or functional bonds)A1, . . . , An then we can correspond these reactions to the
vectorsX1, . . . ,Xk ∈ Rn in then-dimensional linear spaceRn, where the base vectors
areA1, . . . ,An (= the standard base) representing each speci involved in the reactions.
That is:

Xj =
n∑

i=1

bi,j · Ai ,

wherebi,j ∈ Z for j = 1, . . . , k andi = 1, . . . , n.6,7 Thenany linear combination

M =
k∑

j=1

λj · Xj (3)

of the vectorsXj with integer (or rational8) coefficientsλj ∈ Z represents a (possible)
mechanismM in a natural way: during that mechanism the reactionXj takes place
λj -many times (see the example below). Negative coefficients of course, mean that
the corresponding reactions take place in reversed order. This reaction uniquely can be
described by the vector of the coefficients

λ := [λ1, . . . , λk]T ∈ Zk.

6 Moving the terms with negative coefficientsbi,j < 0 to the left-hand side of the equality (initial materials
of the reaction) and leaving the others in the right-hand side (resulting materials) we get the usual form∑

i∈X b′i,j Ai =
∑

i∈Y b′i,j Ai the mechanism.
7 By the law of the mass-balance we surely must haveAX = 0 for the matrixA := [A1, . . . , An] which

“codes” the sum-formulae of the speciesA1, . . . , An.
8 After multiplying all the coefficients by the common denominator we get integer coefficients.
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Let us emphasize here that the detailed flow of the mechanism can be detected from the
above vector of the coefficientsbutnot at all from the sum-vector of the linear combina-
tion in (3).

For further investigations we are adviced to extract the notion of theresulting
(overall) reaction denoted byR(M) orR( λ ) corresponding to the mechanismM in
(3) as (see [5]):

R( λ ) :=
k∑

j=1

λjXj ∈ Rn,

which is the final reaction, caused by the reactionsXj , λj -many times one after another,
1� j � k.

Let us remark that this model does not reveals theorderof or any other connection
among the reactions in a mechanism, B. Bertók recently introduced a graph-theoretical
approach in [4] for that problem.

In the practice we distinguishterminal species(the starting and final ones that we
interested in) andintermediateones (which occur only during the mechanism). These
terms are from [6], the termschemicalandactive speciesare also in use. According
to this distinction of species (or just groups of atoms/functional bonds), mechanisms
are calledsteady state mechanisms [4] if the corresponding reaction (calledoverall
reaction) contains of terminal (chemical) species only.

The mechanism is calleddirect or minimal mechanism [4] if the set of active
reactions (vectors with nonzero coefficient)

S(λ) := {j � k | λj = 0}
cannot be decreased to yield the same resulting (overall) reactionR( λ ). In other words:
there isno propersubsetS ′ � S( λ ) such thatR(µ) = α · R( λ ) andS(µ) = S ′ �
S( λ ) for some coefficient-vectorµ ∈ Zk and rational numberα ∈ Q. In this case the
corresponding reactionR( λ ) is calledsimple or minimal reaction.

Using our terminology, the solutions of the linear equations
∑
j∈S

yjXj = 0 (4)

are minimal mechanismsiff the setS ⊆ {1, . . . , k} is asimplex, again!
Milner uses the termdirect path and Sellers [5] thecycle-free mechanism for

minimal mechanisms.
With slight modifications of our pure linear algebraic algorithm (detailed in sec-

tion 3.1) we can solve several problems: we can find all minimal mechanisms resulting
to any given reaction, or we can find all overall reactions if the sets of terminal and in-
termediate (chemical and active) species are given. These and other applications are ex-
plained in detail in section 3.2 of our present paper. Happel, Sellers and Otarod in [6] and
Bertók in [10] published algorithms for finding direct steady-state mechanisms. Pethő
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and Kumar in [19] presented an output for minimal reactions only. Our computational
results are listed and the related ones are compared to the above ones in section 4.

Continuing our example from the previos subsection, the coordinates of the vectors
X1, . . . ,X4 (= [minimal] reactions, see (1) and (2)) are

X1 X2 X3 X4

A1 = C 1 1 0 1

A2 = O 1 2 1 0

A3 = CO −1 0 1 −2

A4 = CO2 0 −1 −1 1

(5)

Funny enough in our example we have againfour simplexes. Solving the corre-
sponding equations, we get the following list of minimal mechanisms (cycles):

Y1 = [−1,0,1,1]T : C+O ←CO
O+ CO →CO2

C+ CO2 → 2CO

Y2 = [−1,1,−1,0]T : C+O ←CO
C+ 2CO →CO2

O+ CO ←CO2

Y3 = [2,−1,0,−1]T : 2(C+O →CO)

C+ 2O ←CO2

C+ CO2 ← 2CO

Y4 = [0,−1,2,1]T : C+ 2O ←CO2

2(O+ CO→CO2)

C+ CO2 → 2CO

(6)

For all these mechanismsYi the resulting (overall) reactionR(Yi) = 0 (the void
reaction),i = 1,2,3,4.

2.3. Dimensionless groups

This application was first mentioned in [7] and is not from stoichiometry, but re-
veals the structure of composite measure units in physics: we can easily (fully automati-
cally) find minimal identities among physical quantities by finding (all) simplexes again
in a certain set of vectors.

Let there be givenm elementaryquantities (mass, lenght, time, etc.) denoted by
E1, . . . , Em andn quantitiesA1, . . . , An (n ∈ N is any number) as

Aj =
m∏
i=1

E
ai,j
i ,



I. Szalkai / A new general algorithmic method 7

whereai,j ∈ Z for j = 1, . . . , n andi = 1, . . . , m. Clearly we canassignthe quantities
Aj to the vectors

Aj := [a1,j , . . . , am,j ]T ∈ Rm

for j = 1, . . . , n, which vectors are in them-dimensional linear spaceRm. Now, a
(possible)dimensionless group (real number) of the quantities{Aj : j ∈ S} does exists
for anyS ⊆ {1, . . . , n} iff the equality∏

j∈S
A

xj
j = 1 (7)

holds, or equivalently (considering the exponents) the homogeneous system of linear
equations ∑

j∈S
xj · Aj = 0

has nontrivial solution forxj ∈ R (j ∈ S). That is, we again reached to the system of
linear homogen equations (0) and to the problem of finding simplexes!

For example, consider the flow of a fluid through a heated tube and the heat transfer
between the pipe wall and the fluid. Consider now the following quantities:

A1 = tube diameter = d(�)(length, basic quantity),
A2 = linear velocity = v(s/t),

A3 = fluid density = ρ(m/�3),

A4 = viscosity = ν(m/�t),

A5 = heat capacity = κ(A/t2T ),

A6 = heat transfer coeff.= λ(m/t3T ),

A7 = thermal conductivity=µ(m�/t3T ).

In matrix form:

m � t T

A1 = d 0 1 0 0
A2 = v 0 1 −1 0
A3 = ρ 1 −3 0 0
A4 = ν 1 −1 −1 0
A5 = " 0 2 −2 −1
A6 = λ 1 0 −3 −1
A7 = µ 1 1 −3 −1

(8)

For example, one minimal dimensionless groupX1 of the seven ones is the following:

X1 = [0,0,0,1,1,0,−1]T ,
which corresponds to the equality

ν · κ = µ · c
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for some constantc ∈ R.

2.4. General remarks

As we have seen above in three different example, the main mathematical problem
is the same:

“ In a given vector-setH = {v1, v2, . . . , vM} ∈ RN we have to find all

simplexesS ⊆ H (i.e., minimal dependent subsets ofH )” . (9)

Our algorithm, introduced in [13] (and briefly sketched in the next section) solves
directly the above computational problem, so can be applied directly for any of the three
above practical problems. With some minor modifications we apply it for some other
special questions, mainly in study of reaction mechanisms in section 3.2. See also [1]
and [2].

Let us remark here that thesizeof the simplexes mustnot be the same, moreover
they do not have any connection with the bases of the linear space (of all possible reac-
tions/mechanisms/dimensionless groups). However, thenumberof simplexes in a given
set of vectors (in other words, the number of the possible minimal mechanisms/reactions)
is only partially solved question, hard in full details. Our recent papers [14] and [15] give
almost full answers, the main results and open questions are listed also in the appendix
of the present paper, for the readers’ convenience. (The paper [16] generalizes the math-
ematical notion of simplexes and counts their number not only in linear spaces but in
more general structures calledmatroids.) Examples in section 4 show that large sets of
vectors in high dimension might have few simplexes only, and small sets in low dimen-
sion might have many simplexes. This means, it is very hard to give theexactnumber of
simplexes in a given vector-set!

