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Introduction

Mathematical Statisztics and Stochastic Processes became extremaly important
in modern engineering and computer technology. The present book is for engineers
and I'T experts, so it focuses on applications, illustrations and mainly on computing
formulas, serving as few mathematics as neccessary. For basic Probability Theory
we refer to our short and illustrative summary [SzI1]. (Letters and numbers in
square brackets [...] refer to further reading in the section " References".) Not only
for curiosity we mention the Hungarian terms as well in brackets and in quotation
marks ("...").

We highly acknowledge the funding of the grant EFOP-3.4.3.-A.2.3.

This book contains of 125 pages, 17 Figures and 5 Tables.
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Preliminaries: different basic notations

Since many different notations are in use in Probability Theory, let us collect
and identify them first. Through this book we also give the Hungarian terms as
well in brackets and in quotation marks ("...").

O = end of a definition / theorem / proof / remark,
[...] = literature reference (see last section),

AU* B = disjoint union of sets, that is ANB =10,

R,N = set of real and natural numbers,

R™ R-.g = set of nonnegative numbers,
—

a, a, a = vectors,

exp (r) =e”, exp,(r) =a" are the exponential functions (a > 0),
a

lg (), In(z), log (z) and log, (x) are the logarithm functions of different bases
(see the Remark below),

Q, T, H = sample set (in Hungarian: "eseménytér"),
P(A) , Pr(A) = the probability of A € Q |
€,0,X,)Y : Q@ - R = random variables (1-dimensional or real valued or

scalar, "valés vagy skaldr értékii valoszintiségi valtozo")

r.v. = random variable (v.v.)

H
£,¢ ¢, X,Y : Q - R" = random variables (n-dimensional or vector valued,
"tobbdimenzids vagy vektor értékii valésziniiségi valtozo")

r.v.v. = random vector variable (v.v.v.)
Fe ,F ,G,H:R —R = distribution functions ("eloszlasfiiggvények"),
fe . f,9,h:R—R = density functions ("sfirliségfiiggvények"),
af d
/ — —
7 dr ~ dz
M (&), E) ,E{¢}, me, m, p(§) = mean of & = expected value ("4tlag,
varhato érték"),

D), o(&) , o = dispersion of £ ("§ szérdsa"),

f = derivatives of [,

D*(&) , 0*(&) , 0f ,var(§) = variance of § ("¢ szérdsnégyzete").

_E-ME)
D (€)

is the standardized version of ¢ .

&



viii CONTENTS

Remark .1 In (), log (z) usually denote the natural logarithm (base e) and g (z)
the log,, (z), but different books, programs and users can use other choiches, please
check it in each situation. However, in most applications there is no substant
difference among different bases, since log, (x) = log, (a) -log, (x) where log, (a) is
a constant multiplier, i.e. the Reader may choose his/her favourite.



Part 1

Vector valued random variables






We usually make two or more measurings at an experiment, so it is better to
ﬁ
consider the r.v. wvector of data ¢ = ((y,...,(,) instead of a set or separate r.v.

{<17 ’Cn} .






Chapter 1

Two - dimensional random
variables and independence

H
Definition I.1 ¢ : Q — R? is a 2 dimensional r.v. or a vector-r.v. [

Explanations: Z} =(&n) = < 2 ) , 1.e. ?(u}) =(¢{(w),n(w) ) forwe,

so & and 7 are the coordinate (function)s of Z) .

In fact, & and 7 are any two r.v. as you like: £,n:Q — R .

H
Sometimes ¢ or simply ( is written instead of ¢ , moreover the (worst) notation
¢ = ((4,¢5) is often used.

1.1 General definitions

Definition 1.2 The distribution function of ? = (&,n) , or the common /
joint distr. func. of & andn (" egyiittes eloszlasfiggvény") is

F§:R2—>R, Fe(z,y) =P <z,n<y) . (1.1)
O
In what follows, we simply write ¢ and F¢ instead of ? and g .

Theorem 1.3 F; (z) = lim F¢ (z,y) and F, (y) = lim F¢ (z,y) foranyz,y € R .
Y—00 T—00
U

Definition 1.4 By the theorem above & and 1 are called the marginal (or border)
ﬁ
distributions of ¢ , ("hatéreloszlas” or "peremeloszlds”).

5



6CHAPTER 1. TWO - DIMENSIONAL RANDOM VARIABLES AND INDEPENDENCE

Definition 1.5 £ and n are independent (of each-other) if
Ve,y e R Fe(z,y) = Fe (x) - F, (y) - (1.2)

0

(See also [$21], (L10) and (LI5)-(I-17).)

For the following notions ¢ and n do not need to have a common distribution
function.

Definition 1.6 The covariance (in Hungarian: "kovariencia”) of & and n is:

cov (§,1m) := M ( (§ —mg) - (n—my) ) (1.3)

where mg = M (§) and m,, = M (n), or, without abbreviations

cov(§,n)=M( (E=M(E)) - (n—M(n) ) .

cov (§,m) is also denoted by o¢, . O

Remark 1.7 "co-variance” literaly means varying together ("egyiitt vdltozas").
cov (§,1n) really detects the changing measure of & and n . Look: & — M (§) and
n — M (n) are the differences of & and n from their means (movements "up" or
"down") in the same time, and measures (in some way) the relation of these
movements to a single real number.

FEspecially positive cov (§,1) means that & > M (§) or & < M (§) occur "exactly
when"n > M (n) orn < M (n) , in one word "¢ and n move in the same direction”
(concerning to their means), i.e. & andn help and strenghten each other. Similarly,
negative cov (&,m) means that & > M (§) or & < M (§) occur "ezxactly when not"
n> M(n) orn < M (n), in one word "¢ and n move in other directions”, i.e. &
and n impede or weaken each other.

Let us highlight again that the above implications are "not sure” (as in math-
ematics usually), only "with some probability" (as in mathematical statistics, as
usual), or less: concerning the mean (average) of the formulae!

(See also the below theorems and remarks.)

Theorem 1.8 For any r.v. {,n and a,b,c,d € R real numbers (constant r.v.) we
have

(o) cov(&§m)=M(§-n)— M) -Mn),
(1) if M (&) =0 then cov(§,n) = M (£-n),
(ii) if & and n are independent, then cov ({,n) =0,



1.1. GENERAL DEFINITIONS

(11i)  but the reverse implication is not true in general,
however it is true for normal distributions,

(iv) D*(E+mn)=D?(&)+D?*(n)+2-cov(&n) for any two r.v. € and n
(v) cov (& €)= D*(€)  (auto/self covarience, "sajdt/on- kovariencia"),
(vi) cov(&,m) =cov(n,&) (symmetry, "szimmetrikussag”),
(vii) cov (a& +b,en+d) = ac-cov (§,n) ,
(viii) cov (§,1) = cov (§ = M (§) , n—M(n)),
(ix) cov(a& + b,aé +b) = a>D?(€) ,
(r) cov(a,n) =0,
(i) cov(ar&y + asds , bimy + bany) =
= arbicov (€1, 1) + arbacov (§1,m,) + asbicov (§5,m,) + azbacov (§5,1,) -

Proof. (o) by definition cov (&,7n) =
=M ((§ —me) - (n—my)) = M (&n) — M (§my) — M (gmg) + M (memy)
= M (&n) —my - M (§) —mg - M (n) + memy,
=M (En) —my-me  —mg-my  +memy
= M (&n) —memy = M (§-n) = M (§) - M (n) .
(i) follows from (o).
(ii) if £ and n are independent then M (§-n) =M (§) - M (n) (see [SzI1]).
(iii) we do not prove it here.
(iv) D* (€ +n) = M ([ +1 —me —m,)*) =
= M ([ = me]*) + M ([n — my)") +2- M ((€ —me) - (11— my))
=D?*(&)+ D*(n) +2-cov(&,m) .
(v) by definition cov (§,€) := M ((§ — m§)2) =D%(¢) .
(vi) obvious.
(vii) since
al +b— M (a§ +b) = a(§ — M ()
and
ecn+d—M(en+d)=c(n—M(n)),

we have
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cov (ag + b, cn + d) = M (ac (§ —me) (1 — my))
=ac- M ((§ —me) (n —my)) = ac- cov (&) .

(viii) take a =c=1,b=—-M (§) and d = —M (n) in (vii).

(ix) use (vii), with a = c and b = d, and (v).

(x) by (0) cov(a,n) =M (a-n)=M(a) - M(n)=a-M(n)—a-M(n)=0. =

Remark 1.9 (o) Clearly (£-n)(w)=¢& (w)-n(w) forwe Q.

(i1) and (iii) say that calculating cov (§,m) can not decide the independence of
€ andn , in the case cov (&,m) = 0 we can only say that & and n are uncorrelated
("korreldlatlanok”). See Example below for details and examples.

(iv) is the generalization of the "Pithagorean Theorem"”

D*(§ +mn) = D* (&) + D*(n)

for independent r.v. £, 1, since (iv) is valid for any r.v. & andn (see also [SzI1]).

(vii) Clearly cov(§,n) changes when we change measure units (cm or km),
since such a change zooms (in or out) the fluctuations of & and 1. For this reason
cov (&, 1) differs from cov (%, n*) where £ = % and n* = 7’_[)]‘({]()")
dard versions of & and n . This phenomenom is called "cov (£,m) is not normed"
or "depends upon the scales" ("skdlafiiggd"). The normed version of cov (&,m) is
the correlation coefficient (see below).

(viii) must be clear by everyday thinking: the covarience ("varying together")
must not depend on "where is the zero on our scale” (e.g. measuring temperature
in centigrade or Kelvin). See also Remark; at the beginning of Part Statistics.

(x) is also clear: neither a constant a "varies together" with & , nor & with a .

are the stan-

Example 1.10 Here we give some examples for r.v. which are uncorrelated but
not independent.

First example: Let £ be a uniform (continuous) r.v. on the interval [-1,1] and
let n = &2, clearly ¢ and 7 are not independent (please check). However, by (o)

cov (€,m) = M (€-€%) — M (€)- M (€2) = M (¢%) = M (€)- M (€2) =0 -0 =0

since M (53) =M (§) =0 . Similarly cov (5, 52) = 0 for any r.v. symmetric to the
origin (i.e. M (§) =0).

Second example: let X and Y be discrete finite r.v. such that Im (X) =
{0,2}, Im(Y) = {0,1,2}, P(X =0,Y =1) =1, P(X =2,Y =0) = P(X =

2,Y =2) =1 and the other possibilities are zero:
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(X\Y[ofi]2]x%
0 0]5]0]3
A EIIEYE
= [alalalt]

SoP(X=0)=P(X=2)=1 PY=0=P(Y =2 =landP(Y =1)=1.
Further M (X) =M (Y) =land M (X -Y) = 040+2-2:3 = 1socov (X,Y) =0,
i.e. X and Y are uncorrelated. On the other hand X and Y are not independent,
since
P(X=0Y=1 L P(X=0)-P(Y=1 L1 1
(X=0y=1)=1 # P(x=0.Pr=p=11-1

(There are many similar examples, e.g. if (X,Y) has the values (—1,0), (0,1),
(1,0), (0,—1) with probabilities 1/4.)

Third example: Let ¢ = X +Y and n = X — Y where X and Y are
independent Bernoulli (discrete) r.v. with the same parameter p .
¢ and n are uncorrelated since

cov(§,m) =cov(X+Y, X —Y) =cov(X,X)—cov(X,Y)+cov (Y, X)—cov(Y,Y)

=D*(X)-D*(Y)=0.

However ¢ and n are not independent since, for e.g.
PE=0n=1)=P(X+Y =0, X-Y=1)=0

(the only solution X =1 and Y = —1 are impossible), while

P(E=0)-P(n=1)=P(X+Y=0)-P(X-Y=1)=p-(1-p°. O

See also: https://en.wikipedia.org/wiki/Covariance Subsection 3.4 =,
https://en.wikipedia.org/wiki/Covariance# Uncorrelatedness and independence,
https://en.wikipedia.org/wiki/Correlation and dependence ,
https://hu.wikipedia.org/wiki/Kovariancia (in Hungarian),
https://de.wikipedia.org/wiki/Kovarianz _(Stochastik) (in German).

Remark I1.11 The main disadvantage of cov is property (vii): depends on the
scales (measure units) a and ¢ of & and n . The modification below handles
this problem: R (a+b,cn+d) =R (£, 1) .

Definition 1.12 The (Pearson) correlation coefficient or normed covari-
ance ("korreldcids egyiitthatd, normdlt kovariancia”) is

__cov(&m)
HE = D D
Other notations are v (£,m) and p{&,n}. O

(1.4)


https://en.wikipedia.org/wiki/Covariance
https://en.wikipedia.org/wiki/Covariance#Uncorrelatedness_and_independence
https://en.wikipedia.org/wiki/Correlation_and_dependence
https://hu.wikipedia.org/wiki/Kovariancia
https://de.wikipedia.org/wiki/Kovarianz_(Stochastik)
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Remark 1.13 (i) "co-relation” literary means (common) relation between two ob-
jects ("osszefiiggés”).

(ii) This version of the correlation coefficient is named after Pea/rso.
Theorem I.14 (i) —1< R({,n) <+1,
(ii) if & and n are independent (or uncorrelated) then R (&,m) =0,
(ii) but the reverse implication is not true (see Theorem|[L.§),
(iv) for Gaussian distributions:

€ and n are independent <= R (&,n) =0,

(v) |R(&n)| =1 if and only if &€ and n are "the same":

n=a-£+b for some a,b e R , a#0 . (1.5)

for some a,b e R , a#0 .

Proof. (i) can be deduced from the Cauchy-Schwarz-Bunyakovszkij (CSB)

inequalit.
(ii)-(iv) follow from the corresponding parts of Theorem [[.§|

(v) For the backward direction let n = a + b . Now, by
my, =M (n) =M (a§ +b) =aM (§) +b=ame+b
and the definition the enumerator is
cov (&,1) = M (€ = me) (1 — my)) = M (€ = me) (a€ +b — (amg +)))
= M ((§ —me) (a (€ —mg))) = M (a (€ —me)*) =a-D*(E),
and using
D (n) =D (a +b) = |a| - D (£)

1) Karl Pearson (1857-1936) an English mathematician and bio-statistician.
2) The Cauchy - Schwarz - Bunyakovszkij (CSB) inequality has (at least) three different
forms:

o () =

if the sums are finite,

b
BS) ([ f(x)g(x)da

the integrals are finite.
In general:  (x,y)? < (x,x) - (y,y) for any scalar product (.,.) . [

=N

n
x) . (Z y?) for any x1,91,---, Tn, Yn € R real numbers and n € N |
i=1

NGERINGE

=N

00
IIZ> . (Z y?) for any Ti1,Yi, s LnsYn, ... € R sequences,
i=1

Il
N

2
b b
< (f 2 () da:) . <f92 () dm) for any functions f,¢g: R — R, if

a

N——
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we have R(&,n)=a-D?*(§)/|a|- D (&) ==+1.

The other direction is more difficult. ]

Remark 1.15 The main significancy of (i) are the limits (bounds) of R, we can
estimate and compare the magnitude of R to the absolute limits. Though the
conclusions like "R = 0.5 means 50% connection between & and n " has no
mathematical background or meaning, we feel and say similar sentences.

Remark 1.16 However, the cases R (£,n) = 1 really mean strict connections:
using connection we can compute exactly the values of n from & (and back, of
¢ fromn) since a,b € R are (fized) real numbers! We can think that the measuring
quantities (devices) are really joined firmly, only the scales are changed (linear
transformation), like Celsius and Fahrenheit: Y[°F] = 1.8 - X[°C] + 32 and
X[C) = %Y[OF] — 32 ~0.5556 - Y[°F] — 17.7778 .

1.8
The quantities cov (§,m) and R (§,n) have many applications in Regression the-

ory in Statistics. More detailed investigation can be found in Section|6.4] "Regres-
sion and covariance”.

See also Remark [II.103 after Theorem [II.102,

1.2 The discrete case

Definition 1.17 If Im (&) = {z1, 22, ..., Tn, ...} and Im(n) = {y1, Y2, -, Ym, ---}

then the distribution of ? = (&,m) (or: the common/joint distribution of £
andn) s the set of probabilities: {p;;:1<1,j < oo} where

piji=PE=2,n=y;) . O (1.6)

Clearly
0<pi; <1 and > Y pi;j=1. (1.7)

i=1  j=1

(Any set of real numbers, satisfying ((1.7)) can be a joint discrete distribution.)

Definition 1.18

ql(g) = Z pij =P =) and q](-n) = Z pij =P (n=y;) (1.8)
i=1

are the marginal (or border) distributions ("peremeloszlisok”) of E) . g
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Theorem 1.19 In fact, the sets of probabilities
{qi@) 1<i< oo} and {q](m 1< < oo} (1.9)
are the distributions of & and 7 . O

Theorem 1.20 The discrete r.v. £ andn are independent if and only if for every
1,7 € N we have

P =z, n=y;)=PE=uw) Pn=uy (1.10)
i.e. Dij = ql-(g) -qj(»n) . O]
(See also [SzI1], and (L.15))-(L.17).)
Remark 1.21 In other words: and are equivalent. [

Theorem I1.22 Fe(z,y)= > > pij foranyz,yeR,

i <r Y;<y
Fe@)=% ¢ od Fp=% ¢". O
zi<w Y; <y
Theorem 1.23 M(E-n)=> Dij i Y
=1 =1

1.3 Summary and an example

In case Im (£) and Im (7) are finite, then we can arrange all the data in a table
as seen below.

’ 5\77 H Y1 ‘ Y2 ‘ ‘ Yj ‘ ‘ Ym H gmarg ‘
T pl,l p172 pl,j pl,m qgg)
T2 D21 | P22 | - | P2,j | -+ | P2om qéﬁ)
ZT; pi,l pi72 pl,_] p,hm qz(f)
Ln DPnd | Pn2 | o | Png | - | Pam q7(1£)

Praramramraen

Table 1: Two-dimensional finite discrete distribution
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As in the previous section, {z1, za, ..., x, } and {y1, y2, ..., Ym } are the values of £
and 7. The joint distribution of £ and 7 can be seen in the middle of the table: p; ;
was defined in . The marginal distributions are in the margins of the table:
ql@ is the sum of the ¢ -th row, and q](m is the sum of the 7 -th column of the table,

according to ([1.8)). Only the middle of the table (the set {p;;}) is usually given,

we ourselves have to compute q§5) and q](m by summarizing the rows and columns.

For checking, the sums of both marginal distributions (the last row and the last
column) must give 1 , see the right bottom entry.

Independence can be checked by (1.10): each p;; must be equal to the product
of (the corresponding) qu) and qj(-") (in the same row and column). Observe, that
if (at least) one p;; does not fulfill this equality, £ and 7 are not independent.
Independence requires for each i and j (each row and each column).

Considering only the first and last column/row, we can find the distributions
of the (one variable) r.v. £/n respectively, i.e. not considering the other, so M (£),
M (n), D (&) and D (n) can be computed easily from these columns/rows, as in
ordinary (one dimensional) probability theory, or see the second line of Theorem
L23

The mean M (£ -n) can be computed also by Theorem : the picked p; ;
must be multiplied by z; and y; (in the same row and column) and summed for
all p;; . Finally use the formulae cov(§,n) = M (§-n) — M (§) - M (n) and

_ conlen)
R (&) = 5507 -

Example 1.24 The price (X) and quality (Y ) were investigated for a certain
product, the numbers in the table show how many products were found for each
category in a sho. Calculate cov (X,Y), R(X,Y) and estimate the measure of
dependence of X and Y .

(XA\Y [ 1] 2] 3] 4]
0] 2] 6] 6] 4
20 |[ 41| 53| 72| 33
30 12] 10| 11] 18

Solution 1.25 The given dataset contains the number of products in each cate-
gory, not probabilities. So, we have to calculate relative frequencies for approxi-
mating the probabilities. The sum 15 2+6+6+4+41+...+12+410+11+18=268, so
the common- and the marginal distributions are the following:

3) ¢ and 7 were replaced to X and Y for technical reasons only.
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Xy | o1l ef 3] 4] g
10 2/268] 6/268| 6/268| 4/268| 18/268
20 || 41/268 | 53/268 | 72/268 | 33/268 || 199/268
30 || 12/268 | 10/268 | 11/268 | 18/268 || 51/268

o | 557268 | 69/268 | 89/268 | 55/268 | 268/268 |

Independence checking, e.g. 2. row 4. column:  199/268 * 55/268 # 33/268
so X and Y are not independent.

