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We discuss here a new general linear algebraic method (both model and algorithm) for
describing and generating (among others) miniraattionsand also minimamechanism
stoichiometry, or dimensionless groups in physics as well. (Further applicatigredass
network synthesasill be discussed in [1].) With some minor modifications of thput this
method can be extended feeveralrelated questions: for generating direct and overall reac-
tions, direct (steady state) mechanisms, for finding the possible resulting (overall) reactions
among all possible mechanisms, etc.

Computational results in section 4 show the speed of our algorithm.

We give also mathematical background and results in sections 3, 5 and 6. However, we do
not restrict ourselves to mathematics only, we also talk on the language of chemistry, too.

The theoretical results in sections 3.2, 3.3, 5 and the computational examples in section 4
are completely new, further theoretical results will appear in [1,2] and in [3].

KEY WORDS: linear algebraic method, minimal reaction, direct mechanism, simplexes

1. Introduction and history

Mathematical formulation and even algorithmic approaches of finding minimal (di-
rect) and overall reactions and mechanisms grew a great literature in the last decade. We
refer here only to the works of Happel, Sellers and Otarod [4-6], of&Pgh9], of
Bertok [10], Fishtik, Alexander and Datta [11,12] and of the present author [1,2,13-16]
and [3].

The main purpose of the present paper is to highlight the versatility of our math-
ematical model and the algorithm based on it. Our theory is based on Profi'sPeth
work [7] and is applied for several examples in section 2. For fully understanding of
the generality of our method and algorithm we devote section 2 for the mathematical
approach and examples of different types &@ms, reactions, mechanisms, process
network syntheses or dimensionless units in physitisough the mathematical notion
(‘simplex’) we introduce has its own curiosity in mathematics, here we focus on chem-
ical aspects of its applications only. The mathematical investigations of simplexes are
published in [14-16] and are continued in [2] and in [3]. In section 3 we introduce our
new general algorithm which idea was first published in [13] in 1991. Our algorithm

1

0259-9791/00/1200-0001$18.00202000 Plenum Publishing Corporation
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differs in its basis from Happel's et al. in [6] and Bertdk’s [10], it is fully automatic, and
computer experiments show that it is considerably fast (see section 4).

Now in this present paper we apply this method for many further applications.
Surprisingly enough only slight modifications were necessary oinjigt setfor many
different and effective further applications. These modifications are discussed in sec-
tion 3.2.

Let us remark also for readers of nonmathematical interest that the results of [14]
and [15] give sharp bounds for tmeimberof simplexes in a given vector set. In other
words, these formulas give immediately bounds for ninbenberof chemicalminimal
reactiongdirect mechanismé a given set ofspecies(groups of atoms or functional
bonds)feactionssince the number of the involved elements/species is known and fixed.
For the readers’ convenience we list these formulas in the last section, in the appendix.

Finally, in section 5 we deal with some other general mathematical questions.
Special thanks are given to Prof. Arpad Retlniversitat Hannover and Prof. Ferenc
Friedler, University of Veszprém.

2.  Mathematical formulation

Our mathematical model is standard and quite well-known, first described in [7]
and [13], partly similar to Sellers and others [5,6]. Let us highlight in advance that our
method is exactly theameboth forreactions, mechanismanddimensionless groups.

We can describe all these problems in the language of linear combinations of vectors,
and in order to find the desired object (minimal reactions/mechanisms/dimensionless
groups) we need to find, in all of the three above cases, minimzdrly dependent
subsets of these vectors. We call these subsets of vesitmptexesSince our algorithm
findsall simplexes inany set of given vectors, it can be applied immediately for all of
the three problems above.

2.1. Reactions

If the chemical species (or groups of atoms, i.e., functional bonds dnly). ., A,,
consists of the atomB;, ..., E,, as

Aj = Zai,j - Ej,
i=1
wherea; ; € Nfor j = 1,...,nandi = 1,...,m, and the set$A,, ..., A,} and
{Ei, ..., E,} are fixed, then we caassignthe species\ ; to the vector
Aj = [al,j, ...,am,j]T

for j = 1,...,n, which vector$ are elements of the-dimensional linear space, where
a (natural) set of base vectors{ig, ..., E,,}. Now, a (possible) chemicalaction

1 we will not emphasize the difference between the spetieand the vectors, ;.
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among the specieA;: j € S} does exists for any < {1,...,n} if and only ifthe
system of homogen linear equations
Z.Xj . Aj = O (0)
jes

has nontrivial solution fox; € R (j € S) by the law of mass balance (conservation
of material). A solution{x;: j € S} easily determines uniquely a chemical reaction
among the speciegd;: j € S}.23 (The structure of the solutions of homogeneous
linear equations is discussed in [17].)

For example, consider the speciés= C, A, = O, A3 = CO andA4 = CO,, that
is we use the elements;, = C andE; = O. Som = 2 (=the number of atoms: the
dimension), an@ = 4 (=the number of species/vectors). The columns of the following
table represent the vectofs throughAg:

A1 Ax A3 Ay
cC 1 0 1 1
O 0 1 1 2

C O COo ca

(1)

Now, for example, taking = {A1, A, A3} we get the solutich
Xy = [x1, X2, x3, x4]" =[1,1, —-1,0]"
which corresponds to the reaction
C+0=CO

The assumption that the equation (@snontrivial solutions is equivalent to that
the vector-sefA;: j € S} is linearly dependentThe corresponding reaction is called
minimal iff for noT c S, T # S there might be any reaction among the species
{A;: j € T}). Thatis, the vector-sdtA;: j € T} is linearly independentor 7 C S,

T # 8.
This motivates the following definition (see [8], [13] or [14]):

Definition 2.1. A set of vectorsB = {b;: j € S} € R" is called asmplex iff B is

linearly dependent but all of its proper subsgts j € T'} are linearly independent for
anyT C S, T #S.

2 Species (groups of atoms or functional bonds) with positive coefficients represent the right-hand side of
the reaction equality while species with negative coefficients are moved to the left-hand side.

3 All the solutions for the unknowns; for j € S are rational since the componeats; of the vectors ;
— the coefficients of the homogeneous linear equation (0) — are all integers.

4The coordinates of, corresponding to vectors; which do NOT belong to the simple5 are always O.

50f course the reactions obtained in the described way are only possibilities, since, for example, the
reaction 2AwH- 6HCI = 2AuCls + 3H, does not yield under normal conditions!
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The only simplexes in the above example are (we write the sub-indexes of the
vectorsA; only) S; = {1,2, 3}, So = {1, 2,4}, S3 = {1, 3,4} andS,; = {2, 3, 4}. After
solving the corresponding equations (0) we get the following (complete) list of minimal
reactions:

X;=[11,-1,0": C4+0=CO
X = [1’ 2’ 0,_1]1-: C+OZ =COZ (2)
X3=[1,0-21]": C+CO, =2CO

]

X4=1[0,11-1": 0O+ CO=CO;

(We continuethis example in the next section.)

2.2. Mechanisms

We can build upmechanisms (and alsominimal ones) from any set of reactions
just on the same way as we built up reactions from species in the previous subsection.
(Mechanisms are the main topic of our present research, we investigate them in more
detail in sections 3.2 and 4.)

Well, if we are given the reaction¥q, ..., X, which use the species (groups of
atoms or functional bonds},, ..., A, then we can correspond these reactions to the
vectorsXy, ..., X, € R" in then-dimensional linear spadk”, where the base vectors
areAq, ..., A, (=the standard base) representing each speci involved in the reactions.
That is:

Xj= ibi,j A,
i=1

whereb; ; € Zfor j =1,...,kandi = 1,...,n.57 Thenanylinear combination
k
M=) 50X, ©)
j=1

of the vectorsX ; with integer (or rationd)) coefficientsy; € Z represents a (possible)
mechanismM in a natural way: during that mechanism the reactiontakes place
Aj-many times (see the example below). Negative coefficients of course, mean that
the corresponding reactions take place in reversed order. This reaction uniquely can be
described by the vector of the coefficients

A=A, ..., AT e ZK

6 Moving the terms with negative coefficierits; < 0to the left-hand side of the equality (initial materials
of the reaction) and leaving the others in the right-hand side (resulting materials) we get the usual form
Yiex b jAi = Xiey bj ;jAi the mechanism.

7 By the law of the mass-balance we surely must ha¥e= 0 for the matrixA := [Aq, ..., A,] which
“codes” the sum-formulae of the speciés, ..., A,.

8 After multiplying all the coefficients by the common denominator we get integer coefficients.
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Let us emphasize here that the detailed flow of the mechanism can be detected from the
above vector of the coefficientait not at all from the sum-vector of the linear combina-
tion in (3).

