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Abstract  
 

     In this article we answer the question  "How is it 

possible to realize all scales x
α
  (for each αR)  on 

one slide rule?",  raised in our previous article
1
. We 

describe here the general zooming technique with a 

thoroughful elementary and higher mathematical 

analysis and explanation, but the Reader is allowed to 

skip to the final solution in the last section, in case 

she or he does not want to get familiar with the "soul" 

of slide rules.  

 

 

1  The f irst  s teps  

 

     The principle of any (old or new) slide rule is
1
, 

that we write each value tR (real number) on a 

strip at the (geometric) distance  d=f(t)  from the 

left hand end of the scale, which we always denote 

by S1 , and where f(t) is a strictly monotonic 

function (increasing or decreasing). A movement 

of the slide results the geometric distance addition  

d3=d1+d2  which implies  
 

  f(t3) = f(t1) + f(t2) ,         (1)  
 

assuming that both the stator and the slide contain 

the same function f(t) .  Traditional slide rules 

contain f(t)=log(t) which gives  log(t3) = log(t1)+ 

log(t2) i.e. t3=t1t2 (the multiplication).  In our 

present article f(t)=t
α
 which results

0
  

 

   (t3)
α
 = (t1)

α
 +(t2)

α
    i.e.   𝑡3 =  𝑡1

𝛼 + 𝑡2
𝛼𝛼

 .         (2)  
 

(Our former article
1
 contains many applications of 

(2), and a more general theory of two variable 

functions on slide rules.)  

     In the present article we deal with (all) the 

functions
0
  f(t)=t

α
  for each possible exponent αR 

(real number).  For  α=1  we have the ordinary rulers 

or measuring tapes with an equidistant scale ("inch 

by inch"), since  d=f(t)=t .  For  α=-1  and  α=2  the 

scales can be seen in our previous article
1
 and in the 

interactive link
3
,  they are called  "reciprocal"  and  

"quadratic" scales
7
. These three examples are 

different from each other, so the Reader might pick a 

pencil and paper, and may wish to sketch some more 

scales, like  t
1/3

 =  𝑡
3

 ,  t
1/2

 =  𝑡 ,  t
3/2

 =  𝑡3 ,  t
3
 , etc.  

Negative exponents are a little bit harder, we have to 

be more careful when  α<0. Or, you can use our 

Javascript program
6
. 

     Now, place these scales on our table. Let they be 

parallel to the x axis, and put the starting point  S1  of 

each scale to the y axis at height y=α , i.e. at the point 

(0,α), as it is shown in Figure 1.  

     Now, follow the orbit or trajectory of a specific 

value of t, let us say  t=2. In each scale the mark t has 

another distance from  S1  (the y axis), this distance is 

growing when we increase the exponent α.  After the 

scales for all αR are put together, the orbits of 

different marked values t form nice curves, as shown 

in Figure 2. For example, the "orbit" of the value 

t=2  is marked at heigh (on the scales)  α = -2, -1.5, -

1, +0.5, +1.0, +1.5 and +2.0 in Figure 2.  Of course 

the other exponents α  (α<-2.2 or +2.2<α)  could be 

drawn on this figure, too, depending on the size of 

the paper.  In general it is true, that on a finite paper 

we can not draw all the exponents αR, but at least 

we have drawn infinitely many of them on Figure 2. 

     Note: do not consider the numbers on the x axis as 

orbits: these numbers show the geometric distances 

from the y axis. Look: the scale at α=1 is the same as 

the numbers on the x axis because  d=t
1
=t  for each 

tR  and  x=d  on the x axis.  The starting point S1 of 

each scale is on the y axis, since  d=0
α
=0  for each 

exponent αR (excluding α=0 since 0
0
 is 

meaningless).  Another interesting fact is the point 

(1;0) of the coordinate system: all orbits go through 

this point. This fact is clear from the equality  d=t
0
=1  

for  tR.  