As Prof. Árpád Peth̋o in [17] shows,all solutions (not only minimals) of systems
of homogeneous linear equations (0) can be calculated from minimal ones, this was the
first case he introduced the notion of simplexes.

Let us mention further that solving the system of linear equations (0) the solution
vector can be assumed to have integer coordinates (components) only since (0) has inte-
ger coefficients, and we can multiply the rational components of the solution vector by
the common denominator.

A general linear algebraic notion (linear functional) is applied to chemical rections
and mechanisms in [9] where it is called thevaluation operator, this question is investi-
gated in [2].

As sections 2.1 and 2.2 above indicate together, we could build an infinite sequence
of hierarchies: (1) vectors (species/groups of atoms/functional bonds); (2) solution vec-
tors corresponding to simplexes (i.e., reactions); (3) solution vectors of simplexes of the
above vector-set (i.e., mechanisms in our example),and so on . . .! Details and further
properties of thisinfinite hierarchy will be investigated in [7] and [3].
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3. The algorithm and extensions

As we have indicated before, our algorithm, published in [13] solves the mathe-
matical problem (9) in general, so one can apply it directly for finding minimal either
reactions or mechanisms or dimensionless groups. After a short description of the algo-
rithm in the next section, we discuss a couple of simple modifications of it for solving
other related questions (mainly for studying mechanisms). Computer experiments are
discussed in section 4.

3.1. The algorithm

So we are given a set of vectorsH ⊆ Rn (input) and we have to find all simplexes
S ⊆ H , i.e., minimal dependent subsets ofH .

The only interesting part of the algorithm might be how to generate (=book-
keeping+ modifying) all simplexesof a given set of vectors. (Checking whether a
chosen set of vectors is simplex or not is standard.)

We chose the lexicographic enumeration of all (possible) simplexes (subsets) and
the “back-and-forth” method for modifying. To store the elements of a subsetS � H

of vectorsH (or equivalently theindexesof the vectors) we chose a string (called
szimplex[ ] in our program) with an information-character on the last byte of it. (We
put the info character to the last position only for convenience. Also for convenience we
labeled the vectors with the characters A, B,. . . .)

The last info character of this string (representing the subsetS � H we just exam-
ine for being simplex) is one of the following:

‘ ’ (space)− S is untested,
‘ i’ − the wholeS is independent,
‘d ’ − one of the proper subsets ofS is dependent,
‘s’ − S is a simplex.

The procedure which modifies the vector-subset (procedure modify) always puts a space
to the last info character, is enclosed at the end of the paper [13]. The main program
keeps testing whether the new vector-set is a simplex or not and fills out the last info
character according to this. After this calls the main programprocedure modifyfor mod-
ifying the vectors-subset, and solves (0) where the columns of the coefficient matrix are
exactly the vectors of the actual simplex. One of the most crucial part of the algorithm’s
speed is: how many times do we need to check the linear dependency of a subsetT ⊆ H

of the input vector-setH for finding all the simplexesS ⊆ H . It is polynomial in the
number of the input vectors, as we count it at the beginning of section 4. Moreover, the
number of these checks is displayed in each of our examples in section 4, always in the
last line of the tables. Perhaps a smart data-handling could avoid repeated checkings of
subsetsT ⊆ H but we do not think it would fasten considerably our algorithm.

Now let us see ourprocedure modifyin more details. (See also the enclosed pro-
gram list at the end of [13].)N denotes the number of the given vectors, whileS will
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denote the set of the vectorswe just examine(or shortly the indices of them only) with
the last information character, that is

S ⊂ {1,2, . . . , N, ‘ ’, ‘ i’, ‘ d ’, ‘ s’ }.
Further, c always denotes an arbitrary character,k, t � N and T is any subset of
{1,2, . . . , t − 1} if t is fixed. Now, the pseudocode of the main point of our algorithm is
the following:

S := {1};
while not end do begin

if S = {k, k + 1, . . . , N; c} and c = d then END;
if S = {k, k + 1, . . . , .N; ‘d ’ } then S := {k, k + 1, . . . , N − 1, N; ‘ ’ };
if S = {T , t,N; c} then S := {T , t + 1; ‘ ’ };
if S = {T , t; ‘ i’ } then S := {T , t, t + 1; ‘ ’ };
if S = {T , t; ‘d ’ } then S := {T , t + 1; ‘ ’ };
if S = {T , t; ‘s’ } then S := {T , t + 1; ‘ ’ };

end ;

The program does not miss any simplex because, roughly speaking, it checks the
(candidate) subsets of the given vector-set inlexicographicalorder.

A working routine in Pascal language is shown at the end of the paper [13], some
computational results are listed in section 4 of the present paper.

3.2. The extensions

Surprisingly enough a couple of related questions can also be solved by slight
modificationsnot of the above algorithmbut, however, of the input set of vectors
only!

We explain here our ideas mainly refereeing for mechanisms, though the algorithm
itself and the following ideas can be used in general in any other problem, inany linear
space.

3.2.0. Reducing the dimension
Using some easy observations we can reduce thesizeof the input and so the running

time of our computer.
(a) Clearly any vector (reaction) which is linearly independent of the others must

be omitted since no simplexes could contain it. Though any systematic search forall
these kind of vectors requires considerable time, for huge datasets (about 30 vectors in
30 dimension, i.e., hours of CPU time) this would offer a remarkable time saving, using
some minute elementary algebraic computation.

For an outstanding example let us highligh here the case of Methane–Methanol
example of [6] (which is also our example 4.6 below) where especially the reactions
S9 andS11 both contain exactly one extra speci (asinglecoordinate), namely C2H6 and
CH3OCH3 respectively, which donot occur in any other reactions. This clearly means
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that they must be linearly independent of the others. And in fact,S9 andS11 are not listed
at all in table X in [6], which also can be seen in subsection our 4.6 below: table 4.6(a)
shows the original example while in table 4.6(b) we can see the effect of omittingS9 and
S11.

(b) If we have a vector with exactlytwononzero coordinates it may also be omitted
and further the dimension of all the remaining vectors may be decreased by one.

In the language ofchemistry:such a vector stands for a reaction of typeA = λB

for some (positive) numberλ ∈ R. This clearly implies that the species (groups of
atoms/functional bonds)A andB are equivalent. That is, the speciA can be replaced to
λB, for example, in all the other reactions while the speciA and the reactionA = λB

can be omitted. This decreases both the number of species (dimension) and of reac-
tions (vectors). Of course to each mechanismM− in this reduced lower dimensional
space we might add the reactionA = λB if the speciB occurs inM− to form a
real mechanismM in the original problem. (Of courseM mustnot be minimal, so
if we search forminimal mechanisms we might have also to examine its minimality
after.)

Let us examine this construction in the language ofmathematics, too.
Let the vector-setH ⊆ RN be given and suppose that the vectorX ∈ H has

exactly twononzero coordinatesxu = λ · xv whereλ ∈ R\{0} is arbitrary nonzero real
number andX = [x1, . . . xN ]T. For each vectorY ∈ H let us now substract thevth
coordinateλ-times from theuth one and delete thevth coordinate fromY to get the
vectorY− ∈ RN−1. In formula: from the vectorY = [y1, . . . , yN ]T ∈ RN we construct
the vector

Y− := [y1, . . . , yu − λ · yv, . . . , yv−1, yv+1, . . . , yN ]T ∈ RN−1

if we supposeu < v. ClearlyX− = 0. Let now

H− := {Y− | Y ∈ H, Y = X} ⊆ RN−1.

Lemma 3.0. For anyS− ⊆ H− we have thatS− is linearly independent iff the set
S ∪ {X} is linearly independent, whereS := {Y | Y− ∈ S−}.