For further investigations we are adviced to extract the notion ofréselting
(overall) reaction denoted byR (M) or R(A) corresponding to the mechanist in
(3) as (see [9]):

k
R(L) =) 2X; R,

j=1

which is the final reaction, caused by the reacti®nsx ;-many times one after another,
1<j<k

Let us remark that this model does not revealsatuer of or any other connection
among the reactions in a mechanism, B. Bertdk recently introduced a graph-theoretical
approach in [4] for that problem.

In the practice we distinguisterminal speciegthe starting and final ones that we
interested in) anéhtermediateones (which occur only during the mechanism). These
terms are from [6], the termshemicaland active speciesre also in use. According
to this distinction of species (or just groups of atoms/functional bonds), mechanisms
are calledsteady state mechanisms [4] if the corresponding reaction (callemverall
reaction) contains of terminal (chemical) species only.

The mechanism is calledirect or minimal mechanism [4] if the set of active
reactions (vectors with nonzero coefficient)

S ={j<k|x; #0}

cannot be decreased to yield the same resulting (overall) reatian. In other words:
there isno propersubsetS” & S(1) such thatR(u) = « - R(A) andS(u) = §' &
S(X) for some coefficient-vecton € Z* and rational numbex € Q. In this case the
corresponding reactioR (A ) is calledsimple or minimal reaction.

Using our terminology, the solutions of the linear equations

D yX;=0 4
Jjes
are minimal mechanismiff the setS C {1, ..., k} is asimplex again!

Milner uses the terndirect path and Sellers [5] thecycle-free mechanism for
minimal mechanisms.

With slight modifications of our pure linear algebraic algorithm (detailed in sec-
tion 3.1) we can solve several problems: we can find all minimal mechanisms resulting
to any given reaction, or we can find all overall reactions if the sets of terminal and in-
termediate (chemical and active) species are given. These and other applications are ex-
plained in detail in section 3.2 of our present paper. Happel, Sellers and Otarod in [6] and
Bertdk in [10] published algorithms for finding direct steady-state mechanismso6 Peth
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and Kumar in [19] presented an output for minimal reactions only. Our computational
results are listed and the related ones are compared to the above ones in section 4.

Continuing our example from the previos subsection, the coordinates of the vectors
X1, ..., X4 (=[minimal] reactions, see (1) and (2)) are

X1 X2 Xz X4

A1=C 1 1 0 1
A2 =0 1 2 1 0 )
A3=CO -1 O 1 -2
Ay=C0O, 0 -1 -1 1

Funny enough in our example we have againr simplexes. Solving the corre-
sponding equations, we get the following list of minimal mechanisms (cycles):

Y1=[-1,0,11T:C+0 <«CO
0O+ CO —CO,
C+CO, —2CO
Y,=[-11-10":C+0O <«CO
C+2CO —» CO,
O+ CO <«CO,
Y3=[2,-1,0,—-1]": 2C+ 0O — CO)
C+20 <«CO,
C+CO, «2CO
Y4=1[0,-1,21]": C+20 <« CO,
2(0+ CO— COy)
C+CO, —2CO

(6)

For all these mechanisnis the resulting (overall) reactioR(Y;) = 0 (the void
reaction),; = 1, 2, 3, 4.

2.3. Dimensionless groups

This application was first mentioned in [7] and is not from stoichiometry, but re-
veals the structure of composite measure units in physics: we can easily (fully automati-
cally) find minimal identities among physical quantities by finding (all) simplexes again
in a certain set of vectors.

Let there be givem: elementaryguantities (mass, lenght, time, etc.) denoted by
E, ..., E, andn quantitiesA,, ..., A, (n € Nis any number) as

m

— aij

Aj = 1_[ Ei )
i=1
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whereq; ; € Zfor j =1,...,nandi = 1,..., m. Clearly we carassignthe quantities
A; to the vectors

Aj = [a]_’j, ...,am,j]T e R"
for j = 1,...,n, which vectors are in the:-dimensional linear spacR™. Now, a

(possible)dimensionless group (real number) of the quantitiegA ;: j € S} does exists
forany S C {1, ..., n} iff the equality

]_[ A’]‘.f -1 (7)
jes

holds, or equivalently (considering the exponents) the homogeneous system of linear

equations
Z.Xj . Aj = O
jes
has nontrivial solution fox; € R (j € S). That is, we again reached to the system of
linear homogen equations (0) and to the problem of finding simplexes!
For example, consider the flow of a fluid through a heated tube and the heat transfer
between the pipe wall and the fluid. Consider now the following quantities:

A1 = tube diameter =d(¢)(length, basic quantity),
A, = linear velocity =uv(s/t),

Az = fluid density =p(m/3),

A4 = viscosity =v(m/Lt),

As = heat capacity =« (A/t?T),

Ag = heat transfer coeff. = A(m /13T),
A7 = thermal conductivity= pu(m€/t3T).

In matrix form:

m £ t T
Ai=d O 1 0 0
A,=v O 1 -1 0
Az=p 1 -3 0 0 (8)
Ag=v 1 -1 -1 0
As=x O 2 -2 -1
Ag=A 1 0 -3 -1
A7=u 1 1 -3 -1

For example, one minimal dimensionless gratpof the seven ones is the following:
Xl = [07 07 07 17 17 07 _1]T7

which corresponds to the equality
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for some constant € R.

2.4. General remarks

As we have seen above in three different example, the main mathematical problem
is the same:

“In a given vector-sefl = {v1, v, ..., vy} € RY we have to find all
simplexesS C H (i.e., minimal dependent subsetsif’. 9)

Our algorithm, introduced in [13] (and briefly sketched in the next section) solves
directly the above computational problem, so can be applied directly for any of the three
above practical problems. With some minor modifications we apply it for some other
special questions, mainly in study of reaction mechanisms in section 3.2. See also [1]
and [2].

Let us remark here that ttezeof the simplexes mustot be the same, moreover
they do not have any connection with the bases of the linear space (of all possible reac-
tions/mechanisms/dimensionless groups). Howevemntneberof simplexes in a given
set of vectors (in other words, the number of the possible minimal mechanisms/reactions)
is only partially solved question, hard in full details. Our recent papers [14] and [15] give
almost full answers, the main results and open questions are listed also in the appendix
of the present paper, for the readers’ convenience. (The paper [16] generalizes the math-
ematical notion of simplexes and counts their number not only in linear spaces but in
more general structures calleshtroids) Examples in section 4 show that large sets of
vectors in high dimension might have few simplexes only, and small sets in low dimen-
sion might have many simplexes. This means, it is very hard to givexthetnumber of
simplexes in a given vector-set!

As Prof. Arpad Petf in [17] showsall solutions (not only minimals) of systems
of homogeneous linear equations (0) can be calculated from minimal ones, this was the
first case he introduced the notion of simplexes.

Let us mention further that solving the system of linear equations (0) the solution
vector can be assumed to have integer coordinates (components) only since (0) has inte-
ger coefficients, and we can multiply the rational components of the solution vector by
the common denominator.

A general linear algebraic notion (linear functional) is applied to chemical rections
and mechanisms in [9] where it is called teduation operatoy this question is investi-
gated in [2].

As sections 2.1 and 2.2 above indicate together, we could build an infinite sequence
of hierarchies: (1) vectors (species/groups of atoms/functional bonds); (2) solution vec-
tors corresponding to simplexes (i.e., reactions); (3) solution vectors of simplexes of the
above vector-set (i.e., mechanisms in our exampiag, so on ...! Details and further
properties of thisnfinite hierarchy will be investigated in [7] and [3].
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3. Thealgorithm and extensions

As we have indicated before, our algorithm, published in [13] solves the mathe-
matical problem (9) in general, so one can apply it directly for finding minimal either
reactions or mechanisms or dimensionless groups. After a short description of the algo-
rithm in the next section, we discuss a couple of simple modifications of it for solving
other related questions (mainly for studying mechanisms). Computer experiments are
discussed in section 4.

3.1. The algorithm

So we are given a set of vectals C R” (input) and we have to find all simplexes
S C H,i.e., minimal dependent subsetsmf

The only interesting part of the algorithm might be how to generat&dok-
keeping+ modifying) all simplexesof a given set of vectors. (Checking whether a
chosen set of vectors is simplex or not is standard.)

