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Note:  
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□  denotes the end of theorems, proofs, remarks, etc.,  
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0. Prerequisites  

 
Elementary combintorics and counting techniques.  
 

     Recall and repeat your knowledge about combinatorics from secondary school:  permuta-

tions, variations, combinations, factorials, the binomial coefficients ("binomiális együtthatók")  
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and their basic properties, the Pascal triangle, Newton's binomial theorem.  The above formula 

is defined for all natural numbers n,kN .  For n<k  the binomial coefficients has value 0.  It is 

read as  "n choose k"  but in Hungarian  "n alatt k".  

   You may read  https://en.wikipedia.org/wiki/Binomial_theorem ,  and you can also use my 

booklet (in Hungarian) on my webpage  http://math.uni-pannon.hu/~szalkai/Komb-elemei.pdf   

   You must practice elementary counting problems, since problems of this type are unbeliev-

able hard!  

   You certainly know the die (plural: dice, "kocka,kockák") having 6 faces ("lap") and dots on 

it.  Moreover, you must be familiar also with the  mathematical  background of the  Hungarian  

and French cards, please read the following subsection carefully. However, you are forbidden  

(at least before your successful exam)  to enter into any gambling with dice or cards !!! !!!  

 

The decks of "Hungarian" and "French" cards  
 

("Magyar és Francia kártyák")  
 

     Most of the foreign literature calls the "Magyar" cards to "German" cards [m1].  However, 

some years ago it was proved by historicans, that this set of figures was invented and produ-

ced first in Hungary in 1835 by József Schneider (see front and back cover). More history is 

included at the end of this subsection.   

     Mathematically both decks/sets of cards ("kártyapaklik") contain of four suits/colors ("szí-

nek"),  8 and 13 figures/characters ("figura"), respectively, in each suit, so they can be arran-

ged in a matrix form (see back cover). So, the Magyar kártya (deck) contains of  4*8=32 cards 

while there are  4*13=52 cards in the French set. The names of the suits is (mathematically) 

not so important, some new edition uses simply red, yellow, green, blue ... colors.  
 

   The real Magyar suits are:  
 

   ,      ,      ,   
 

and their names and French equivalents are, in order ([m2]):  

   le gland  = acorns ("makk")  corresponds to  trèfle   = clovers = clubs    =  ♣  ("treff"),  

   la feuille = leaves  ("zöld")    corresponds to  pique   = pikes = spades     =  ♠  ("pikk"),   

   le grelot  = bells    ("tök")      corresponds to  carreau = tiles = diamonds =  ♦  ("káró"),   

   le cœur   = hearts  ("piros")   corresponds to  cœur    = hearts                  =  ♥  ("kőr").  

The German names are   Eichel,   Grün oder Blatt oder Laub,   Schelle oder Schell,   Herz.  
 

The names of the Magyar figures are:  VII, VIII, IX, X,   alsó ("under=inferior=sergeant"),   

felső ("over=superior=officer"),   király ("king"),   ász vagy disznó  ("ass=pig").  

https://en.wikipedia.org/wiki/Binomial_theorem
http://math.uni-pannon.hu/~szalkai/Komb-elemei.pdf
https://fr.wikipedia.org/wiki/Tr%C3%A8fle_(carte_%C3%A0_jouer)
https://fr.wikipedia.org/wiki/Pique_(carte_%C3%A0_jouer)
https://fr.wikipedia.org/wiki/Carreau_(carte_%C3%A0_jouer)
https://fr.wikipedia.org/wiki/C%C5%93ur_(carte_%C3%A0_jouer)
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     The figures on the cards (see back cover) are famous swiss heros from the 14th century, 

Friedrich Schiller wrote a famous drama about the story in 1804. The drama's first Hungarian 

performance was in 1833 and became shortly popular.  Because, in the early 19th century the 

passive resistance in Hungary, against the suppression of the Austrian Empire (the Habsburgs) 

was strengthening. The Swiss managed a successful uprising against the same Habsburgs, the 

portrait of their leader, Tell Vilmos ("William Tell") [m3]  can be found on the card  "makk 

felső" (search for it).  The swiss characters from the drama, instead of Hngarian heros, were 

chosen to avoid censorship at that time of the Hungarian opposition to Habsburg rule. The 

story, after all, was about a successful revolt against the Habsburgs.   

     We have to add that the interesting story of Tell Vilmos is possibly a legend, modern scien-

tific historians proved it, though there many early middle age similar legends  (e.g. in Dutch-

land)  and some decade ago serious punishment were taken in Switzerland to persons who de-

nied the existence of Guglielm Tell.  However, the successful uprising against the Habsburgs 

between 1308 and 1315 is a valid historical fact (Battle of Morgarten, "Morgarteni csata" 

[m4]).  

   Interesting also, that the Magyar kártya is sometimes called Swiss cards ("Svájci kártya") 

due to the nationality of the characters but this deck of cards is not used in Switzerland.   

   For Hungarian national card games see (after your exam!)    

Ulti     https://en.wikipedia.org/wiki/Ulti ,  

Snapszer    https://en.wikipedia.org/wiki/Sixty-six_(card_game) ,  

Huszonegyes   https://hu.wikipedia.org/wiki/Huszonegyes ,  

   similar to    https://en.wikipedia.org/wiki/Blackjack ,  

Zsírozás (hetes)  https://en.wikipedia.org/wiki/Sedma ,   

Makaó    https://en.wikipedia.org/wiki/Macau_(card_game) .  

 

References:  
 

[m1]   https://en.wikipedia.org/wiki/German_playing_cards   

[m2]   jeu de cartes allemand   

[m3]   https://en.wikipedia.org/wiki/William_Tell   

[m4]   https://en.wikipedia.org/wiki/Battle_of_Morgarten   

 

 

 

https://en.wikipedia.org/wiki/Friedrich_Schiller
https://en.wikipedia.org/wiki/William_Tell
https://en.wikipedia.org/wiki/Habsburg
https://en.wikipedia.org/wiki/Ulti
https://en.wikipedia.org/wiki/Sixty-six_(card_game)
https://hu.wikipedia.org/wiki/Huszonegyes
https://en.wikipedia.org/wiki/Blackjack
https://en.wikipedia.org/wiki/Sedma
https://en.wikipedia.org/wiki/Macau_(card_game)
https://en.wikipedia.org/wiki/German_playing_cards
https://fr.wikipedia.org/wiki/Jeu_de_cartes_allemand
https://en.wikipedia.org/wiki/William_Tell
https://en.wikipedia.org/wiki/Battle_of_Morgarten
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1. Events and the sample space  
 

("Események és az eseménytér")  

 

Basic notions, definitions  
 

1.0. Definitions 

Experiment ("kísérlet"):  active or passive observing a phenomenom.  