Means (expexted values):

M(X*Y) = 10*%1%(2/268) +10%2*(6/268) +10*3*(6/268) +10*}*(4/268) +
+20*1%(41/268) +20*2%(53/268) +20%3*(72/268) +20%4*(33/268) +
+30¥1%(12/268) +30*2%(10/268) +30*3%(11/268) +30%4*(18/268) =

= 14490/268 ~54.0672,

M(Y) = 1*(55/268)+2*(69/268)+3%(89/268)+4*(55/268) = 680/268 ~2.5373,
M(X) = 10%(18/268)+20%( 199/268)+30%(51/268) = 5690/268 ~21.23183,
cov(X,Y) = M(XY)-M(X)*M(Y) = 1/120/268* ~0.1966.

Since cov(X,Y)>0 , X and Y strenghten each other, the move "in the same"
direction.

Dispersions and R(X,Y):

M(Y2) = (12)*(55/268)+(2 ) *(69/268)+ (5 ) *(89/268)+(42) *(55/268) = 2012/268
~ 7.5075,

M(X2) = (10P)*(18/268)+ (207 )*( 199/268)+(30%)*(51/268) ~ 475.0000,
D(Y) = /M(Y?) = M2(Y) = \/7.5075 — 2.5373? ~ 1.0342,

D(X) = \/M(X?) — M2(X) = +/475.0000 — 21.23132 =~ 4.9224 ,

cov (X,Y) 0.1966
RIX.Y) - _ ~ 0.0386 .
XY) = 5 DX) ~ 10342  1.9224

Since R(X,Y") is small (=4%), the connections between X and Y is weak.

End of the solution.
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1.4 The continuous case

It is very similar to the discrete case.

Definition 1.26 The density function of ? is the common/joint density func-
tion of (&,n) , i.e. the function h : R? — R™C such that for any a,b,c,d €
RU{-00,400}, a<bandc<d we have

P(agfgb,cgngd):ffh(x,y) dy dx . (1.11)

T R
, v

40

15

0 0 5 10

Figure 1: A typical 2-dimensional continuous density function
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Remark 1.27 Any function h : R? — R is suitable if 0 < h (z,y) and

+o0o 400

/ / h(z,y) dydr =1 . (1.12)

—00 —O0

Clearly
+o0o +oo

/ h(e,y) dy= fe(z) and / h(e.y) dr=f,(y) (1.13)

are the marginal density functions = of £ and n . Further (by (1.11)))

b d

Fg(b,d):/ /h(m,y) dy da (1.14)

-0 —0o0

Theorem 1.28 The continuous r.v. £ and n are independent if and only if for
every x,y € R we have

hiz,y) = fe(@)- fy(y) . (1.15)
and, if and only if for any a,b,c,d € RU{—00,4+00}, a < b and ¢ < d we have

Pla<&é<b, c<n<d)=P(a<{<b)-P(c<n<d) (1.16)

/b /d h(z,y) dy de = (/bfs(:c) dq;) : (/dfn(y) dy) .0 @

(See also [SzI1], and (1.10)).)

oo o0

Theorem 1.29 M (¢-n)= [ [ z-y-h(x,y) dy dz,

1.€.

M©= [ v fe(@) de ond M= ] yfy) dy. O
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1.5 Conditional probability

Considering two (dimensional) r.v. questionslike P({ =z | n=vy), P({ <z |n<y)
naturally occur. By elementary probability theory we clearly have

P=x&n=y)

P=x|n=y , 1.18
E=v]n=y) e (118)
PE=z&n=y)
Pin=yl|&=2) = 1.19
=yl E=2) re (119
and
P <znn<y)
P<x <y) = . 1.20
E<aln<y=""p (1.20
Using the notations of the previous sections we can write for discrete r.v.
_ _ _ bij _ _ _ DPij
PE=wiln=y)="75, Plo=y;|E=m) =75 (1.21)
4; 4;
J i g
Z Diye Z Z DPsye
=1 s=1/=1
P =z |n<y) == and P({ <z |n<y)=——, (122
> g, > q”
=1 =1
for continuous r.v.
b d
[ | h(zy) dy dx
P<b|n<d) = ‘:; — . (1.23)
[ [ h(z,y) dydx
Definition 1.30 The conditional distribution functions (clearly) are
Fe(ely) =P <z|n=y) and F(ylr)=P<yl&=x) . (1.24)
For continuous r.v. the conditional density functions are
h(z,y) h(z,y)
fe (xly) = and  f, (ylz) = (1.25)
¢ fn (y) ! f§ (23)
for the conditions "'n =y " and "¢ = x", respectively. 0
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Theorem 1.31 For continuous r.v.

OF¢ (zly) oF, (y|z)

fe (zly) = Er— and  f, (ylz) = gy (1.26)
further
1 OH (z,y) 1 . O0H (z,y)
Fe (x]y) = [N = and F,(ylx) = (A pe 0O (1.27)

Definition 1.32 The conditional means (of & , assuming n = y, and of n
assuming & = x) are, for discrete r.v.:

M (€| n=1y) Zx E=u | n=1y) (n Z:c Di (1.28)
and
1 o0
M(n|§ =)= Zyj =y | E€=2) =~ > vi Pij - (1.29)
4 j=1

for continuous r.v.:

+oo
M |n=y) =/ z- f(zly)de,

+0o0
Mle=a) = [ ygblod. (1.30)
which can also be written as
1 oo
M =vy) = . -h d )
€ln=p=5rs [ rhEp (131)
and . .
M(nl&zx)zm-/oo y-h(z,y)dy . (1.32)



Chapter 2

Higher dimensional random
variables

In practice, a random variable is a physical (or other) quantity we measure during
our experiment. However, in most cases, more than one quantity are measured
for one experiment. Further, the connection among these quantities, in general, is
not known (complicated, or even, the connection itself we want to reveal), so we
must consider these quantities to be distinct random variables, and investigate the
connection among them later.

2.1 Covarience and independence

Definition 1.33 E) : Q2 — R" 1s an n- dimensional r.v. or a vector-r.v. [
&\ L

o hles § (W) = (6 (W), (W) )
€n

H
for we Q ,s0 &, ..., &, are the coordinate (function)s of & .

Explanations: ? = (§1,62, 5 60n) =

In fact, &, ...,&,, are any n r.v. as you like.

H
Sometimes £ or simply £ is written instead of £ , moreover the (worst) notation
€= (&,...,&,) is often used.
The dimension n can also be denoted by p and by any other letter.

Definition 1.34 M (?) =(M(&),...M(,) )eR" is ann -dimensional
vector. U

19
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Definition 1.35 For ? : Q= R and 7 : Q — R™ the covariance matrix
("kovariencia mdtriz") is

cov (?,7) = [ cov (&,n;) | e R™™ . (2.1)

In case & = n the matrizx C = cov (§ , 5) is called auto/self covariance

matrix ("auto/sajit- kovariencia matriz”). O

Theorem 1.36 If the elements of C (auto cov.matriz) are denoted by c; ; , then
(1)  cij=cji, that is C is symmetric,

(ii) ¢, = D*(&;) (the diagonal of C),
(i1i)) C s positive semideﬁm’t,
(iv) ifﬁzA-?—l—mfor some real A € R™™ and m € R™,

then  cov(m,7)=A-cov (E), ?) AT O

In the next Sections we briefly introduce the most important higher dimensional
distributions.

2.2 The normal (Gauss-) distributions

2.2.1 2-dimensional

Definition 1.37 The 2 -dimensional normal (Gauss-) r.v.-s are determined
by the distribution functions

-1 (21—m1)2 o, (z1—m1)-(zg—m9) (mz—m2)2
1 B e (2.2)
2mo109V 1 — 12

or, in modern notation

f(9€171’2) =

) Definition: The real quadratic matrix A = [a; ;] € R"*" is positive definite if 27 Az >
n n
0 for each z € R™ where 27 Az = Y > a;jxiz; . O
i=1j=1
Theorem: A symmetric matriz is positive-definite if and only if all its eigenvalues are positive,
that is, the matrixz is positive-semidefinite and it is invertible.[]
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f (5(11, l‘2) -
1

2mo109V/ 1 — 12 '

-1 (x1 — m1)2 (x1 —mq) - (xg —mg) (22— m2)2
FxP (2(1—r2) ' ( o2 — 0109 * o3 >)

where my,my € R, 01,09, 7 € RPY, —1 < r <1 are any real numbers. [

Theorem 1.38 The marginal distributions & and n are also normal, and
M(é):ml ) M(n):m2 ) D(ﬁ)zal ’ D(n):U2 andR(ﬁ?U):r .

2.2.2 n-dimemsional
Definition 1.39 For any k -dimensional r.v. ? = (&4, .., &) where &, ...,&, are
standard normal r.v. (i.e. M (&) =0 and D (&) =1 fori =1,...,k) and real
%

matriz A € R™* and m € R” the following n -dimensional r.v. 7 = A- ¢ +m
15 called n-dimensional normal r.v. U
Remark 1.40 Be careful with the dimensions n and k !

An alternative definition is the following:
Definition 1.41 Let A = [a;;] € R™*" a symmetri, positive definite quadratic
matriz and let B = [b;j] := A~ the inverse matriz and let dg := det (B) the

ﬁ
determinant of B . Let further mq,...,m, € R be any real numbers. Then £ =
(&4, ..,€,) s an n -dimensional normal (Gaussian) r.v. if the joint density
function is

fz» (1, ey ) = - exp

2) Definition: The real quadratic matrix A = [a; ;] € R"*" is symmetric if AT = A4, i..

[ai ;] = [aj;] for eachi,j = 1,....,n. The symmetric matrix A is positive definite if 2z Az > 0
n n

for each z € R" where 27 Az = > Y a; jziz; . O
i=1j=1

Theorem: A symmetric matriz is positive-definite if and only if all its eigenvalues are positive,
that is, the matriz is positive-semidefinite and it is invertible.(]



22 CHAPTER 2. HIGHER DIMENSIONAL RANDOM VARIABLES

2.3 The binomial/multinomial (Bernoulli-) dis-
tributions

2.3.1 1-dim = 2-dim

Recall the well known (1-dimensional) Bernoulli- or binomial distribution: given
ACQ,p= P(A), fix an m € N | repeat the experiment m -many times
(independently and with the same conditions) and let

& := the number of occurences of A .
Then we have, taking g =1 —p

P(=k)= (Tg)pkqm P ofor0<k<m. (2.4)

Observe now first, that in fact, we have a partition of §2 to {A, Z} since AUA = Q

and AN A =10 . Second, together with ¢ we also know the number of occurences
of A, i.e. we can let

&, := the number of occurences of A

and have

P&y =10) = (Tg)pm_gqé for0<l<m (2.5)

and, of course p+qg=1and k+/{=m

This observation will be generalized for larger partitions in the next section.

2.3.2 n-dim (2 <n)

Definition 1.42 Let A;U* A U*...U*A,=Q, P(4)=p, sz =1, repeat

the experiment m -many times, independently and with the same condltwns m € N
s fized, and let

¢, = X; := number of A; occuring fori=1,...,n .

Then ? = (&4, .., &,) 1s called n -dimensional binomial / multinomial /
Bernoull: r.v. 0J
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Remark: If your experiment is choosing (sampling) m many elements from
a set H , which contains n -kind of objects, then the above term "independently
and with the same conditions" means, that you must put back ("visszatenni") the
chosen element before the next choosing. This method is called sampling with
repetitions / putting back ("visszatevéses mintavétel").

Theorem 1.43 The distribution is: for any nonnegative integers ki, ..., k, € N

m! .
S PP Rk =m

P (51 = kla 7611 = kn) -
0 otherwise

where p; = P (A;) fori=1,..,n . O

Warning: n € N is the size of the partition of 2 and m € N is the number of
experiments (repetitions).

Remark 1.44 The fraction M,L'k, above s called polinomaal or multinomaal

coefficient and usually is denoted as

m m)!
= 2.
(lﬁkn) k!l o k! (2.6)

2.4 The poli-hypergeometric distributions

It is the same as the binomial distribution, but without repetitions/putting
back ("visszatevés / ismétlés / ismétlddés nélkiil").

2.4.1 1-dim = 2-dim

The well known Hypergeometric distribution is the following. Let A;U* Ay = H |
|[Hl=N, |A|=M,, |As|=My=N-—DM,;, repeatthedrawings from the
set H for m -many times (m € N is fixed) without repetitions/putting back, and
let

¢ := the number of occurences of A = A .
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Then we have

PE=k =~k for0<k<m. (2.7)

As in the Bernoulli distribution, we have a 2 -element partition of H = A;U* A,
so the above is, in fact, 2-dimensional. The generalization is easy, go to next
subsection.

2.4.2 n-dim (2 <n)

Definition 1.45 Let Al U* AQ u*.. Ut An =H ) |Az| = Mz B Z Mz =N =
=1

|H| and choose without repetitions/putting back ( ”vz’sszatevési/ ismétlés /
ismétlodés nélkil”) from the set H for m -many times (m € N is fized), and let

¢, = X, := number of A; occuring, without repetitions/putting back

fori=1,...n. Then E} = (&4,..,&,) is called n -dimensional binomial
/ multinomial / Bernoulli r.v. O

Theorem 1.46 The distribution is: for any nonnegative integers ky, ..., k, € N

M\ | . (Mn
Giy) - W) p k= m
P(&l = kla 7€n = kn) = (m) =

0 otherwise

Warning: N = |H| € N is the size of the set H, n € N is the size of the partition
of H and m € N is the number of experiments (drawings) from the set H.
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Chapter 3

Elementary notions

Definition I1.1 i) The result of a measuring is n many real numbers 1, ..., T, .
ii) A statistical sample ("minta") is n many r.v. (&, ...,&,) OR (X1,....X,) .
iii) The degree of freedom ("szabadsdgi fok") is s =mn — 1 in the above case.
In other cases it often has another formula, where we always describe them. [

Definition I1.2 7)

n

is the empirical (greek)/ practical ("tapasztalati") average/ mean/ expected
value.

1s the empirical squared mean.

— . 2 2
i) (@) =) = Tt

ii1) The empirical variance and dispersion are

ity ogr - m e 6 (32)

n

and

n

r= -6 (3.3)

=1

iv) The corrected ("korrigdlt, javitott") empirical variance and dispersion
are

n o, (6= .+ (-8

Cak =0 = ] (3.4)

27
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and

0

Remark I1.3 The empirical and the corrected dispersions are often denoted by s
and s* to distinguish from the theoretical dispersion o .

The empirical and corrected variances and dispersions can be calculated easier:

Theorem 11.4

— (@) - (5)2 _ w _ (5)2 7 (3.6)

Q
o
|
—~

Example IL.5 Let {,....¢,} =

={20.0, 20.2, 20.4, 20.7, 20.7, 21.0, 21.1, 21.3, 21.4, 21.4, 214, 21.5} ,

so n=12ands=n—1.

The empirical mean 1s:

&=

200+20.24204+20.74+20.7+21.0+21.14+21.3+21.4 4214+ 2144215
12

=20.925 ,

the empirical quadratic mean:

v 20.0% +20.2% + 20.42 + 20.7% + 20.7% + 21.0?
(&%) = +
12
91.12 4+ 21.32 4+ 21.42 4 21.42 4 21.42 4 21.52
g2 * 12 * + ~ 438.100833 ,

the empirical variance and dispersion:

02 = (€%) — (€)” ~ 438.101 — 20.925% ~ 0.2454,

o=1/() = (€)° ~ 0.2454 ~ 0.4954 ,

the corrected empirical variance and dispersion:
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() =~ - - (@ - (Z)2> ~ % - (438.101 — 20.925%) ~ 0.2677 |

a*z\/nﬁl (&) = (©)7) ~ V02677 = 0.5174 .

Definition I1.6 Any function g (&4, ...,&,,) of the sample (&4, ...,&,,) is called sta-
tistical function, or shortly statistic. [

Remark I1.7 Many formulas use the advantage of datasets which are "symmetric
to the origin", more precisely having mean & = 0. This can be achieved by a
little trick, which is worth learning. Let the original dataset (real numbers) be
E=1{¢:i=1,..,n} and denote £ its mean (a fized real number). Now, prepare
the modified dataset Z' := {fi —&i=1,..., n}, i.e. substract& from each data.

Then clearly & = 0. Most of the further calculations allow this transformation.

Recall the similar transformation standardizing a r.v. £ as £g = &TMQ)O

resulting M (&) = 0 and D (&) = 1. Similarly, a dataset = can also be stan-
dardized as _
St = {51;6 ci=1, ,n} (3.8)
O¢

resulting similarly &, = 0 and oe, = 1.
However, not each further calculations allow this transformation.
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Chapter 4

Confidence intervals

Shortly: interval estimations (reliability intervals, "konfidencia =megbizhatdsagi
intervallumok").

The general problem is:

Problem I1.8 Give an interval |a,b] of real numbers such that
Pla<vy<b) > 1-—¢ (4.1)
where 7y is the parameter we are interested in and 0 < e <1 s given . [J

Definition I1.9 The interval [a,b] is the confidence (secure, "konfidencia, meg-
bizhatdsagi") interval and 1 — ¢ is the confidence level. [

Remark I1.10 Increasing n (the size of the sample) decreases [a,b], but if de-
creasing € then [a,b] increases.

4.1 Interval for the probability

Problem I1.11 Find the interval for p = P (A) for the event A :

Pla<p<b) > 1-c¢ (4.2)

31
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Theorem I1.12 If n independent experiments resulted k outcomes of A and n is
large enoug, then

[a, ] = [%—n , %+n} (4.3)
where

77:\1/‘%. 5(1_5) (4.4)
" O (u)=1- g (4.5)

(use table ®). [

Example I1.13 Out of 30 pieces 10 is broken. Give an interval for p = P (broken)
with confidence level 95% .

Solution IL.14 ¢ = 0.05 and ® (u.) =1 — % = 0.975  imply u. = 1.96 .
Further:
n:%~ %-(1—%)%0.168690,

10
a = 30 0.168 690 =~ 0.164 643 ,
b~ % +0.168 690 = 0.502 023 ,
so, by 95% we have

P(0.164 <p<0502) > 095. O (4.6)

Remark I1.15 i) The interval [a,b] = [0.164 , 0.502] s fairly large since n is

small and € is small, too.
ii) Theorem is based on Moivre-Laplace’s theorem (see [SzI1]). [

1) n must be above 30, but n > 200 is preferable.
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4.2 Interval for the mean when o is known

Problem I1.16 Give an interval for m = M (&) if & is normal (Gaussian) and
o= D (&) and ¢ both are given:

Pla<m<b) > 1—¢ . (4.7)
Theorem I1.17
_ o _ o
_|e_., . R 4.
[ai b] 5 uE \/ﬁ 9 5 + U’E \/ﬁ ( 8)

where u. satisfies . 0

Example I1.18 ¢ is normal with o = 3 and the sample is: {&,,....€,} =
= {20.0, 20.2, 20.4, 20.7, 20.7, 21.0, 21.1, 21.3, 21.4, 21.4, 21.4, 21.5} .

Give an interval for 95% confidence.

Solution I1.19 Son =12, D () =0c=3,m= M (&) =7, e =5% = 0.05
D (upo5) = 0.975 and wuges = 1.96 .  Using and (@ we have

gz
20.04+20.2+20.4+4+20.7+20.74+21.0+21.1+21.34+21.4+21.4421.4+ 21.5
12
=20.925 ,
o 3
— = —— = 0.866025 ,
Voo V12

n
a ~ 20.925 — 1.96 - 0.866 025 ~ 19.227 591 ,
b~ 20.925 + 1.96 - 0.866 025 = 22.622409 .