We chose the lexicographic enumeration of all (possible) simplexes (subsets) and
the “back-and-forth” method for modifying. To store the elements of a subsetH
of vectors H (or equivalently theindexesof the vectors) we chose a string (called
szimplex[ ] in our program) with an information-character on the last byte of it. (We
put the info character to the last position only for convenience. Also for convenience we
labeled the vectors with the characters A, B,)

The last info character of this string (representing the sub$etH we just exam-
ine for being simplex) is one of the following:

*’ (space)— S is untested

i’ — the wholeS is independent
‘d’ — one of the proper subsets 8fis dependent
‘s’ — Sis a simplex

The procedure which modifies the vector-subped¢edure modifyalways puts a space
to the last info character, is enclosed at the end of the paper [13]. The main program
keeps testing whether the new vector-set is a simplex or not and fills out the last info
character according to this. After this calls the main progpamcedure modifyor mod-
ifying the vectors-subset, and solves (0) where the columns of the coefficient matrix are
exactly the vectors of the actual simplex. One of the most crucial part of the algorithm’s
speed is: how many times do we need to check the linear dependency of alsybgét
of the input vector-set! for finding all the simplexe$s < H. It is polynomial in the
number of the input vectors, as we count it at the beginning of section 4. Moreover, the
number of these checks is displayed in each of our examples in section 4, always in the
last line of the tables. Perhaps a smart data-handling could avoid repeated checkings of
subsets’ € H but we do not think it would fasten considerably our algorithm.

Now let us see ouprocedure modifyn more details. (See also the enclosed pro-
gram list at the end of [13].V denotes the number of the given vectors, wisileill
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denote the set of the vectonge just examingor shortly the indices of them only) with
the last information character, that is

Sci{y2...,N,", i 'd,"s"}.

Further, ¢ always denotes an arbitrary charactery < N and T is any subset of
{1,2,...,t—1}if ¢ is fixed. Now, the pseudocode of the main point of our algorithm is
the following:

S:= {1}

while not end do begin
if S={k,k+1,...,N;c}andc # d then END;
ifS=1{k,k+1,...,. N;'d’}thenS ={k,k+1,..., N-1 N;"" };
if S={T,t,N;c}thenS ={T,r+1,""};
if S={T,t;'i"}then S :={T,t,t +1,""};
if S={T,t;'d’}then § :={T,t +1,""};
if S={T,t;'s'}then S :={T,r+1,""};

end ;

The program does not miss any simplex because, roughly speaking, it checks the
(candidate) subsets of the given vector-sdexicographicalorder.

A working routine in Pascal language is shown at the end of the paper [13], some
computational results are listed in section 4 of the present paper.

3.2. The extensions

Surprisingly enough a couple of related questions can also be solved by slight
modificationsnot of the above algorithnbut, however, of the input set of vectors
only!

We explain here our ideas mainly refereeing for mechanisms, though the algorithm
itself and the following ideas can be used in general in any other probleamyiinear
space.

3.2.0. Reducing the dimension

Using some easy observations we can reducsifieef the input and so the running
time of our computer.

(a) Clearly any vector (reaction) which is linearly independent of the others must
be omitted since no simplexes could contain it. Though any systematic searah for
these kind of vectors requires considerable time, for huge datasets (about 30 vectors in
30 dimension, i.e., hours of CPU time) this would offer a remarkable time saving, using
some minute elementary algebraic computation.

For an outstanding example let us highligh here the case of Methane—Methanol
example of [6] (which is also our example 4.6 below) where especially the reactions
Sg and S11 both contain exactly one extra specisfaglecoordinate), namely £g and
CH30CH; respectively, which dmot occur in any other reactions. This clearly means
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that they must be linearly independent of the others. And in fa@ndsS;; are not listed

at all in table X in [6], which also can be seen in subsection our 4.6 below: table 4.6(a)
shows the original example while in table 4.6(b) we can see the effect of omifiagd

S11.

(b) If we have a vector with exacttyvo nonzero coordinates it may also be omitted
and further the dimension of all the remaining vectors may be decreased by one.

In the language ofhemistry:such a vector stands for a reaction of type= AB
for some (positive) numbex € R. This clearly implies that the species (groups of
atoms/functional bonds) and B are equivalent. That is, the spetican be replaced to
AB, for example, in all the other reactions while the sp&end the reactiom = AB
can be omitted. This decreases both the number of species (dimension) and of reac-
tions (vectors). Of course to each mechanidnr in this reduced lower dimensional
space we might add the reactioh = AB if the speciB occurs inM~ to form a
real mechanismM in the original problem. (Of cours@1 mustnot be minimal, so
if we search forminimal mechanisms we might have also to examine its minimality
after.)

Let us examine this construction in the languagenathematicstoo.

Let the vector-setd < R" be given and suppose that the vectore H has
exactly twononzero coordinates, = A - x, wherex € R\{0} is arbitrary nonzero real
number andX = [xi,...xy]". For each vectol¥ € H let us now substract theth
coordinateA-times from theuth one and delete theth coordinate fromY to get the
vectorY~ € R¥~1, In formula: from the vecto¥ = [y1, ..., yx1" € RY we construct
the vector

Y7 = [)’1’---7)’14_)\‘ym--wyvfl’)’erl’---’)’N]TERN?l
if we suppose: < v. ClearlyX~ = 0. Let now
H :={Y " |YeH, Y#X}CRVN 1L

Lemma3.0. For anyS~ <€ H~ we have thatS™ is linearly independent iff the set
S U {X} is linearly independent, whete:={Y | Y~ € S7}.

Proof. LetS := {Y; | i < t}. Since only thexth coordinates of the vectoié € H
were changed, and further all other coordinateX @fere0 which were not deleted, we
have to focus on theth coordinates) of Y; only. (Recall that thetth coordinate off;”
isyi — A -y'.) This means, that for any set of coefficiepts . .., u, € R we have

t t
Zme:O iff Zm(y,i—)\-yf))zo iff
i=1

i=1

t t ¢

. _ _ .

Dy =a- wiyh=tc it wYi=—-X 0
i=1 i=1 i=1 Xu
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Now let us consider any subsgt € H~. Using the previous lemma we have that
S~ is simplex iff S U {X} is dependent and\{Y} U {X} is independent for al¥ € S,

Y # X iff either SU{X} is a simplex o1S is dependent but in the latter case we must have
a simplexT C S not containingX. Using this observation we can reduce the search for
simplexes inH: we have to search for them among the$et{X} and all the subsets of

S for every simplexS~™ € H™.

Let us emphasize that we did not mention such difficulties above when we spoke in
the language of chemistry. There we did not bother of findmiigimal original reactions
in the previous paragraph what caused this difference.

This reduction is illustrated in our example 4.7 which is taken from [6], the exam-
ple of conversion of Glucose to Pyruvate. The first part of table 4.7 show the original
problen?, for the second part we applied the above reduction for alktpkt reaction
of type A = A B of the original problem. For the last part we applied one further re-
duction for a resulted new reaction of this type. The CPU time decreased from 93.00 to
0.00 sec.! (Well, we did not make any computations for decoding — finding simplexes in
the original problem from the reduced ones, so far.)

3.2.1. Searching for (direct) overall reactions

In this section we consider the case when the resulting (overall) reation=
R( 1) isnotknown but the lists of theerminal (chemical) specigsvhat we want to syn-
these and what are the initial ones), amigrmediate (active) speci€éwhich occur only
during the mechanism) are given. (For terminology see [4] or our section 2.2 above.)
Remark that all species are supposed to be either terminal or intermediate ones.

Our goal now is to findill mechanisms (callegteady-state ones) of which corre-
sponding reactions contain terminals (chemical) species only, these reactions are called
overall ones. Again, our algorithm provides minimal mechanisms (@ieect or cycle-
free ones) with their minimal (i.e., simple) reactions.

(i) For this purpose enlarge first the given set of vectdts, ..., Xi} € RY with
new “ideal” vectorsV, € R to separate terminate and intermediate species: one new
vector V, for each terminate sped; wherer € T. In more detail, let all but theth
coordinates ofV; be equal to 0 while let theth coordinate (representing,) of V; be
equal to 1.

Now, fromany mechanism

k
DhiXj 4+ V=0, (10)
j=1 teT
we can extract the overall reaction
R 3:_Zﬂr'vn (11)
teT

9 Section 3.2.1 explains the differences among these three parts.
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where, as usual, the initial species are with negative coefficients and the synthesed ones
with positive coefficients. Clearly now the mechanism

k
j=1

has exactly the resulting (overall) reaction
R(M) =R.
Of course we have to consider only the simplexes of the extended vector-set
S C{Xe, ..., X ) U{V, |1 €T} (13)

which contain at least one new vectdr. Otherwise we would get mechanismd
resulting the void reactio® (M) = 0 (as without introducing the new vectols, | ¢ €
.