 

 



 

 

 
 

FIGURE 1.  Some Scales x
α   for  -2.2α2.2  

 

 

    Now, how to construct and understand these nice 

orbits on Figure 2 ? They look very similar to the 

graphs of the functions  y=ht(x) ... hm, let us think 

... perhaps logarithms?  For understanding this 

phenomenon, first let us use the letter x instead of d 

and y instead of α since they are on the axes x and 

y. Now, the points of the red line, marked by t=2 on 

Figure 2 satisfy the equality, in general  
 

  x = 2
y
            (3) 

 

(instead of d=2
α
),  and in the usual form  (solving 

for y) we have  
 

  y = log2 (x)           (4) 

and similarly for all  tR  (t1)  
 

  y = logt (x) .          (5) 

 

 

 



 

 

 

FIGURE 2.  All the Scales x
α
   for  -2.2α2.2  

 

 

 

     Yes, the orbits in Figure 2 are the graphs of the 

logarithmic functions of different bases!  However, 

intersecting with any horizontal line y=α we get the 

scale "t
α
".  This also explains, that why are the 

orbits for negative α reflections of the others for 

positive α, marked by t and  
1

𝑡
 : we have 𝑡−𝑦 =  

1

𝑡
 

𝑦

 , 

or, equivalently  
 

    log1

𝑡

 𝑥 =
ln(𝑥)

𝑙𝑛  1/𝑡 
=

ln(𝑥)

−𝑙𝑛 𝑡 
= − log𝑡 𝑥          (6) 

 

    During this long discussion we forget to observe, 

that our solution has already been done: it can be 

seen on Figure 2 !   How to use it?  

     So, each scale t
α
 for any αR  (-2.2α+2.2) can 

be found on Figure 2 if we meet the orbits with the 

horizontal line y=α . To make a working slide rule, 

stick one copy of Figure 2 onto the stator and another 

copy of the same size on the slide.  Choose an α and 

mark the same horizontal lines  y=α  on both copies 

of Figure 2, that is, the same scales  t
α
  on the stator 

and the slide. Perhaps two additional horizontal 

hairlines in the suitable distance would be helpful 

finding the same scales on the stator and on the slide.   

Now, use these two scales as usual to compute  t3
α
 = 

t1
α
 + t2

α
 ,  or in other form  𝑡3 =  𝑡1

𝛼 + 𝑡2
𝛼𝛼

 .  If you 

feel the scale on Figure 2 and the resulting slide rule 

too wide, we may suggest you to stick it onto the 

surface of two cylinders and to roll them always to 

pop up above the desired part: corresponding to your 

α, as it has been realized with Napier's bones
4
.  

     The only matter is, that some scales (for small 

α) are short, and the numbers on it are too dense, 

hard to use them with old eyes. Other scales (for 

large α) contain small numbers only, even medium 

t values do not fit on them.  In the following 

sections we zoom the scales horizontally in and out 

for equalizing them. Think on independent rubber 

strips for each scale t
α
 . Clearly more dense scales 



 

 

will be zoomed by a higher factor. Since we also 

want to preserve the nice smooth shape of orbits on 

Figure 2, the zooming factor must be a continuous 

function of α .  

 

2  Linear  transformat ions   

 

     Recall the connection  d=f(t)  and its role in the 

equality f(t3)=f(t1)+f(t2) from the first paragraph of 

the previous section. What happens, if we zoom 

and translate the scale to  
 

  d = cf(t) + b          (7) 
 

for some real numbers c,bR, c0? Since we move 

the slide freely, b is unimportant, no difference if 

b=0. (For b0 the scale itself with its starting point 

S1 is to be translated to the left or to the right, 

according to the sign of b.)  Next,  d3=d1+d2  is 

equivalent to  cf(t3)=cf(t1)+cf(t2) ,  i.e. to the 

original  f(t3)=f(t1)+f(t2) . Finally: nothing 

happened! Such modifications of the scale/function  

f(t)  to  cf(t)+b  are called linear transformations.  

 

3  Adjust ing  the sca les  

 

     As we indicated at the end of Section 1, we want 

to apply linear transformations for each scales t
α
  (at 

height y=α). The new scales will be, according to (7)  
 

  x = cα  t
α
 + bα          (8) 

 

since  x=d  and  f(t)=t
α
 .  In (8) cα and bα are intended 

to be different for each αR. However, for 

preserving the nice, continuous shape of the orbits t
α
 

on Figure 2,  cα and bα must be suitable continuous 

functions of α , but independent of any other 

variables (as x and t), and we also must have  0<cα .  

     Unlike (3), the equality (8) can not be solved for 

α, which means, that we can not use the learned 

explicit form y=h(x) of functions. Instead, we have to 

switch to parametric plot of form [x,y]. For any fixed 

tR  the equality (8) means the parametric curve  
 

  [cαt
α
+bα , α] ,    αR (9) 

 

where αR is the parameter of the curve, running the 

desired interval,  -2.2α+2.2  in our case. For each 

tR we get different curves.  