Deterministic (=determined) experiment: the outcome (result) is uniquely determined by 

the preliminary conditions  (the same conditions => the same result).  

Stochastic (=random, "véletlen") experiment:  the outcome is not determined by the condi-

tions:  repeating the experiment under the same conditions usually we get (randomly) another 

results.  

Examples: throwing a die or more dice, coins, picking cards from a deck, measuring any phy-

sical quantity (temperature, speed, weight, etc.), life-time of a unit or an animal or of people, 

lottery, etc.  

 

1.1. Definitions 

Event ("esemény"): a (precisely described) outcome of an experiment.  

Elementary event ("elemi esemény"):  can not be splitted to smaller exents. 

Compound (or complex, "összetett") events  are build from elementary events.  

Sample space ("eseménytér"):  the set of all elementary events, it is usually denoted by   

(other books use H or T or other letter).   is also called ground set ("alaphalmaz").  
 

   Examples: elementary events are:  "rolling one die I got 3" ,  "rolling three dice I got 3,2,1",  

"I picked the red king card" ,    "the temperature is (exactly) 23
o
C" ,   . . .  

   The sample spaces in the above examples are:     die={1,2,3,4,5,6},   

3dice = {(1,1,1),(1,1,2),(1,2,1),...,(3,2,1),...,(6,6,6)},     cards={the cards of the deck},   

temp = R (set of all real numbers),   

   Compound events are, for example:   "rolling one die I got an odd number",  "I picked a king 

card",   "rolling three dice I got equal points",   "the temperature is between  23 and 25 
o
C " .  

 

1.2. Warning:  in probability theory you are not allowed to say "three unique dice" or similar, 

since in the nature all objects (dice, coins, etc.) are different and we want to study the nature! 

That is why, for example the sample set  3dice  contains of  6
3
 elements, i.e.  | 3dice| =  6

3
 .  

 

Observe, that elementary events are subsets of  while compound events are subsets of it.  

   The elementary events in the above examples are:     die = "3"  die ,    

3dice = (3,2,1)  3dice ,     cards = "red king"  cards ,     temp = 23  temp ,    . . . ,    

   the above compound events are:     Adie = {1,3,5}  die ,    

A3die = { (1,1,1), (2,2,2), (3,3,3), (4,4,4), (5,5,5), (6,6,6) }  die ,   

Acards = { spade king , heart king , diamond king , club king }  cards ,   

Atemp = [23,25]  temp ,    . . . ,   

 

Now, the general (abstract) mathematical definition is the following:  
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1.3. Definition  Any nonempty set   is called a sample space, any subset A of  , i.e. A  

is called an event  and  any element  ω  (or x ) is called an elementary event in  .  

   Note, that any elementary event  ω   can (must) be identified to the one element subset 

(singleton,"egyerlemű halmaz")    {ω}  .           □  
 

1.4. Note  that the result (outcome, "végeredmény")  of an experiment  ("kísérlet")  is always 

an element ("elem")  ω .  We say that  the event A is satisfied/occured  ("bekövetkezett")   

if   ωA .                □ 
 

1.5. Definition   The set of all events is the set of all subsets of   , which is called the power 

set ("hatványhalmaz")  of  , and is denoted by  P( ),  i.e.   P( ) := {A : A  } .     □  
 

     The notions below are obvious but we have to think over their mathematical background. 

Moreover, later we give generalizations of them.   
 

1.6. Definitions 

   A  certain or sure event  ("biztos esemény")  must occur in every case, i.e. it must contain 

all element ω .  Clearly there is only one such subset of   :   himself  (the ground set).  

So,   is the only certain event. 

   An  impossible event  ("lehetetlen esemény")  must not occur in any case, i.e. it must not 

contain any element ω .  Clearly there is only one such subset of   :   the empty set   

("üres halmaz").   So,    is the only impossible event.  

   Excluding  ("kizáró")  events A and B may not occur at the same time, i.e. for any outcome  

ω  one of them must not occur,  that is either  ωA or ωB.  This means that excluding 

events must be disjoint ("diszjunkt") sets: AB= .  Clearly disjoint sets always represent 

excluding events.  (See also page 13.)  

   In which case can we say that the event  A implies B  ("A maga után vonja B-t"),  or  B 

follows from A  ("B következik A-ból") ?  Clearly, for any outcome of the experiment, i.e. for 

each ω , in the case ωA we must also have ωB.  This is exactly when  AB , i.e. A is a 

subset ("részhalmaz") of B.  (See also page 13.)             □  

 

     From now on please keep using the mathematical dictionary ("szótár") in the Appendix 

("Függelék")  for better understanding.  

 

Operations with events (algebra of the events) 
 

("műveletek eseményekkel, eseményalgebra") 

 

     Please keep in mind that the (so called) events in probability theory are, in fact, subsets of a 

given ground set  ,  we are always allowed to talk about (sub)sets, union ("únió"), intersec-

tion ("metszet") and complement ("komplementer ") instead of the following new terms. See 

also the Appendix.  

 

1.7. Definition: The "new" operations on events are, for eny events A,B  :  

   sum or addition ("összeg")   A+B :=  AB = union,  

   product ("szorzat")    AB  :=  AB = intersection,  
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   difference or substraction ("különbség")  A-B =   A\B   = difference,  

   negation ("tagadás") of A       A    =  A       = complement.  

That is:  

   the event  A+B  occurs exatly when either A or B (at least one of them) occurs, 

   the event  AB  occurs exatly when both A or B occur,  

   the event  A-B  occurs exatly when A occurs but B does not,  

   the event   A     occurs exatly when A does not occur.      □  

 

1.8. Notes: i)  the difference can be expressed as  A-B = AB  = AB ,  so we need , ,    

only .  

   ii)  Do not mix the above difference A-B with the symmetric difference ("szimmetrikus 

differencia/különbség")    AB := (A\B)(B\A) .      □  

 

In this summary we use mainly the traditional set theoretical terms and notaions. We advice to 

the Reader to use and practice both  (set- and probability theoretical)  variants all the time.  

 

The properties of the operations  
 

     On the basis of the above remarks we have to repeat the properties of the well known set 

theoretical operations.  We advice to the Readers to translate all these equalities to the new 

terminology and symbols.  