So
P (19.228 <m< 22.622) > 1—e=0.95. (4.9)
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4.3 Interval for the mean when o is unknown

Problem I1.20 Give an interval for m = M (§) if £ is normal (Gaussian) and
is given but o = D (§) is unknown.

Theorem I1.21 After finding t. in the table of the Student- (or t-) distribution
with degree of freedom s =n — 1 we have

_ o* _ o*

[a’b]: g_te'\/ﬁ )

(4.10)

- Pla<M()<b) > 1l-c. O (4.11)

Example I1.22 Let the sample be:
Xq,.., X, = 20.0, 20.2, 20.4, 20.7, 20.7, 21.0, 21.1, 21.3, 21.4, 21.4, 21.4, 21.5
and let 1 —e = 95% .

Solution I1.23 n =12 , s =n—-1=11 ,m= M (§) =7, e = 5% = 0.05 , so

to.os = 2.201 (fom the table). We calculated ¢ (§2) and o* in example |I1.5, so:

o7 OO 1404 ,
vn V12

a ~20.925 — 2.201 - 0.1494 ~ 20.5962 ,
b~ 20.925 + 2.201 - 0.1494 ~ 21.2538 ,

and finally
P(20.596 < M () <21.254) > 1—e=0.95. (4.12)
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4.4 Interval for the dispersion

Problem I1.24 Give an interval for o = D (§) if £ is normal (Gaussian) and
18 given.

Theorem I1.25 For the variance we have

)2 ()2
[a2,b2} _ | (20) 7 n 2(0) (4.13)
Xz /2 Xi-g/2
i.€.
P(a*><D*() <b’) > 1-—¢ (4.14)
and for the dispersion
8] = (V200 VRO (4.15)
Xe/2 X1—¢/2

1.€.

Pla<D() <b) > 1-—c¢ (4.16)
where x2 1o and Xa . jo are from the table of the x? or chi-square distribution with
degree of freedom s =n—1. [0

Example I1.26 The confidence level is 95% and the sample is: X1,..., X, =
=20.0, 20.2, 20.4, 20.7, 20.7, 21.0, 21.1, 21.3, 21.4, 21.4, 21.4, 21.5 .

Solution I1.27 n = 12, the degree of freedom is s =n—1=11,e =5% = 0.05 .
Using table x* we find (/2 = 0.025, 1 —&/2 = 0.975, s = 11):

X?/z = Xo.o25 ~ 21.920  and X%—gm = Xoaors ~ 3.816 (4.17)
50
Xoos & V21.920 & 4.6819  é5  Xgoms &~ V3.816 ~ 1.9535 . (4.18)

We calculated € (52) and o* 1 FExample|ll.5, so
n-(0*)? _ 12-0.2677

2 = ~ ~0.1466 => a ~ /0.1466 ~ 0.3829
T, 21.920 ¢ ’
2
- (o* 12-0.2677
= ) ~0.8418 => b~ 088 ~ 09175,
X3/ 3.816
SO
P (0.1466 < D* (£) < 0.8418) > 1—e=10.95 (4.19)

and

P (03829 < D(£) <0.9175) > 1—e=0.95. (4.20)
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Chapter 5

Point estimations and hypothesis
testing

5.1 General notions

Definition I1.28 i) Any statistical function g (&4, ...,&,,) is an estimation ("becs-
lés") of the parameter a (of a r.v. £), and it is often denoted by a (&4, ...,&,), or
shortly by a .

it) The estimation a = g (&, ...,&,,) is unbiased (un-distorted, not-deformed,
"torzitatlan") if its mean equals to a = a (&), i.e.

M) =a. (5.1)

ii1) The estimation a is consistent ("konzisztens”, "kovetkezetes") if

(Vn‘f, o> 0) (Hno) (Vn > ng)

P(la(&y, &) —al =e)<d. (5.2)

iv) The estimation a, is more efficient/ effective ("hatdsos") than ay for
the same parameter a if D (a;) < D(az) . O

Remark 11.29 The exact value of a is unknown in general.
Example I1.30 By the Laws (Theorems) of Large Numbers we know, that

k
i) p:= — (relative frequency) is an unbiased estimation of the probability p ,
n

37
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NP Fo+ . . o
i) £=¢&:= SRR (average) is an unbiased estimation of the mean M (§) .
n
, 2 ()
i) (o})” := =——=— (corrected empirical variance)
is an unbiased estimation of the variance D* (€) . O

Remark I1.31 Be careful: the denominator of (0*)* isn — 1, instead of n. .

Definition I1.32 i) Any statement or assumption on & (and 1), a hypothesis
("hipotézis, feltételezés"). The hypothesis we inverstigate is denoted by Hy and
called base- or null-hypothesis ("nullhipotézis"), its negation is denoted by H
and called alternative hypothesis ("ellenhipotézis”).

ii) The algorithm for deciding the hypothesis is called a test ("préba”),
iii) After our calculations either Hy is accepted ("elfogadjuk") or Hy is rejected
("elvetjik"), i.e. H is accepted. [

We may have two types of errors after our calculations:
Definition 11.33 Type I error ("elsdfaji hiba") occurs when Hy is true but we

reject 1t,
Type II error ("mdsodfaji hiba") occurs when Hy is not true but we accept it:

Hy is true H, is false
H, is accepted OK Type II error
Hy is rejected || Type I error OK

O

Remark 11.34 The probability of type I error is usually denoted by € .
The probability of type II error is hard to determine, but it usually tends to 0 if
n— oo .

Remark I1.35 Our main goal is to decrease type I errors: we want to avoid
rejecting Hy when Hy is true (e.g. not kicking out any student who had prepared
for the exam)!

Of couse, this could be fulfilled by accepting Hy in all cases, i.e. settinge :=0 ,
but it would be a nonsense! So we have to balance € in somehow - read further.

Definition I1.36 The significance level of a test ("megbizhatdsagi szint")
is 1—¢e (where € is the probability of type I error). [
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Remark I1.37 i) The word "significance level” means "important, essential, re-
liable, ..." (in Hungarian: "szignifikancia- vagy megbizhatdsdgi szint, szignifikdns,
jelentos”).

it) Most of the tests (see below) start with giving the significance level or e
(probability of type I error).

ii1) Decreasing € makes type I error smaller and the test more reliable, how-
ever type II error increases at the same time when the sample size (n) is fized.
Increasing n type II error tends to O .

iv) In general, choosing the significance level to be 95% is a suitable choice.

Definition I1.38 i) If the hypothesis is quantitative (usually on some characteris-
tics of € , e.g. "M (§) = mg "), then the estimation and the test are called paramet-
ric ("paraméteres”), otherwise they are nonparametric ("nemparaméteres”).
it) If the hypothesis is an equality, its test must be a two-sided test ("kétoldali
proba”).
If the hypothesis is an inequality, its test must be a one-sided test ("egyoldali
préba”). d

Example I1.39 Some hypoteses (for details see the subsections below):

i) Hy : M (§) =mgo (mo € R is a given number), so H : M (§) # mqo . This
hypothesis needs a parametric and two-sided test.

it) Hy : M (§) <mg (mo € R is a given number), so H : M (§) > mg . This
hypothesis needs a parametric and one-sided test.

iii) Hy : " & is a normal distibution”. This hypothesis needs a nonparamteric
test. 0

Remark I1.40 In practice Hy must contain the equality sign (= or < or >) and
H (the negation of Hy) may contain only the signs # , < and > .

5.2 Parametric tests

5.2.1 u- test for the mean of one sample when o is known

("Egymintds u-préba")
¢ is normal, o is known, my and € are given (mo € R), (&;,...,&,) is the
sample.
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Algorithm II1.41 For the two-sided test Hy : M (§) = mo

i) calculate g, :==+/n - £~ mo ,
o

€
i) find u. € Rt such that @ (u.)=1-— 3

iii) accept Hy in the case |us,| < u. with significance 1 — e

or reject Hy in the case |us,| > u. with significance 1 —e . O

Algorithm I1.42 For one-sided tests: Hy : M (§) >/ < mg

i) calculate g, :==+/n - £ = mo ,
o

i) find u. € Rt such that ®(u.)=1—¢,
ii1) accept Hy : M (&) < mg in the case us, < u. with significance 1 — &
or reject Hy in the case u,, > u. with significance 1 — ¢ .

iv) accept Hy : M (&) > my in the case —u. < ug, with significance 1 — ¢
or reject Hy in the case —u. > ug, with significance 1 —e . [
Remark I1.43 If the dispersion o is unknown, theoretically the t-test (see below)

is applicable, but for large samples (n > 30) the u -test can also be used, but use
o* instead of o .

Example I1.44 Let mg = 1200 , 0 = 3 and ¢ = {1193,1198,1203, 1191, 1195,
1196,1199, 1191, 1201, 1196, 1193, 1198, 1204, 1196, 1198, 1200} .
Decide the hypothesis Hy : M (§) = mg with siginificance level 99.9% .

Solution I1.45 Two sided test. So ¢ = 0.001 , ¢ (u.) = 1 — % = 0.9995 and

u, = 3.29 . Furthern = 16 , & = (1193 + 1198 + 1203 + 1191 + 1195 + 1196 +
119941191+ 1201+ 1196 4+ 1193 + 1198 4+ 1204 + 1196 + 1198 + 1200)/ 16 = 1197,

1197 — 1200
50 Usy = V16 ——F—— = —4 .
Since |ug,| =4 > u. = 3.29 we must reject Hy with significance 99.9% .

Example 11.46 Let my = 70 , o is unknown, n = 36 , £ = 68.5 and o* = 6 .
Decide the hypothesis Hy : M (&) > mg with siginificance level 95% .

Solution II.47 One sided test. Though the dispersion (o) is unknown, but the
sample is large enough (n > 30), so the u -test can also be used. So ¢ = 0.05 ,
® (u:) =1-0.05=0.95 and u. = 1.65 .

o= i £ 5 B850
ag

Since —u. = —1.65 < ug, = —1.5 we have to accept the hypothesis Hy : M (§) > my
with siginificance level 95% .

—1.5.
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5.2.2 t- test for the mean of one sample when ¢ is unknown

("Egymintas t-préba")
¢ is normal, o is unknown, mg and € are given (my € R), (&,,...,&,,) is the
sample.

Algorithm I1.48 For the two-sided test Ho : M (§) =my :
i) calculate ts, == /n - § —mg

O—*

i) find t. € RY in the table of the Student-distribution for f = p = 1 — g and

degree of freedom s =n —1
iii) accept Hy in the case |ts,| < t. with significance 1 — ¢ ,
or reject Hy in the case |ts,| > t. with significance 1 —e . O

Algorithm I1.49 For one-sided tests Ho : M (§) >/ <mg

—m
i) calculate tgz, := \/ﬁ-f . ¢

a
ii) find t. € R" in the table of the Student-distribution for 5 = p =1 — ¢ and
degree of freedom s =n —1 ,

iii) accept Hy : M (§) < myg in the case t, < t. with significance 1 — ¢
or reject Hy in the case t,, > t. with significance 1 — ¢ .

iv) accept Hy : M (£) > myg in the case —t. < t,, with significance 1 — ¢
or reject Hy in the case —t. > t,, with significance 1 —e . [

Remark I1.50 For large samples (n > 30) the u -test can also be applied but we
use o* instead of o .

Example I1.51 Let the sample be E) = {1.51,1.49,1.54,1.52,1.54}. Decide the
hypothesis Hq : M (&) = 1.50 with siginificance level 95% .

Solution II.52 Two sided test. n =5, s =4,
151+ 1.49+1.54 +1.52 + 1.54

£ - =1.52,
—  1.51%2 + 1.49% 4+ 1.54% 4 1.52% + 1.542
@ o Lo LA ST LS IOY 5 31076
5

5
a*::\/g——I-(231076——1522)::002121,

£—myg 1.52 — 1.50
te, = /10 =5 ———— " =21085,

vn o* V5 0.02121 085

620%,62p=1—%=09ﬁ,%z2m.
Since |ts,| = 2.1085 < t. = 2.78 we must accept Hy with significance 95% .
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Example I1.53 Let the sample be ? ={3.1,2.8,1.5,1.7,2.4,2.0,3.3,1.6}.
Decide the hypothesis Hy : M (§) > 3.1 with siginificance level 98% .

Solution II.54 One sided test. n =8 ,s=7,
31 +28+15+1.7+24+20+33+1.6

£ 2.3
§ g )
—  3124+2824+1524+1.724+24%2+2.0% +3.32 +1.62
& + + + + + + + 5795,
8
8
o* = \/8—1 - (5.725 — 2.32) = 0.7051 ,
£ — 2.3-3.1
b=y 20 5. ~ —3.2001

o* 0.7051
e=002,p=1—e=098,t. =2.52.

Since t,, = —3.2091 < —t. = —2.52 we must reject Hy with significance 98% .

5.2.3 k- test for the dispersion of one sample

("Egymintds széras-préba)
¢ is normal, o is unknown, € and oy are given (oq € RT), (&,...,¢,) is the
sample.

i) For all the cases below the calculated test function is:

k. = (”_1;—2(‘”2 , (5.3)

the degree of freedom is s =n — 1. Then

Algorithm I1.55 For the two-sided test Hy : D (&) = o9

i) find koo = X?Lfl,a/2 eRY and k.o = X371,175/2 € Rt in the table of
the x? -distribution for 3 = g and =1 — g ,
i) accept Hy in the case  ki_.jo < ks, < ko with significance 1 — €

or reject Hy in the case either kg, < ki_.;o or k.o <ks  with significance
1—¢. O
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Algorithm I1.56 For the one-sided test Hy : D (§) > o

i) find  ky_. = Xi,m,g € R*  in the table of the x? -distribution for [3 =
1—¢,

or reject Hy in the case ks, < kyi_. with significance 1 — ¢ .

iii) accept Hy in the case ki_. < ks, with significance 1 — ¢ ,

Algorithm I1.57 For the one-sided test Hy : D (§) < o
i) find ke =x2_,. € R in the table of the x* -distribution for 3 = ¢ ,
ii1) accept Hy in the case kg, < k.  with significance 1 — ¢ ,

or reject Hy in the case k. < ks,  with significance 1 — ¢ .

Example I1.58 Decide Hy: D (§) = 1.1 when , 0* =1.3 , n =10 and ¢ = 0.1.

Solution I1.59 Two sided test: o9 = 1.1 , B = g =0.05, k. =16919,1— g =

9.1.32
0975, k1. =27, ks, =

~ 12.57 , ki_. < ks, < k., so Hy is accepted.

Example I1.60 Decide Hy: D (§) < 1.1 when , 0* =13, n =10 and e = 0.1.

Solution II.61 One sided test: og =1.1 , 8 =e=0.1, k. = 14.684 ,

9.1.32
ksz =
1.12

~ 12.57 < k. so Hy is accepted.

5.2.4 u- test for the means of two samples

("Kétmintds u-préba')

¢ and 7 are normal, ¢ and mq are given (mg € R), (&,,...,&,,) and (14, ...,7m,,)
are large and independent samples, further let denote o := D (£) and o, :== D (1) .
Here we will deal with hypothesis M () — M (n) Vmy where V can be any of
> <or=.

Y

Algorithm I1.62 i) When o¢ and o, are known (for any-sided test) calculate

_ &

VI

SES
+
3 |3qw

; (5.4)

Ugy -
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in) when o¢ and o, are not known (for any-sided test), calculate

Ugy 1= €1~ mo (5.5)
022~(n—1)—|—0;;2-(m—1)' 1.1
n-+m—2 n o m
i) For the two-sided test Hy : M (§) — M (n) = mo find u. € R™ such that
(u)=1-=,

iiy) for one-sided tests Hy : M (&) — M (n) > / < mg find u. € R" such that
Q(u.)=1—c¢.

iiiy ) For the two-sided test Hy: M (§) — M (n) = mg
accept Hy in the case |us,| < u. or reject Hy in the case |ug,| > u. with significance

1—¢.0

iiip ) For the one-sided test Hy: M () — M (n) > my
accept Hy in the case —u. < ug, or reject Hy in the case —u. > us, with signifi-
cance 1 —e . [

iii3) For the one-sided test Hy: M (&) — M (n) < my
accept Hy in the case ugs, < u. or reject Hy in the case ug, > u. with significance

1—¢.0

Example 11.63 Letn =10, ¢ =40.1,0, =548 ,m =8 ,7 =383, 0, = 6.32.
Decide M (&) = M (n) with significance level 95% .

Solution I1.64 Two-sided test and o¢ , 0, are known. Hy : M (§) — M (n) =0,
mo=0,e=005, @(ug):1—§:0.975,sou5:1.96.

40.1 - 38.3 -0

/ 5.482 6.322
10 + 8

and Hy is accepted with significance level 95% .

Now wug, = =~ 0.6366 < u,. ,

Example I1.65 Letn:225,gz57,05:12,m:250,7_7:60,an:15.
Decide M (§) > M (n) with significance level 98% .

Solution I1.66 One-sided test and o¢ , o, are known. Hy: M (§) — M (n) >0,
mog=0,e=002, P(u.)=1—e=0.98, so u. = 2.05.

Now wug, = w ~ —2417 < —u,

122 152
225 + 250

so we reject Hy with significance level 98% .
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Example 11.67 Letn =40, (=102, 0, =5.648, m=35,71 =95, 0, =0, =
5.648. Decide M (¢) < M (n) + 4 with significance level 99% .

Solution I1.68 One-sided test and o¢ = o, are known. Hy : M (§) — M (n) < 4,
mo=4,e=001,P(u.)=1-—¢e=0.99 , so u. = 2.33.

102 — 95 —4
Now wug, = 0 95 ~ 2.2949 < u, ,
5.6482 | 5.648
40 35

so we accept Hy with significance level 98% .

5.2.5 t- test for the means of two samples when o; = 09

("Kétmintds t-préba")

¢ and 7 are normal, only the equality o1 = 05 is known (but we do not know
either oy or 0y), € is given, (&4, ...,&,,) and (1y, ..., 7,,) are not large samples. (For
large samples the u-test can also be used.)

Algorithm I1.69 For the two-sided test Hy: M (§) = M (n)

i) calculate

£—1 vnm(wm—?)

5.6
\/(n—1)022+(m—1)0;‘72 n+m (56)

te, i =

i) find t. € RY in the table of the Student-distribution for p =1 — % and degree

of freedom s =n+m —2 ,
iii) accept Hy in the case |ts,| < t. with significance 1 — ¢ .
or reject Hy in the case |ts,| > t. with significance 1 — ¢ . O

Algorithm ILI.70 For the two-sided test Hy : M (§) — M (n) = mo (where
mo € R any number)

i) calculate

fon = §=1—mo (5.7)

\/022-(n—1)+0:‘72-(m—1) 1

1
n—+m-—2 no om
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ii) find t. € R" in the table of the Student-distribution for p =1 — g and degree
of freedom s =n+m —2 ,

ii1) accept Hy in the case |ts,| < t. with significance 1 — ¢ .

or reject Hy in the case |ts,| > t. with significance 1 —e . O

Example IL71 Let € = {300,301, 303,288, 294, 296}
and = {305,317, 308, 300, 314, 316} .
Decide the hypothesis — Ho: M (£) = M (n)  with siginificance level 99% .

300 + 301 + 303 + 288 + 294 + 296

Solution I1.72 €= 5 =297 ,

— 300% + 301% + 303 + 2882 4 2947 + 2967 .

go T T T IR T T sl
6 : :

o= (88234.3 — 297?) =~ 30.39 ,

305+ 317 + 308 + 300 + 314 + 316

n= 5 =310,

— 305% + 3172 + 308% + 3007 + 3142 + 3167 :

n? = il + g i i — 96138.3 ,
6 : .

2= —— . (96138.3 — 310?) = 45.
o) =TT (96138.3 — 310%) =~ 45.9 ,

L 2T 60
V53040 +5-46 V 6+6
n:m:6,s:6+6—2:10,5:0.01,5=p=1—%:0.995,t5:3.17.

Since |ts,| = 3.643 > t. = 3.17 we must reject Hy with significance 99% .