We have to findsimplexesS in the set (13) since we are interestednimimal
mechanisms. This might be an essential restriction for fin@thgnechanisms. In
(iif) below we discuss another, two-stage solution for findatigninimal (direct) overall
reactions and minimal mechanisms resulting the corresponding overall reaction, though
the method we just presented is a diranig-stageone for the same problem. In sec-
tion 3.3 we give an exact mathematical proof for that the present method and the one
in (i) give the sameoutput. In other words, the above method based on (12) and (13)
really givesall minimal reactions and their minimal mechanisms. So we can use our al-
gorithm automatically irone stages we discussed above in (12) and (13), which means
a fast solution to our problem.

After we have extended our vector-§&¢;: i < k} with the new vectorgV;: j e
T} to the set

H={X,l<k}U{Vj_]ET}

we may run our algorithm either for findirgl simplexes inH (VarAll) or only those
which contain at least one of the new vect¢¥s;: j € T} (VarOnly) and we can
compare these runs to when we searched for all simplexes in the original vector-set
{X;: i < k} (VarOrig). Clearly for all computational quantities (time, number of
simplexes, checked subsets, etc.) we must have

v(VarAll) = v(VarOnly) + v(VarOrig). (14)

This easy fact can be also seen in each of in tables 4.5 through 4.7 in section 4.

(i) We must not forget théaw of mass balance (remaining of the materialthe
mechanismM, which results the reactioR = R(M) = — >, _; u, - V, by (11).

This is not a problem fronchemicalpoint of view: since all the given reactions
(input vectors) satisfy this law, their linear combination satisfies, too, since by (10) we
haveR = Z’;zl Aj - Xj. (In other words, this law holds automatically for the output
mechanism assuming it hold for all of the input reactions.)
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Frommathematicapoint of view: this law is equivalent to that the vec®re RY
must satisfy the requirement

B-R=0 (15)

for the matrixB € R™*" which codes the sum-formulae afl the species (groups of
atoms/functional bonds) involved in our problems: in any of the input ve¢Xrsi <

k} did it, as we described in section 2.1. The equality (15) might be curious if we used
only (11) asR = — ), ., i - V; but using

k
R:ZAJ-XJ-
j=1

from (10) and the assumption
B-X;=0 (Vj<k)

we clearly have

Not only for still unconvinced readers but for an additional explanation of the proof
in section 3.3, let us mention the next variant for ensuring the law of the mass balance.
Let us first enlarge the dimension of all the vectpXs: i < k} and{V;: j < T} with
as many new coordinates as many atoms the ve¢igrsj < T} (i.e., theterminate
species) are built up. Next, let us code the sum-formula of these new véGtons
their own new coordinates as we described in section 3.2.1, while we let all the new
coordinates of the old vectofX, ..., X} to be equal to 0. We dootthink it would be
interesting to present such computational runs which (of course) gave the same results
but in some more time!

Let us emphasize again that running our algorithm with the modified dataset (as in
(1)) we immediately get (in one rurglsothe steady-statmechanism

k
M= Z)m] -Xj
j=1

with R(M) = R, that is the mechanisms which yield exactly the reackorSince our
algorithm listsall simplexes of the vector-s¢K;: i < k}U{V;: j € T}inits full run,

we have only to separate all mechanisms corresponding to several reactions, so we get
all (direct) steady-state mechanisms waththeir (simple) overall reactions in a single

run. This means that in the present case them@iseed for further running the variant
described in section 3.2.2.

(iii) Another variantto the problem of finding all minimal overall reactions and
minimal (direct) mechanisms leading to them would be the following. Let us first search
all the possible minimal reactions among the terminate species as it is described in sec-
tion 3.2.1. Then for each minimal reaction let us search separately the minimal (di-
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rect/steady state) mechanisms among the original given set of reactions, which mecha-
nisms belong to the actual minimal reaction as described in the next section 3.2.2.

This idea requieseverallower dimensional runs of our algorithm (and transfering
data among them) instead of a single higher dimensional one as we suggested in (i). Let
us warn however our readers that in the preliminary search for all the possible minimal
reactions among the terminate species we may get also reactions whichtdenbuilt
up from the original given set of reactions and so imply void runs in the next step!

Computational examples for these comparisons are presented in sections 4.5
through 4.7. In section 4.5 we explain the most details: the first column of table 4.5
examines the possible reactions among the terminate species (mentioned in (i) above)
but we did not any use of this computation for the other colufin€olumn 2 inves-
tigates all possible mechanisms among the original reactions. Columns 3 and 4 treat
with introducing the new vector§V;: ¢ € T} only (both without and with halting the
programme after leaving all new vectors).

3.2.2. (Direct) steady state mechanisms

In this subsection we deal with the case whende&now already one or more re-
sulting (overall) reactions (determined either by chemical or other mathematical method)
to which we want to determine all the (minimal) mechanisms leading to these given re-
actions.

Let us deal first with the case when we are given a single resulting redetibor
our purpose let us first extend the given vector-set

H2={X1,...,Xk}

with the new vectoiX,.; := R and then let make our algorithm lishly the simplexes
containingR.

Since any mechanism (3) which results the reacRaran be trivially transformed
to the vanishing linear combination

k+1

D> a-X;=0
j=1

(which is called acyclein [5]), we should only substract,,; from the above equality
and the remaining mechanism

k
1
Akt o
would certainly result the reactiaR, that isR(M) = R. M is minimal of course.

1050 far we did not made any computer experiments for the idea presented in (iii) since all our computa-
tions concerning mechanisms were below 25 minutes, the long-running example in section 4.4 is for all
the minimal mechanism where the resulting (overall) reaction is already given.
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Since we are looking only for simplexes which do contain the fixed vector
R = Xi;1, we have to apply our bounding formulas (see appendixX forany vec-
tors only! In other words, the computing time decreases by a factor of approximately
k—N)/(k+1) =1—(N+1/k+1) when we search for simplexes containiRg
(as a fixed element) instead of containing all possible subseits Gf{ R}, which is a
(k + 1)-element subset d&".

The above trick can be extended easily to the case when we are given more than
one fixed resulting (overall) reactiofig,, . .., R, at the same time. We simply have to
add these vectors t8 and we have to consider only the simplexes

SCHU{RL...,R}

which contairexactly oneof the new vector$R, ..., R;}. Clearly this parallel comput-
ing is adviced for smalt only since we are interested in simplexewith this property
and checking thatS N {R;, ..., R;}| = 1 would require some time for large For large

t, which has magnitude df, we recommend to run this modified algorithm separately
for each sefd U {R;} forall i < t.

3.2.3. Neither reactions nor terminate species are known

We can also handle the case whnerterminal (chemical) species are selected at all
at the beginning but we want to find all overall reactions. By our algorithm we search
for all the possible simplexes and compute (all) the corresponding resulting (overall)
reactions which give the answer. Observe however that in the meantime we have already
listed the corresponding overall mechanisms, too. This means that there is no need for
any further computing.

3.3. Proof of the equivalence

In this subsection we give a (mathematical) proof for the equivalence of the varia-
tions of our algorithm given in (i) and in (iii) in section 3.2.1. Namely, we justify that the
same set oéll direct overall reactions and their minimal mechanisms can be obtained
either with the one-stage method described in (i) or the two-stage variant introduced
in (iii) in section 3.2.1.

So, we are given the (arbitrary) vector-set

X1, ..., X} SR,
Let further
{Vi,...,V,} CRY

beany set of linearly independent set of vectors wherg N. Let us denote the set of
all these vectors by, i.e., let

H :={X;: j<k}U{V;i i<t}

We have to prove the equivalence of the simplexes of the vectaifsahd those of
{X;: j < k}U{Sg} for certainvectorS; € R".
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Let us start with an easy but general fact about simplexes.

Lemma3.1. Any set of vectord) = {uy, ..., u,, v} is a simplex if and only if the set
{us, ..., u,}is linearly independent and all the coefficientdn the existing equality
V= Z iU (16)
i=1

are different from zero.

Proof. If the setU\{u;,} would be dependent for song< m then we would have

Bo 'V+Z,3iui =0
i#io
and g, # 0 since the setu,, ..., u,} was assumed to be linearly independent. This
implies
=32,
iz Bo

which contradicts to (16) since the coefficient:gf in the last linear combination is 0
while all the coefficients ofi; for eachi < m constructingv are unique since the set
{u;, ..., u,}is assumed to be linearly independent. O

Theorem 3.2. For any simplexS € H, S = {X;: j € K} U{Vi: i € T} where

K C{1,...,k}andT C {1, ...,t} are nonempty subsets, and for the vector
Ski=—=) mi-X;=Y AV (17)
JjeK ieT

for the suitable coefficientg;, A, € R) the setS’ := {X;: j € K} U {Sg} is also a
J J
simplex.