 
The axioms of Boolean algebras  
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1.9. Notes: i)  The term Boolean algebra is a general notion: it includes not only the set   , 

 ,     and  probability + ,     operations, but the logical , ,  , the number theoretical  

scm , gcd ("lkkt, lnko"),  N/x  operations, and many more.  

ii)  The above axioms have many consequences, for example the well known  De Morgan-

rules:   

   BABA     és   BABA   .          □  

 

 

 

 

2. The relative frequency and the probability  
 

("A relatív gyakoriság és a valószínűség") 

 

2.0. Definition.  Fix an experiment and a possible event A .  Repeat this experiment n many 

times and denote k the number of occurences of A during these n many experiments (clearly 

kn).  In this case k is called the (absolute) frequency ("gyakoriság")  of A , while the propor-

tion   k/n  is the relative frequency ("relatív gyakoriság")  of A .           □ 

 

     Practical experiences  show that after fixing an experiment and a possible event A , the re-

lative frequency  k/n  is very close to a fixed, theoretical number, say p , which number is a 

characteristic of A .  Moreover the higher is n the closer is k/n to p .  This does not contradict 

to the (again practical)  phenomenon that  k/n  always may have large fluctuations around  p , 

even for large n .  This phenomenon will be proved and explained by Bernoulli's Theorem in 

Section 10 Law of large numbers .  

     This theoretical number p is called the probability ("valószínűség") of the event of A and 

is denoted by P(A).  However, this is only a naive definition, the precise mathematical defini-

tion follows below.  

 

2.1. Definition:  The axioms of the probability ("valószínűség")  by Kolmogorov.  

   Any P is a probability (-measure, "mérték")  on the sample set  if :  

 (o)   P :  P()  R   is a function,  i.e.  P(A)R is a real number for any A ,  

  (i)   0  P(A)  1  for any A  ,  

 (ii)   P()=0 ,   P()=1 ,  

(iii)   )(
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   if  the events pairwise ("páronként") exclude each other, i.e.  if  Ai Aj =   for  ij .       □ 

 

2.2. Corollaries of the axioms:  

  i)   )()()()( BAPBPAPBAP      for any A,B  ,  

 ii)   P(AB) = P(A)+P(B)    (additivity, "additivitás")   only if   AB=  or  AB  
 

that is,  if  A and B exclude each other,  

iii)   )(1)( APAP    ,  
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iv)   )()()\( BAPAPBAP      for any A,B  , 

 v)   )()()\( BPAPBAP         only if   AB  ,   i.e.  B implies A , 

vi)   )()( APBP    for AB    (monotonicity, "monotonitás"),  

vii)   )()()()()()()()( CBAPCAPCBPBAPCPBPAPCBAP    
 

(logical sieve, "logikai szitaformula")    for any  A,B  .             □  

 

2.3. Remark:  Observe that all the above axioms and properties are very similar to the proper-

ties of the area ("terület") of planar regions (figures) and to the properties of the volume ("tér-

fogat")  of 3D bodies.  This is really so, and is not surprising, since all these notions (probabi-

lity, area, volume, etc.)  are measures ("mértékek")  which, in some view of point, measure 

the size of the set A.  So, we suggest to the Readers to substitute (in her/his mind) area  TA  

instead of  P(A)  for easier understanding!  
 

     In the following we extend Definition 1.6.  

 

2.4. Definition:   For any events (subsets)  A,B   we say:  

   A  is a certain event  if   P(A)=1 ,  

   A  is an impossible event  if   P(A)=0 , 

   A and B  excluding each other  if   P(AB)=0 .   □  

 

2.5. Remark:  In everyday speech the words chance ("esély") and probability ("valószínű-

ség") are synonyms, however in some probability and statistical theories these words mean 

completely different quantities: if p is the probability and q=1-p , then the chance is p/q .      □ 

 

 

 

 

3. Calculating the probability 

 

     Now we introduce only the two simplest ways of calculating the probability. Keep in mind, 

that the main purpose of all the present summary and semester is to calculate the probability. 

 

3.1. Combinatorial (classic) random field 
 

("kombinatorikai/klasszikus valószínűségi mező")  

 

     If  is a finite set and each ω elementary event has equal probability  (e.g. rolling a fair 

die or pulling a card from a deck, etc.),  then  

 - first we have  P({ω}) = 
n

1
   for each ω ,   where  n=||  is the size of  ,  

 - second,     












""

""
:)(

összes

kedvező

total

rysatisfactoA
AP      for  all  A  .          □ 

Combinatorial problems, in general, are difficult since counting |A| and | | are not so easy. 

This means that you have to practice a lot of combinatorial problems.  
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Geometric probability field  
 

("geometriai valószínűségi mező"),  

 

    In the case when   is, or can be represented with, such a subset of the real line or the plane 

or the space, where each elementary event {ω} has "the same" probability, then for every 

event / subset  A   we have  

     
)(

)(
)(





 A
AP           (*)  

 

where (A) and ( ) denote the length ("hossz"), area ("terület") or volume ("térfogat")  of 

the 1-, 2- or 3- dimensional sets A and   .    □  
 

3.3 Remarks:  Having the "same probability" is hard to check both in the reality and in the 

theory. For example, if we shoot to a target  , the probability of hitting a specific geometrical 

point ω is zero.  On the other hand, the formula (*) suggest that P(A) must depend on the 

area of A and not the placement of it. For example, if shooting to the target   we must ensure 

that our shots spread out uniformly ("egyenletesen") on all the parts of   , which is not the 

case for an olympic champion.  Besides, each shot ω must hit the target   since each ω is an 

element of the ground set  .  In each application these assumption must be checked!  

     Do not confuse the  geometrical probability  with the  geometrical distribution  (see 

Section 7).      □  

 

3.4. Examples:  -  waiting for the bus if I just accidently go out to the bus stop,  

 - target throwing  (supposing  I shoot on the target randomly, I am not a professional target 

thrower , and all my shots hit the target) . 

   There are many problems and examples of type  Rendez-vous in the library  ("Randevú a 

könyvtárban"),  in which   is, in fact, not present in the problem, it is only a model for the 

solution.  