5.2.6 F- test for the dispersions of two samples
whether o1 = 09
("Kétmintas F-préba')
¢ andnarenormal, Hy: D (§) =D (n), eisgiven, (&,...,&,)and (ny,...,7,,)
are the samples.

0_*2 *2
Algorithm IL1.73 i) if 0> > 0} then let F,. = —f2 , otherwise let Fy, = —L
Ty O¢

(i.e. Fy, > 1 always holds),
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ii) find F. € RT in the table of the F-distribution for the given € in the row
m — 1 in the column n — 1

iii) accept Hy in the case |Fy,| < F. with significance 1 — ¢ .
or reject Hy in the case |Fy,| > F. with significance 1 — ¢ . O

Example IL74 Let € = {11.9,12.1,12.8,12.2,12.5,11.9,12.5, 11.8, 12.4,12.9} ,
T ={12.1,12.0,12.9,12.2,12.7, 12.6,12.6, 12.8, 12.0, 13.1} .
Decide the hypothesis Hy : D (€) = D (n) with siginificance level 95% .

Solution II.75 n=m =10, £ =12.3, 022 ~ 0.1467 , 1 =12.5 , 022 ~ 0.1578 ,
1
F,, = gl—igi ~ 1.0756 . The 9 th row and 9 ’th column of the F table shows

F.=3.18 . Since |Fs.| = 1.0756 < F. = 3.18 we accept the hypothesis Hy .

5.3 Nonparametric tests

Remark 11.76 The most widely used nonparametric test is Pearson’s chi-squared
tests, i.e. shortly the x* ("khi-négyzet") test. It is important to know, that while
the previous tests can be used for small and medium size samples as well, the x>
test works only for large samples.

As in hypothesis tests, the significance level 1 — ¢ is always given.

5.3.1 Goodness of fit

("illeszkedésvizsgalat"), GFI = goodness of fit index ("az illeszkedés josdga
mutaté"). See also the section "Normality test".

Hy: The sample F fits the discrete distribution (py, ..., px) -

In detail: Does the sample ({;,...,&,,) fits into & mutually exclusive classes
with probabilities p; (i = 1, ..., k), i.e. is {41, ..., Ay} a complete system of events

Algorithm I1.77 i) count the occurences in A; (i.e. how many &; is in A;) and
denote these numbers by a; ,

it) calculate
k
npz T p%
PP Y Ul o e (5.3)

=1 =1
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i) find x? in the "Chi-squared” table (the degree of freedom is k — 1),

w) accept Hy in the case |x%| < x? with significance 1 — ¢ ,
or reject Hy in the case |x%,| > x? with significance 1 — ¢ . O

Example I1.78 We tossed 4 coins (together) 160 times and get the distribution

nu. of heads (i) || 0| 1| 2| 3| 4| total
frequency (a;) 5135|6741 |12 | 160

of the heads as:

Are the coins fair with significance 95% ¢

Solution I1.79 The coins are fair <= & :="the number of heads” 1is a bino-
maal distribution with p = % .

()0 (-0 v

4 1 1 4 1 4
= . — . — = . — = — = 2
n=() ) 6) -() () =
4 1\* /1\"?* /4 nN* 6
p2 = N = I = = =) ===0375,
2 2 2 2 2 16
AN N2 Y 14_4_025
Ps=13) \2 2) ~\3) \2) T16
AN AN A N 2 AN A ! 00695
Pr=1\4) 2 2) ~\4)\2) T
i 0 1 2 3 4
a; 5 35 67 41 12
n-pi 10 40 60 40 10
(a; —n-p;)° 52 52 72 12 22
k 2 2 2 2 2 2
) (a; — np;) 52 5 T 1 2
_ = 2 42 L L 42 £ 43667
Xsz Z np; 10+40+60+40+10 ’

i=1

s=b—1=4, £=0.05, x?=09488, H, is accepted since x>, < x*. O
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5.3.2 Homogenity

("homogenités, azonossag")

Hy: The complete systems of events {Aj, ..., Ay} and { By, ..., B} determined
by £ and 7 are the same.

In detail: The sample is the union of (§,,...,&,,) and (74, ...,7,,), i.e. and the
equality of € and n is the question.

Algorithm I1.80 One sidgl test.
i) count the occurences of & in A; and of 1 in B; and denote these numbers by
a; and b; (i=1,....k),

ii) calculate
k

1 ma; — nb; 2
N oL L (5.9)

mn < a; + b;
i1) find x? in the "Chi-squared" table (the degree of freedom now is (k — 1), B =¢),

) accept Hy in the case |x% | < x? with significance 1 — ¢ |
or reject Hy in the case |x2.| > x? with significance 1 —e¢ . O

Example I1.81 Decide homogenity with significance 95% for the below samples:
Ay | Ay | A | Ay | As n
? 51| 64| 26| 18| 21| 180
B, | By | B3| By | Bs m
ol 72] 51 83 23] 211 200

Solution II.82 n = 51+64+26+18+21 = 180, m = 72+51+33+23+21 = 200 ,
further

2
st_

1 (200 - 51 — 180 - 72)° N (200 - 64 — 180 - 51)°
180 - 200 51+ 72 64 + 51

(200 - 26 — 180 - 33)* (20018 —180. 23)° L (20021 - 180. 21)?
26 + 33 18 + 23 21 + 21

~ 5.458 < X2, ,

so Hy is accepted.
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5.3.3 Independence

("fiiggetlenség")
Hy :  The complete systems of events { Ay, ..., Ay} and { By, ..., By} determined
by & and 7 are independent.

In detail: The sample is E) = ((&,m4), . (&,,1m,)), 1. m many double
measurements are, and the dependence between ¢ and 7 is the question.

Algorithm I1.83 i) make the table of the occurences in A; vs. B; and denote
these by c;j ,
ii) calculate the marginal distributions (aq, ...,ax) and (by, ..., be),

iii) calculate
)2

9 1 P (nc;; — a;b
st = n ZZ I ) (510)

1 j=1

(use the vertices of the rectangles in the table for the enumerator),

w) find x? in the "Chi-squared" table (the degree of freedom now is (k — 1) (¢ — 1)),
v) accept Hy in the case |x% | < x2 with significance 1 — ¢ |

or reject Hy in the case |x%,| > x? with significance 1 — ¢ . O

Example I1.84 Is there a connection with significance 95% between gender and
success on the basis of the table?

E\n | success | unsuccess
man 28 12
woman 34 26

Solution IL1.85 Son = 28412434426 =100, k=(=2,s=(k—1)({ — 1) =1,
e = 0.05,

£\ 1 | success | unsuccess b
man 28 12 40
woman 34 26 60

| a; | 62 | 38 [ 100 |

2

2 (n- c” 2-6)2
st_l()o ZZ

=1 =1

1 ((100-28—40-62)2

(
40-62 + 40-38 + 60-62 60-38

2
1 (100-12—40-38) 100-34—60-62)2 4 (100-26-60 38)° ) ~1.8110,

X2 < x%=3.84, so Hy is accepted: no connection between gender and success
with significance 95% .
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5.3.4 Test for correlation

A frequent and important question is: "is there any connection between the
normal r.v. & and n 7"
The base hypothesis usually is: " Hj : no correlation between & and 7."

In other words, Hj says that r¢, =0 .

Algorithm I1.86 Calculate r from the dataset as described in section "Esti-
mating the correlation coefficient”, using or , and calculate

S
1—1r2

te, =1 (5.11)

where s = n — 2 is the degree of freedom.
Pick the critical value t. from the Student t-table, using s and ¢.
If |ts.| < t. then accept Hy , otherwise reject it. [

Example I1.87 Suppose that n = 14 and r = 0.818505. Then s = 12 and

ts. = 0.818505 - \/ammger = 4.9354. For ey = 5% and e = 1% we have

toos = 2.179 and tog; = 3.055. Since ty, > tgos and ts, > too1 we have to reject
Hy for both e.

Remark I1.88 See also the formulae and and their role in Section
"Estimating the correlation coefficient”.

5.3.5 Normality testing

Now the base hypothesis is: "Hp: £ is normal".

Let us mention first the old but illustrative method, called the " Ruler Method"
("vonalzds mddszer", see section , which will be explained in more detail in
section " Nonlinear regressions - linearizing methods" and in [SzlI2].

If we are given the dataset = = {(z;,4;) : i = 1,...,n} where z; are arbitrary
real numbers and y; are the measured (or: approximated) value of the probability
P (¢ < x;) then the points must (almost) fit the graph of the distribution function
F..o (). Have in mind that not only m and ¢ are unknown but even the normality
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of ¢ is in question! Though we can plot the dataset = to the (usual) coordinate
system, how to decide whether they are on (or close to) such a curve?

Since F,, , is a strictly monotone increasing function, we can suitably transform
the coordinate system (rarely speaking: we "expand" the y axis in a suitable
manner) such that the graphs of all the normal density functions F,,, became
(straight) lines, as you can see on the next Figure! This coordinate system is
called Gaussian or normal. Placing your ruler on the figure you can justify
whether the dataset = fits a line or not, and equivalently, whether the r.v. &
(measured by Z) is normal. Moreover, from the "usual" formula ¢ = aZ + b of this
line the parameters m and ¢ can be calculated.

Sorry, Excel and many other applications can not handle normal coordinate
systems but the webpage [HM] can, please try it! You can find a normal coordinate
grid on my webpage as well:

https://math.uni-pannon.hu/ " szalkai/koordinata/Gauss-papir-L140-szines.gif

e <l = e e g e o b of

¥

5 F-.——i-—-%——p-—ﬁh— .--)L.—I;——-.——‘b--d
i
4

»nd
-4 i
=1

- ...‘\'."?1 b & O

Figure 2: Gaussian coordinate system
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Idea of the "modern" algorithm: For any continuous density function f
(or cumulative distribution function Fp) we may ask "is £ having the distribution
function fe = fo ,ie. Fe=Fy "

For deciding this, divide Im () into intervals [x; 1, z;) with the points z¢, x1, ..., z,
for : = 1,...,7. Now use the method of Section "Goodness of fit" for the virtual
events A; as: P (A4;) = F (z;) — F(xi—1) = pi -

Example I1.89 We tossed 5 dices many times. The number of occurences of dif-
ferent sums of the dots is shown in the table. Decide with significance level 95%
whether this distribution is normal.

sum || <10 | 10| 11 | 12| 18| 14| 15|16 | 17| 18| 19| 20| 21| 22| 23
freq. 15120 30| 40| 65| 701 90| 95| 99| 98| 96 | 85| 75| 58 | 35

sum || 24 | 25 | 25<
freq. || 33| 19| 22

Solution I1.90 n = 154+20+30+40+55+70+90+ 95+ 99+ 98 + 96 + 85+ 75
+ 58 +35+ 33+ 19+ 22 = 1035 . By symmetry the sum of the dots on 5 dices
has mean M (§) =5-3.5 = 17.5 = m , the range is [a,b] = [5,30] , so we assume
o = 2.5 since by the " 30 -rule” we hcw P(|¢— M (&) <30) >0.997.

For simplifing our calculations use the intervals

[zo,21) = [5,10) , [x1,22) = [10,15) , [z2,23) = [15,20) , [z3,24) = [20,25) ,
[4, x5) = [25,31),

so we have the following empirical frequency table:

nu. of interval (1) 1 2 3 4 5| total (n)
frequency (a;) 15 215 478 286 41 1035
relative freq. (%) || 0.0145 | 0.2077 | 0.4618 | 0.2763 | 0.0396 1

The theoretical probabilities are p; = Fp o (2;) — Fp (Tiz1) , SO
p1=Funo(10) = Fpo (5) = @ (1552) — @ (5522) = & (—3) — @ (—5)
= (1 - 0.9987) — (1 — 0.9999) = 0.0012

B2 = P (15) = Fyop (10) = & (B5258) — g (215) _ (1) — @ (—3)
= (1—0.8413) — (1 — 0.9987) = 0.1574

s = o (20) = Fip (15) =  (25158) _  (155153) — (1) — @ (1)
= 0.8413 — (1 — 0.8413) = 0.6826

Dm—-30=175-3-25= 10, m+30 =17.54+3-2.5 = 25. On the other hand: 07 gjce =

a— (%)2 ~1.708 and 05 gice = V5 01 dice =~ 3.819 .
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Pa = Fong (25) = Fpp (20) = @ (B5350) — @ (2530) =2 (3) — @ (1)

= 0.9987 — 0.8413 = 0.1574

Ps = Fino (31) = oo (25) = @ (U5172) — & (35175) — 0 (5.4) — (3

= 0.9999 — 0.9987 = 0.0012

The following table compares empirical and theoretical probabilities :

i 1 ] 2 | 3 [ 4 | 5 | total]

a;/n || 0.0145 | 0.2077 | 0.4618 | 0.2763 | 0.0396 1
p; || 0.0012 | 0.1574 | 0.6826 | 0.1574 | 0.0012 || 0.9998

k 2 k a 2
2 _ (a; — np;) _ (ZL - pi) _ (0.0145—0.0012)% | (0.2077—0.1574)>
Xsz = Z np; - ”Z D; = 1035- ( 0.0012 + 0.1574 +
i=1 t i=1 v

(0.4618-0.6826)> | (0.2763-0.1574)> | (0.0396—0.0012)%\ __
+ 0.6826 + 0.1574 + 0.0012 ~ 1.5535 .

Further: €=0.05, s=5—-1=4, x?=090488,
so  Hy 1s accepted since x2, < x2 .

End of the solution. O

The "real" probabilities of sums of 5 dices are shown in the Figure below.

P( =i)

0.1 +
0.08 —+
0.06 —
0.04 -+
0.02 -
0 A - | . I I I

L © N ® ® O - a4 ® ¥ v oV~ 9 9 o
FFFFFFFFFF ~

29
30

Figure 3: Probabilities of sums of 5 dices



Chapter 6

Regression and the least square
method

Literary the word "regression" ("regresszi"), or "regression toward the mean"
means "turning back", "back looking, -hitting" ("visszatérés, -iités, -tekintés").
The term was first used by Galto when investigating human and biological
data. He observed, for example, that the height of children tend to back to the
average of the population: if the parents are higher/shorter than the average, then
their children are (in average) shorter /higher than their parents, i.e. closer to the
average. Of course, this phenomenon is true only in statistical meaning: it is true
only for most of the parents and children, i.e. with probability close (but not
equal) to 1 .

In mathematical statistics we are interested in the type of the connection of
two random variables £ and 1 ("new" and "old", "input" and "output", etc.).
The covariency cov (§,71) and correlation R (&,7n) measure only the magnitude of
the dependency, now we are interested in the type of the dependency (see the
forthcoming sections).

See also: https://en.wikipedia.org/wiki/Francis Galton ,

https://en.wikipedia.org/wiki/Regression toward the mean ,

https://en.wikipedia.org/wiki/Bean machine ,

https:/ /hu.wikipedia.org/wiki/Galton-deszkal ,

https://upload.wikimedia.org/wikipedia/commons/d/dc/Galton box.webm .

Remark I1.91 If the common/joint distribution function F (x,y) for & and n is
known, the theoretical answer to the above question is easy:
the best answer is to approrimate n with & is

n=ms(§) (6.1)

1) Sir Francis Eugene Galton (1822-1911) English mathematician.

95
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where the function ms : R — R s the conditional mean
my (z) = M (n | €= x) (6.2)

which was defined in Section[1.5 "Conditional probability".

The function msy is called regression function of first kind (elsofaji re-
gresszios fiigguény).

In the case & and n have a normal joint distribution, ms is a linear function:
my () = ax + b, i.e. 7 = a& + b for some real numbers a,b € R (which can be
computed from the mean and variance of & and n).

However, in practice we have to find much easier methods for calculating the
connection between & and n . In what follows, & and n are any r.v. on a (common)
sample space € . O

Theoretically we deal with random variables £ and 7 , but in practice we have
only a set of (measured) corresponding data &; and 7, as {(§;,n;) :i=1,...,n}. As
in the Introduction of Statistics we learned, &; and 7, are, in fact, real numbers (in
our notepad), we could write z; and y; instread. Since after repeated measurings
they often vary, they are called r.v. in theory. This is the reason that most of the
theorems have two versions (see e.g. Theorem [[1.95)): one for r.v. and the other
for the dataset {(§;,n;) : 1 =1,...,n}. If you like, you can (adviced to) think of &,
and 7, as real numbers, or even z; and y; .

In mathematics we use(d) variables x and y as y = f (z) , but in the context
of £ and 7 we have to write them like g (§), n = ¢ (£), (a&; +b) — 7, , etc. In this
chapter we mix these two notations, you can also turn ¢ and 7 to x and y if you

like.

6.1 The general case

First we define the general problem we want to solve in this chapter. The
general problem and solution methods will be explained in the special cases.

Definition 11.92 We are given the r.v. n and & , or the dataset

{(&,n;):i=1,....,n} . (6.3)

We are looking for the function g : R — R such that the r.v. g (&) is the closest
one ton . The difference is measured by

M ([g (&) —n]?) (6.4)
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and by
2
> lg(&) —n) (6.5)
respectively, i.e. we want to minimize the quantities in and in .
More precisely, we have to choose g from a given type of functions with parameters,
i.e. in fact

g(f) :g(faala'“vam) (66)
and we have to find the parameter values which minimize and (6.5). O

Remark I1.93 (i) The quantities and are similar to the definition
of the variance. Again, the square eliminates + and — wvalues, and corrects the
magnitude of small and large numbers.

(i) The problem and the solution are called Least Squares Method ("legkisebb
négyzetek mddszere"), since we want to minimize the mean (sum) of squares of
the differences of g (&;) and n; . There is a slight similarity between and the

definition of the variance.

6.2 Linear regression

("Linedris regreszio")

The easiest formula is g () = ax+b (a,b € R). The approximation question
"n = a& + b" can be raised for any r.v. £ and 7 , the error is investigated in the
next section " Regression and covariance" in Theorem [[T.102] graphical illustration
is detailed in the section " The ruler method".

Other approximations, like

n = ag+ a1£ + CL2£2 + ...+ CLnén (67)

(polinomial regression) can also be applied in various applications. Let us
emphasize, that enlarging the number of the unknown parameters aq, ...a, (not
only in polinomial but also in other types of regression), in general does not increase
the accuracy of the approximation of 7 , since ay, ...a,, are all not real numbers but
random variables.

Problem I1.94 Determine a,b € R such that
i) M(la€+b—n) or i) ; (a&; +b—mn;)?

18 mainimal:
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£ &, E e g,

Figure 4: Linear regression line

Theorem I1.95 %) For M ([a + b — 77]2) minimal we have

M (&n) — M (§) M (n)

M@ - (g 68
and
[b=M(m)—a - M(E) | (6.9)
or, in another forms:
" @n | ., . D)
" T Dy (6:10)
and v Y
b= 0 () = M ) e T (6.11)
1) For é (a&; +b—mn;)°  minimal we have
”'ifﬂh_ ifi f)m
g = (i—l > <¢—1 > (6.12)

7r§ﬁ—(i@y

=1
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and
1 n n

or, in another forms:

— = (&8 m—n)
0= ”_f”ﬂ:m - (6.14)
3

and

b=n—a-&|. (6.15)

0

Remark I1.96 (i) We listed all possible formulae for a and b , please choose your
favourite one! Or, you might use any computer program, like Excel, to calculate a
and b.

(ii) In the case M (§) =0 or 25 =0, i.e. when the dataset {§; :i=1,...,n} is

symmetric to the origin, the above formulas have much simpler form

a="L—— and b:—-Zm. (6.16)
> & "o
i=1
The symmetric property can be easily achieved by using & i=E—mgand & =&, —€
instead of & and &; where me = M (§) and & = =37 | &, .
(iit) The function
In

n=~R-— (x—mg)+m, (6.17)

O¢
is called regression function of second kind (mdsodfaji regresszids fiigguény),
which corresponds to and (6.9), of course R = R (&,n).
In the special case, when the regression function of first kind is a linear func-
tion, then these two kinds of regression functions and coincide.