Proof. Since S is minimal dependent, all the coefficients in (17) must be different
from 0. Then lemma 3.1 completes the proof. a

The above theorem ensures that the method we described in (i) of 3.2.1 finds all
simplexes (solutions) what the other variation in (iii) has found.

We will prove the other direction in theorem 3.3, what is not true for anyset
vectors and simplef’ = {X;: j € K} U {Sg}, we also need the additional assumptions
(first) through (fifth) below.

First we need that all the vectoks; (j < k) satisfy

B-X; =0 (¥j<k (18)
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for a given (arbitrary) matriX B € R"™*", though this is not required for the vectors
V; (i <t)! Denote now

{biri <N} S R”

the set of column-vectors &.

Secondve need that the vectoks; (i < r) are the first standard base vectors of
R¥, that is all but theth coordinates of/; are equal to 0 while thah coordinate equals
to 1.

Third we have to observe the connection

B-V,=b, (Vi<

which is a trivial consequence of second.

Recall now that we want to prove that each solution (minimal overall reaction and
direct mechanisms) received from the variant (iii) of our algorithm (in section 3.2.1) will
also be provided by the variant in (i) ibid. This implies the following assumptions we
may use:

Fourth let the vectorSg in (17) and let the se§” = {X;: j € K} U {Sg} be a
simplex. By (iii) of section 3.2.1 we also have that the set

{bl i ET}ng

is also a simplex!
Let us mention that by (17) we have

0=B-Y wX; =Y MB-V,=) b (19)
jekK ieT ieT
which implies thatb;: i € T} is dependent foanyvectorS; satisfying (17). The above

result (fourth) implies the below one which will be useful in our proof:
Fifth, the above set of indiceB satisfies the following minimality property:7* C

{1,...,t}is minimal in the sense that there is no proper suli$et T for which
D WX =D a0V, (%)
JjeL ieT
would hold for somd. C {1, ..., k}".
Now we are ready to prove the converse of theorem 3.2. O

Theorem 3.3. Let S’ = {X;: j € K} U {Sg} € RY be any simplex wher8&; satis-
fies (17), further the above assumptions (first) through (fifth) hold. Then the set

S={X] ]EK}U{V, lET}
is also a simplex.

11For chemistsB codes the sum-formulae afl the species involved in the input reactiods (j < k) as
we described in section 2.1.
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Proof. S is clearly dependent by (17). The setg{V,,} for eachi;, € T are indepen-
dent using the minimality property) for T', since (fourth) implies thal' is nonempty.

Let now jo € K be arbitrary and suppose by contradiction that theS§€X ;,} is
dependent. Let

Sp ==Y wiX; =Y MV (20)

jeK ieT

for somey’;, A; € R whereu/,, = 0. Arguing now as in (19) we get

0=-B-> WX;=) AB-Vi=> ib. (21)

jeK ieT ieT

Since the setp;: i € T} is simplex, all solutions of the homogeneous equality

0=) b
ieT

are parallel, this is an another easy characterization of simplexes. For our equalities
in (19) and in (21) this implies that the coefficient vectprs i € 71" and[A: i € T]"
are parallel. This would imply by (17) and (20) that the vect®jysvereS; also parallel,
i.e.,So =t - Sg for somer € R. Using (17) and (20) again this leads to a contradiction
since the vector§X;: j € K} were supposed to be independent, morepyvgr= 0 but
alsononeof the coefficientg.; was 0, finallyS, may not be the zero vector. O

The above theorem clearly justifies that each solution (minimal overall reaction
and direct mechanisms) produced by the variant (iii) of section 3.2.1 is also be given by
the other one in (i) of the same subsection.

4, Computer experiments

An easy analysis of the algorithm shows that our algorithm runscray"+1)
time!? (in the worst case) since all examined subsets ofitheectors have size at most
n + 1, thespanneddimension & range)+1 of the input vector-set.

This ispolynomialtime in M, the number of vectors. The results in the appendix
show that the maximal (possible) number of simplexeghe size of the output) is really
of this magnitude. According to this estimation everyday size inputs (some dozen of
vectors in 10—20-dimensional spaces) require some seconds only on modern computers.
Concrete computational experiments on (also large) datasets are shown below. We used
a Packard—Bell PC with Pentium Il processor of 360 MHz, in Turbo Pascal 6.0 in DOS
mode.

The computing results of Happel, Otarod and Sellers [6] and Berték [10] require
also about this running time but their results are not better at all than of ours.

L2For any functionsf, g: N — N we say thatf = O(g) (“big oh g”) iff for some positive constants
c1,c2 € Rwe havecy; < f(n)/g(n) < c2,thatiscy - g(n) < f(n) < cp-g(n) foralln e N.
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When a so-called “resulting” (overall) reactidi is given (which we have build
from a linear combination of the other vectors) we made run our program in two ways:
we computeall simplexes (not regarding the extra roleSgf) and we also computed the
mechanisms resulting the (overall) reacti®g (i.e., the simplexesnly which contain
Sk, see the section 3.2.2). Checking this latter requirement in each step slowed down
slightly our computer but our formula

v(VarAll) = v(VarOnly) + v(VarOrig)

from (14) in section 3.2.1(i) is justified now.

4.1. Our first example is taken from Amundson [20] and also can be found in [7].
We have given the groups of atoms (functional bonds) CG,, ©@ H,, CH,O, CH;OH,
C,Hs50H, (CH;),CO, CH,, CH;CHO, H,O (of course there igo resulting (overall)
reaction now). The 213 minimal reactions (simplexes) we also get by our computation,
are listed in detail, e.g., in [7]. Since we use three atoms C, O, H (i.e., the input consists
of 3-dimensional vectors) and there are no parallel vectors among the species we can use
the sharper lower bound from corollary A.4.

Table 4.1

“Amundson”
N (dimension of the vectorspace) 3
n (dimension of whatd spans) 3
M (number of input vectorg:H ) 11
simp(H) (number of simplexes) 213
1+ (M32) + (M33) (lower bound) 113<
(nﬂfl) (upper bound) <330
t (computational time [sec]) 0.22s
number of checked subsets Bf 502

aSee appendix of the present paper.

4.2. Our next example is called “Ammonia” in [6] and it is the 4th example in [10].
The resulting (overall) and the examineg@ssible elementatyreactions are:

Sr: N2+ 3H; — 2NHs,
S1: No+ € =Nyt

S2 1 Nal + Ha = NaH»/,

S3 1 NoHal + £ = 2NHY,
Sa: Na+2¢ = 2Ne,

S5 : N¢ 4+ HE¢ =NHZ + ¢,
Se : NHE + HE = NH»f + ¢,
S7: NH¢ +Hy =NHz+ ¢,
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Sg: Hy + 2¢ = 2H¢,
Sg: NHy¢ + H¢ = NH3 + 2¢,
wheref denotes the catalysator’s surface.
The minimal mechanisms are
1) 381 + 385, + 353 — 254 — 4S5 + 255 + 289 = Sk,
2) S1+ So2 4 S3+ 256 + 255 + 259 = Sk,
3) S1+ S2+ S3+ 257 = Sk,
4) S4+ 255 — S + 357 — Sg = Sg,
5) S4 + 285 + 256 + 3Sg + 289 = Sk,
6) S4 + 2S5 + 257 + Sg = Sg,
7 —8S1—8— 83+ 844285 — S+ S7—S9=0,
8) S1+ S+ 83— 84 —255— S5 =0,
9 —Sg+S7—Sg— So=0.

(The latter three mechanisms yield ¢t but the zerovector — a cycle.)

Table 4.2
“Ammonia”

Total  ContainingSg only

N (dimension of the vectorspace) 10 10
n (dimension of whatd spans) 7 7

M (number of input vectorg:H | 10 10
simp(H) (number of simplexes) 9 6
b-(“5Y + (n—b)- (%) (lowerbound) X 1<
(n"fl) (upper bound) <45 <36

t (computational time [sec]) 0.44s 0.28s
number of checked subsets Bf 969 473

4.3. Our next example is Bertok's 5th example from [10] which is taken from [4].
The resulting (overall) and the examingubgsible elementayyeactions are:

Sr: 2H; + 2CO— CH, + COy,
S1: COL+¢=Ct+ 0O,

Sy ClL+HE=CHl(+ ¢,

S3: CHE+HE =CHyl + ¢,
Sq: CHat +HE =CHgl +- ¢,
S5 : CH3l + HE = CHy + 2¢,
Se : OHt + H¢ = H,O + 2¢,
S7: CO+ £ =CO¢,
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Sg : CO+¢ =CO,

So 1 Hy 4+ 2¢ = 2H¢,

S10: CO¥ 4+ HE = CHOOX + ¢,
S11: CHOO! + H¢ = CHOY + OHY,
S12: O +H¢ =0OHC 4 ¢,

5132 CO€+OE = C025+f,

S14: CHOO! + ¢ = OHe + CO,
S15: COl + H¢ = CHO? 4+ ¢.