 

 

 

 

4. Conditional probability, independence of events 
 

("Feltételes valószínűség, események függetlensége") 

 

The conditional probability  

 

     Suppose that something has been happened before the event A, denote this former event by 

B .  How much effect the event B may have to A ?  An extensive analyzation of the relative 

frequencies leds us to the following mathematical defintion:  

 

4.1. Definition:  If the event B is not impossible, ie P(B)>0 , then the probability of the occu-

rence of A, supposing ("feltéve")  that B has already been occured, is :  
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)(

)(
)|(

BP

BAP
BAP


  .        (**)  

P(A|B) is called the conditional ("feltételes") probability of A, where B is the condition ("fel-

tétel").  The   (previous) probability P(A) is called  unconditional  ("feltétel nélküli")  proba-

bility.       □  

 

4.2. Remarks:  The conditional probability satisfies all the axioms and properties of the (un-

conditional) probability in the case the condition B is fixed.  

     This means that, the formulas, listed in 2.1 (o)-(iii)  and 2.2 i)- vii)  remain true, if instead 

of  P(...)  everywhere we write  P(...|B) .       □ 

 

     Naturally arises the following question:  In what measure  and in what direction does  B 

have effect ("befolyás")  to A ?  That is, we have to compare P(A|B) to P(A). This will be exa-

mined in this Section later.  

    After the multiplication of the equality (**) in 4.1 we obtain the following simple but im-

portant relation:  

 

4.3.Theorem of multiplication ("Szorzástétel"):   )()|()( BPBAPBAP   .          □  

 

4.4. Definition:  The events  B1,B2,...,Bn    form a complete system of events  ("teljes ese-

ményrendszer"),  if  they pairwise exclude each other  and  their union is the certain event, i.e. 

in formulas:  

   BiBj=       for any  ij ,   

and  

   B1  B2  ...  Bn =    
 

(or, in more general:  P(BiBj)=0  and  P(B1B2...Bn)=1.)  
 

In other branches of mathematics, a set system {B1,B2,...,Bn} with the above properties is also 

called  partition or division ("partíció / felosztás").  See also the illustration left below.        □ 
 

4.5. Theorem of the complete probability ("teljes valószínűség tétele"):  

Suppose that  {B1,B2,...,Bn}  forms a complete system of events  and  P(Bi)>0  for each  in . 

Then for every event  A   we have  

)()|()(
1

i

n

i

i BPBAPAP 


  

 

Proof:  Using the Theorem of multiplication  the above formula gives  

)()(
1





n

i

iBAPAP   

which clearly holds, since  

      
n

i

iBAA
1

  .              □  

 

     The following picture on the right illustrates the above ideas  (think again on the area in-

stead of P) : 
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       Complete system of events (partition)   Complete probability  
 

4.6. Example: In a factory the goods are produced in 3 shifts.  The 40% of the goods is prod-

uced in the I. shift, the 35% of them in the II. shift, and the 25% of them in the III. shift.  The 

probability of the waste products in the I. shift is  0.05, in the II. shift is 0.06, in the III. shift is  

0.07.  If we choose a good randomly, how much is the probability of choosing a waste 

product?  

     Solution:  Let  B1, B2, B3  denote the events that the good was produced in the shift I,...,III, 

and let W be the event that the good is a waste ("selejt")  one.  The conditions of the example 

say P(B1)=0.4, P(B2)=0.35, P(B3)=0.25  (checking: P(B1)+P(B2)+P(B3)=0.4+0.35+0.25=1) .  

   Further  P(W|B1)=0.05,  P(W|B2)=0.06 and P(W|B1)=0.07. Now, using the Theorem of the 

Complete Probability we have:  
 

 P(W)  = P(W|B1)P(B1) + P(W|B2)P(B2) + P(W|B3)P(B3) =  
 

  = 0.05*0.4 + 0.06*0.35 + 0.07*0.25 =  0.0585 .            □ 
 

Inverse question:  If the randomly chosen product is waste, what is the probability that the I. 

or II. or III. shift produced it?  Who we have to blame for the waste product with the highest 

probability?  For example, III. shift produced waste products with the highest probability, but 

on the contrary, they make the less many products. The answer is in the following theorem.  

 

4.7. Bayes theorem (Inversion theorem, "megfordítási tétel"):  

     For every event  A,B  , assuming  P(A)>0  and  P(B)>0  we have  
 

)(

)()|(
)|(

AP

BPBAP
ABP


   .     □ 

Proof:  The theorem follows from the Theorem of multiplication:   
 

 P(B|A)P(A) = P(BA) = P(AB) = P(A|B)P(B)      and divide by P(A).          □ 

 

Continuation of Example 4.6  

   P(B1|W) = P(W|B1)P(B1)/P(W) = 0.05*0.4  /0.0585     0.341 880 ,  

   P(B2|W) = P(W|B2)P(B2)/P(W) = 0.06*0.35/0.0585    0.358 974 ,  

   P(B3|W) = P(W|B3)P(B3)/P(W) = 0.07*0.25/0.0585    0.299 145 ,   

which means that the largest amount of waste products was produced in the 2nd shift.  

(Check:  P(B1|W)+P(B2|W)+P(B3|W) = 1 .)  
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Clearly   P(A|B) = P(B|A) = 0   if the events A and B  exclude  each other (see page 6).  

Similarly   P(B|A) = 1   if   A  implies  B  (see page 6).  

 

 

The independence of events  
 

("Események függetlensége") 

 

     We have already mentioned the natural question: in what extent and in which direction the 

occurence of B does have an influence ("hatás") for the occurence of A ?  Obviously we have 

three main cases:  
 

   P(A|B) < P(A)   means that  B  weakens  ("gyengíti")  A ,  

   P(A|B) > P(A)   means that  B  strengthens  ("erősíti")  A ,  

   P(A|B) = P(A)   means that  B  does not have influence on A . 
 

4.8. Special cases:  We now rethink the notions in Definition 1.6. and 2.4.  on the basis of the 

formula in 4.1.:  

If  BA       then    1
)(

)(

)(

)(
)|( 




BP

BP

BP

BAP
BAP  ,   so B really implies A .  

If  BA=  then  0
)(

0

)(

)(
)|( 




BPBP

BAP
BAP  ,    so B really excludes A .          □  

 

4.9.Remark: It is an obvious requirement, that the events A and B can be independent ("füg-

getlenek")  only if none of them has any effect to the other, i.e.  
 

P(A|B) = P(A)    and    P(B|A) = P(B) . 
 

A short calculation (using the Theorem of multiplication) shows, that the above two equalities 

(together)  are equivalent to the below one.   