Proof. of Theorem [T.95}

i) We have to find the minimum value of the two-variable function
F(a,b) =M ([a +b— 77]2) . It is wellknown, that in this case the partial deriv-

oF
atives must be zero: 0 = 0 and = = 0, this system of equalities (see (/6.18
a
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below) has the solution shown in and (6.9). In detail:

F (a,b) = M (a?¢® + b* + n* + 2ab§ — 2aén — 2bn) =
= a*M (&) + b2 + M (?) + 2abM (€) — 2aM (£n) — 20M () ,

OF
S = 2aM (£%) +2bM (&) — 2M (&n)
F
%_b =20+ 2aM (£) — 2M (n) ,
so the system of equalities we have to solve is:

oM (€2) + DM (¢) = M (€n)
oM (€) + b= M (1) } (6.18)

The solution is

M (&n) M (€)
det{M(n) 1 } :M(gn)_M(f)M(n) 2000(5,77)
e PLE) M@ M@ GO

a =

Y

M) 1

justifying and .
One can easily check that the (unique) solution of (6.18]) is and (6.9). How-
F  OF
ever do not forget, that the equalities — = —— = 0 are only neccessary conditions

a
for the extreme value(s) of F, one should check that the solution ((6.8),(6.9)) really

gives a minimum. However:

PF ) PF OPF
W—QM(f), = 2 %—QM(S),
A(a,b) =4M (£2) —4M?*(§) =4D*(§) >0 and 227};:2]\4 (&%) >0.

ii) Since the real numbers £, ...,&,,, 11, ..., 1,, are given (fixed), we have to find

the minimum value of the two-variable function H (a,b) := > (a&; +b—1n,)*,
i=1

similarly to case i) :

H(a,b) =Y (% +2ab€; — 2a&m; + b2 — 2by; +n?) =

i=1

=a?> & +2ab> & —2ad> Em+nb? =263+ > n?
i=1 i=1 i=1 i=1 =1
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8H

H

o —2&25+2nb—2277“
b
so the system of equalities:
a;f? +b;§i = Zlfmz

(6.19)

ay §+bn=>3n,
i=1 i=1
has the solution

i §ini ifz

det i:}l n n
Yo o0 | oo (Sen) - (£e) (S
a= ; n = n Z:n 21: ’
PN n-Zé?—(Z&)
det |51 =1 i=1 i—1

1 /2 n _
b=~ <Zm—a-zfi) =n—a-&,
n \i=1 i=1
which coincide with (6.12) and (6.13)). Checking whether ((6.12)),(6.13])) solve
(6.19) and really give (absolute) minimum of H is left to the Reader.
Now we show that a is equivalent to (6.14)), (6.15)) is obvious.

i:l (S’L - E) (n; — 1) 2::1 (51772 — & — 5771' + 57_7)

S (6-9° S (e -268+ @)

f)léim—ﬁ'f:lii—éilnﬁrnfﬁ
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one hand

other hand (*) = =1 ==

End of Proof. ]

Remark I1.97 Though using the formulae from to of Theorem

one can compute a and b for the line ax + b . However these computations are
difficult for large or many datasets. For approximate values of a and b the "Ruler
Method" was applied a couple of years ago (before the computers). Roughly speak-
ing, plot the data (z;,y;) to a grid on a suitable coordinate system, and fit a
(straight) ruler to your drawing. This method is detailed in subsections "The
Ruler Method" and after, for various coordinate systems.

6.3 Estimating the correlation coefficient

Before investigating the connetcion between regression and covariance, first
we have to learn how to approximate R (£,7n) from the dataset . If you are
interested in r.v. £ and 7, you may skip this section.

R (&,7n) was introduced and discussed (theoretically) in Definition in Sec-
tion Now we have to give an empirical estimation for R (&, 7).

By R (&) = 2 E’;) M[(&Igg)b(&;M(”))] our choice is

iua—am—m} L [ 8 o)

1
ni=1 i=1
7’5,7 = = 5 (620)
12 — 2 12 B O¢+ 0
NEINGEG RN o
=1 =1
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which is equivalent to the easier (for hand-calculations) formula
T{,n _ i= : i= i= - )
g (Be) -y B ()

The above (6.20) and (6.21)) formulae are in strict connection with (5.11)) in
Subsection "Test for correlation" in Section [5.3]

(6.21)

Example 11.98 Consider the morning and afternoon values of our activity for 10
days. Does any connection exist between them?

| | 1] 2] 3] 4] 5] 6] 7] 8] 9] 10]
Morning (£) [ 82196 | 7.0]9.4]109 | 7.1]9.0] 6.6 | 8.4 | 10.5
Afternoon () || 8.7 9.6 | 6.9 | 85| 11.3| 7.6 | 9.2 | 6.3 | 8.4 | 12.3

Solution I1.99 n =10, Y ¢, =86.7 , S & =771.35 , >.n, = 88.8,
Son? =819.34, Y &m, = 792.92 , so
10-792.92 — 86.7 - 88.8

= ~ 0.9357 .
\/10 - 771.35 — (86.7)% - \/10 .819.34 — (88.8)*

This means, that the connection between & and 1 is strong.

6.4 Regression and covariance

In Section "Two dimensional ... General definitions" and in subsection
[.3.3 "Independence" we discussed how the value of the correlation coefficient
R (&,m) depends on the strength of the connection between ¢ and 1 . In this
section we investigate this dependency in more detail.

Definition I1.100 Let
wi=al+b—n and w;:=af;+b—n, (6.22)

the error - random wvartable and the error - data, i.e. the difference between
al +b and n , and between a&; +b; andn . [
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Recall, that in Theorem [I1.95 we achieved M (w?) to be minimal, finding the
suitable ¢ and b. Now we determine this minimal value of error.

Proposition I1.101 If a and b are determined as in Theorem[II.95, then
M(w)=0and© =0, so D*(w) = M (w?) and 02 = w? .

Proof. We use only b= M (n) —a-M(€) .
Then
M (1) = M (a€ + M () — aM (€) — ) = aM (€) + M (n) — aM (€) — M () =0
so D?(w)= M (w?) follows.

Similarly, using b=7—a-£ we have

w=a-{+b-T=a-E+(H—a-§)—n=0. n

Theorem I1.102 If a and b are determined as in Theorem [IT.95, then
i)

D*(w) = D*(n) - (1 — R*(&,m)) (6.23)
i)

oy =00 (1—1%,) - (6.24)
Proof. i) Using b = M (n) — a - M (£) we have

D*(w) = M (w?) = M ([ag + b —1]")
= M (fa€ + M (n) = a- M (&) = 1)) = M (fa- (€ = M () ~ (1 = M (n)])
=M (a®- (€=M (&))" + (M (1) —n)° —2a- (€= M (&) (n— M ()))
=a®-D*(&) + D*(n) — 2a - cov (§,v) = () .

= M and continue as
Now use a=—7 © d cont
(%) = 0022((2)77) L D2(n) —2- 6022((2)77) D2 (n) 0022((@;)77)

=D*(n) - (1= R*(£,1m)).

ii) Using b—n—af we have

2 o+ (-0 8 =0l =3 [a- (68 - (- 7))

__GQ'Z(@_E) —2a-%Z(77z'—7_7> (gi_g)"’_%z(ni_ﬁy
a0t =203 (=) (6 - §) + 7

=1
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Now use (6.14]) twice and then (6.20]) to continue

12 =\ 2
:(12-02—2@2-5;(&—5) +op=—a’-0}+ 0}

2

Remark I1.103 (o) Figures 5 and 6 show some experimental datasets with r =
R (&,m). Using the fact |R(&,n)| <1 we can conclude D?* (w) < D?(n).

(i) First we can justify Theorem from Section "Two dimensional ...
General definitions” stating R (£,m) = 1 if and only if n = a§+b for some numbers
a,b € R . By we can conclude that R (&,m) = 1 ezactly when D? (w) = 0.
We know from elementary probability theory, that D* (w) = 0 corresponds to w = ¢
(c € R constant), i.e. w = a& + b —n = ¢ which is minimal exactly when ¢ = 0
i.e. n=af+0b. So, R(&n) is "close to 1" just in case when the datapoints are
almost on a (straight) line.

(ii) On the other hand, the case R (&,m) = 0 (i.e. & and n are uncorrelated)
together with implies a = 0 , i.e. the (approximating) regression line must
be horizontal, see Figure 4. In this case, e.g. by D? (w) = D?*(n) which
must not be surprinsing, since, by the horizontal line the differences of n and b
(= w) are equal to the differences of n and M (n) (see (6.9)).

(iit) Figure 6 shows different datasets with the same r = R (&, n), illustrat-
ing, that R (&,m) measures only (approximately) the magnitude of the correlation,
not the exact correspondance between & and n , r = 0.816 (this example by
Anscomb ).

(iv) The formula is equivalent to

D? ()
YD)

where, of course w s the error in for the optimal parameters a and b .

The formula /1 — gz—((wn)) for any & and n (i.e. for any a and b) is often called

correlation index ("korreldcids index") and denoted by I (§,n). Let us highlight
that I (§,m) and |R(§,n)| corespond only when a and b are optimal.

R (&, n)| = (6.25)

2) Francis John Anscombe (1918-2001) was an English statistician.
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Figure 6: Same regression values after Anscombe (r = 0.816)
Source: https://en.wikipedia.org/wiki/Correlation and dependence
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6.5 Nonlinear regressions - linearizing methods

Some function equalities y = g (x) can be transformed to a linear connection

v

g=a-+b (6.26)

for some transformed Value Z and g of x and y , with real numbers a and b.
(In the language of statistics we write n = ¢ (¢) and i = a€ +b.) If, moreover the
transformation of x and y to & and ¢ can be done graphically (see below), then
the simple but illustrative "ruler method" (see below) can be applied. Graphical
transformation means that we do not draw the datapoints (¢, ;) and/or the func-
tion n = ¢ (£) in the usual Cartesian coordinate system but in another, modified
one. (Examples with figures are given in the subsequent subsections.) In modi-
fied coordinate systems the values "x" and "y" are written not in the geometric
(real) distance but in & and ¢, i.e. we have logarihmic or other scales on the axes,
instead of the usual equidistant ones. This results that the graph of the function
y = g (z) is transformed to be linear. The theory of such "linearizing methods"
is explained in [SzI2], a computer program (application) for drawings is in [HM].
Please, try it! Other computer programs, like Excel is familiar with some, but
not all of these transformations. Illustrative applications can be learned in Section
"Normality testing" and in the subsequent ones.

After the transformation we can apply the formulas of Theorem [[1.95

directly to the dataset {(éz, n;):i=1,.., n} to get the values of & and b in (6.26)).

Be careful: the error M ([lv)—i— aé — 7“7]2> in (6.26) is not the same as in the

original , even it might not be minimal at the same values at a,b and at a, bl
We make only simpler and approximate computations.

We give some more accurate investigations and computations of in Section
Nonlinear regressions - direct methods.

3) We use here the accent # instead of & since £ is used for another notion in Statistics.



68 CHAPTER 6. REGRESSION AND THE LEAST SQUARE METHOD

6.5.1 The Ruler Method

Looking at Figure 4 in Section " Linear regression" we can imagine the following
illustrative method for (straight) line ﬁttin. After dotting the dataset to the
coordinate grid, take a common ruler and fit it manually to the dataset, so that the
ruler can fit the set of dots in the best ("closest") way. From the position of this
ruler you can determine the slope (a) and the intersection value (b) of the wanted
line y = ax + b. You might fit your ruler to the monitor of your computer when
using [HM] or Excel. This method (modifying the coordinate scales) is widely
used not only in statistics but in all natural sciences (physics, chemics, biology,
astronomy, economy, etc.)

In the following subsections we learn several methods to transform various
function graphs into (straight) lines, in order to apply either the formulas of The-
orem [[1.95] or to use " The Ruler Method" for those function graphs, too. On the
webpage [HM] you can display (almost) any function in all coordinate systems.
Please try it! Figure 2 in Section Normality testing also used a coordi-
nate transformation (called normal) to straighten normal cumulative distribution
functions, the program (application) on [HM] can handle normal coordinate trans-
formations, too.

6.5.2 Exponential regression

The function equalityP)

n=>b-a"* (6.27)
turns to
lg(n) =1g(b) +&-c-lg(a) , (6.28)
or in short form to y
n=0b0+<&-a (6.29)
when applying lg to , ie. L(x)=lg(x),n=1g(n), E =lg(),a=c-lg(a)

and b = 1g (b).
This means, that we can use the linear regression method to the (similarly
transformed) dataset

(&i1) = (€olgn) (=1 (6.30)

4) This approximative method was widely used till the mid of XX. century for easier problems.
See also the section "Normality Testing".

5) The equality n=b-a®¢ can be written in the form 7 = b- d¢ where d = a®, so ¢ can
be eliminated.
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so & and b can be computed from the formulae of Theorem [[1.95/ Finally we must
not forget to use

a = exp (2) =e¥° and b=exp <l;> = b (6.31)
c

to get a and b (for the expression (6.27))).

Using semilogarithmic@ coordinate system, i.e. logarithmic scale one axe
(now 1) and usual (equidistant) scale on the other axe (now &).

Xl y y:5e-0.25x 03 &:A
X‘ s Y y = 5-0.25x ogy
E
’ X 0.5
Xx-x

P ' : - r > . - r >
10 5 5 X’m -10 5 $ &{;ﬁ 10 5 5 x{;z

=05

0.1 4

Figure 7: Exponential function in Cartesian (left), in semilogarithmic
(medium) coordinate systems, and its transform by (6.28) (right)

On the webpage [HM] you can display any exponential (and any other) function
in the semilogarithmic coordinate system as well.
On http://math.uni-pannon.hu/~szalkai/koordinata/semilog-uj-f.jpg and on

y =-0.1086x + 0.699
13

http://math.uni-pannon.hu/~szalkai/koordinata/semilog-uj-hata.jpg we supply semi-

log coordinate drawings in high resolution.

6) The word "semi" means "half".


http://math.uni-pannon.hu/~szalkai/koordinata/semilog-uj-f.jpg
http://math.uni-pannon.hu/~szalkai/koordinata/semilog-uj-hata.jpg
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6.5.3 Logarithmic regression

Now we have the function equality
n=a-1g(&)+0, (6.32)

which is itself linear in £ =1lg () and 7 = n , ie. L(x) = lg(x), a = a and
b = b. This means, that we can use the linear regression method to the (similarly
transformed) dataset in (6.30) and we immediately get a and b .

We have to use semilogarithmic coordinate system again, but now we need
logarithmic scale on the axe ¢ and equidistant scale on the axe 7 .

4

A b ol
y Pas
10 3 37 3 //
y 1
y = 2l0g;4(x) 2 1 2
5
EHRR ] 1 y=2x
NN LR
i /X,_x-xx . . log( )&
I,"[{ 3 10 15 X 20 1 10 100 a 0.5 1 1.5 2
-5 4

Figure 8: Logarithmic function in Cartesian and in semilogarithmic
coordinate systems

On http://math.uni-pannon.hu/~szalkai/koordinata/semilog-uj-f.jpg and on
http://math.uni-pannon.hu/~szalkai/koordinata/semilog-uj-hata.jpg we supply semi-
log coordinate drawings n high resolution.


http://math.uni-pannon.hu/~szalkai/koordinata/semilog-uj-f.jpg
http://math.uni-pannon.hu/~szalkai/koordinata/semilog-uj-hata.jpg
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6.5.4 Power regression

The function
turns to

or in short form to

71

(6.33)
(6.34)

(6.35)

where i = 1g (1)), € = 1g (€), @ = a and b = b. Now use the linear regression method

to the dataset (51, 7“71) = (lg&;,lgn;), compute a and b from Theorem [I1.95 and

use 5 }
a=a and bzexp(b):eb.

(6.36)

In this case we have to use the (double) logarithmic coordinate system, i.e.

logarithmic scale on both axes.

On the Figure below we see power functions for different exponents.

y=b-+x"

v i lin-lin log-log
4 ' n=1 1000 n=1
3 ' 100 =t g5 331
m i N =0,5
2 - N =05 0] 1 i =g el 0 = 0,3
g - ==asii T — it
"..-:_____. n=03 4 o HHHH
PY fge
1 t 1 =4 T
- 54
27 =%’
I it
0 1 2 3 4 01 1 * 10 100 1000

Figure 9: Power functions in Cartesian and in (double) logarithmic

coordinate systems

On http://math.uni-pannon.hu/~szalkai/koordinata /loglog-uj-f.jpg we supply

a loglog coordinate drawing in high resolution.


http://math.uni-pannon.hu/~szalkai/koordinata/loglog-uj-f.jpg
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6.5.5 Hiperbolic regression

The general hiperbolic function ("inverted relations", "forditott ardnyossédgok")
has the form
af + 3

= vE+ 9
which can not be linearized, in general, since it has four undefined constants
(cv, B,7,6). Though we can simplifiy by one of them (which is nonzero), e.g. by

a # 0 gives (6.37) to

(6.37)

_ &+l &+
(V/e)-E+0/a AE+8

i.e. we actually still have three undefined constants, which are still more than two.

(6.38)

So, we must eliminate one of the constants «, (3,7, 9.

Theorem I1.104 The function has the following forms when one of the
parameters is zero (using & = 1/§ and ) = 1/n):

I)ifazO(andﬁ;éO)then%:%-ij%,z’,e.ﬁ:y’§+5’7
. 1 6 1 v . o
II) if =0 (and « #0) then — = — - -+ — ,j.e. =6E+7/,
n a & «
) if y = 0 (and 5 #0) then = % -6+ 5 = o' 4 5,
. a [ 1 Ry
IV)zf&zO(andv#O)thenn:;+;-g,z.e.n:ﬂf—i—a’
B 1 v+ v )
Proof. I)Ifa =0 (and 0) thenn = = - = = L. -
) If @ = 0 (and 3 # 0) then ) v p 5 3¢5
ie. n=~¢+94.
g 1L y§+0 7§ 0
II) If 3 =0 (and a # 0) then n = = - = =>4 - =
6)16 ( 7 0) "= i y = ot —atTat
Y10 e = 8E 4.
a o &
III)If7:0(andé%O)thenn:ag(:ﬁ:% §+§1e n=aodé+p3
a+p af B a B 1.
IV) If 6 = 0 (and 0) then n = — 4+ — -+ — - = le.
) (and 5 7.0) ! 7€ 0L (S B (S

n=pF%+a. =
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The above Theorem helps us to transform the dataset {(¢;,7,) : i =1,...,n} to

the appropriate one {(E’Z, n;):i=1,.., n}, how to solve the linearized regression

problem 7 = dé +b béf Theorem [I1.95/ and after how to get the constants «a, 3,7,
in (6.37) from @ and b .

Corollary 11.105
I) If « =0 (and B # 0) then use the dataset <EZ,1“7z
Theoremleta:O,ﬁzl,fy:d and 6 =b .

N———"

= (Ei,%), and after

II) If B = 0 (and o # 0) then use the dataset (él,ﬁl
Theoremlet&:l,B:O,’y:Zu)and(S:d.

N—

= (é,i>, and after

;i

III) If v = 0 (and § # 0) then use the dataset <§Z,771> = (5 L ), (unchanged)

i’ﬁ_z‘
andaﬁerTheoremleta:d,ﬂzg,”y:() and 6 =1 .
IV) If§ = 0 (and v # 0) then use the dataset (é’l,ﬁl> = (%,m), and after
Theoremletazg,ﬂ:d,”yzlandézo.

Proof. I) The system of equations =a and = b has the solution

f=1,y=a and §=0.
The other cases are similar. ]

]

(=2

We can use the transformations of Theorem also for drawing linear
graphs of (6.37)) on special coordinate systems: one or both (or none) of the axes
are reciprocial.

Corollary 11.106

I)if a =0 (and p # 0) then use normal (equidistant) axe for & and reciprocial
axe formn ,

II) if 5 =0 (and o # 0) then use reciprocial scale on both axes,

IIT) if v = 0 (and 6 # 0) then s already linear, so use the traditional
Cartesian azxes,

IV) if § =0 (and v # 0) then use reciprocial azxe for & and normal (equidistant)
one formn .

One example for Case II) is shown below:
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T ——y i

I’ )
B R ] ; =
B o e e . e s s
i 7 > =
e / Z!