Now all the minimal mechanisms (the output) are:

1) S1+ 82+ 83+ 84+ S5 — 87+ 288 + 289 — S10 — S11+ S12 + S15 = Sk,
2) S1+ S2+ S3+ Sa+ S5 — S7+ 288 + 289 — S10+ S12 — S14 = Sk,

3) S1+ 82+ S3+ Sa+ S5 — S7+ 258 + 289 + S13 = Sk,

4) S10+ S11— S12+ S13— S15 =0,

5) S10— S12+ S13+ S14 =0,

6) S11— S14— S15=0.

Table 4.3
“Bertdk_5"

Total  ContainingSg only

N (dimension of the vectorspace) 17 17

n (dimension of wha#H spans) 13 13

M (number of input vectorg:H | 16 16
simp(H) (number of simplexes) 6 3

b (“3Y)+ (mn—b)- (5 (lowerbound) & 1<
(nﬂfl) (upper bound) <120 <105

t (computational time [sec]) 78.60 s 43.28 s
number of checked subsets Bf 63,429 31,697

4.4. This example was provided for us by Mr. Bertok personally as _rn.in and
was presented in [18]. The resulting (overall) and the examipedgible elementayy
reactions now areSg, is omitted by technical purposes):

Sk : Ny + 3Hy, = 2NHs,

S1: Ho+ € =Hyt, S14: NoH2l + Nol = NgH2l + ¢,
So : Hat 4+ € = 2H¢, S15: NoH4l + HE = NH2¢ 4+ NH3/,
S3: No+ € = Nyt S16: NoHal + N€ = NoHC + NH3/,
Sa 1 Nol 4+ € = 2N¢, S17: HE+ Nt = NoHE + £,

S5 : Nol +Hyl = NoHyl + £, Sig: NE+ Hyl = NHEZ + HY,
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: NoH2l + € = NHZ + NH¢,  Si9:
:NE+HE=NHC+ ¢, S0
: NHZ + HE¢ = NHZ + ¢, So1:
: NHZ 4+ Hyl = NH3l + £,
NHZ + N¢ = NoHE + ¢, So3:
NH.¢ + HZ = NH3l + £, Soq:
NH2¢ + N& = NoH»2 + ¢, Sos:

NoHo¢ + Hol = NoHgl + €,

He + NoH>Z = NH»¢ + NHY,
N£Z + NoH¢ = NoHE + NHY,

H¢ + NoHE = NHZ + NHZ,
H¢ 4+ NoHZ = NHo¢ + N2,

Our calculations are summarized in the below table.

Table 4.4
“Bertok_rn.in”
Total ContainingS only

N (dimension of the vectorspace) 15 15
n (dimension of wha#H spans) 14 14
M (number of input vectorg:H ) 25 25
simp(H) (number of simplexes) 5,609 3,585
b- (““51) + (n — b) - (5) (lower bound) 1K 1<
(nﬂfl) (upper bound) <3,268,760 <1,961,256
¢ (computational time [sec]) 2.10%s 12-10%s

~5 h 50 min ~3h 21 min
number of checked subsets Bf 10,664,430 2,846,629

Let us mention that Bertdk achieved the same list of simplexes as ours but in 13
hours computer run comparing to our 3 hours 21 minutes.
The following three examples illustrates the modifications described in section 3.2.
4.5, This example is introduced [6] &thylene Oxide Synthesis. We are given
the following reactions

S]_i Oz+€=02€,
So: 200 = Ol + £,

S3: Oyl + CoHy = Of + CH3CHO,
S4: CoH4 O + £ = CyH400,
S5 : Oyl + CoHy = CoHO + O1,

Sg: 50,¢ + CH3CHO = 50¢ + 2CO; + 2H,0,

S7: CoH4 Ol = OF + CoHy,

where the terminal (chemical) species apelO, CH,4, O, CO, and HO, all the others
are intermediate (active) ones.
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As we indicated at the end of section 3.2.1 we can find all (possible) direct overall
reactions among the above set of terminal species by our algorithm (as detailed in section
2.1). We got the following (complete) list of minimal reactions

d1) 1CHy + 30, — CH40 = 0,

dp) 3CoHa + 30, — CO, —H0 =0,

d3) gC2H4 + 3C,H4,O0 - CO, — H,O =0,

ds) 302 + 3C2Ha0 — CO, — H0 =0,
in 0.00 sec which corresponds (in orderYitQds, ds, d>, Of [6], respectively. Computa-
tional data concerning this run are shown in the first column of table 4.5.

The second column of this table shows searching for mechanisms (resulting the
zero vector, i.e., the void reaction) among the original vectors (reacfiptisough ;).

The single mechanisms we found shows that the reactipns ., S; arenot linearly
independent.

Columns 3 and 4 show computation when we introduced the new vegtors. ,

Vs representing one-to-one the terminal (chemical) species as we suggested in the first
part of section 3.2.1. For comparison of CPU time we run the algorithm firsalfor
simplexes then for those which contain at least one new vétonly.

We have the following list of minimal mechanisms:

mq %C2H4 + Oy — CoH40 — %COZ — %Hzo —S1+ %Sg — Sa
+ %Se - 87=0,
mo : CoHa + %Oz — C,H,O + %Sl — %Sz —S4a—S5;,=0,
mg : —CoHs — 30, + CoH4O — 181 — 385, — S5 =0,
myg : 2CHs 4+ 0, — 2CH, 04 S1 — Sa+ S5 — S7 =0,
ms . —CoHy — 30, + 2C0O, + 2H,0 — 351 — 35, — S3— Sg = 0,
meg : %C2H4+02— %COZ_ %H20+S1+ %53—54—S5+%S6—S7=0,
m7 : 2CH, — CoH4O + 3CO, + 3H0— S, — 2S5 — Sa— £S6 — S7 =0,
mg : 5CH4 — 6C,H40 + 2CO, + 2H,0 — S5+ 655 — Sg = 0,
mg —gOZ — C,H,O+ 2CO, + 2H,0 — gSl — %SZ — 83— 84— 8 —S7=0,
mio: _gOZ — C,H,0 + 2CO, + 2H,0 — £—23S1 — gSz —S3+ 85— S =0,
myy: O + %C2H4O - g‘COz - §H20+ S1+ %53 — 84— %Ss
+ %Se - 857=0,
nmio. —SZ— S4— Ss— S7 =0.
For comparing our above data to table VII of [6], let us remark that that table

contains mechanisnanly for the minimal (direct) reactiong, andds and, moreover, its
rows (n», ds) and (ns, d3) are identical.
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Table 4.5
“Ethylene Oxid”
Terminal Reactions With fictive vectog
species only ALL simplexes WITHY; only
N 3 10 10 10
n 3 6 9 9
M 5 7 12 12
simp(H) 4 1 12 11
LB 2< 1< 3<
UB <5 <1 <66
t 0.00s 0.06 s 1.87s 1.80s
chk 18 102 4,000 3,898
N = dimension of the vectorspace n = dimension of wha#l spans
M = number of input vectors: |H|, simp(H) = number of simplexes
LB=b- (”erl) + (n —b) - () (lower bound) UB = (n"fl) (upper bound, if applicable)
t = computational time [sec¢] chk= number of checked subsets Bt

Further, the reaction
¢CoHa + Oz = CoH,0 + 5CO; + 3H20

which can be extracted from our mechanism above isnot minimal, and in fact it
is not listed among the minimal (direct) reactiofis d», ds, d4 above we obtainde by
running our algorithm with the sum formulas of the terminal (chemical) species. The
explanation is, that the vectofg, ..., V5 are linearly independent which makes the
vectors occurring in mechanisi asimplex

We computed in the table 4.5 the lower and upper bouhds U B) according to
the formulas of the appendix of the present paper but only in the case it is applicable
(i.e., except from column 4).

Again, our formulav(VarAll) = v(VarOnly) + v(VarOrig) from (14) in sec-
tion 3.2.1(i) can be checked in table 4.5.