Proof. Let S := {Yi | i � t}. Since only theuth coordinates of the vectorsY ∈ H

were changed, and further all other coordinates ofX were0 which were not deleted, we
have to focus on theuth coordinatesyi

u of Yi only. (Recall that theuth coordinate ofY−i
is yi

u − λ · yi
v.) This means, that for any set of coefficientsµ1, . . . , µt ∈ R we have

t∑
i=1

µiY
−
i = 0 iff

t∑
i=1

µi

(
yi
u − λ · yi

v

) = 0 iff

t∑
i=1

µiy
i
u = λ ·

t∑
i=1

µiy
i
v =: c iff

t∑
i=1

µiYi = c

xu
· X. �
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Now let us consider any subsetS− ⊆ H−. Using the previous lemma we have that
S− is simplex iff S ∪ {X} is dependent andS\{Y} ∪ {X} is independent for allY ∈ S,
Y = X iff eitherS∪{X} is a simplex orS is dependent but in the latter case we must have
a simplexT ⊆ S not containingX. Using this observation we can reduce the search for
simplexes inH : we have to search for them among the setS ∪ {X} and all the subsets of
S for every simplexS− ⊆ H−.

Let us emphasize that we did not mention such difficulties above when we spoke in
the language of chemistry. There we did not bother of findingminimal original reactions
in the previous paragraph what caused this difference.

This reduction is illustrated in our example 4.7 which is taken from [6], the exam-
ple of conversion of Glucose to Pyruvate. The first part of table 4.7 show the original
problem9, for the second part we applied the above reduction for all theeight reaction
of typeA = λB of the original problem. For the last part we applied one further re-
duction for a resulted new reaction of this type. The CPU time decreased from 93.00 to
0.00 sec.! (Well, we did not make any computations for decoding – finding simplexes in
the original problem from the reduced ones, so far.)

3.2.1. Searching for (direct) overall reactions
In this section we consider the case when the resulting (overall) reactionXk+1 =

R( λ ) is notknown but the lists of theterminal (chemical) species(what we want to syn-
these and what are the initial ones), andintermediate (active) species(which occur only
during the mechanism) are given. (For terminology see [4] or our section 2.2 above.)
Remark that all species are supposed to be either terminal or intermediate ones.

Our goal now is to findall mechanisms (calledsteady-state ones) of which corre-
sponding reactions contain terminals (chemical) species only, these reactions are called
overall ones. Again, our algorithm provides minimal mechanisms (i.e.,direct or cycle-
free ones) with their minimal (i.e., simple) reactions.

(i) For this purpose enlarge first the given set of vectors{X1, . . . ,Xk} ⊆ RN with
new “ideal” vectorsVt ∈ RN to separate terminate and intermediate species: one new
vectorVt for each terminate speciAt wheret ∈ T . In more detail, let all but thet th
coordinates ofVt be equal to 0 while let thet th coordinate (representingAt ) of Vt be
equal to 1.

Now, fromanymechanism

k∑
j=1

λj ·Xj +
∑
t∈T

µt · Vt = 0, (10)

we can extract the overall reaction

R := −
∑
t∈T

µt · Vt, (11)

9 Section 3.2.1 explains the differences among these three parts.
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where, as usual, the initial species are with negative coefficients and the synthesed ones
with positive coefficients. Clearly now the mechanism

M :=
k∑

j=1

λj ·Xj (12)

has exactly the resulting (overall) reaction

R(M) = R.

Of course we have to consider only the simplexes of the extended vector-set

S ⊆ {X1, . . . ,Xk} ∪ {Vt | t ∈ T } (13)

which contain at least one new vectorVt . Otherwise we would get mechanismsM
resulting the void reactionR(M) = 0 (as without introducing the new vectors{Vt | t ∈
T }).

We have to findsimplexesS in the set (13) since we are interested inminimal
mechanisms. This might be an essential restriction for findingall mechanisms. In
(iii) below we discuss another, two-stage solution for findingall minimal (direct) overall
reactions and minimal mechanisms resulting the corresponding overall reaction, though
the method we just presented is a direct,one-stageone for the same problem. In sec-
tion 3.3 we give an exact mathematical proof for that the present method and the one
in (iii) give the sameoutput. In other words, the above method based on (12) and (13)
really givesall minimal reactions and their minimal mechanisms. So we can use our al-
gorithm automatically inone stageas we discussed above in (12) and (13), which means
a fast solution to our problem.

After we have extended our vector-set{Xi: i � k} with the new vectors{Vj : j ∈
T } to the set

H := {Xi: i � k} ∪ {Vj : j ∈ T }
we may run our algorithm either for findingall simplexes inH (VarAll) or only those
which contain at least one of the new vectors{Vj : j ∈ T } (VarOnly) and we can
compare these runs to when we searched for all simplexes in the original vector-set
{Xi: i � k} (VarOrig). Clearly for all computational quantitiesν (time, number of
simplexes, checked subsets, etc.) we must have

ν(VarAll) = ν(VarOnly)+ ν(VarOrig). (14)

This easy fact can be also seen in each of in tables 4.5 through 4.7 in section 4.
(ii) We must not forget thelaw of mass balance (remaining of the material)in the

mechanismM, which results the reactionR = R(M) = −∑t∈T µt · Vt by (11).
This is not a problem fromchemicalpoint of view: since all the given reactions

(input vectors) satisfy this law, their linear combination satisfies, too, since by (10) we
haveR = ∑k

j=1 λj · Xj . (In other words, this law holds automatically for the output
mechanism assuming it hold for all of the input reactions.)
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Frommathematicalpoint of view: this law is equivalent to that the vectorR ∈ RN

must satisfy the requirement

B · R = 0 (15)

for the matrixB ∈ Rm×N which codes the sum-formulae ofall the species (groups of
atoms/functional bonds) involved in our problems: in any of the input vectors{Xi: i �
k} did it, as we described in section 2.1. The equality (15) might be curious if we used
only (11) asR = −∑t∈T µt · Vt but using

R =
k∑

j=1

λj · Xj

from (10) and the assumption

B ·Xj = 0 (∀j � k)

we clearly have

B · R =
k∑

j=1

λjBXj = 0.

Not only for still unconvinced readers but for an additional explanation of the proof
in section 3.3, let us mention the next variant for ensuring the law of the mass balance.
Let us first enlarge the dimension of all the vectors{Xi: i � k} and{Vj : j � T } with
as many new coordinates as many atoms the vectors{Vj : j � T } (i.e., theterminate
species) are built up. Next, let us code the sum-formula of these new vectorsVj in
their own new coordinates as we described in section 3.2.1, while we let all the new
coordinates of the old vectors{X1, . . . ,Xk} to be equal to 0. We donot think it would be
interesting to present such computational runs which (of course) gave the same results
but in some more time!

Let us emphasize again that running our algorithm with the modified dataset (as in
(i)) we immediately get (in one run)also the steady-statemechanism

M :=
k∑

j=1

λj ·Xj

with R(M) = R, that is the mechanisms which yield exactly the reactionR. Since our
algorithm listsall simplexes of the vector-set{Xi: i � k} ∪ {Vj : j ∈ T } in its full run,
we have only to separate all mechanisms corresponding to several reactions, so we get
all (direct) steady-state mechanisms withall their (simple) overall reactions in a single
run. This means that in the present case there isno need for further running the variant
described in section 3.2.2.

(iii) Another variantto the problem of finding all minimal overall reactions and
minimal (direct) mechanisms leading to them would be the following. Let us first search
all the possible minimal reactions among the terminate species as it is described in sec-
tion 3.2.1. Then for each minimal reaction let us search separately the minimal (di-



I. Szalkai / A new general algorithmic method 15

rect/steady state) mechanisms among the original given set of reactions, which mecha-
nisms belong to the actual minimal reaction as described in the next section 3.2.2.

This idea requiesseverallower dimensional runs of our algorithm (and transfering
data among them) instead of a single higher dimensional one as we suggested in (i). Let
us warn however our readers that in the preliminary search for all the possible minimal
reactions among the terminate species we may get also reactions which cannot be built
up from the original given set of reactions and so imply void runs in the next step!

Computational examples for these comparisons are presented in sections 4.5
through 4.7. In section 4.5 we explain the most details: the first column of table 4.5
examines the possible reactions among the terminate species (mentioned in (i) above)
but we did not any use of this computation for the other columns.10 Column 2 inves-
tigates all possible mechanisms among the original reactions. Columns 3 and 4 treat
with introducing the new vectors{Vt : t ∈ T } only (both without and with halting the
programme after leaving all new vectors).

3.2.2. (Direct) steady state mechanisms
In this subsection we deal with the case when wedoknow already one or more re-

sulting (overall) reactions (determined either by chemical or other mathematical method)
to which we want to determine all the (minimal) mechanisms leading to these given re-
actions.