 

4.10. Definition:  The events A and B are  independent from each other  ("függetlenek egy-

mástól")   if and only if   
 

    )()()( BPAPBAP  .             □  

 

Let us emphasize, that the above equality can not be applied for any events A,B  but only 

(very)  special ones !  

     Additionally, we can use the above equality in our practice in two directions.   

     First,  if we can verify (in some physical or other way)  that the two events A and B are 

really independent (e.g. two dice has no effect to each other),  then we can use the above equa-

lity to determine  P(AB)   /i.e. reality  calculation/ .  

     Second,  if our calculations  (with a pocket calculator)  justify the above equality, then no 

doubt:  A and B must be considered to be independent   /i.e. calculations  reality/ !   

 

4.11. Statement:  If  1)(0  AP ,  1)(0  BP   and  A  and  B  are independent from each 

other,  then the pairs of events  A  and B ,  A and B  ,  A  and B    are also independent from 

each other.                   □  
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5. Random variables and their characteristics  
 

("Valószínűségi változók és jellemzőik") 

 

     In most of the experiments we are detecting not only the occurence of an event  (red, mis-

sing, frozen, exploided, etc.)  but we are measuring some quantity. However, measuring the 

same quantity (e.g. the mass of a chocholate bar) several times, we get different data, in gene-

ral, the alterations show random changes. The notion of (random) measuring is defined below.  

 

Random variables 
 

5.1. Definition:  The functions  ,  which assign real numbers to elementary events, are called 

random variables ("valószínűségi változók"),   r.v.  ("v.v.")  for short.   

In formulae:    can be any function   R:   .             □  

To memorize: an  r.v.  is the measured result of the experiment.  

 

Im() denotes the image or range  ("képhalmaz/értékkészlet"),  i.e.  the set of possible measu-

ring  outcomes/results  ("eredmények")  of the  r.v.   .  
 

     It is essential to learn that  r.v.  have two essentially different types. 

 

5.2. Definition: i)  The r.v.  is called  discrete (separated, "diszkrét/elkülönült")  if  it may 

have finite or countable/enumerable  ("megszámlálható/felsorolható")  many possible values, 

in other words its range can be written in form    Im()= {x1, x2, ... , xn, ... }    where  xi R  are 

the possible outcomes (of the measuring).  

   ii)   is called  continuous ("folytonos")  if its range contains an interval:   Im()  (a,b) .   □  
 

By Cantor's theorem no interval (a,b) is countable.  

 

     In learning probability theory it is very important to distinguish the above two types of r.v. 

Though, in the roots, they are the same phenomenon, but in the practice they have very diffe-

rent properties and formulas.  

 

5.2. Definition:  The  distribution ("eloszlás")  of a discrete  r.v.  is the set of the probabili-

ties    {p1, p2, ... , pn, ... }   where   pi :=P(=xi)   for i=1,2,...  and  Im()= {x1, x2, ... , xn, ... }.□ 

 

Keep in mind that no continuous  r.v. has distribution in the above sense.  

 

5.4. Statement:  Any sequence of real numbers  {p1, p2, ... , pn, ... }  is a distribution of a dis-

crete r.v. if and only if it fulfills the following axioms (fundamental properties):  

 (i)   0pi1 ,  

(ii)   p1+p2+...+pn+... = 1 .              □ 

 

The distribution function 
 

The following construction is valid both for discrete and continuous r.v.  Both the construc-

tion and its properties must be obvious.  
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5.5. Definiton:  For any r.v.    (either discrete or continuous)  the  (cumulative) distribution 

function  ("kumulatív/összegzési eloszlásfüggvény")  is:   
 

   RRF :      where     )(:)( xPxF    .             □  

 

5.6. Theorem:  The basic properties (axioms) of the distribution function are:  
 

  0)   F : R  R   and   Dom(F)=R ,  

  1)   1)(0  xF    for  xR ,  

  2)   F(x)   is monotone increasing,   i.e.  x1<x2  implies   F(x1)<F(x2) ,  
 

  3)   F(x)   is continous from left, i.e.   0)(lim
0

xxF
xx




    ("filled circles are on the right"),  

  4)   1)(lim 


xF
x

   and   0)(lim 


xF
x

 .           □ 

 

     Observe, that distribution functions of discrete r.v. are always build of horizontal (straight) 

line segments placed on increasing heights, so called step functions ("lépcsős függvények").  
 

     What’s the  distribution function  used for ?   With its help we can give quick answers for 

the following, frequently asked questions (FAQ), both for discrete and continuous r.v. :  

 

5.7. Theorem:  
 

   i)    )()( aFaP   ,  
 

  ii)    )(1)( aFaP   ,  
 

 iii)    P( )()() aPaFa    ,  
 

  iv)    P( )()(1) aPaFa    ,  
 

   v)    )()()( aFbFbaP   ,  
 

  vi)    )()()()( bPaFbFbaP    ,  
 

 vii)    )()()()( aPaFbFbaP    ,  
 

viii)    )()()()()( aPbPaFbFbaP    ,  
 

  ix)    )()(lim)( aFxFaP
ax




   .      □  

 

The density function 
 

Definiton 5.2 should be replaced by the following, matematically more accurate requirement. 

 

5.8. Definiton: The r.v.  is called  continous ("folytonos")  if there exist a function  f : RR  

for which (except at most finite many values tR):  






t

dxxftF )()(  

In this case f(x) is called a  density function ("sűrűségfüggvény")  for the r.v.  .  

   The  r.v.   and   have the  same distribution ("azonos eloszlásúak")  if their density func-

tions are equal:  f(x)=f(x)  for all xR at most finitely many exception.           □  
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   Let us emphasize that only continuous r.v. possesses a density function! The naming  density 

function  will be explained in Remark 5.15.    
 

5.9. Theorem:  The basic properties (axioms) of the density function are:  

 0)   f : RR   1)   0)( xf    2)   




 1)(xf  .      □  

 

5.10. Theorem: If RRf :  is a continous function (except at mot finitely many points) sa-

tisfying the three properties of Theorem 9, then there is a r.v.   for which  f(x)  is a density 

function.                    □  
 

     Let us see first the connection between the distibution and density functions, F(x) and f(x) 

in detail. 

 

5.11. Theorem:  (i)  If   is continous then F(x) is continous in each point  xR .  

  (ii)  If F(x) is continous and it is continously differentiable (except finite many points),  then 

there is a continous r.v.   that has distribution function exactly F(x) . 