4.6. Our next example is introduced in [6] &ethane to M ethanol Conversion.
We are now given the reactions

S1: CHy + Oz = CH3 + HO,, So : CHz 4+ CH3; = CyHe,

S2: CHz + Oy = CH30,, S10: CH3 + OH = CH30H,

S3: CH30, = CH,O + OH, S11: CHz 4+ CH30 = CH3;0CH;,

Sa: CHzOz + CHy = CH30,H + CH3,  S12: CH0 + CH; = CH, + CHO,

S5: CH30,H = CH30 + OH, S13: CHO+ O, = CO+ HO,,

Se: CH30 = CH,O + H, S14: CHO + CHz0O = CH30H + CHO,

S7: CH;0 + CH; = CH30H + CHg, S15: CHO+ CH3 = CO+ CHg,
Sg: OH+ CHy = CH3 + H,0,

where the terminal (chemical) species are;08,, CH;OH, CO and HO.
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Again the first column of the table below compute all the direct overall reactions
among terminal species while the second column deals with the (void) mechanisms
among the given reactiorf throughSis.

As we indicated in section 3.2.0, since only the reactiSgnand S;1 contain the
extra species £ and CHOCH, the vectors representing them are linearly independent
from the others, so we can omit them and so we can reduce the number and the dimension
of the problem by two. For comparison we made computer runs both with the original
and with the reduced vectors: these are the two parts of the table below. This reduction
helped us to decrease the CPU time from 27 min to 5 min!

The columns in both parts of the table show the various computations as in our
previous example 4.5 we explained (the first columns in the two parts are the same).

Table 4.6
“Methanol”
Before the reduction:
Terminal Reactions With fictive vecto#g
species only ALL simplexes WITH; only
N 3 16 16 16
n 3 13 16 16
M 5 15 20 20
simp(H) 4 2 24 22
LB 2< 2< a<
UB <5 <15 <1140
t 0.00s 30.38s 135322 m 13235222 m
chk 18 30,473 978,297 947,824
After the reduction:
Reactions With fictive vectors
only ALL simplexes WITHYV; only
N 14 14 14
n 11 14 14
M 13 18 18
simp(H) 2 24 22
LB 2< a<
UB <13 <816
t 549s 263524 m 257s~4m
chk 7,623 244,611 236,988
N = dimension of the vectorspace n = dimension of wha#{ spans
M = number of input vectors: |H|, simp(H) = number of simplexes
LB=b- (”erl) + (n — b) - () (lower bound) UB = (n"fl) (upper bound, if applicable)
t computational time [se¢] chk= number of checked subsets Bt

The output set of mechanisms of the last two columns (i.e., when the input is the
reduced set of reaction vectasswith Vi, ..., Vs) is the following:
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: —2CH; — 20, + CH3OH+ CO+ 2H, 0+ S1 — 255 — 83 — Sa4 — S5 — 57

—285 — S12— S13=0,

: —2CHy — 20, + CH30H 4+ CO+ 2H, 0+ §1 — 252 — S3— 84— S5

—285 — S13— S14=0,

: —2CHy — 20, + CH30H 4 CO+ 2H,0 — 2855 — 83— S4 — S5 — S7

—285 — S12— S15 =0,

: —2CHy — 20, + CH30H 4 CO+ 2H,0 — 2855 — S3— S4 — S5 — Sg

—814— 815 =0,

1 —2CHy; — O, + 2CHOH — S5 — 84 — S5 — S7 — S10=0,
: —2CH; — Oy + 2CH;OH — S5 — S5 — S5 — S10+ S12 — S14 =0,
: —CH4 — %Oz#—CO—{- 2H,O + S1 — %Sz— S3 — %54— %Ss

—28;— 253+ 2510— S12— S13=0,

: —CH4 — %Oz + CO+2H,O0+ S1 — %SZ — S3— %54 — %Ss

+%S7 — 28 + %Slo —S13—814=0,

: —2CH; — 30, + 2CO+ 4H,0 4+ 2851 — 35, — 253 — S4 — S5 — 48

+S810 — S12 — 28513 — S14 =0,

—CHy — 20, + CO+2H,0 — 85, — S5 — 25, — 285 — 25,
—2Sg+ 2510— S12— S15=0,

—CHs — 20, + CO+ 2H,0 — 88, — S5 — 28, — 285+ 255
—2Sg+ 2510— S1a— S15=0,

—CHs — 30, + CO+ 2H,0 — 35, — S5 — 354 — 555 — 2Sg
—l—%Slo — %512 - %514 - 815=0,

2CH; — 3CH3OH + CO+ 2H,0 + S — S3+ S4 + S5+ S7 — 283
+2810 — S12— S13=0,

2CH; — 3CH3OH + CO+ 2H,O + S — S3+ S4 + S5+ 257 — 283
+2810 — S13— S14 =0,

—2CH; + 3CH;OH — CO — 2H,0 — §1 4+ S3 — S4 — S5+ 2Sg — 2810
+2812+ S13— S14 =0,

2CH; — 3CH3;0H 4+ CO + 2H,0 — S3+ S4 + S5+ S7 — 255 + 2510
—S12— 815=0,

2CH; — 3CH;OH + CO+ 2H,0 — S3+ S84+ S5 + 257 — 25g + 2819
—S14— 815=0,

2CH; — 3CHsOH + CO + 2H,0 — S3+ S4 + S5 — 2Sg + 2819 — 25717
+814 — S15 =0,
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—S813— 8514 =0,

—S1+ S13— S15=0,
S7+ S120— S14=0.

—05; — CH30H+ CO+ 2H,O0 + §1 — Sy — S3+ S7— 255 + S10

—0O, — CH3OH + CO+ 2H,0 + S1 — S — S5 — 2S5 + S10— S12— S13=0,
—Oz — CHgoH + CO+ 2H20 — S — 53 + 57— 258 + Slo — S14— SlS = 07
-0y — CHzOH + CO+ 2H,0 — S5 — §3 — 258 + S10 — S12 — S15 =0,

The computer running which served the above results is summarized in table 4.6.
4.7. Our last example is also taken from [6] @snversion of Glucose to Pyru-
vate. Here the chemical species are abbreviated as

C = carbon dioxide

D = dihydroxyacetoneP,
E = erythrose 4- P,

F = fructose 6— P

G = glucose 6- P,

N = 6 — Pgluconate

P = pyruvate

R =ribose 5— P,

S = sedoheptulose % P,
X = xylulose 5— P,

K = 2-keto-3-deoxy 6- P gluconate Y = glyceraldehyde 3- P,

L = ribulose 5— P,

where the terminal (chemical) species &eP andC.

The original set of reactions is

S1: R+X=S8S+Y, Ssg:
S>: L =R, Sy :
S3: N=L+C, S10:
S4: G=N, S11:
Ss: F=D+Y, S12:
S¢: G=F, S13:
S7: D=Y, S14:

N =K,

L =X,
E+X=Y+4F,
Y=P,
D=P,
K=Y+ P,
S+Y=E+F

As we have discussed in section 3.2.0 all the six reactions ofAype) B can be
omitted with a suitable modification of the remaining others to reduce both dimension
and the number of vectors. Let us emphasis here that we have to add the fictive vectors
V1, Vo, V3 beforethis reduction since their coordinates will also be modifiaéter this
modification we get the following list of vectors
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Vi Vo Vs 851 S5 S5 510 Sis S
o 0 0o 1 0 2 1 2-1
o 1 0 0 1 0 0 0 O
o 0 1 -2 1 0-1 0 0
1 0 0 0-1 -1 1 -1 1
o 0 0o 1 0 0 0 0-1
O 0 0 0 0 0-1 0 1

in which the rows correspond to the specke, X, K, S, E, respectively. This trans-
formation reduced the CPU time from 93 sec to 0.10 sec!

For the reader’s convenience we list here allttimee sets of output mechanisms:
the original one, after the first and after the second reduction (see the 2nd, 5th and the
last but one columns of table 4.7 below).