Let us deal first with the case when we are given a single resulting reactionR. For
our purpose let us first extend the given vector-set

H := {X1, . . . ,Xk}
with the new vectorXk+1 := R and then let make our algorithm listonly the simplexes
containingR.

Since any mechanism (3) which results the reactionR can be trivially transformed
to the vanishing linear combination

k+1∑
j=1

λj ·Xj = 0

(which is called acycle in [5]), we should only substractXk+1 from the above equality
and the remaining mechanism

M := − 1

λk+1

k∑
j=1

λj ·Xj

would certainly result the reactionR, that isR(M) = R.M is minimal of course.

10So far we did not made any computer experiments for the idea presented in (iii) since all our computa-
tions concerning mechanisms were below 25 minutes, the long-running example in section 4.4 is for all
the minimal mechanism where the resulting (overall) reaction is already given.
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Since we are looking only for simplexes which do contain the fixed vector
R = Xk+1, we have to apply our bounding formulas (see appendix) fork many vec-
tors only! In other words, the computing time decreases by a factor of approximately
(k −N)/(k + 1) = 1− (N + 1)/(k + 1) when we search for simplexes containingR
(as a fixed element) instead of containing all possible subsets ofH ∪ {R}, which is a
(k + 1)-element subset ofRN .

The above trick can be extended easily to the case when we are given more than
one fixed resulting (overall) reactionsR1, . . . ,Rt at the same time. We simply have to
add these vectors toH and we have to consider only the simplexes

S ⊆ H ∪ {R1, . . . ,Rt }
which containexactly oneof the new vectors{R1, . . . ,Rt}. Clearly this parallel comput-
ing is adviced for smallt only since we are interested in simplexesS with this property
and checking that|S ∩ {R1, . . . ,Rt}| = 1 would require some time for larget . For large
t , which has magnitude ofk, we recommend to run this modified algorithm separately
for each setH ∪ {Ri} for all i � t .

3.2.3. Neither reactions nor terminate species are known
We can also handle the case whenno terminal (chemical) species are selected at all

at the beginning but we want to find all overall reactions. By our algorithm we search
for all the possible simplexes and compute (all) the corresponding resulting (overall)
reactions which give the answer. Observe however that in the meantime we have already
listed the corresponding overall mechanisms, too. This means that there is no need for
any further computing.

3.3. Proof of the equivalence

In this subsection we give a (mathematical) proof for the equivalence of the varia-
tions of our algorithm given in (i) and in (iii) in section 3.2.1. Namely, we justify that the
same set ofall direct overall reactions and their minimal mechanisms can be obtained
either with the one-stage method described in (i) or the two-stage variant introduced
in (iii) in section 3.2.1.

So, we are given the (arbitrary) vector-set

{X1, . . . ,Xk} ⊆ RN.

Let further

{V1, . . . ,Vt} ⊆ RN

beanyset of linearly independent set of vectors wheret � N . Let us denote the set of
all these vectors byH , i.e., let

H := {Xj : j � k} ∪ {Vi: i � t}.
We have to prove the equivalence of the simplexes of the vector-setH and those of
{Xj : j � k} ∪ {SR} for certainvectorSR ∈ RN .
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Let us start with an easy but general fact about simplexes.

Lemma 3.1. Any set of vectorsU = {u1, . . . , um, v} is a simplex if and only if the set
{u1, . . . , um} is linearly independent and all the coefficientsαi in the existing equality

v =
m∑
i=1

αiui (16)

are different from zero.

Proof. If the setU\{ui0} would be dependent for somei0 � m then we would have

βv · v+
∑
i =i0

βiui = 0

andβv = 0 since the set{u1, . . . , um} was assumed to be linearly independent. This
implies

v =
∑
i =i0

βi

βv

ui

which contradicts to (16) since the coefficient ofui0 in the last linear combination is 0
while all the coefficients ofui for eachi � m constructingv are unique since the set
{ui, . . . , um} is assumed to be linearly independent. �

Theorem 3.2. For any simplexS ⊆ H , S = {Xj : j ∈ K} ∪ {Vi: i ∈ T } where
K ⊆ {1, . . . , k} andT ⊆ {1, . . . , t} are nonempty subsets, and for the vector

SR := −
∑
j∈K

µj · Xj =
∑
i∈T

λi · Vi (17)

(for the suitable coefficientsµj , λi ∈ R) the setS ′ := {Xj : j ∈ K} ∪ {SR} is also a
simplex.

Proof. SinceS is minimal dependent, all the coefficients in (17) must be different
from 0. Then lemma 3.1 completes the proof. �

The above theorem ensures that the method we described in (i) of 3.2.1 finds all
simplexes (solutions) what the other variation in (iii) has found.

We will prove the other direction in theorem 3.3, what is not true for any setH of
vectors and simplexS ′ = {Xj : j ∈ K} ∪ {SR}, we also need the additional assumptions
(first) through (fifth) below.

First we need that all the vectorsXj (j � k) satisfy

B · Xj = 0 (∀j � k) (18)
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for a given (arbitrary) matrix11 B ∈ Rm×N , though this is not required for the vectors
Vi (i � t)! Denote now

{bi : i � N} ⊆ Rm

the set of column-vectors ofB.
Secondwe need that the vectorsVi (i � t) are the firstt standard base vectors of

RN , that is all but theith coordinates ofVi are equal to 0 while theith coordinate equals
to 1.

Third we have to observe the connection

B · Vi = bi (∀i � t)

which is a trivial consequence of second.
Recall now that we want to prove that each solution (minimal overall reaction and

direct mechanisms) received from the variant (iii) of our algorithm (in section 3.2.1) will
also be provided by the variant in (i) ibid. This implies the following assumptions we
may use:

Fourth let the vectorSR in (17) and let the setS ′ = {Xj : j ∈ K} ∪ {SR} be a
simplex. By (iii) of section 3.2.1 we also have that the set

{bi: i ∈ T } ⊆ Rm

is also a simplex!
Let us mention that by (17) we have

0 = B ·
∑
j∈K

µjXj =
∑
i∈T

λiB · Vi =
∑
i∈T

λibi (19)

which implies that{bi: i ∈ T } is dependent foranyvectorSR satisfying (17). The above
result (fourth) implies the below one which will be useful in our proof:

Fifth, the above set of indicesT satisfies the following minimality property: “T ⊆
{1, . . . , t} is minimal in the sense that there is no proper subsetT ′ � T for which∑

j∈L
µ′jXj =

∑
i∈T

λ′iVi (∗)

would hold for someL ⊆ {1, . . . , k}”.
Now we are ready to prove the converse of theorem 3.2. �

Theorem 3.3. Let S ′ = {Xj : j ∈ K} ∪ {SR} ⊆ RN be any simplex whereSR satis-
fies (17), further the above assumptions (first) through (fifth) hold. Then the set

S := {Xj : j ∈ K} ∪ {Vi: i ∈ T }
is also a simplex.

11For chemists:B codes the sum-formulae ofall the species involved in the input reactionsXj (j � k) as
we described in section 2.1.
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Proof. S is clearly dependent by (17). The setsS\{Vi0} for eachii0 ∈ T are indepen-
dent using the minimality property (∗) for T , since (fourth) implies thatT is nonempty.

Let nowj0 ∈ K be arbitrary and suppose by contradiction that the setS\{Xjo} is
dependent. Let

SQ := −
∑
j∈K

µ′jXj =
∑
i∈T

λ′iVi (20)

for someµ′j , λ
′
i ∈ R whereµ′j0

= 0. Arguing now as in (19) we get

0 = −B ·
∑
j∈K

µ′jXj =
∑
i∈T

λ′iB · Vi =
∑
i∈T

λ′ibi . (21)

Since the set{bi: i ∈ T } is simplex, all solutions of the homogeneous equality

0 =
∑
i∈T

γibi

are parallel, this is an another easy characterization of simplexes. For our equalities
in (19) and in (21) this implies that the coefficient vectors[λi : i ∈ T ]T and[λ′: i ∈ T ]T
are parallel. This would imply by (17) and (20) that the vectorsSQ wereSR also parallel,
i.e.,SQ = τ · SR for someτ ∈ R. Using (17) and (20) again this leads to a contradiction
since the vectors{Xj : j ∈ K} were supposed to be independent, moreoverµj0 = 0 but
alsononeof the coefficientsµj was 0, finallySQ may not be the zero vector. �

The above theorem clearly justifies that each solution (minimal overall reaction
and direct mechanisms) produced by the variant (iii) of section 3.2.1 is also be given by
the other one in (i) of the same subsection.