 (iii)  F'(x) = f(x)   for all the points  xR  where the derivative  F'(x)  does exist.          □  
 

5.12. Theorem:  0)(  xP    for all the points  xR  where F(x) is continuous.          □  

 

What’s the f(x) density function used for ?  With its help we can give quick answers for the 

following, frequently asked questions (FAQ), but only for continuous r.v. :   

 

5.13. Theorem:  For any continuous r.v.    
 

 )()()()()()( aFbFbaPbaPbaPbaP    .         □  

 

     Now we summarize the most important formulas (FAQ) of this Section. 
 

5.14. Theorem: "Typical" questions and answers (FAQ)   ("tipikus kérdések és válaszok"):  
 

 P(ξ<b)  =   

b

f(x)dx  =  F(b) ,  
 

 P(a≤ξ)   =  


a
f(x)dx  =  1-F(a)  =  1- P(ξ<a) ,  

 

 P(a≤ξ<b)  =  
b

a
f(x)dx  =  F(b)-F(a)     (Newton-Leibniz rule ("szabály")) 

 

 P(ξ=b)  =  0   (for continuous r.v. ξ)  
 

 P(ξ≈c) = P(|ξ-c|<ε) = P(c-ε<ξ<c+ε) = F(c+ε)-F(c-ε) .             □ 

 

5.15. Remark:  Now we can answer why  f(x)  is called density function.  

     We must think on the horizontal real line (x axis) as the scale of the analogue measuring 

device ξ , and the height of the function f(x) at the point  a=x0  is proportionate to how many 

times the measuring ξ resulted x0 , i.e.   f(x0) ≈  P(ξ=x0).   More precisely:  
 

)(
)(

lim
0

af
a

aaaP

a









 .   
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The density function  

 

     Recall, that  discrete  r.v. do not have density functions, instead they have  histograms / 

column diagrams  ("Hisztogram/oszlopdiagram")  which,  however do not exist for continu-

ous r.v.   

     A histogram is a collection of bars at each point  xiIm(ξ)  of height  pi=P(ξ=xi) .  If ξ may 

have many possible values  xiIm(ξ) ,  which are dense on the x axis, then histograms look 

very similar to density functions.   (This connection can be justified using some more compli-

cated mathematics.)  

 

 
Histogram (column-diagram)  

 
 

 

Independence of random variables  

 

5.16. Definition:  The arbitrary  random variables  and  are called  independent ("függet-

lenek")  if for any numbers  x,y R  we have  
 

   )()()( yPxPyandxP     .           □  
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5.17. Theorem:  The discrete  r.v.  and  with Im()={ ,...., 21 xx } and Im()= { ...., 21 yy } are 

independent if and only if for any  i,jN  indices the following holds:  
 

   )()(),( jiji yPxPyxP     .           □  
 

Clearly the delimiters   "... and ..."   and   "... , ..."   in the above expressions have the same 

meaning.  
 

5.18. Theorem: The continuous  r.v.   and  with density functions )(xf , )(yg  resp. are in-

dependent if and only if for any  x,yR  real numbers the following holds for the second order 

partial differences:  

   )()(
),(2

ygxf
yx

yxP




 
            □  

 

 

 

 

6. Expected value, variance and dispersion  
 

("Várható érték, szórásnégyzet és szórás") 

 

     In general we make measurements several times for more accurate results, calculate  arith-

metical means/averages  ("számtani közép/átlag"),  count weights for repeated results. Let us 

see these habits in the theory.   

 

The mean or expected value 
 

6.1. Definition:  Let the  discrete  r.v.   have the range (possible outcomes)  { ,....1x }  with 

the distribution {p1,...}. Then the mean ("átlag") or expected value ("várható érték")  of   is 

defined as follows:  
 

 - if    has a finite range (n many), then  

i

n

i

i pxEM 



1

)()(   , 

 - if    has an infinite range, then  

i

i

i pxEM 





1

)()(    

assuming   




i

i

i px
1

 .                 □  

 

6.2. Definition:  For the continuous r.v.   with density function f(x) the mean ("átlag") or ex-

pected value ("várható érték")  of   is defined as follows:  






 dxxfxEM )()()(   

assuming   




 dxxfx )(  <   .               □  
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6.3. Remarks:  (i)  The older notation  E()  refers to the term ("szakkifejezés")  expected 

value  ("várt/várható érték"),  but in our days the better notation  M()  for the mean ("átlag") 

is also in use.  One can "expect" that after many measurements the results are very close, 

around the (arithmetical) mean. However, rolling a fair dice the mean is 3.5, and I do not think 

it is worth expecting to roll exactly 3.5 scores !  

   In (everyday) statistics we often hear about "expected life time at birth".  How can we expect 

the life time of a newborn baby looking at her/him?  Of course it is an average again.  

   (ii)  The empirical  (=practical (greek), "gyakorlati")  observation,  that measuring results 

are very close to the mean  are justified in rigorous mathematical tools in Theorem 10.4 Weak 

Law of Large Numbers ("Nagy számok gyenge törvénye ") of Chebyshev ("Csebisev").     □ 

 

6.4. Theorem:  The properties of the mean:  
 

   o)   M( )=M( )     if    and   have the same distribution,   
 

   i)   cM )(            if  c   (constant, "állandó"),  i.e.  the measuring device is sticked  

        ("beragadt a mérőműszer"),  

  ii)   baMbaM  )()(         for any fixed real numbers a,bR   (e.g. 
o
C and 

o
F),  

 

 iii)   )()()(  MMM     holds for any r.v.   and   ,  
 

  iv)   bMa  )(                        if  a b ,  i.e. the measuring is bounded ("korlátos"),  
 

   v)    )(0 M                             if  0  ,  
 

  vi)    )()()(  MMM         holds  only for independent  r.v.   and   .  
 

 vii)    If   n ,..., 21    are pairwise independent r.v., having the same distribution, then  

)( 1

1

 MnM
n

i

i 










     and     )( 1
1 



M
n

M

n

i

i





















   

viii)   For any continuous function  RRg :  ,  and discrete  r.v.    

i

i

i pxggM )())((
1






  ,  

and if   is continuous r.v., then 






 dxxfxggM )()())((   . 

 ix)  Especially for 2)( xxg   we have   i

i

i pxM 





1

22 )(    and   




 dxxfxM )()( 22  .        □  

     Clearly vii) above means that measuring several times and calculating averages results the 

same average. Compare this observation to iv) of Theorem 6.10.  