7
/
7
yi T =
v s e
e e L A S e
Y 1 S—————————————

Figure 10: Reciprocial function in Cartesian and in reciprocial
coordinate systems

We draw your attention to that Excel can not draw reciprocial coordinate
system but [HM] can. Please try it! [HM] can handle all of the four cases above.

On https://math.uni-pannon.hu/~szalkai/koordinata/reciprok-skala-160.gif
supply a reciprocial coordinate drawing in high resolution.

Remark I1.107 We can observe on the Figure above, that the origin of the Carte-
sian coordinate system moved to the "infinity ", along the (straight) line, in both
directions, and further, the intersection points ("tengelymetszetek") of the linear
graph with the azxes (in the reciprocial coordinate system) correspond to the asymp-
totes of the ("original”) hyperbola (in the Cartesian coordinate system).

6.5.6 Logit-probit regression

In pharmacy and in marketing statistics the following relation is investigated
(a,b can be any real parameters):

€a§+b 1

T Treds LT Tyewn (6.39)

U]
which is closely related to the normal distribution. Here £ can be any real number
but 0 <np<1.

Since the inverse of the function y = 1——1

T s z=In (ﬁ—y), applying

ln< 4 ) to (6.39) we get

1-y

In (ﬁ) —af+b. (6.40)


https://math.uni-pannon.hu/~szalkai/koordinata/reciprok-skala-160.gif
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This means, that we can write 7 = In (%) , é‘ = ¢ and apply the formule

of Theorem [[1.95 to the dataset (él,ﬁz) = <§i, ln(lin)> to compute @ = a
and b = b.

Figure 11: The function 1 —

o (blue) and its inverse In <1ifr> (red)

az+b e

The functions W are symmetric to the point (—g, %), SO

is symmetric to (O, %) (like @).

1+ e®

We should use the transformation In <ﬁ> on the y axe so that the functions

y=1-— can have straight line graphs, details can be found in [SzI2].

1+ ear+b
Unfortunately neither Excel nor [HM] can make this transformation. The construc-
tion and the shape of the Figure 12 below is similar to the Gaussian coordinate

system on Figure 2.
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(V8]
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1
Figure 12: The function 1 — Trer (blue) in the logit-x coordinate system
ea}

6.6 Nonlinear regressions - direct methods

When no linearizing method is applicable,

we have to minimalize directly.

In very few fortunate cases we might get the solution directly.
When g¢ is a polynomial, the regression is called parabolic . Here we introduce

only the quadratic (second order) regression.
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6.6.1 Quadratic regression

Now we consider the function
n=a+b+ct? . (6.41)

0) In the case b = ¢ = 0 we have a power function, which was dealt in a
previous section.
I) In the case > x; = 0 we have to solve the following system of linear equations

for a, b, c :

: an+e> 6= 2,
h="=0 ~ ) ) ) (6.42)
& ay g ey e=y e

IT) For the general case we have to minimize the function

n

F(“>b’0)zz [a5?+bfi+c—m}2=

=1

= Y a’€} + 2ab€} + 2acE] — 2a€in; + V2E + b — 2bEm; + A — 2en; + 1} =
=1

=a’A+ B+ 2C + abD + acE + beF —aG —bH —cl + J

where

i=1 i=1 i=1
F = 2251’7G:225?ni7H:225i77i7]:2277i7']:z7712'
i=1 i=1 i=1 i=1 i=1

Now

%zQAa—i—bD—l—cE—G:O 20A+bD +cE =G
& =2Bb+aD+cF—H=0 p < < aD+2bB+cF=H |,

i€ — 2Cc+aE+bF —1=0 aE +0F +2cC =1

which is a system of linear equations, and has the solution
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G D E 24 G E 24 D G
det |H 2B F det|D H F det | D 2B H
I F 2C E I 2C E F I

“= 24 D E| 204 D E] T 24 D E]|°
det | D 2B F det | D 2B F det | D 2B F
E F 20 E F 2 E F 2C

1.e.

B F?G+2CHD — FHE +2BEI — FDI — 4BCG

N den

B HE? +2CGD — FGE + 2AFI — DEI — 4ACH

N den

B D?] +2BGE — FGD —4ABI — HDE + 2AFH
den

a )

b

Y

c )

where the common denumerator is

den = 2AF? —2FDE + 2CD* + 2BE? — 8ABC' .



Chapter 7

Mathematical background

For more details see other textbooks and courses.

The main idea is the following. When we calculate a test number, we
make a statistic, i.e. a composite function n = g (§) = g (&, ..., &,,) of the sample

&= (&,..,&,) (see Definition [I1.6)).

For example, in the t-test we have:

bt ot

oo n i NCAY

o Gg+.+8 (§1+...+§n)2
n n

If we know the distribution of each data &, , then the distribution of n = g (?)

can be determinded by mathematical methods and the critical values, like t. = (3
satisfying

Pn<p)=1-¢ (7.2)
le.
P(B<n) =¢ (7.3)
can be computed and collected in tables.

79
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=N

0 b

Figure 13: Critical value

We only have to find these critical values in the tables, eg. at the end of this book.

To "statistic-fans" we outline the Student- or t- and the x? - distribution below.

7.1 The Student- or t- distribution

Definition I1.108 Let ¢ and &,....&, ~ N(0,1) (i.e. standard normal) in-
dependent r.v.-s. Then

(7.4)
is called Student- or t- distribution of degree of freedom n . O
Theorem I1.109 The density function is
"(5)
fo(x) = T (7.5)
v (5)- (10 5)
T(Z). z
nm 5 -
where .

I'(z):= /tw_le_tdt (7.6)
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is the so called T' - function (especially T’ (n) = (n — 1)! forn € N).

Further, M () = 0 does exist only forn > 2, and D?(0) = o 5 does
n—

exist only forn >3 . 0J

Figure 14: Student distributions for n =5, 15, 100
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7.2 The y? distribution

Definition I1.110 Let &, ...,&, ~ N(0,1) (i.e. standard normal) independent
r.v.-s, then

0= & (7.7)
i=1
15 called chi-square distribution with parameter n . O

Theorem I1.111 The density function is

x2 le”

) = 2 9
)

|3
N8

22 .T (=
2

for0 <z . Further, M(n)=n and D?*&)=2n foralln . O

241
221
20
184

Figure 15: \? distributions for n=1 and n=2
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0,12

0,08

0,04

20 30 40

Figure 16: x? distributions for several n
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Stochastic Processes
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Chapter 8

Introduction

When considering different phenomena changing, or following each other in
time, first: these phenomena are stochastic (random, "véletlen", or simply too dif-
ficult to us), and second: they might have some connections among them at certain
level. These sequences of random phenomena are called Stochastic Processes ("sz-
tochasztikus folyamatok").

In this Chapter we only highlight the main definitions and main properties of
the most important stochastic processes, more detailed introductions can be found
in the books [KT1], [KT2] and [KT3].

8.1 Elementary notions

H
Definition ITI1.1 Any sequence of random variables (r.v.,"v.v.") & = (& :t € T)
for some index-set T is called a stochastic process ("sztochasztikus folyamat"),
or s.p. ("szt.f.") for short.

In case T = N we write ? =(£,&5, -, &, ...)  and say discrete ("diszkrét"),

in case T=R (t € R) we say continuous ("folytonos") stochastic process. [

Remark II1.2 i) In practice we measure the same quantity (Q) several times:
in time moments t € T . Both discrete (separated, "elkiilonilt") and continuous
measurements are well known in practice.

ii) Fach measurement (r.v.) &; can also be a vector (higher dimensional) r.v.:

51‘ = [551)7 ED) dn)] .
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8.2 Examples

Example II1.3 If we throw a dice for eacht € N we have €, : Q@ — {1,2,3,4,5,6}
and each &, has the same distribution and they are mutually ("pdronként") inde-
pendent from each other.

8.2.1 The Brownian motion

("Brow—mozgés"), also called Wiene process ("Wiener-folyamat").

A particle keeps moving in the space and let &, denote its place in time ¢ €
R . We assume that its movement in the future is independent of the previous
movement, and the distance of its movement is described by a normal distribution.
In a general mathematical form we can write:

Definition I11.4 A (one-dimensional) Brownian motion ("Brown-mozgds") is
a stochastic process such that:

a) for any time moments to<t; <..<t, <.. theincrementsi.e. relative
movements ("novekmények, relativ elmozdulasok”)
G=& &1 (8.1)

are mutually independent r.v.,
(a process with this property is said to be a process with independent incre-
ments.)

b) the probability distribution of the general increment r.v.

n(@) =&, —& (@eER) (8.2)
depends only on x = At and neither onty =t oronty =t+x ,

c)

P& —-€&. <=z e 2Bl S>du = 8.3
@-6<0) = s / (5
exp | =———— | du 8.4
\/27TB t—s) / p(QB t_S)) (84)

for some constant B € Rt and for all s <t . O

1) Robert Brown (1773-1858) Scottish botanist and palaeobotanist.
2) Norbert Wiener (1894 -1964) American mathematician.
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Theorem IIL.5 i) Assuming &, = 0 we have M (¢,) = 0 and D? (§,) = /B4
for allt € RT.

ii) For any ty<t; <..<t, <t the conditional probability is

P& <al|&, =a1,06, =)

0

Remark II1.6 i) According to c) of Definition and Theorem 1) above we
know, that the distance made by the particle in (any but fixed) time Ay =t — s
has a normal distribution with mean m = 0 and dispersion 0 = \/BA; s . This
assumption is encouraged by the Central Limit Theorem (see [SzI1]).

i) It is also reasonable to have that the distribution of &, — &, and that of
Eion — Espn are the same for any fized 0 < h if we assume the medium to be in
equiltbrium.

ii1) It is also clear that the displacement (relative motion) &, — &,  should
depend only on the length t-s and not on the time t when we begin the observation.

iv) Theorem it) says that the exact place of the particle depends only on the
latest known position x, and all the previous information x, 1 , .., x are
unimportant.

v) Higher dimensional Brownian motions can be defined similarly, but you must
not consider them coordinatewise Brownian motions.

vi) See also the Section Markov proceeses.

8.2.2 The Poisson process

("Poisso folyamat")
Fix an event A C Q and for t € R let &, count the number of times A occured
in the time period [0, ¢]. So each &, is represented as a nondecreasing step function.
Obviously ¢, = 0 can be assumed.

Example II1.7 Many pratical phenomena can be considered as a Poisson process.
(These are based on the concept of the law of rare events.) For example:

the number of x-rays emitted by a substance undergoing radioactive decay,

the number of telephone calls originating in a given locality,

the occurence of accidents at a certain intersection,

the occurence of errors in a page of typing,

breakdowns of a machine,

the arrival of customers for service, ...

3) Siméon Denis Poisson (1781 - 1840) French mathematician, physician and statistician.
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The mathematical definition is as follows:

Definition II1.8 A stochastic process is called Poisson process if
a) the increments are mutually independent r.v. (see ),
b) the general increment r.v. depends only on At (see ),

c) the probability of at least one event happening in a time period of duration h
18
P(Ainh)=p(h):=a-h+o(h) forh—0 (8.5)

and for some fixred a >0 (and @ — 0 as usual),

d) the probability of two or more events happening in time h is o (h) . O

Remark II1.9 Postulate d) is only to exclude the possibility of the simultaneous
occurence of two or more events.

Let P, (t) denote the probability that exactly m events occur in time ¢ |, i.e.
P,t)=P(, =m), m=0,1,2,.... Now d) can be can be stated in the form:

d Put)y=o(h) | (8.6)

m=2
and clearly p(h) = Z P,, (t) . Some further calculations show that
m=1
Py(t)=e forte R . (8.7)
Clearly Py (h) =1—p(h) and Py (h) =p(h) +o(h) .
Finally, using P, (0) = 0 for m € N we get the following:
Theorem II1.10 For eacht € R™® and m € N

(a)”

P(§=m)=P,(t) = ml

e (8.8)

where a is determined in . Therefore, &, follows a Poisson distribution
with parameter \ = at for each t € R0 . O

The Poisson process often arises in a form where the time parameter is replaced
by a suitable spatial ("térbeli") parameter (e.g. in 2- or 3- or in higher dimensions).
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Example II1.11 For example, consider a set C C R? of points distributed in the
space RY (1 <d). For any (measurable, "mérheté") set H C RY let

Cy:=Ny=|HNC| (8.9)

denote the number of points (finite or infinite) from C' contained in H. We agree
that Ny is a random variable for each fixed set H C R<.

Definition II1.12 The collection {Ny : H C RY is measurable} of random
variables is said to be a homogeneous ("homogén") Poisson process if the follow-
ing assumptions are fulfilled:

(i) the number of points in disjoint regions are independent r.v., that is Ny, and
Ny, are independent if HyNHy =10,

(ii) for any subset H C RY of finite volume ("térfogat”) Ny has a Poisson distri-
bution with mean
A=M(Nyg)=a-V(H) (8.10)

where V(H) is the (d-dimensional) volume of H and a € R is a fized parameter.
U

Remark II1.13 The parameter a measures in a sense the intensity ("intenzitds,

erosség”) component of the distribution, which is independent of the size or shape
of H .

Example I11.14 Spatial ("térbeli") Poisson processes arise, for example
in considering the distribution of stars or galaxies in space,

in distribution of plants and animals on FEarth,

in distribution of bacteria on a microscope slide,

etc.
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Chapter 9

(General stochastic processes

Eeﬁnition II1.15 The stochastic processes s.p. ("sztochasztikus folyamat”)
£ =(&:teT) are classified by:

- the state space ("dllapottér"”) S where &, :Q — S,

- the index or parameter set ("indexhalmaz, paraméterhalmaz") T |

- the dependence relations ("fiiggoségi viszonyok") among the r.v. &, . 0

9.1 The state space

("allapotteér")
This is the "space" (set) S in which the possible values of each &, "lie".

Definition II1.16 o) Finite ("véges") state spaces are of form'S = {sg, s1, ..., Sn }
for somen € N . .

i) In the case S = {sg, 1, ..., Sn, ...} or S = N we refer to the process & as
integer valued ("egészértékt") or alternatively as a discrete state ("diszkrét
dllapoti”) process. These sets are also called enumerable or denumerable ("fel-
sorolhatd, megszamlalhatd") sets.

ii) If S = R the real line or a (real) interval [a,b] C R then we call E) a
real-valued ("valés értékii") stochastic process.
i) If S € R¥ is a subset of R* (or possibly the whole R ) - the more dimensional

space then E) is said to be a k -vector ("k -vektor") process. [

93



94 CHAPTER 9. GENERAL STOCHASTIC PROCESSES

As in case of a single r.v., the choice of the state space is not uniquely specified
by the physical situation being described, although one particular choice usually
stands out as most appropriate.

9.2 The index (parameter-) set
("indexhalmaz, paraméterhalmaz")

Definition II1.17 4) If T =NU{0} ={0,1,...} then we shall always say that

? is a discrete time ("diszkrét ideji") stochastic process. When T is discrete
we shall often write &,, instead of &, .

i) If T=R™ =1[0,00) then £ is called a continuous time ("folytonos
idejt") process.

iii) The case T ={measurable sets} < P (Rd) and other cases are also
possible. [

Example II1.18 We have already cited examples where the index set T is not one
dimensional, e.g. spatial Poisson processes.

Another example is that of waves in oceans, where we may regard the latitude
("szélességi") and longitude ("hosszisdgi") geographical ("foldrajzi") coordinates
as the value of t and &, is then the height of the wave at the location t € R?.

9.3 The mean-, dispersion- and autocovariance
functions

("varhato érték-, széras- és kovariancia- fiiggvények")

Definition II1.19 For any s.p. ? the functions {M (&,) : t € T}, {D (&) : t € T}
and {cov (§,,€,) : t,s € T} are called mean-, dispersion- and auto / self co-
variance functions ("virhato érték / dtlag, szdrds- és auto / on- kovariancia
fliggvények"). O



Chapter 10

Classical types of stochastic
processes

The in/dependencies ("fiiggdségi viszonyok") among the r.v. &, are the most
important properties of the stochastic processes.

10.1 Processes with stationary independent in-
crements

("Fiiggetlen staciondrius [dllandd] novekményii szt.f.")

Definition II1.20 i) If the random variables

Ctltz = gtz - €t17 Ct2t3 = §t3 - £t27 cr Ctntnfl = gtn - £tn71 (101)

are independent for all choices of t; < to < ... < t, (clearly T =N or T =

R), then we say that ? is a process with independent increments ("fiiggetlen
novekményt").

ii) If the index set T contains the smallest index ty (i.e. T = N or T =
[to,00)),  then it is also assumed that (expanding )

Cto = 51&0 ) Ctotl =&y, — fto ) Ctltg = ftg Sk SUPRS Ctntn_l =&, — ftn,l (10.2)

are (also) independent. [
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Remark II1.21 If the index set is discrete, that is T = N | then a process with
ﬁ
independent increments reduces to a sequence of independent r.v. (  where

Co=¢& and ¢, =&, —&,_1 form=12 .. (10.3)
in the sense that knowing the individual distributions of 5 , (; , ... enables one
—)
to determine the joint distribution of any finite subset {§n1, - fnm} of € .

Especially
£, =Co+...+¢(, foralln=0,1,2, ... (10.4)

Definition II1.22 [f the distribution of the increments or differences ("néovek-
mények, kilonbségek")

Ern— & (10.5)
depends only on the length h of the interval and not on the timet (for allt € T and
h € RT), then the process is said to have stationary increments ("staciondrius
[allandd] novekményt").

For a process with stationary increments the distribution of &, ., —&,, s the
same as the distribution of &, ., —&;, no matter what the values of t; , ty and
h . So, we can denote this distribution by

Up = £t+h =& (10-6)
where t € T is arbitrary fixed index. [

Theorem II1.23 If a process E) = {& :t €T} where T = [0,00) or T = N has
stationary independent increments and has a finite mean (i.e. each all M(&,) does
exists), then it is elementary to show that

ME)=mo+my -t (teT) (10.7)
where mg = M(§,) and my = M(&,) —mo .
Stmilarly
agt =o0i4+o2-t (teT) (10.8)
where
a5 = M[(& —mo)?] = D*(&) (10.9)
and
o1 = M[(& —m1)’] — 05 = D*(&;) — D*(&o) - (10.10)
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Remark I11.24 Both the Brownian motion process and the Poisson process have
stationary independent increments.

10.2 Martingales

("Martingalok")

Definition II1.25 Let ? b_e> a real-valued s.p. with discrete or continuous para-
meter set T . We say that & is a martingale ("martingdl”) if

i) M(|&]) < oo forallt €T,

it) for any n € N | for any t; < ty < ... < t, < t,11 and for all values
ay,a9,...,a, € S

M, & =a,..& =an) =a, . O (10.11)

Remark II1.26 i) Observe the absolute value of &, in i) and recall that i) is
stronger than "¢, has a finite mean”.

it) Martingales may be considered as appropriate models for fair games in the
sense that &, denotes the amount of money that a player has at time t. The
martingale property ii) states then that the average amount a player will have at
time t, 11 , assuming that he has amount in the previous time t,, , is equal to a,, ,
regardless of what his past fortune (in the interval [t,,t,+1] and before) was.

ii1) The word "martingale " originally meant a gambling strategy in which one
doubles the stake after each loss.

Claim III1.27 i) One can easily verify that if (, are independent r.v. and
M((;) =0, then the process

£, =C+..+¢, (neN) (10.12)

s a discrete martingale.
it) Similarly, if &,  for 0 <t has independent increments whose means are
é

0 then & is a continuous time martingale.
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10.3 Markov processes

("Markov!) folyamatok")

Definition I11.28 A process E} is said to be Markov s.p. ("Markov folyamat")
if

P (a <&ESb | =an, L6, = an) =P (a <& <bl§, = an) (10.13)
for all t € T whenever t; <ty < ... < t, <t and for all values ay,as,...,a, €S .
O

For discrete state (S = {so, S1, ..., Sn, ...} ) and discrete time (T = NU {0}) the
assumption ((10.13)) can be written easier:

Definition ITI1.29 A process ? is said to be a discrete Markov s.p. ("diszkrét
Markov folyamat") or a Markov-chain ("Markov-lanc") if

P (gtn+1 = dp+1 | gtl = a, ”.7£tn = an) =P <§tn+1 = Qnp+1 | gtn = an) (10]_4)
forallty <ty < ..<t, <t,i1 €T and for all ai,as,...,a, €S . O

Remark II1.30 i) Roughly speaking a Markov s.p. is one with the property that,
if the value of &, is given, then the values of &, for s >t do not depend on the values
of &, foru <t . That is the probability of any particular future behaviours of the
process, when its present state (£,) is known exactly, is not altered by additional
knowledge concerning its past behaviour.