4. Computer experiments

An easy analysis of the algorithm shows that our algorithm runs forO(Mn+1)

time12 (in the worst case) since all examined subsets of theM vectors have size at most
n+ 1, thespanneddimension (= range)+1 of the input vector-set.

This ispolynomialtime inM, the number of vectors. The results in the appendix
show that the maximal (possible) number of simplexes (= the size of the output) is really
of this magnitude. According to this estimation everyday size inputs (some dozen of
vectors in 10–20-dimensional spaces) require some seconds only on modern computers.
Concrete computational experiments on (also large) datasets are shown below. We used
a Packard–Bell PC with Pentium II processor of 360 MHz, in Turbo Pascal 6.0 in DOS
mode.

The computing results of Happel, Otarod and Sellers [6] and Bertók [10] require
also about this running time but their results are not better at all than of ours.

12For any functionsf, g :N → N we say thatf = O(g) (“big oh g” ) iff for some positive constants
c1, c2 ∈ R we havec1 < f (n)/g(n) < c2, that isc1 · g(n) < f (n) < c2 · g(n) for all n ∈ N.
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When a so-called “resulting” (overall) reactionSR is given (which we have build
from a linear combination of the other vectors) we made run our program in two ways:
we computedall simplexes (not regarding the extra role ofSR) and we also computed the
mechanisms resulting the (overall) reactionSR (i.e., the simplexesonly which contain
SR, see the section 3.2.2). Checking this latter requirement in each step slowed down
slightly our computer but our formula

ν(VarAll) = ν(VarOnly)+ ν(VarOrig)

from (14) in section 3.2.1(i) is justified now.
4.1. Our first example is taken from Amundson [20] and also can be found in [7].

We have given the groups of atoms (functional bonds) CO, CO2, O2, H2, CH2O, CH3OH,
C2H5OH, (CH3)2CO, CH4, CH3CHO, H2O (of course there isno resulting (overall)
reaction now). The 213 minimal reactions (simplexes) we also get by our computation,
are listed in detail, e.g., in [7]. Since we use three atoms C, O, H (i.e., the input consists
of 3-dimensional vectors) and there are no parallel vectors among the species we can use
the sharper lower bound from corollary A.4.

Table 4.1
“Amundson”

N (dimension of the vectorspace) 3
n (dimension of whatH spans) 3
M (number of input vectors:|H |) 11
simp(H) (number of simplexes) 213
1+ (M−2

3
)+ (M−3

2
)

(lower bounda) 113�( M
n+1

)
(upper bound) �330

t (computational time [sec]) 0.22 s
number of checked subsets ofH 502

aSee appendix of the present paper.

4.2. Our next example is called “Ammonia” in [6] and it is the 4th example in [10].
The resulting (overall) and the examined (“possible elementary”) reactions are:

SR : N2+ 3H2→ 2NH3,

S1 : N2+ � = N2�,

S2 : N2�+ H2 = N2H2�,

S3 : N2H2�+ � = 2NH�,

S4 : N2+ 2� = 2N�,

S5 : N�+ H� = NH�+ �,

S6 : NH�+ H� = NH2�+ �,

S7 : NH�+ H2 = NH3+ �,
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S8 : H2+ 2� = 2H�,

S9 : NH2�+ H� = NH3+ 2�,

where� denotes the catalysator’s surface.
The minimal mechanisms are

1) 3S1+ 3S2+ 3S3− 2S4− 4S5 + 2S6+ 2S9 = SR,

2) S1+ S2+ S3+ 2S6+ 2S8+ 2S9 = SR,

3) S1+ S2+ S3+ 2S7 = SR,

4) S4+ 2S5− S6+ 3S7− S9 = SR,

5) S4+ 2S5+ 2S6+ 3S8+ 2S9 = SR,

6) S4+ 2S5+ 2S7+ S8 = SR,

7) − S1− S2− S3+ S4+ 2S5− S6+ S7− S9 = 0,

8) S1+ S2+ S3− S4− 2S5− S8 = 0,

9) − S6+ S7− S8− S9 = 0.

(The latter three mechanisms yield notSR but the zerovector – a cycle.)

Table 4.2
“Ammonia”

Total ContainingSR only

N (dimension of the vectorspace) 10 10
n (dimension of whatH spans) 7 7
M (number of input vectors:|H | 10 10
simp(H) (number of simplexes) 9 6
b · (a+1

2
)+ (n− b) · (a2) (lower bound) 3� 1�( M

n+1
)

(upper bound) �45 �36
t (computational time [sec]) 0.44 s 0.28 s
number of checked subsets ofH 969 473

4.3. Our next example is Bertók’s 5th example from [10] which is taken from [4].
The resulting (overall) and the examined (possible elementary) reactions are:

SR : 2H2+ 2CO→ CH4+ CO2,

S1 : CO�+ � = C�+O�,

S2 : C�+ H� = CH�+ �,

S3 : CH�+ H� = CH2�+ �,

S4 : CH2�+ H� = CH3�+ �,

S5 : CH3�+ H� = CH4+ 2�,

S6 : OH�+ H� = H2O+ 2�,

S7 : CO2+ � = CO2�,
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S8 : CO+ � = CO�,

S9 : H2+ 2� = 2H�,

S10 : CO2�+ H� = CHOO�+ �,

S11 : CHOO�+ H� = CHO�+OH�,

S12 : O�+ H� = OH�+ �,

S13 : CO�+O� = CO2�+ �,

S14 : CHOO�+ � = OH�+ CO�,

S15 : CO�+ H� = CHO�+ �.

Now all the minimal mechanisms (the output) are:

1) S1+ S2+ S3+ S4+ S5− S7+ 2S8+ 2S9 − S10− S11+ S12+ S15 = SR,

2) S1+ S2+ S3+ S4+ S5− S7+ 2S8+ 2S9 − S10+ S12− S14 = SR,

3) S1+ S2+ S3+ S4+ S5− S7+ 2S8+ 2S9 + S13 = SR,

4) S10+ S11− S12+ S13− S15 = 0,

5) S10− S12+ S13+ S14 = 0,

6) S11− S14− S15 = 0.

Table 4.3
“Bertók_5”

Total ContainingSR only

N (dimension of the vectorspace) 17 17
n (dimension of whatH spans) 13 13
M (number of input vectors:|H | 16 16
simp(H) (number of simplexes) 6 3
b · (a+1

2
)+ (n− b) · (a2) (lower bound) 4� 1�( M

n+1
)

(upper bound) �120 �105
t (computational time [sec]) 78.60 s 43.28 s
number of checked subsets ofH 63,429 31,697

4.4. This example was provided for us by Mr. Bertók personally as _rn.in and
was presented in [18]. The resulting (overall) and the examined (possible elementary)
reactions now are (S22 is omitted by technical purposes):

SR : N2+ 3H2 = 2NH3,

S1 : H2+ � = H2�, S14 : N2H2�+ N2� = N4H2�+ �,

S2 : H2�+ � = 2H�, S15 : N2H4�+ H� = NH2�+ NH3�,

S3 : N2+ � = N2�, S16 : N2H4�+ N� = N2H�+ NH3�,

S4 : N2�+ � = 2N�, S17 : H�+ N2� = N2H�+ �,

S5 : N2�+ H2� = N2H2�+ �, S18 : N�+ H2� = NH�+ H�,
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S6 : N2H2�+ � = NH�+ NH�, S19 : H�+ N2� = NH�+ N�,

S7 : N�+ H� = NH�+ �, S20 : H�+ N2H2� = NH2�+ NH�,

S8 : NH�+ H� = NH2�+ �, S21 : N�+ N2H2� = N2H�+ NH�,

S9 : NH�+ H2� = NH3�+ �,

S10 : NH�+ N� = N2H�+ �, S23 : H�+ N2H� = NH�+ NH�,

S11 : NH2�+ H� = NH3�+ �, S24 : H�+ N2H� = NH2�+ N�,

S12 : NH2�+ N� = N2H2�+ �, S25 : NH3� = NH3+ �.

S13 : N2H2�+ H2� = N2H4�+ �,

Our calculations are summarized in the below table.