 

The variance and the dispersion 
 

     Many times we have experienced, that merely different datasets may result the same mean 

(e.g. marks in classrooms, fair and the {3,3,3,4,4,4} dice, etc.).   We will measure the "distan-

ce" or the "spread" ("szóródás") of the dataset below.   
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     The formula ))((  MM   gives always 0, the other formula ))((  MM   has (mathe-

matically) bad properties and is hard to compute. Now, the formula 2))((  M  makes small 

differences even smaller, the big differences even larger, and has (mathematically)  good pro-

perties, so this is our choice.   

 

6.6. Definition: For any (discrete or continuous)  r.v.  the variance ("szórásnégyzet")  of  is  
 

v() :=   22 )(:)(  MMD     
 

assuming this expression (infinite sum or improper integral) is finite,  
 

the  dispersion ("szórás") or standard deviation  of    is :    2
)()(  MMD   . 

The symbols  ()  and  s()  are also in use for the dispersion.             □  
 

6.7. Statement:  Clearly the dispersion is the square root of the variance.  

By  Theorem 6.4.v)  the quantity under the square root is always nonegative.           □  
 

6.8. Statement:  If )( 2M  is finite, then the variance of  does exist, and we have:  

)()()( 222  MMD     and   )()()( 22  MMD   . 

Proof:  By Theorem 6.4. :  
 

    
)()(

)()()(2)()()(2)()(

22

222222





MM

MMMMMMMMMD




   □  

 

6.9. Conclusion: By Theorem 6.4. ix) we have the following formulae:  
 

for  discrete  r.v.     

2

11

22 )( 







 









i

i

ii

i

i pxpxD     ,  

 

for  continuous  r.v.    

2

22 )()()( 












 









dxxxfdxxfxD     .          □  

 

In practice and in examples we calculate D
2
() and D() by the formulae of 6.9. instead of 6.6.  

 

6.10. Theorem:   The main properties of the variance and the dispersion: 
 

   i)   0)()(2   DD    if and only if  c   (constant, "állandó"),  i.e. the device is sticked,  

         ("beragadt a mérőműszer"),  
 

  ii)   )()( 222  DabaD     and   )()(  DabaD    for any fixed real numbers a,bR,  

 iii)   )()()( 222  DDD      and    )()()( 22  DDD      
 

       holds  only for independent  r.v.   and   .  
 

 iv)     If   n ,..., 21    are pairwise independent r.v., having the same distribution, then  

   )( 1

2

1

2  DnD
n

i

i 










   , 
n

D

n
D

n

i

i
)( 1

2

12 






















      , 

 



 21 

   )( 1

1

 DnD
n

i

i 










   ,     . 
n

D

n
D

n

i

i
)( 11 























           □  

 

Recall our remark concerning i) of Theorem 6.4. Now, iv) above adds, that measuring several 

times and calculating averages results  less  dispersion. For example, n=10 times more measu-

rings makes 10 3.16 many times less dispersion.  

 

6.11. Definition:  The mode ("módusz")  of a  discrete  r.v.   is the value  xkIm()   (or the 

values  xk1 , ... xks)   with highest probability(ies),   that is for which the probability(ies)   pk= 

P(xk)   or   pk1=P(xk1),...,pks=P(xks)   are maximal.  
 

     The mode of a  continuous  r.v.    is/are  the local maximum place(s)  xR  of the density 

function  f(x) .                   □ 

 

6.12. Definition:  The  median ("medián")  of a  discrete  r.v.    is the  (unique) real number  

mR  with the following property:  

  -  if  there is no number  xR satisfying  F(x) = ½ ,  then we let m to be the  smallest  number 

for which    F(m) > ½    ,  

  -  if  there are number(s)  xR satisfying  F(x) = ½ ,  then the set of these numbers x forms 

an interval  (since F(x) is a step function),  so we let m to be the centre ("középpont")  i.e. the 

mean of this interval.  

     The median of a  continuous  r.v.    is the solution of the equality  F(x)= ½ ,  or  the centre 

of the interval of the solution set.                 □ 
 

    Informally, we get the median if we order the data in increasing order and choose the one in 

the middle of this row  ("medián=középen áll") .  

 

     In the following three Sections we discuss some kinds of r.v. which often arise in practice 

and in theory, and now we give useful formulae for them. The Table after Section 9 collects 

the main results.  

 

 

 

 

7. Special discrete random variables  
 

In what follows  Im()={x1,...,xn}  or  Im()={x1,...,xn,...}  and we use the abbreviation for any 

natural number  kN :   

pk := P(=xk)  . 

 

Discrete uniform random variables  
 

7.1. Definition:    is  discrete uniform r.v. ("diszkrét egyenletes v.v.)  if  Im()={x1,...,xn}  is 

an arbitrary finite set and  results each xi with the same probability, i.e.  pi =P(=xi) = 1/n  for 

each  i=1,...,n  .       □  
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7.2. Examples:  rolling with a fair dice,  the last digit of the sum in a shop,  we choose a ran-

dom number between 1 and n ,  we draw randomly one from the lottery numbers {x1,...,xn} , 

we roll a pencil (prism with base of regular n-gon) having n identical sides, etc.  

 

7.3. Statement:  

M() =
n

x
n

i

i
1 =

n

xxx n ...21      and    )()()( 22  MMD  = 

2

11

2























n

x

n

x
n

i

i

n

i

i

     □  

(This is only the defintion, checking is an easy homework.)  

 

Hypergeometrical random variables  
 

7.4. Definition: Let N,S,nN be fixed arbitrary natural numbers, N 2 , NS 0 , Sn 1 , 

nSN 0  .  Then   is a  hypergeometrical r.v. ("hipergeometrikus eloszlású v.v.")  with 

the parameters  S,N,n  if the possible values of   are  Im() = {0,1,…,n}   and  

    pk = 

































n

N

kn

SN

k

S

kP )(   .            □  

where  








...

...
  denote the binomial coefficients.  