We should make it clear, however, that if our knowledge of the present state
(&,) of the process is imprecise, then the probability of some future behaviour will
be altered by additional information in general, relating to the past behaviour of
the system.

ii) Note that a Markov s.p. having a finite or denumerable state space S is
called a Markov chain ("Markov-lanc”).

Example I11.31 Discrete Brownian motion as partial sums of indepen-
dent r.v.’s ("Diszkrét Brown -mozgds, mint figgetlen v.v. részletosszege")

Let a particle keep moving on the real line on the integer points Z , starting
from 0, and suppose that it moves in the n ’th moment 50% to the left and 50% to

the right. If all the steps are independent, then E) 1$ a discrete Markov s.p. where
E,=m+...+n, 1<n (10.15)

and n; are independent and the values of n; are £1 with probability 0.5
(i.e. m; : Q—{-1,41}, P(n,=—-1)=P(n,=4+1)=0.5 .

1) Andrey Andreyevich Markov (1856-1922) a Russian mathematician.
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Claim II1.32 In general, it is easy to prove, that partial sums of inde-
pendent r.v. n;, are always a discrete Markov s.p. 0J

Definition II1.33 The Markov chain ? n is called homogeneous ("ho-
—_

mogén") if n, all have the same distribution, otherwise & is inhomogeneous
("inhomogén"). [

Example I11.34 If we place reflecting mirrors ("visszaverd tikir") or back-kicking
walls ("visszapattand falak") to the points —K and K , from where the particle
ultimately (100%) turns back, then we also get a Markov-chain.

Example I11.35 Let N € N be fixed, let n; be independent r.v. which have values
é
{0,1,..., N — 1} with arbitrary probabilities. Now if we define £ as &, =n, and

&+, if &, +n, <N
Q“_{Q+m—N if &, +n, >N (10.16)

then E) 18 also a Markov chain.
This example is called lower rounding ("lefelé kerekités, csonkitas") against
overfloating ("tilcsordulds ellen”).

Definition II1.36 Let A C R be an interval of the real line. Then the function
P(z,s,t,A) =P €Al & =x) (10.17)

fort > s is called transition probability function ("atmenetvaldszintiség-fiigguény")
and 1s basic to the study of the structure of Markov s.p. [

Claim II1.37 We may express the condition also as follows:
P (a <& <b g, =an, .8, = an) =P (xn,tn,t,(a,b]) . (10.18)
U

It can be proved that the probability distribution of (ftl, - ftn) can be com-
puted in terms of (10.17) and the initial distribution function of £, .

Definition II1.38 A Markov s.p. for which all realizations or sample functions
{&, : t €]0,00)} are continuous functions, is called a diffusion process ("diffuzids
folyamat”). O

Remark II1.39 Poisson processes are continuous time Markov chains, and Brown-
ian motions are diffusion processes.
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For Markov chains the transition probability function , (10.17)) and (10.18) can

be written in easier form.

Definition II1.40 For a Markov chain ? ={¢, :neN}
i) the probabilities

B = P (G = K | &, =) (10.19)
are called r -step transition probabilities ("r -lépéses dtmenetvaldszintiségek”),
shortly t.p., forr,n,i,k € N .
i) the (finite or infinite) matrix

2 s

T, = [npg’;g] _ ) ) (10.20)
S R

is called transition probability matrix ("dtmenetvaldszintiség matriz").
For homogeneous Markov chains the index n is usually omitted. We also omit
rimcaser=1. [

Claim II1.41 All the entries of .11, are probabilities € [0,1] and each row has
sum 1 since

Yool => PG =k|&=i)=1. O (10.21)
k=1 k=1

Definition I11.42 Any quadratic ("négyzetes") matrix (either finite or infinite)
with nonnegative entries is called stochastic matriz ("sztochasztikus mdtriz") if

its each row has sum 1 (see and (10.21)).

Moreover, if each column has sum 1, too, i.e. Y npz(’rk) =1, then the matriz
i=1
is called o double stochastic matrixz ("kétszeresen sztochasztikus mdtriz"). [

Claim II1.43 Products of (double) stochastic matrizes is also a (double) stochas-
tic one. U

The following theorem is a fundamental one on Markov chains.
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Theorem II1.44 If the 1 -step transition probabilities are independent of n , then
any r -step t.p. are also independent, and

IT, = ()" (10.22)

i.e. the r -th power of the matrix 11 =1I; . U

Remark II1.45 i) The special case 11, =1I"-1I">  of for rid+ry=r,

1.e.

o
P = pipl (10.23)
=1

is often in use without mentioning and is called Markov equality ("Markov egyen-
loség").
it) The transition probabilities npﬁ’“k) are conditional probabilities ("feltételes

valdszintiségek”), so the unconditional ("feltétel nélkili") probabilities of €,
p(n) =P, =k  keN, neNU(0) (10.24)

are called absolute probabilities ("abszolit valdszintségek") of €, . O

Definition I11.46 A Markov-chain E} is called ergodic ("ergodikus") if all the
limit probabilities
Py = lim p{) (10.25)

r—00

do exist, they are independent of i , and

S P=1. O (10.26)
k=1

Remark I11.47 i) In general, the behaviour in which sample averages formed
from a process converge to some underlying parameter of the process is termed

ergodic. (See Remark|[I1.49, too.)
i) says that the events

A ={lim . =k} CQ (10.27)
form a complete system of events ("teljes eseményrendszer”).

The folloving result is a fundamental one in the theory of Markov chains.
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Theorem I11.48 Ergodicity theorem of Markov ("Markov ergodicitdsi tétele"):
H

A homogeneous Markov chain & having finitely many states ("véges dllapoti”) is
ergodic if and only if

P11 P12 -~ PIN
I = P21 P22 .- DP1,N (10.28)
PN1 PN2 -~ PNN

(see (10.2(})) has a power 1Y (v € N) in which at least one column contains

only positive elements.

Further, the convergence in is exponential:
p0) — Pe| < (1— Mg+ (10.29)

where M is the number of columns of 11V containing positive elements, § is the
least number in these columns. (Clearly 0 < Mo < 1.) O

Remark I11.49 i) The assumption of ergodicity in and in the previous
theorem asserts the existence of a step number v and of at least one state s € S
which state can be reached from any other state in at most v many steps with
positive probability.

ii) Another meaning of ergodicity is that if starting from any state s; € S ,
after a large number of steps the process reach the state sy with probability Py but
independently of s; | Moreover we have lim py (n) = Py .

iii) By the Markov inequality we get

N
Pt =30 n e (10.30)
j=1
and taking n — oo we get
N
Pi=) PPy forl1<k<N. (10.31)
j=1

It is not hard to prove that the system of equalities above has a unique solution
for the unknowns Py, for 1 < k < N . This system of equalities is often helpful in
practice.
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i) If the matriz (10.20) for r = 1 -step is double stochastic and the process
1s ergodic then II"™ and lim II"™ are also double stochastic ones. Since all the

n—oo

elements of the k -th column Py, , so P, = 1/N (where N = |S|). This means, that
the marginal distribution (after n — oo) is uniform ("egyenletes”) on the numbers
1,.,N .

Example II1.50 Consider the practical problem of the volume of a water-puffer
lake of a factory ("viztdrozé"), from [P].

Let K denote the volume of the lake, and let us try to use exactly (at most)
M quantity water each year. Clearly we use less water if there is no M water
in the lake, in this case we empty the lake. Suppose that K, M are integers and
O<M<K.

Denote &, the water supply of the river in the t ’th year (t € N), i.e. &, ... are
independent discrete r.v. with the same distribution, Im (§,) = N and let

pii=P(§=1) . (10.32)

Let further ¢, denote the water level of the lake at the end of the year (t € N),
i.e. after we took out M , and denote (, the starting level.

Clearly the lake contains no more than K water in each moment, so we must
have

Copq =max { min ({, + &4, K) — M , 0} (10.33)
which implies
Im (¢;) =40,1,.... K — M} (10.34)
and we let
Fj:=P (Ct+1 =j|¢= @> (10.35)

the possible water level in the next year.

For simplicity we assume

M<K-M ie M<K/2. (10.36)

Solution II1.51 Clearly
P,,=0 if u—M>v de u—v>M, (10.37)
or even, for suitable u,v,w (among others)

O<u,v<K-M and O0<w=M+v—u (10.38)
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imply
i.e.

Further, for suitable j

Pk v =pr—j +Dr—js1+ ...

Finally, we have the following (large) system of equalities for P, ; .

Poo=po+ ... +pum
PO,I =PM+1,

PO,i:pM—H‘ (fori:Ct+1<K—Mi.e.M+i<K),

PO,Kfol =PKk-1,
Pox—v = pr + D1+ ooy

Pig=po+..+pyu-1,
P1,1 =DPwm ,

Pl,i = PM-1+i

Pl,K—M—l = PK-2
Pig_v =px-1+pr+ ...,

Pijo=po+ ..+ pm—j,
Pj,l =PM+1—j

Pji = puy—jui (for j < M),

Pj,K—M—l = PK—j—-1 >

Pix-yv=DPk—j+Pr—jr1+t .,

Prio = po (since M < K — M ie. M < K/2),

PM,lzpla

PM,i =Di,

(10.39)

(10.40)

(10.41)
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PM,K—M—l = PK-M-1 (since M S K—-M-— 1),
Pyx—mv = Pr—m + Pr—mM41 + ooy

PM+1,0 - 0 5
Py =Dpo s

PM+1,i = Pi—1 (fOI' 1 S K- M- ].),
PM+1,K7M71 =PK-M-2 ,

Py k- = Pr—M—1 +Drk—Mm + ooy

Pryoo=0 (for1<land M +(< K—Mie (< K—-2M),

Prrigo—1 =0 (see )7

Pyrriee =po
PM+g7g+i:pi (fOI'E—i‘ZSK—M—lleZSK—M—K—l),

Prryok—vi—1 = Pr—M—i-1

Prryok—v = PK—M—t + PK—M—t41 + -,

PK—M,O = O (see 1036),

Py _ a1 =0,

Px pi=0 (fori<(K—M)— M=K —2M, see (10.37)),

Pr_pr—onm =po  (by (10.40) v+ M —u=K —2M + M — (K — M) =0),

PKfM,Kfol =PmMm-1,
Py _nx—m =Py + Py + o e

END of the Example.
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10.4 Stationary processes

("Stacionarius [dllandé] folyamatok")

Definition IT1.52 A s.p. ? (where T can be any of the sets (—oo,0) , [0,00) ,
Z or N\{0}) is said to be strictly stationary ("erésen staciondrius”) if the joint
distribution functions of the families of random variables are

Et—e—h = (§t1+h ) £t2+h y e ftn+h) and Et = (ftl ) €t2 ) ftn) , (10-42)

that is Ig,  and Fg, : R" — R are the same for all h > 0 and arbitrary finite set
Ofth‘..,tnET .o

Remark II1.53 This condition asserts that in essence the process is in probabilis-
tic equilibrium ("egyensily”) and that the particular times at which we examine
the s.p. are of no relevance. In particular the distribution of &, is the same for
eacht €T .

The word stationary means "almost constant” ("majdnem dallandsé").

Theorem II1.54 The mean- and dispersion functions of stationary processes do
not depend ont € T : M (&) = M (&,) and D (§,) = D (&,) -
The autocovariance function depends on (t —s) :

cov (£,€,) = cov (€, &) (10.43)

fort,seT. U

Definition II1.55 A s.p. ? is said to be

i) wide sense stationary ("gyengén staciondrius") if it possesses finite second
moments (i.e. M (&) < 00),

i) covariance stationary ("staciondrius kovariancidji") if cov(§,,€,.p,) depends
only on h for allt € T . [
Recall, that cov ((,n) =M (C-n) — M (¢)- M (n) .

Claim II1.56 A s.p. that has finite second moments is always covariance station-
ary, but there are covariance stationary processes that are not stationary. [

Remark II1.57 Stationary processes are appropriate for describing many phe-
nomena that occur in communication theory, astronomy, biology and sometimes
im eonomics.
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Definition II1.58 A Markov process is said to have stationary transition prob-
abilities ("staciondris dtmenetvaldszintiségt") if P (x,s,t, A) , defined in
s a function only of t — s . ([l

Remark II1.59 Remember that P (x,s,t, A) of a Markov process is a conditional
probability, which is given in the present state. Therefore there is no reason to
expect that a Markov process with stationary transition probabilities is a stationary
process, and this is indeed the case.

Neither the Poisson process nor the Brownian motion process is stationary. In
fact, no nonconstant process with stationary independent increments is stationary.

However, if {£, : t€[0,00)} is a Brownian motion or a Poisson process,
then (=&, —& 18 a stationary process for any fixzed h > 0 .

10.5 Renewal processes

("Felujitési folyamatok")

Definition IT1.60 i) A renewal process ("felijitdsi folyamat") is a sequence
T = (1 :n €N) of independent and identically distributed positive T.v. repre-
senting the lifetimes of some "units" ("egységek"). The first unit is placed in
operation at time 0 , it fails at time 71 and is immediately replaced by a new unit
(with the same properties) which fails at time T, + T2 and so on. The time of the
n’th renewal ("felijitdas") is

Opn=T1+ ..+, (MEN). (10.44)
ii) A renewal counting ("szdamldlé") process is vV = (v, :t € RTO) where for
teR™ andn e N

vi=mn PLIN Opn <t <opi1 - (10.45)

g

Remark I11.61 i) The renewal process o, gives us the time moment of the n 'th
renewal, while a renewal counting process vy counts the number of renewals in the
time interval [0,t] . We often make no distinction between the renewal process and
1ts counting process.

i1) Renewal processes occur in many applied areas such as management science,
economics and biology. Renewal processes of equal importance often may be dis-
covered embedded in other stochastic processes that, at first glance, seem unrelated.

iii) The Poisson process with parameter X\ is a renewal counting process for
which the unit lifetimes have exponential distributions with common parameter \ .
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10.6 Point processes

("Pontfolyamatok")
Note: S #S!

Definition IT1.62 Let S € R™ be a fixed set in the n -dimensional space and let
A C P (S) be a family of subsets of S . A point process ("pontfolyamat”) is a
s.p. indexed by the sets A € A , that is T = A , having the state space S = NU{0}
(nonnegative integers). In other words: ? ={{:Ae A} O

Remark II1.63 (i) Non-mathematicians please write A =P (S) , i.e. let A€ A
mean "A C S is any (measurable) subset of S " .

(i1) We think a set of (enumerable) "points" C' C S is being scattered over S in
some random manner, and of

£,=N(A):=|ANC| (10.46)

as counting the number of points from C in the (measurable) set A € A , i.e.

ACS .

Since N(A) is a counting function there are additional requirements on each
realization.

Definition II1.64 (continued):
Z) ’I,fAl OAQ =0 and Al UA2 € A then N(Al UAQ) = N(Al) + N(Ag) 5
e Eaua, =84, T84,

i) ifge Athen N(@)=0,ie &,=0, O
Clearly ii) follows from 1i).

Definition II1.65 Suppose S is a set in the real line (or plane os 3-dimensional
space) and for every subset A C S let V(A) be the length (area, volume, resp.)
of A . Then

vV ={va:ACS} (10.47)

is a homogeneous Poisson point process of intensity A > 0 ("X intenzitdsi
(erbsségti) Poisson-pontfolyamat”) if A =P (S) (power set) and
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(i) for each A C S we have vy := N(A) (more precisely: va := |ANC|)
has a Poisson distribution with parameter A - V(A) and X € RT is (any) fived
positive real number,

(i) for every finite collection {A1, ..., A} C A of mutually ("paronként”) dis-
joint subsets of S the r.v.’s va,,...,va, are independent. []

Remark II1.66 (i) The above (i) says that the number of points from C in A do
not depend on the shape of A but the parameter in this Poisson distribution has
linear depency with the volume of A .

(ii) Every Poisson process {§, : t € [0,00)} defines a Poisson point process on
S =1[0,00) . In fact, for any interval subset A = (s,t] for s <t we use

N(A> ::gt_gs :

(iii) Poisson point processes arise in considering the distribution of stars or
galaxies in space, the planes distribution of plants and animals, or of bacteria on
a slide, etc.

10.7 Moving average processes

("mozgodtlag folyamatok")

Definition IIL67 Let ¢ = {C,:n=0,+1,42,..} ie. T = Z (integers) be
uncorrelated r.v. having a common mean u and variance 0. Let m € N and a, ,
as ,...,am € R be any fixed numbers and consider the process E} ={{,:neZ}
where

€n=wC,+axC, 1+ ...+ fornelZ. (10.48)

Now the s.p.z is called a moving average processes ("mozgdatlag folyamat").
O

Remark III.@) The naming "moving average” refers to the application when the
original s.p. C has extreme low and high (expected) values and perhaps peri-
odic or "seasonable" ?| ("szezondlis"), and these huge differences are decreased
and the extreme alterations are smoothed by taking tie (weighted) average of m

consequtive 1.v. Cp, , ... , Cu_ iy - S0, the s.p. & contains the averages of
these consequtive r.v. (; , and goes on, i.e. moves. The usual arithmetic mean

i

2) Consider e.g. the changes of the numbers of tourists in the four seasons of years, or your
working attitude from Monday to Sunday and of the next weeks.
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("szémtani/aritmetikai kozép") uses a; = ... = ay, = = and weighted arith-
metic means ("sulyozott szamtani kozép") need ay + ... + a,, = 1, however in
the numbers a; can be any real numbers!

Figure 17: Moving average
¢, are in blue and §,, are in red

Claim III.69 M(E,) =p-(a1+ ... +ap)
and

D*(&,) =02 (af + ...+ da2). O
For the covariance we have
Theorem III.70
cov (§n>§n+v) =F |:(§n — g%) <§n+v — g:lai)} =

(10.49)

0% (Amm—y + oo + Apy1a,)  if v<m-—1
0 if v>m

Since the covariance between £, and ¢, ,, depends only on v and not on n ,

_)
the process £ is covariance stationary.
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Remark II1.71 A common case is the "moving average” with a standardized vari-
ance in which ay =1/y/m  for k=1,..m . Now the covariance function
becomes

02-<1—%> if v<m-—1
R(v) = . (10.50)
0 if v>m

10.8 Autoregressive processes

("autoregresszios folyamatok")

Definition II1.72 Let {(,, : n =0,£1,42,...} i.e. T =Z (integers) be a covari-
ance stationary process (see Def|[11.55). Then, for any real number A € R | || < 1
the r.v. defined by

§n = Crn = A (o (10.51)

are uncorrelated ("korreldlatlanok”) with zero means and a common variance o> .
The s.p. defined in (10.51)) is called an autoregressive process of order one
("elsérendti autoregresszids folyamat"). O

Remark III1.73 i) The word "regression” (latin) originally means "going back
to the past, using the old things". As usual, "auto" (greek) means "self". In
A gives the "measure” of the autoregression.

ii) Recall, that "§; and &; are uncorrelated” only means that cov (51 ,fj) =0
which s weaker than "§; and &; are independent”.

From ((10.51f) we may write

k—1
Co=A-Cp +E6 ==X, + ;Aﬂgn,j for k <n . (10.52)

J

Further we have

Theorem I11.74

2
M <<n - ki:l )‘jgn—j> =M [(Akcn—k)Q] =\ M [Ci—k] ’ O (1053)
§=0
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M [Ci_k} is constant, i.e. independent of n and k, since the process Z) is
stationary.