Table 4.4
“Bertók_rn.in”

Total ContainingSR only

N (dimension of the vectorspace) 15 15
n (dimension of whatH spans) 14 14
M (number of input vectors:|H |) 25 25
simp(H) (number of simplexes) 5,609 3,585
b · (a+1

2
)+ (n− b) · (a2) (lower bound) 11� 1�( M

n+1
)

(upper bound) �3,268,760 �1,961,256
t (computational time [sec]) 2.1 · 104 s 1.2 · 104 s

≈5 h 50 min ≈3 h 21 min
number of checked subsets ofH 10,664,430 2,846,629

Let us mention that Bertók achieved the same list of simplexes as ours but in 13
hours computer run comparing to our 3 hours 21 minutes.

The following three examples illustrates the modifications described in section 3.2.
4.5. This example is introduced [6] asEthylene Oxide Synthesis. We are given

the following reactions

S1 : O2+ � = O2�,

S2 : 2O� = O2�+ �,

S3 : O2�+ C2H2 = O�+ CH3CHO,

S4 : C2H4O+ � = C2H4O�,

S5 : O2�+ C2H4 = C2H4O+O�,

S6 : 5O2�+ CH3CHO= 5O�+ 2CO2+ 2H2O,

S7 : C2H4O� = O�+ C2H4,

where the terminal (chemical) species are C2H4O, C2H4, O2, CO2 and H2O, all the others
are intermediate (active) ones.
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As we indicated at the end of section 3.2.1 we can find all (possible) direct overall
reactions among the above set of terminal species by our algorithm (as detailed in section
2.1). We got the following (complete) list of minimal reactions

d1) 1C2H4+ 1
2O2− C2H4O= 0,

d2)
1
2C2H4+ 3

2O2− CO2− H2O= 0,

d3)
5
2C2H4+ 3C2H4O− CO2− H2O= 0,

d4)
5
4O2+ 1

2C2H4O− CO2− H2O= 0,

in 0.00 sec which corresponds (in order) tod1, d3, d4, d2, of [6], respectively. Computa-
tional data concerning this run are shown in the first column of table 4.5.

The second column of this table shows searching for mechanisms (resulting the
zero vector, i.e., the void reaction) among the original vectors (reactionsS1 throughS7).
The single mechanisms we found shows that the reactionsS1, . . . , S7 arenot linearly
independent.

Columns 3 and 4 show computation when we introduced the new vectorsV1, . . . ,

V5 representing one-to-one the terminal (chemical) species as we suggested in the first
part of section 3.2.1. For comparison of CPU time we run the algorithm first forall
simplexes then for those which contain at least one new vectorVi only.

We have the following list of minimal mechanisms:

m1 : 7
6C2H4+O2− C2H4O− 1

3CO2− 1
3H2O− S1+ 1

6S3− S4

+ 1
6S6− S7 = 0,

m2 : C2H4+ 1
2O2− C2H4O+ 1

2S1− 1
2S2− S4− S7 = 0,

m3 : −C2H4− 1
2O2+ C2H4O− 1

2S1− 1
2S2− S5 = 0,

m4 : 2C2H4+O2− 2C2H4O+ S1− S4+ S5− S7 = 0,

m5 : −C2H4− 3O2+ 2CO2+ 2H2O− 3S1 − 3S2− S3− S6 = 0,

m6 : 1
3C2H4+O2− 2

3CO2− 2
3H2O+ S1+ 1

3S3− S4− S5+ 1
3S6− S7 = 0,

m7 : 5
6C2H4− C2H4O+ 1

3CO2+ 1
3H2O− S2− 1

6S3− S4− 1
6S6− S7 = 0,

m8 : 5C2H4− 6C2H4O+ 2CO2+ 2H2O− S3+ 6S5− S6 = 0,

m9 : −5
2O2− C2H4O+ 2CO2+ 2H2O− 5

2S1− 7
2S2− S3− S4− S6− S7 = 0,

m10 : −5
2O2− C2H4O+ 2CO2+ 2H2O− 5

2S1− 5
2S2− S3+ S5− S6 = 0,

m11 : O2+ 2
5C2H4O− 4

5CO2− 4
5H2O+ S1+ 2

5S3− S4− 7
5S5

+ 2
5S6− S7 = 0,

m12 : −S2− S4− S5− S7 = 0.

For comparing our above data to table VII of [6], let us remark that that table
contains mechanismsonly for the minimal (direct) reactionsd1 andd3 and, moreover, its
rows (m2, d3) and (m3, d3) are identical.



I. Szalkai / A new general algorithmic method 25

Table 4.5
“Ethylene Oxid”

Terminal Reactions With fictive vectorsVi
species only ALL simplexes WITHVi only

N 3 10 10 10
n 3 6 9 9
M 5 7 12 12
simp(H) 4 1 12 11
LB 2� 1� 3�
UB �5 �1 �66
t 0.00 s 0.06 s 1.87 s 1.80 s
chk 18 102 4,000 3,898

N = dimension of the vectorspace, n = dimension of whatH spans,
M = number of input vectors= |H |, simp(H) = number of simplexes,
LB = b · (a+1

2
)+ (n− b) · (a2) (lower bound), UB = ( M

n+1
)

(upper bound, if applicable),
t = computational time [sec], chk= number of checked subsets ofH.

Further, the reaction

7
6C2H4+O2 = C2H4O+ 1

3CO2+ 1
3H2O

which can be extracted from our mechanismm1 above isnot minimal, and in fact it
is not listed among the minimal (direct) reactionsd1, d2, d3, d4 above we obtainde by
running our algorithm with the sum formulas of the terminal (chemical) species. The
explanation is, that the vectorsV1, . . . , V5 are linearly independent which makes the
vectors occurring in mechanismV1 asimplex!

We computed in the table 4.5 the lower and upper bounds (LB,UB) according to
the formulas of the appendix of the present paper but only in the case it is applicable
(i.e., except from column 4).

Again, our formulaν(VarAll) = ν(VarOnly) + ν(VarOrig) from (14) in sec-
tion 3.2.1(i) can be checked in table 4.5.

4.6. Our next example is introduced in [6] asMethane to Methanol Conversion.
We are now given the reactions

S1 : CH4+O2 = CH3+ HO2, S9 : CH3+ CH3 = C2H6,

S2 : CH3+O2 = CH3O2, S10 : CH3+OH= CH3OH,

S3 : CH3O2 = CH2O+OH, S11 : CH3+ CH3O= CH3OCH3,

S4 : CH3O2+ CH4 = CH3O2H+ CH3, S12 : CH2O+ CH3 = CH4+ CHO,

S5 : CH3O2H = CH3O+OH, S13 : CHO+O2 = CO+ HO2,

S6 : CH3O= CH2O+ H, S14 : CH2O+ CH3O= CH3OH+ CHO,

S7 : CH3O+ CH4 = CH3OH+ CH3, S15 : CHO+ CH3 = CO+ CH4,

S8 : OH+ CH4 = CH3+ H2O,

where the terminal (chemical) species are CH4, O2, CH3OH, CO and H2O.
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Again the first column of the table below compute all the direct overall reactions
among terminal species while the second column deals with the (void) mechanisms
among the given reactionsS1 throughS15.

As we indicated in section 3.2.0, since only the reactionsS9 andS11 contain the
extra species C2H6 and CH3OCH, the vectors representing them are linearly independent
from the others, so we can omit them and so we can reduce the number and the dimension
of the problem by two. For comparison we made computer runs both with the original
and with the reduced vectors: these are the two parts of the table below. This reduction
helped us to decrease the CPU time from 27 min to 5 min!

The columns in both parts of the table show the various computations as in our
previous example 4.5 we explained (the first columns in the two parts are the same).

Table 4.6
“Methanol”

Before the reduction:

Terminal Reactions With fictive vectorsVi
species only ALL simplexes WITHVi only

N 3 16 16 16
n 3 13 16 16
M 5 15 20 20
simp(H) 4 2 24 22
LB 2� 2� 4�
UB �5 �15 �1140
t 0.00 s 30.38 s 1353 s≈ 22 m 1323 s≈ 22 m
chk 18 30,473 978,297 947,824

After the reduction:

Reactions With fictive vectors

only ALL simplexes WITHVi only

N 14 14 14
n 11 14 14
M 13 18 18
simp(H) 2 24 22
LB 2� 4�
UB �13 �816
t 5.49 s 263 s≈ 4 m 257 s≈ 4 m
chk 7,623 244,611 236,988

N = dimension of the vectorspace, n = dimension of whatH spans,
M = number of input vectors= |H |, simp(H) = number of simplexes,
LB = b · (a+1

2
)+ (n− b) · (a2) (lower bound), UB = ( M

n+1
)

(upper bound, if applicable),
t computational time [sec], chk= number of checked subsets ofH.