Let us recall that the new vectong, V,, V3 originally standed for the species
G, P, C, respectively. However the reduction steps eliminated the speci (Fowhile
all the remaining vectors were transformed to the veclgrs. . ., Sy,

The original set of (output) mechanisms:

my: —3G+P+C—S3— Sq+ 355+ 2S6+ 357 — So— S13=0,
my : —G +2P +C — S3— S4+ S7— Sg — S12— S13 =0,
m3 : =G +2P +C — 83— 84— Sg— S11— S13=0,
ms i —3G+P—S4+3S5+ 318+ 387 — Sg— S13=0,
ms : —G + 2P — Sq+ S7— Sg— S1o — S13=0,
me : —G + 2P — S4— Sg — S11— S13=0,
m7 : —3G + P — 385 — 386 — 387 — S11 =0,
mg : —3G + P — 385 — 1Ss+ 387 — S1, =0,
mg : —G + 2P — S5 — Sg — S11 — S12 =0,
mig: C — S3— S4+ S5+ S + 57— So + S11 — S13=0,
myp: C — S3— S4+ S5+ Se — S+ S12— S13=0,
mi: C — S3+ Sg— Sg =0,
miz: =S4+ S5+ S+ S7—Sg+ S11— S13=0,
mia: —Sa+ S5+ Sg — Sg + S12 — S13 =0,
mis: S7+ S11— S12=0.
After the first reduction:
my: =V +V, +Vy —8; =0,
my: —3V +3Vy, —S; —35; + 355 — S;p— Siy=0,
my: —3Vy +3V, — 87 —3S5 — Sjo+ 3S5— S;a=0,
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my: 3Vy —3Vy =S 4385 — S;o— S =0,

2

mg: 5Vy —3Vy =Sy = Sio+ 3853~ S =0,

Table 4.7.
"Glucose”

Original reactions:

Reactions With fictive vectors;
only ALL simplexes WITHYV; only

N 13 13 13
n 12 13 13
M 14 17 17
simp(H) 3 15 12
LB 2< 4<
UB <14 <680
t 8.00s 93.00s 85.00 s
chk 14,600 107,368 92,768
After the first reduction:

Reactions With fictive vectors;

only ALL simplexes WITHYV; only

N 6 6 6
n 5 6 6
M 6 9 9
simpH) 1 8 7
LB 1< 3<
UB <1 <36
t 0.00s 0.10s 0.10s
chk 52 418 366

After the second reduction:

Reactions With fictive vectorg;
only ALL simplexes WITHYV; only

N 5 5 5
n 4 5 5
M 4 7 7
simp(H) 0 4 4
LB 0< 2<
UB <0 <7
t 0.00s 0.00s 0.00s
chk 5 65 60

N = dimension of the vectorspace

M = number of input vectors: |H|,
LB=b-(“3Y) + (n — b) - (%) (lower bound)
t = computational time [sec]

n = dimension of wha#{ spans
simp(H) = number of simplexes

UB = (nﬁjrll) (upper bound, if applicable)
chk= number of checked subsets Bt
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mg: 3Vy —3Vs — 87 — 385 + 35 — S0~ S14=0,
my 1 3Vy —3Va —8; — 385 — Sio+3S5— S, =0,
mg: Sg —S;3=0.

Since two parallel vectors arised after this reductisg:|| S;; (moreover both of
them are of formA = AB) we could make a second reduction, this can be seen in the
last three columns of table 4.7. The output set of mechanisms is the following:

my: —Vi+ V5 +Vy—85=0,

m3: 3VE 4+ 3Vy — ST — 357 — Sjp— S =0,
m3: 2VE —3V5 — ST — Sjp— S =0,

my:3Vy —3Vs = ST =355 — Sip— Su =0

This time we did not make any preliminary computation with terminal (chemical)
species only.

5. Other mathematical questions

During our thorough theoretical investigations (mainly mathematical we mean) a
dozen of other questions arose. We also have several results we plan to publish else-
where, firstin [1,2,16] and in [3].

We have already mentioned the general linear algebraic study of hierarchies among
atoms, species, reactions, mechanisms, etc., this will be discussed in [3].

We also have mentioned the question of minimal number of simpleregiarallel
vectors are allowed among the vectors. Similar questions (with similar methods) can be
studied in matroids, see [16]. In more general, one could ask what if assuming the
minimal size of dependent subsets (‘circles’ in matroidsjtiteastk? for some fixed
k € N? With Prof. Oxley together we have conjectures concerning this question we
are working on. Other variant on the number of simplexes is when we have to count
simplexes containing one fixed reactidp of the given ones, or the simplexes which
containat least onevector from the sefVy, ..., V;}. Researches are in progress on
these questions, too.

In [1] we plan to discuss in full detail the effect of extending the dimension of
the vectors because of the law of mass balance (conservation of material) explained in
section 3.2.1.

After a clear linear algebraic reformulation we deal with the questi®there a
(finite) set of mechanism/reactions which linear combinations would give the set of all
mechanism/reactiofiglso in [1]. (Convex linear combinations clearly are not sufficient
as it is wellknown from linear algebra.)

Finally, the valuation operator (introduced in [9]) has also linear algebraic connec-
tions which is discussed in more generality and detail in [2].
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Appendix

Here we give the bounds for the number of simplexemjnimal reactions/mechan-
isms/dimensionless groups) contained in a given set of vectagsoups of atoms/react-
ions/physical quantities) we proved in [14] and [15]. The first theorems below give an
exact characterization of the uniqg&ucture of the vector-sets when the number of
the contained simplexes is maximal or minimal, which easily can be transformed into
stoichiometrical results. Using them we give the numerical bounds for the number of
simplexes.

Recall, that a set of vectors ¢ RY is called asimplex iff S is minimal linearly
dependent, that iS itself is linearly dependent but all its subsets are independent.

For any set of vectordl C RY, |H| denotes thesizeof H, while [H] is the
subspace oR" spanned by7, and finally letsimg H) denote the number of simplexes
contained inH. Now, our main results can be formulated as:

Theorem A.1 ([14]). For anyH c RN and dinffH] = n, simp(H) is maximal iff any
n vector of H are linearly independent.

Theorem A.2 [14]. For anyH c RY and dinfH] = n, sSimp(H) is minimal if H
contains ofz linearly independent equivalence classes of almost the same size (i.e., the
size difference is at most 1) where each equivalence class is a set of parallel vectors.

Corollary [14]. If H ¢ RY dim[H] = n and|H| = M whereM is a multiple ofn,

then
% < simp(H) < M
"\2) S St

and in the case doesnotdivide M, thelower bound is

a+1 a
b( 5 )—I—(n—b)(z),

whereM =an + b and 0< b < n.

Let us recall that

<u> _uu=1-(u—-v+1

v

is the binomial coefficient for any natural numbats € N.

In the language of mechanisms, theorem 6.1 says that the number of éirect (
minimal) mechanisms imaximaliff there areno small mechanisms. In the case when
H spans the whole ground spaRé this means that all minimal mechanisms must use
all species (since the reactions involved in this mechanism must span the whole space).
For fixedn (=dimension, i.e., number of species involved) the upper baullg is

approximatelyO (M"+1) (for definition of © see footnot& in section 4).
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If we want to have (or we expect) &w mechanisms as possible, by theorem 6.2
we must have many parallel species/reactions, more precisely vectors representing iso-
mer species or theamereaction multiplied by a constant (with higher speed). Moreover
the sizes of classes of pairwise parallel vectors (species/reactions) must be as equal as
possible.

The question for the minimum valuesiinp(H) is open if no parallel vectors are
allowed in H Parallel vectors as species (groups of atoms) represent isomer species
since their sumformulas are just the same, a multiple (by a real number) of each other,
or simply a higher dose of the speci in question. If reactions are represented by vectors,
parallel vectors represent the same reaction only but with different emphasis or speed of
it. So, in the contrary of its mathematical difficulty, the problem on the number of sim-
plexes when parallel vectors aatowedis also of importance for estimating the number
of possible reactions/mechanisms. Though these interpretations of simplexes allow and
make sense and importance of parallel vectors, to avoid counting the same reaction sev-
eral times with different constant we must investigate the case wbhearallel vectors
are allowed or more sophisticated questions. Unfortunately so far we only have the be-
low result from [15] for 3-dimensional vectors without parallel ones (e.g., when we our
groups of atoms are build up from 3 atom3):

Theorem A.3 [15]. For anyH C R3 of fixed size but not equal to 3, 4 or 7 such that
H spansR?® and no parallel vectors are iH, simp(H) is minimal if and only if H is
contained in two intersecting planes, one of which is of size 3. In other words, #hen
contains three linearly independent vectors, u,, us}, another vectopo coplanar with
w1 andu,, and the resH \{uy, u,, us, v} is coplanar withu, andus.

Corollary A.4 [15]. If H c RY no parallel vectors are iff, H spansR® and|H| = M
whereM differs from 3, 4 and 7, then

1+ M =2 + M=3 < simp(H)
3 2 = PCE).
This gives us a lower bound of magnitud&3).

Several other conjectures were mentioned in section 5.
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