     Recall, that we also need cα be a decreasing 

function of α, even possibly  
 

 limα0 cα =     and    limα+ cα = 0 .    (10)  

and  

 cα>1 for |α|<1   and   cα<1 for 1<|α|     (11)  
 

    In what follows, let us consider the case 0α only.  

(Well, the case α=0 will have a further surprise.)  

Since we want to print all the scales for all α , we are 

not allowed to plan separate scales for large and 

small numbers as in our previous article
2
. 

     Let us observe further, that the (left hand) starting 

point S1 of our scales remains on the y scale only 

when bα=0. The S1 points are important, since we can 

not use any scale without its own S1 , marked on the 

left on the scale, too! However, sticking to bα=0 

(equivalently S1 on the y axis) for any α , only small 

numbers t will be visible on the scales for small α 

(e.g. for α<1), while for larger α  (e.g. 1< α)  we can 

put only larger numbers t on the scale, by (10) and 

(11), as it can be seen on Figure 3. Figure 3 has a 

further speaciality:   cα = 10
1-α

   has been chosen to 

have the value 10 on all the scales on the same place  

(the trajectory of 10 is a straight vertical line).  

     The other possibility is to drop the requirement 

bα=0 , i.e. S1 on the y axis. For most functions bα and 

cα the orbits may bend in various manner
5
, but by 

suitable bα and cα we may fix (any) two trajectories 

successfully. In Figure 4 we see the functions  
 

   
𝑡𝛼−1

10𝛼−1
∙ 9 + 1 , 𝛼  ,         (12)  

 

that is  cα = 
9

10𝛼−1
  and  bα = 1- cα = 1- 

9

10𝛼−1
 .  It is a 

pity that the brown trajectory of 0 = S1 goes away for 

0α
1
/2 , so in a short slide rule we can not use these 

scales. But, on the contrary, for 
1
/2α we have nice 

scales. Even, look at the  "x axis", the scale for α=0 : 

it is "similar" to the logarithmic scales C and D of 

traditional slide rules! More precisely the scale for 

α=0 is, in fact, a real logarithmic scale,  identical to C 

and D ! This is because of the mathematical theorems  
 

lim𝛼→0
𝑡𝛼−1

𝛼
= ln(𝑡)   and   lim𝛼→0

𝑡𝛼−1

10𝛼−1
= log10(𝑡)  

            (13) 
 

Since for all bα and cα the scale for α=1 remains an 

equidistant one, the slide rule on Figure 4 is useful 

for addition, multiplication (all the four basic 

operations), and for the new task  𝑡3 =  𝑡1
𝛼 + 𝑡2

𝛼𝛼
 .  

     It is a great advantage to have also multiplication 

(log)  scale on our slide rule: for example we can 

easily calculate the geometric mean of any numbers: 

first we multiply the numbers  a1a2...an , and then 

the scale  α=1/n  calculates us the n-th root of this 

product!  

     Finally, let us remark, that the requirement "the 

orbit of 1 remain a straight line " is equivalent to  
 

  bα = 1- cα .         (14) 
 

     We have tried out several functions cα and bα by 

theoretical investigations and computer graphic, the 

Reader is allowed to visit and choose some of our 

experiments on our webpage
5
. 

 

 



 

 

 
FIGURE 3.  cα = 10

1-α
 ,   bα =0  

 

 

 

FIGURE 4.  cα = 
9

10𝛼−1
 ,   bα = 1- cα ,     ### 10-.png, 80% ###  

 

 

4   Other  inf ini te  sca le  famil ies  
 

     Many other scale-families can be drawn on a 

single slide rule. For example, the distribution 

functions  F(x) = 1-e
-x

  (see Figure 5) are often used 

in probability theory. Two copies of the diagram in 

Figure 5 could be used just as we described in 

Section 1.  Before it some  (both theoretical and 

practical)  adjusting are advisable, similar to ones in 

Sections 2 and 3.  

 

 



 

 

 
 

FIGURE 5. The functions  F(x) = 1-e
-x

   
### OneScal-exp-170524a.png ###  
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0. Though we talked about  "Scales x
α
"  in the title and in the Abstract, from now we have to change their names to 
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α
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7. Editor's comment courtesy Otto van Poelje: Two examples exist of slide rules with the "QuadPlus" (x
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