The output set of mechanisms of the last two columns (i.e., when the input is the
reduced set of reaction vectorsSi with V1, . . . , V5) is the following:
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m1 : −2CH4− 2O2+ CH3OH+ CO+ 2H2O+ S1− 2S2− S3− S4− S5− S7

−2S8− S12− S13 = 0,

m2 : −2CH4− 2O2+ CH3OH+ CO+ 2H2O+ S1− 2S2− S3− S4− S5

−2S8− S13− S14 = 0,

m3 : −2CH4− 2O2+ CH3OH+ CO+ 2H2O− 2S2− S3− S4− S5− S7

−2S8− S12− S15 = 0,

m4 : −2CH4− 2O2+ CH3OH+ CO+ 2H2O− 2S2− S3− S4− S5− S8

−S14− S15 = 0,

m5 : −2CH4−O2+ 2CH3OH− S2− S4− S5− S7− S10 = 0,

m6 : −2CH4−O2+ 2CH3OH− S2− S4− S5− S10+ S12− S14 = 0,

m7 : −CH4− 6
4O2+ CO+ 2H2O+ S1− 6

4S2− S3− 2
4S4− 2

4S5

−2
4S7− 2S8+ 2

4S10− S12− S13 = 0,

m8 : −CH4− 6
4O2+ CO+ 2H2O+ S1− 6

4S2− S3− 2
4S4− 2

4S5

+2
4S7− 2S8+ 2

4S10− S13− S14 = 0,

m9 : −2CH4− 3O2+ 2CO+ 4H2O+ 2S1− 3S2− 2S3− S4− S5− 4S8

+S10− S12− 2S13− S14 = 0,

m10 : −CH4− 6
4O2+ CO+ 2H2O− 6

4S2− S3− 2
4S4− 2

4S5− 2
4S7

−2S8+ 2
4S10− S12− S15 = 0,

m11 : −CH4− 6
4O2+ CO+ 2H2O− 6

4S2− S3− 2
4S4− 2

4S5+ 2
4S7

−2S8+ 2
4S10− S14− S15 = 0,

m12 : −CH4− 3
2O2+ CO+ 2H2O− 3

2S2− S3− 1
2S4− 1

2S5− 2S8

+1
2S10− 1

2S12− 1
2S14− S15 = 0,

m13 : 2CH4− 3CH3OH+ CO+ 2H2O+ S1− S3+ S4+ S5+ S7− 2S8

+2S10− S12− S13 = 0,

m14 : 2CH4− 3CH3OH+ CO+ 2H2O+ S1− S3+ S4+ S5+ 2S7 − 2S8

+2S10− S13− S14 = 0,

m15 : −2CH4+ 3CH3OH− CO− 2H2O− S1+ S3− S4− S5+ 2S8− 2S10

+2S12+ S13− S14 = 0,

m16 : 2CH4− 3CH3OH+ CO+ 2H2O− S3+ S4+ S5+ S7− 2S8 + 2S10

−S12− S15 = 0,

m17 : 2CH4− 3CH3OH+ CO+ 2H2O− S3+ S4+ S5+ 2S7− 2S8+ 2S10

−S14− S15 = 0,

m18 : 2CH4− 3CH3OH+ CO+ 2H2O− S3+ S4+ S5− 2S8+ 2S10− 2S12

+S14− S15 = 0,
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m19 : −O2− CH3OH+ CO+ 2H2O+ S1− S2− S3+ S7− 2S8+ S10

−S13− S14 = 0,

m20 : −O2− CH3OH+ CO+ 2H2O+ S1− S2− S3− 2S8+ S10− S12− S13 = 0,

m21 : −O2− CH3OH+ CO+ 2H2O− S2− S3+ S7− 2S8+ S10− S14− S15 = 0,

m22 : −O2− CH3OH+ CO+ 2H2O− S2− S3− 2S8+ S10− S12− S15 = 0,

m23 : −S1+ S13− S15 = 0,

m24 : S7+ S12− S14 = 0.

The computer running which served the above results is summarized in table 4.6.
4.7. Our last example is also taken from [6] asConversion of Glucose to Pyru-

vate. Here the chemical species are abbreviated as

C = carbon dioxide, N = 6− Pgluconate,

D = dihydroxyacetoneP, P = pyruvate,

E = erythrose 4− P, R = ribose 5− P,

F = fructose 6− P S = sedoheptulose 7− P,

G = glucose 6− P, X = xylulose 5− P,

K = 2-keto-3-deoxy 6− P gluconate, Y = glyceraldehyde 3− P,

L = ribulose 5− P,

where the terminal (chemical) species areG,P andC.
The original set of reactions is

S1 : R +X = S + Y, S8 : N = K,

S2 : L = R, S9 : L = X,

S3 : N = L+ C, S10 : E +X = Y + F,

S4 : G = N, S11 : Y = P,

S5 : F = D + Y, S12 : D = P,

S6 : G = F, S13 : K = Y + P,

S7 : D = Y, S14 : S + Y = E + F.

As we have discussed in section 3.2.0 all the six reactions of typeA = λB can be
omitted with a suitable modification of the remaining others to reduce both dimension
and the number of vectors. Let us emphasis here that we have to add the fictive vectors
V1, V2, V3 beforethis reduction since their coordinates will also be modified.After this
modification we get the following list of vectors
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V−1 V−2 V−3 S−1 S−3 S−5 S−10 S−13 S−14

0 0 0 1 0 2 1 2 −1
0 1 0 0 1 0 0 0 0
0 0 1 −2 1 0 −1 0 0
1 0 0 0 −1 −1 1 −1 1
0 0 0 1 0 0 0 0 −1
0 0 0 0 0 0 −1 0 1

in which the rows correspond to the speciesP,C,X,K, S,E, respectively. This trans-
formation reduced the CPU time from 93 sec to 0.10 sec!

For the reader’s convenience we list here all thethreesets of output mechanisms:
the original one, after the first and after the second reduction (see the 2nd, 5th and the
last but one columns of table 4.7 below).

Let us recall that the new vectorsV1, V2, V3 originally standed for the species
G,P,C, respectively. However the reduction steps eliminated the speci (row)G while
all the remaining vectors were transformed to the vectorsV −1 , . . . , S−14.

The original set of (output) mechanisms:

m1 : −1
2G+ P + C − S3− S4+ 1

2S5+ 1
2S6+ 1

2S7− S9− S13 = 0,

m2 : −G+ 2P + C − S3− S4+ S7− S9− S12− S13 = 0,

m3 : −G+ 2P + C − S3− S4− S9− S11− S13 = 0,

m4 : −1
2G+ P − S4+ 1

2S5+ 1
2S6+ 1

2S7− S8− S13 = 0,

m5 : −G+ 2P − S4+ S7− S8− S12− S13 = 0,

m6 : −G+ 2P − S4− S8− S11− S13 = 0,

m7 : −1
2G+ P − 1

2S5− 1
2S6− 1

2S7− S11 = 0,

m8 : −1
2G+ P − 1

2S5− 1
2S6+ 1

2S7− S12 = 0,

m9 : −G+ 2P − S5− S6− S11− S12 = 0,

m10 : C − S3− S4+ S5+ S6+ S7− S9+ S11− S13 = 0,

m11 : C − S3− S4+ S5+ S6− S9+ S12− S13 = 0,

m12 : C − S3+ S8− S9 = 0,

m13 : −S4+ S5+ S6+ S7− S8+ S11− S13 = 0,

m14 : −S4+ S5+ S6− S8+ S12− S13 = 0,

m15 : S7+ S11− S12 = 0.