Moreover, using |A| < 1, the right hand side of decreases to 0 at a
geometric rate. Thus

Theorem II1.75
k-1 o) )
Cp = ]}Lrgo z_: NE, ;= Z_: N¢E,_; in m.s. (10.54)
7=0 7=0

where m.s. means mean square distance ("négyzetes kiozép tavolsagban”) limit.

Equation provides a representation of the original process Z) as a mov-
ing average process.

Since mean square convergence implies convergence of the means and second
moments, we have

Theorem II1.76

M (C,) = lim M <k§ Ajgn_j) =0 (10.55)
—00 jIO
and
2 _ 7 4 10.56)

Let us compute the covariance between ¢,, and ¢, -

Theorem II1.77
M(C, - Copi) = 0 A (10.57)

and so

cov (Cppy i) = 07 ()\’“ -3 _1A2> (10.58)

for kEeN. O
The generalization of (10.51)) is:

Definition II1.78 Let {(,, : n € N} be a sequence of zero mean uncorrelated ran-
dom variables having a common variance o . Then the (stationary) process

Cn = AiC1 + A2l + o+ (0, + (10.59)

for |\i| < 1 s called a p ’th order autoregressive process ("p -edrendi
autoregresszids folyamat”). O
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10.9 White noise processes

("fehérzaj folyamatok")

Definition II1.79 The s.p. E) = {{,:t € T} is a white noise process ("fe-
hérzaj folyamat") if the following holds:

for every finite subset H C T we have that £ = {&, : t € H} are standard inde-
pendent normal (Gaussian) distributions. [

Claim II1.80 Clearly, by the independency, the common density function of &gy
for H = {hl,hg,...,huﬂ} 18

2 2 2
feo <xh1,:ch2, ...,xh‘,ﬂ) = P ( - 22 H) (10.60)
(2m)

since the (one dimensional) standard normal density function is

f@)= 2. O
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Standard normal distribution ( o1} ))

t 0 1 2 3 4 5 6 7 8 9

0,0 | ,5000 { ,5040 | ,5080 | ,5120 { ,5160 ] ,5199 { ,5239 {,5279 | ,5319 | ,5359
0,1 |,5398 | ,5438 | ,5478 | ,5517 | ,5557 | ,5596 | ,5636 | ,5675 | ,5714 | ,5754
0,2 |,5793 {,5832 | ,5871 | ,5910 | ,5948 | ,5987 | ,6026 | ,6064 | ,6103 | ,6141
03,6179 |,6217 | ,6255 | ,6293 { ,6331 | ,6368 { ,6406 | ,6443 | ,6480 | ,6517
0,4 | ,6554 ] ,6591 | ,6628 | ,6664 | 6700 | ,6736 | ,6772 | ,6808 | ,6844 | ,6879
0,5 | ,6915 {,6950 | ,6985 | ,7019 | ,7054 { ,7088 | ,7123 | ,7157 | ,7190 | , 7224
0,6 | ,7258 | ,7291 | ,7324 | ,7357 | ,7389 § ,7422 | ,7454 | ,7486 | ,7518 | ,7549
0,7 { ,7580 | ,7612 | ,7642 | ,7673 | ,7704 | ,7734 | ,7764 | ,7794 | ,7823 | ,7852
0,8 | ,7881 | ,7910 | ,7939 | ,7967 | ,7996 | ,8023 | ,8051 | ,8078 | ,8106 | ,8133
0,9 |,8159 | ,8186 | ,8212 | ,8238 | ,8264 | ,8289 { ,8315 | ,8340 | ,8365 | ,8389

1,0 | ,8413 | ,8438 | ;8461 | 8485 | ,8508 | 8531 | ,8554 | ,8577 | ,8599 | ,8621
1,1|,8643 | ,8665 | ,8686 | ,8708 | ,8729 | ,8749 | ,8770 | ,8790 | ,8810 | ,8830
1,2 | ,8849 | 8869 | ,8888 | ,8907 | ,8925 | ,8944 | ,8962 | ,8980 | ,8997 | 9015
1,3 |,9032 | ,9049 | 9066 | ,9082 | ,9099 | 9115 | ,.9131 | ,9147 | 9162 | ,9177
1,4 |,9192 | 9207 | ,9222 | ,9236 | ,9251 | ,9265 | ,9279 | ,9292 | ,9306 | ,9319
1,5|,9332 {,9345 | ,9357 | ,9370 | ,9382 | ,9394 | ,9406 | ,9418 | ,9429 | 9441
1,6 | ,9452 | 9463 | ,9474 | 9484 | 9495 | 9505 | ,9515 | ,9525 | ,9535 | ,9545
1,7 | ,9554 | 9564 | ,9573 | ,9582 | ,9591 | ,9599 | ,9608 | ,9616 | ,9625 | 9633
1,8 | ,9641 | ,9649 | ,9656 | ,9664 1 ,9671 | ,9678 | ,9686 | ,9693 | ,9699 | ,9706
1,9|,9713 | 9719 | ,9726 | 9732 | ,9738 | ,9744 | ,9750 | ,9756 | ,9761 | 9767

2,0{,9772 {,9778 | ,9783 | ,9788 | ,9793 | ,9798 | ,9803 | ,9808 { ,9812 | ,9817
2,1{,9821 ]1,9826 | ,9830 | ,9834 | ,9838 | ,9872 | ,9846 | ,9850 | ,9854 | ,9857
2,2 | ,9861 | ,9864 | ,9868 | ,9871 | ,9875 | ,9878 | ,9881 | ;9884 | ,9887 | ,9890
2,3 {,9893 1,9896 | ,9898 | ,9901 | ,9904 | ,9906 | ,9909 | ,9911 | ,9913 | ,9916
2,41,9518 11,9920 [ ,9922 | ,9925 { ,9927 | ,9929 | ,9931 | ,9932 | ,9934 | ,9936
2,5(,9938 | ,9940 { ,9941 | ,9943 | ,9945 | ,9946 | ,9948 | ,9949 | ,9951 | ,9952
2,6 | 9953 { ,9955 | ,9956 | ,9957 |.,9959 { ,9960 | ,9961 | ,9962 | ,9963 | ,9964
2,7 | ,9965 | ,9966 | ,9967 | ,9968 | ,9969 | ,9970 | 9971 | ,9972 | ,9973 | ,9974
2,8,9974 1,9975 | ,9976 | ,9977 { ,9977 | ,9978 | ,9979 | ,9979 | ,9980 | ,9981
2,9 {,9981 {,9982 | ,9982 | ,9983 | ,9984 | ,9984 | ,9985 | ,9985 | ,9986 | ,9986

3,0 | ,9987 | ,9987 | ,9987 | ,9988 { ,9988 | ,9989 | ,9989 | ,9989 | ,9990 | ,9990
3,11,9990 | ,9991 | ,9991 | ,9991 { ,9992 | ,9992 | ,9992 | ,9992 | ,9993 | ,9993
3,2 1,9993 | ,9993 | ,9994 | ,9994 | ,9994 | 9994 | ,9994 | ,9995 | ,9995 | ,9995
3,3 1,9995 | ,9995 | ,9995 | ,9996 | ,9996 { ,9996 | ,9996 | ,9996 | ,9996 | ,9997
3,4|,9997 {,9997 | ,9997 | ,9997 | ,9997 { ,9997 | ,9997 | ,9997 | ,9997 | ,9998
3,51,9998 { ,9998 | ,9998 | ,9998 | ,9998 | ,9998 | ,9998 | ,9998 | ,9998 | ,9998
3,6 | ,9998 | ,9998 | ,9999 | ,9999 { ,9999 | ,9999 | ,9999 | ,9999 | ,9999 | ,9999
3,7 |,9999 {,9999 | ,9999 | ,9999 { ,9999 | ,9999 | ,9999 | ,9999 | ,9999 | ,9999
3,8 ,9999 {,9999 | ,9999 | ,9999 {,9999 | ,9999 | ,9999 | ,9999 | ,9999 | ,9999
3,9 (1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0
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Critical values for X 2 distribution

Aﬂ 0,00 | 005 | 0025 | 0,01 | 0001 | 095 | 0975
] 2.706 | 3,841 | 5,024 | 6,635 | 10,827 | 0,004 | 0,001
2 4,605 | 5991 | 7,378 | 9,210 | 13,815 | 0,103 | 0,051
3 6251 | 7,815 | 9,348 | 11,345 | 16,268 | 0,352 | 0,022
4 7779 | 9,488 | 11,143 | 13,277 | 18,465 | 0,711 | 0,484
5 9,236 | 11,070 | 12,833 | 15,086 | 20,517 | 1,145 | 0,831
6 10,645 | 12,592 | 14,449 | 16,812 | 22,457 | 1,635 | 1,237
7 12,017 | 14,067 | 16,013 | 18,475 | 24,322 | 2,167 | 1,690
8 13362 | 15,507 | 17,535 | 20,090 | 26,125 | 2,733 | 2,180
9 14,684 | 16,919 | 19,023 | 21,666 | 27,877 | 3,325 | 2,700
10 | 150987 | 18,307 | 20,483 | 23,209 | 29,588 | 3,940 | 3,247
11 | 17275 | 19,675 | 21,920 | 24,725 | 31,264 | 4,575 | 3,816
12 | 18,549 | 21,026 | 23,337 | 26,217 | 32,909 | 5.226 | 4.404
13 | 19812 | 22,362 | 24,736 | 27,688 | 34,528 | 5,892 | 5,009
14 | 21,064 | 23,685 | 26,119 | 29,141 | 36,123 | 6,571 | 5,629
15 | 22,307 | 24,996 | 27,488 | 30,578 | 37,697 | 7,261 | 6,262
16 | 23.542 | 26,296 | 28,845 | 32,000 | 39,252 | 7,962 | 6,908
17 | 24,769 | 27,590 | 30,191 | 33,409 | 40,790 | 8,672 | 7,564
18 | 25,989 | 28,869 | 31,526 | 34,805 | 42,312 | 9,390 | 8,231
19 | 27204 | 30,144 | 32,852 | 36,191 | 43,820 | 10,117 | 8,901
20 | 28,412 | 31,410 | 34,170 | 37,566 | 45,315 | 10,851 | 9,591
21 | 29,615 | 32,671 | 35,479 | 38,932 | 46,797 | 11,591 | 10,283
2 | 30,813 | 33,924 | 36,781 | 40,289 | 48,268 | 12,338 | 10,982
23 | 32,007 | 35,172 | 38,076 | 41,638 | 49,728 | 13,091 | 11,689
24 | 33,196 | 36,415 | 39,364 | 42,980 | 51,179 | 13,484 | 12,401
25 | 34,382 | 37,652 | 40,646 | 44,314 | 52,620 | 14,611 | 13,120
26 | 35,563 | 38,885 | 41,923 | 45,642 | 54,052 | 15,379 | 13,844
27 | 36,741 | 40,113 | 43,194 | 46,963 | 55,476 | 16,151 | 14,573
28 | 37.916 | 41,337 | 44,461 | 48,278 | 56,893 | 16,928 | 15,308
29 | 39,087 | 42,557 | 45,772 | 49,558 | 58,302 | 17,708 | 16,047
30 | 40256 | 43,773 | 46,979 | 50,892 | 59,703 | 18,493 | 16,791
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Student ¢- distribution

x 0,20 0,10 0,05 0,02 0,01 0,001
1 3,078 6,314 12,706 31,821 63,657 | 636,619
2 1,886 2,92 4,303 6,965 9,925 31,598
3 1,638 2,353 3,182 4,541 5,841 12,941
4 1,533 2,132 2,776 3,747 4,604 8,61
5 1,476 2,015 2,571 3,365 4,032 6,859
6 1,44 1,943 2,447 3,143 3,707 5,959
7 1,415 1,895 2,365 2,998 3,499 5,405
8 1,397 1,86 2,306 2,896 3,355 5,041
9 1,383 1,833 2,262 2,821 3,25 4,781
10 1,372 1,812 2,228 2,764 3,169 4,587
11 1,363 1,796 2,201 2,718 3,106 4,437
12 1,356 1,782 2,179 2,681 3,055 4,318
13 1,35 1,771 2,16 2,65 3,012 4,221
14 1,345 1,761 2,145 2,624 2,977 4,14
15 1,341 1,753 2,131 2,602 2,947 4,073
16 1,337 1,746 2,12 2,583 2,921 4,015
17 1,333 1,74 2,11 2,567 2,898 3,965
18 1,33 1,734 2,101 2,552 2,878 3,922
19 1,328 1,729 2,093 2,539 2,861 3,883
20 1,325 1,725 2,086 2,528 | 2,845 3,85
21 1,323 1,721 2,08 2,518 2,831 3,819
22 1,321 1,717 2,074 2,508 2,819 3,792
23 1,319 1,714 2,069 2,5 2,807 3,767
24 1,318 1,711 2,064 2,492 2,797 3,745
25 1,316 1,708 2,06 2,485 2,787 3,725
26 1,315 1,706 2,056 2,479 2,779 3,707
27 1,314 1,703 | 2,052 2,473 2,771 3,69
28 1,313 1,701 2,048 2,467 2,763 3,674
29 1,311 1,699 2,045 2,462 2,756 3,659
30 1,31 1,697 2,042 2,457 2,75 3,646
40 1,303 1,684 2,021 2,423 2,704 3,551
60 1,296 1,671 2 2,39 2,66 3,46

120 1,289 1,658 1,98 2,358 2,617 3,373
oo 1,282 1,645 1,96 2,326 2,576 3,291
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Student /- test P(Xp<a)=p

[/™~P] 090 095 0975 098 0,99 0,995 |
1 ]| 3,08 631 12,71 15,89 31,82 63,66
2 | 1,89 2,92 4,30 4,85 6,96 9,92
30 1,64 2,35 3,18 3,48 4,54 5,84
4 || 1,53 2,13 2,78 3,00 3,75 4,60
5 || 1,48 2,02 2,57 2,76 3,36 4,03
6 || 1,44 1,94 2,45 2,61 3,14 3,71
7 1,41 1,89 2,36 2,52 3,00 3,50
8 || 1,40 1,86 2,31 2,45 2,90 3,36
9 || 1,38 1,83 2,26 2,40 2,82 3,25
10 || 1,37 1,81 2,23 2,36 2,76 3,17
1T || 1,36 1,80 2,20 2,33 2,72 3,11
12 || 1,36 1,78 2,18 2,30 2,68 3,05
13 || 1,35 1,77 2,16 2,28 2,65 3,01
14 || 1,35 1,76 2,14 2,26 2,62 2,98
15 || 1,34 1,75 2,13 2,25 2,60 2,95
16 || 1,34 1,75 2,12 2,24 2,58 2,92
17 || 1,33 1,74 2,11 2,22 2,57 2,90
18 || 1,33 1,73 2,10 2,21 2,55 2,88
19 || 1,33 1,73 2,09 2,20 2,54 2,86
20 || 1,33 1,72 2,09 2,20 2,53 2,85
21 [ 1,32 1,72 2,08 2,19 2,52 2,83
22 || 132 1,72 2,07 2,18 2,51 2,82
23 || 1,32 1,71 2,07 2,18 2,50 2,81
24 || 1,32 1,71 2,06 2,17 2,49 2,80
25 || 1,32 1,71 2,06 2,17 2,49 2,79
26 || 1,31 1,71 2,06 2,16 2,48 2,78
27 || 1,31 1,70 2,05 2,16 2,47 2,77
28 || 1,31 1,70 2,056 2,15 2,47 2,76
29 || 1,31 1,70 2,05 2,15 2,46 2,76
30 || 1,31 1,70 2,04 2,15 2,46 2,75
35 | 131 1,69 2,03 2,13 2,44 2,72
40 || 1,30 1,68 2,02 2,12 2,42 2,70
45 || 1,30 1,68 2,01 2,12 2,41 2,69
50 || 1,30 1,68 2,01 2,11 2,40 2,68
60 || 1,30 1,67 2,00 2,10 2,39 2,66
70 [ 129 1,67 1,99 2,09 2,38 2,65
80 || 1,29 1,66 1,99 2,09 2,37 2,64
90 || 1,29 1,66 1,99 2,08 2,37 2,63
100 || 1,29 1,66 1,98 2,08 2,36 2,63
200 || 1,29 1,65 1,97 207 2,35 2,60

121
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(degrees of freedom for the denumerator)

CHAPTER 10. CLASSICAL TYPES OF STOCHASTIC PROCESSES

Critical values of F -distribution for €= (,05 (95%)
(degrees of freedom for the enumerator)

1 2 3 4 5 6 7 8 9 12

1 [161,4 [199,5 [215,7 [224,6 12302 [234,0 [236,8 [2389 [240,5 [243,9

2 | 18,5119,00]19,16 19,25 { 19,30 | 19,33 | 19,35 | 19,37 { 19,38 | 19,41

3 110,13 9,55] 9,28] 9,12| 9,01| 894| 8,89 | 884 881| 874

4| 7711 6941 6,59| 6,39| 626| 6,16| 6,09| 6,04] 6,00( 591

51 661] 579! 541 5,19| 505| 495| 4,88 4,82 4,77| 4,68

6 | 599! 5,14} 4,76| 4,53] 4,39| 4,28 4,21| 4,15 4,10 4,00

71 559 474| 435| 4,12| 3,97 3,87| 3,79| 3,73| 3,68 3,57

8 | 5,32 446| 4,07| 3,84 3,69] 3,58] 3,50| 3,44| 3,39| 3,28

9 | 512| 426 3.86| 3,63| 348 3,37| 3,29 3,23 3,18 3,07
10 | 496 4,10] 3,71| 348| 3,33 322/ 3,14| 3,07| 3,02| 2,91
1t | 4,84 398 3,59| 336| 320| 3,090] 3,00 295 29| 2,79
12 | 475| 3,88] 3,49| 326! 3,11} 3,00] 2,91 2,85| 2,80| 2,69
13 | 467| 380 3,41 3,18 3,02 2,92| 2,83| 2,77 2,71| 2,60
14 | 460| 3,74| 334 3,11 296| 2,85 2,76| 2,70 2,65| 2,53
15 | 4,54| 3,68| 3,29 3,06| 290 2,79{ 2,71| 2,64| 2,59| 2,48
16 | 4,49| 3,63| 324| 301 2,85} 2,74] 2,66 2,50| 2,54| 2,42
17 | 445| 3.59| 320 2,96| 2,81 2,70] 2,61 2,55| 2,49| 2,38
18 | 441 355| 3,16] 2,93| 2,77 2,66] 2,58] 2,51| 2,46 2,34
19 | 438| 3,52| 3,13 2,90| 2,74| 2,63| 2,54 2,48| 2.42| 231
20 | 435 3,49 3,00| 2,87] 2,71 2,60 2,51] 2,45| 2,39| 2,28
21 | 432| 347 3,07| 2,84 2,68 2,57| 2,49 242| 237| 2,25
22 | 430 3.44| 3,05 2,82| 2,66 2,55] 2,46| 2,40 2,34| 2,23
23 | 428 3,42 3,03] 2,80] 2,64 2,531 244 2.38] 2,32 2,20
24 | 426 340 3,01 2,78 2,62 2,51 2.42| 2,36 2,30| 2,18
25 | 424 338| 2,99 2,76| 2,60 2,49] 2,40} 234} 228| 2,16
26 | 422 337 298| 2,74| 2,59 2,47| 239 2,32] 2,27| 2,15
27 | 421 335] 296] 2,73 2,57 246 2371 2,30 225| 2,13
28 | 420 334 295| 2,71] 2,56 2,44 236| 2,29 2,24 2,12
29 | 418 333| 293| 2,70] 2,54 2,43| 2,35| 2,28 2,22 2,10
30 | 4,17] 3,32 292| 2,69| 2,53| 242 233| 2.27| 2,21 2,09
40 | 4,08 323| 2,84| 2,61 2,45| 2,34 2,25| 2,18 2,12| 2,00
60 | 4,00] 3,15 2,76| 2,52 237| 2,25 2,17| 2,10} 2,04| 1,92
120 | 392 3,07 2.68| 245 229 2,17| 2,09| 2,02} 1,96 1,83
o | 384| 2,99 2,60| 2,37] 2,211 2,09| 2,01| 1,94] 1,88] 1,75
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semi-, [69)
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