After the first reduction:

m−1 : −V −1 + V −2 + V −3 − S−3 = 0,

m−2 : −1
2V
−
1 + 3V −2 − S−1 − 3S−3 + 1

2S
−
5 − S−10− S−14 = 0,

m−3 : −1
2V
−
1 + 3V −2 − S−1 − 3S−3 − S−10+ 1

2S
−
13− S−14 = 0,
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m−4 : 5
2V
−
1 − 3V −3 − S−1 + 1

2S
−
5 − S−10− S−14 = 0,

m−5 : 5
2V
−
1 − 3V −3 − S−1 − S−10+ 1

2S
−
13− S−14 = 0,

Table 4.7.
”Glucose”

Original reactions:

Reactions With fictive vectorsVi
only ALL simplexes WITHVi only

N 13 13 13
n 12 13 13
M 14 17 17
simp(H) 3 15 12
LB 2� 4�
UB �14 �680
t 8.00 s 93.00 s 85.00 s
chk 14,600 107,368 92,768

After the first reduction:

Reactions With fictive vectorsVi
only ALL simplexes WITHVi only

N 6 6 6
n 5 6 6
M 6 9 9
simp(H) 1 8 7
LB 1� 3�
UB �1 �36
t 0.00 s 0.10 s 0.10 s
chk 52 418 366

After the second reduction:

Reactions With fictive vectorsVi
only ALL simplexes WITHVi only

N 5 5 5
n 4 5 5
M 4 7 7
simp(H) 0 4 4
LB 0� 2�
UB �0 �7
t 0.00 s 0.00 s 0.00 s
chk 5 65 60

N = dimension of the vectorspace, n = dimension of whatH spans,
M = number of input vectors= |H |, simp(H) = number of simplexes,
LB = b · (a+1

2
)+ (n− b) · (a2) (lower bound), UB = ( M

n+1
)

(upper bound, if applicable),
t = computational time [sec], chk= number of checked subsets ofH.
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m−6 : 5
2V
−
2 − 1

2V
−
3 − S−1 − 5

2S
−
3 + 1

2S
−
5 − S−10− S−14 = 0,

m−7 : 5
2V
−
2 − 1

2V
−
3 − S−1 − 5

2S
−
3 − S−10+ 1

2S
−
13− S−14 = 0,

m−8 : S−5 − S−13 = 0.

Since two parallel vectors arised after this reduction:S−5 ‖ S−13 (moreover both of
them are of formA = λB) we could make a second reduction, this can be seen in the
last three columns of table 4.7. The output set of mechanisms is the following:

m=1 : −V =1 + V =2 + V =3 − S=3 = 0,

m=2 : 1
2V
=
1 + 3V =2 − S=1 − 3S=3 − S=10− S=14 = 0,

m=3 : 5
2V
=
1 − 3V =3 − S=1 − S=10− S=14 = 0,

m=4 : 5
2V
=
2 − 1

2V
=
3 − S=1 − 5

2S
=
3 − S=10− S=14 = 0.

This time we did not make any preliminary computation with terminal (chemical)
species only.

5. Other mathematical questions

During our thorough theoretical investigations (mainly mathematical we mean) a
dozen of other questions arose. We also have several results we plan to publish else-
where, first in [1,2,16] and in [3].

We have already mentioned the general linear algebraic study of hierarchies among
atoms, species, reactions, mechanisms, etc., this will be discussed in [3].

We also have mentioned the question of minimal number of simplexes ifno parallel
vectors are allowed among the vectors. Similar questions (with similar methods) can be
studied in matroids, see [16]. In more general, one could ask what if assuming the
minimal size of dependent subsets (‘circles’ in matroids) isat leastk? for some fixed
k ∈ N? With Prof. Oxley together we have conjectures concerning this question we
are working on. Other variant on the number of simplexes is when we have to count
simplexes containing one fixed reactionSR of the given ones, or the simplexes which
containat least onevector from the set{V1, . . . , Vt }. Researches are in progress on
these questions, too.

In [1] we plan to discuss in full detail the effect of extending the dimension of
the vectors because of the law of mass balance (conservation of material) explained in
section 3.2.1.

After a clear linear algebraic reformulation we deal with the question“is there a
(finite) set of mechanism/reactions which linear combinations would give the set of all
mechanism/reactions” also in [1]. (Convex linear combinations clearly are not sufficient
as it is wellknown from linear algebra.)

Finally, the valuation operator (introduced in [9]) has also linear algebraic connec-
tions which is discussed in more generality and detail in [2].
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Appendix

Here we give the bounds for the number of simplexes (=minimal reactions/mechan-
isms/dimensionless groups) contained in a given set of vectors (=groups of atoms/react-
ions/physical quantities) we proved in [14] and [15]. The first theorems below give an
exact characterization of the uniquestructureof the vector-sets when the number of
the contained simplexes is maximal or minimal, which easily can be transformed into
stoichiometrical results. Using them we give the numerical bounds for the number of
simplexes.

Recall, that a set of vectorsS ⊂ RN is called asimplex iff S is minimal linearly
dependent, that isS itself is linearly dependent but all its subsets are independent.

For any set of vectorsH ⊂ RN , |H | denotes thesizeof H , while [H ] is the
subspace ofRN spanned byH , and finally letsimp(H ) denote the number of simplexes
contained inH . Now, our main results can be formulated as:

Theorem A.1 ([14]). For anyH ⊂ RN and dim[H ] = n, simp(H) is maximal iff any
n vector ofH are linearly independent.

Theorem A.2 [14]. For anyH ⊂ RN and dim[H ] = n, simp(H) is minimal if H

contains ofn linearly independent equivalence classes of almost the same size (i.e., the
size difference is at most 1) where each equivalence class is a set of parallel vectors.

Corollary [14]. If H ⊂ RN dim[H ] = n and |H | = M whereM is a multiple ofn,
then

n

(M
n

2

)
� simp(H) �

(
M

n+ 1

)

and in the casen doesnot divideM, thelower bound is

b

(
a + 1

2

)
+ (n− b)

(
a

2

)
,

whereM = an+ b and 0� b < n.

Let us recall that (
u

v

)
:= u(u− 1) · (u− v + 1)

1 · 2 · · · · · v
is the binomial coefficient for any natural numbersu, v ∈ N.

In the language of mechanisms, theorem 6.1 says that the number of direct (=
minimal) mechanisms ismaximaliff there areno small mechanisms. In the case when
H spans the whole ground spaceRN this means that all minimal mechanisms must use
all species (since the reactions involved in this mechanism must span the whole space).
For fixedn (=dimension, i.e., number of species involved) the upper bound

(
M

n+1

)
is

approximatelyO(Mn+1) (for definition ofO see footnote12 in section 4).
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If we want to have (or we expect) asfewmechanisms as possible, by theorem 6.2
we must have many parallel species/reactions, more precisely vectors representing iso-
mer species or thesamereaction multiplied by a constant (with higher speed). Moreover
the sizes of classes of pairwise parallel vectors (species/reactions) must be as equal as
possible.

The question for the minimum value ofsimp(H) is open if no parallel vectors are
allowed in H. Parallel vectors as species (groups of atoms) represent isomer species
since their sumformulas are just the same, a multiple (by a real number) of each other,
or simply a higher dose of the speci in question. If reactions are represented by vectors,
parallel vectors represent the same reaction only but with different emphasis or speed of
it. So, in the contrary of its mathematical difficulty, the problem on the number of sim-
plexes when parallel vectors areallowedis also of importance for estimating the number
of possible reactions/mechanisms. Though these interpretations of simplexes allow and
make sense and importance of parallel vectors, to avoid counting the same reaction sev-
eral times with different constant we must investigate the case whenno parallel vectors
are allowed or more sophisticated questions. Unfortunately so far we only have the be-
low result from [15] for 3-dimensional vectors without parallel ones (e.g., when we our
groups of atoms are build up from 3 atoms):13

Theorem A.3 [15]. For anyH ⊂ R3 of fixed size but not equal to 3, 4 or 7 such that
H spansR3 and no parallel vectors are inH , simp(H) is minimal if and only ifH is
contained in two intersecting planes, one of which is of size 3. In other words, whenH

contains three linearly independent vectors{u1, u2, u3}, another vectorv coplanar with
u1 andu2, and the restH\{u1, u2, u3, v} is coplanar withu2 andu3.

Corollary A.4 [15]. If H ⊂ RN no parallel vectors are inH , H spansR3 and|H | = M

whereM differs from 3, 4 and 7, then

1+
(
M − 2

3

)
+
(
M − 3

2

)
� simp(H).

This gives us a lower bound of magnitudeO(M3).

Several other conjectures were mentioned in section 5.
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