 

7.5. Statement:  The experiments of the below type, which we call sampling without repeti-

tion  ("visszatevés/ismétlés nélküli mintavételek"),  are hypergeometrical r.v.:  Suppose that 

we have N many elements in a set (box),  S  many of them differs from the others  (e.g. waste 

and good products, red and white balls, etc.).  We choose n many elements randomly from this 

set  (e.g. blindly),  without putting back any of them, i.e. we may draw these n many elements 

at the same time.  Now let us count the number of the elements among the drawn elements, 

differing from the others (from the S -many)  and let  denote this number.  Now  is a hyper-

geometric r.v.  (Justifying the above statement is an easy homework, worth calculating it.)     □  
 

7.6. Examples:   
 

7.7. Theorem:   )()( np
N

S
nM     and   














1

1
1)1()(

N

n
pnpD     where   

N

S
p    

The term  
1

1
1






N

n
  is called the correcting term ("korrekciós tényező").          □ 

 

7.8. Theorem:  If  n  and  k  are constants,  S  ,   N  ,   p
N

S
 =constant,  then  

    knk pp
k

n

n

N

kn

SN

k

S









































)1(            □  
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7.9. Explanation:  The above theorem says, that for large  N  hypergeometric r. variables are 

close to the binomial distributions (see next subsection),  which describes sampling with repe-

tition.  This corresponds to the empirical (practical) and theoretical experience that for large 

datasets (N) the repetiting or not (with or without) makes no big difference in sampling.  

 

Binomial or Bernoulli random variables  
 

7.10. Definition:    is a binomial ("binomiális") or Bernoulli r.v. with the parameters  n,p  

if nN , n0 is a fixed any nonzero natural number,  0<p<1  is any fixed real number, the 

possible values of   are (!):  Im() = {x0,x1,...,xn} = {0,1,2…,n}  and  has the following dis-

tribution:  for any k=0,1,2…,n   we have  
 

pk =
knk pp 








 )1(

k

n
k)P(    

where  








k

n
  is the binomial coefficient.             □ 

 

7.11. Theorem:  The experiments of the below type, which we call sampling with repetition  

("visszatevéses/ismétléses mintavételek"),  are binomial r.v.:  Fix an experiment ()  and an 

event A , fix further an arbitrary natural number nN , n0 , and let  p:=P(A).  Now repeat 

the experiment ()  n -many times, under completely the same conditions and independently 

from each other, and count to  how many times the event A occured during these n -many ex-

periments. In this case  will be a binomial r.v. with the parameters  n,p .   

     Checking this statement is any easy and useful homework.           □  

     Let us emphasize, that the conditions required above  ("under completely the same condi-

tions and independently from each other")  are hard to fulfil in the practice in general, so they 

can be only approximated by binomial r.v.-s.  
 

7.12. Examples:  

a) Roll a dice (either fair or unfair) 10 times and let   be  the number of times we had 6. 

Now   is a binomial r.v. with parameters  n=10, p=1/6  (if the dice is fair).  If we roll 

10 fair dices at the same time and we count the dices showing 6 - we get the same r.v. 

as   before.  

b) Roll 7 times a coin  (either fair or unfair) and let   be  the number of heads we have. 

Now   is a binomial r.v. with parameters n=7, p=0.5 (if the coin is fair). The same r.v. 

results when rolling 7 coins simultaneously.  

c) Sampling with repetitions ("with putting back", "ismétléses/visszatevéses mintavétel"): 

Let a box (set) contain of N many objects (elements) total, from which S many differ 

from the others (e.g. are waste).  Pick n many times one object from the box, i.e. one at 

a time, randomly, remember to its type (waste or not), and before the next drawing put 

it back to the box. The numbers N, S and n are fixed.  Let   denote the number of 

waste elements we have drawn during the above process. Then   has the binomial dis-

tribution with parameters n and p=S/N .  

d) Choose 5 cards from the Hungarian deck with repetitions,   is the number of hearts 

we have drawn. Now   has the binomial distribution with parameters 5 and p= 8/32 = 

1/4 .  
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7.13. Statement: If   is binomial r.v. then   npM )(    and  )1()( pnpD    .       □  

 

7.14. Statement: If   is binomial r.v. then the mode(s) of   is(are)  m  (m1 , m2), where  
 

 m =  pn )1(       if  pn )1(    is not an integer,  
 

 m1 = (n+1)p   and   m2 = (n+1)p-1,   if  pn )1(    is an integer,   
 

where  [x]  denotes the integer part or rounding downwards   ("egész rész, lefelé kerekítés, 

csonkítás")   of the real number x .              □  

 

7.15. Theorem:   If 1  is a binomial r.v. with the parameters 1n  , p ,  and if 2  is binomial r.v. 

with the parameters 2n  and  (the same!)  p ,  and  moreover 1  and 2  are independent,  then 

their sum     21     is also a binomial r.v. with the parameters  21 nnn    and   p .             □  

 

7.16. Theorem:  If  n  and 0p  such that  np = constant, then we have the limit  
 

    pk =   







e

k
pp

k

n k
knk

!
)1(  .            □  

 

     The latter result, among others, helps us to calculate correctly pk . Since in general n and k 

are large numbers, so the binomial coefficient is much larger, while, in the meantime p and 

even p
k
 is extremaly small. Though, in theory, it is not a problem, but in practice, when we 

have to calculate concrete numerical values either with a pocket calculator or with a computer, 

we will have a significant error when calculating pk . So, instead of pk we calculate the quanti-

ty on the right side. Poisson distributions are based on the above Theorem.  

 

Poisson random variables  
 

7.17. Definition:  The r.v.   has Poisson distribution ("Poisson eloszlás") with the parameter 

 >0 ,  if it has possible values (outcomes)   Im() = N = {0,1,2,…,n,...} , the set of all natural 

numbers and the distribution is  (where  e  2,71828...  is the Euler-number and kN) :  

    pk =


  e
k

kP
k

!
)(  .            □  

 

7.18. Applications: As we mentioned at the end of the previous Section, one application is 

the approximation of binomial distributions, when n is large, p is small and np is about  .  

We present an example of this application at the end of Section 10.  

     In the practice the following types of problems (experiments) have Poisson distributions. 

Fix in advance a  "physical set":  a region either in the plane (area) or in the space (volume) or 

an interval in 1 dimension, mainly a time-interval, we call this physical set simply a  "volume 

V"  ("V térfogat").  Suppose further that inside this set there are, or there may be occur many, 

independent phenomena ("jelenség"), but the probability of having more of them decreases as 

1/n
2
 .  Then a mathematical theorem ensures that the number of the phenomenons has Poisson 

distribution. This description of Poisson r.v. may throw some light to the relationship between 

binomial and Poisson r.v. and Theorem 7.16.             □  
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7.19. Examples:  1-dimensional:  the number of clients / telephone calls / meteors / bricks fal-

ling to my head / ...  in a  given  (i.e. fixed)  time intervallum;  the number of misprints in a gi-

ven number of pages of a given book,  

   2-dimensional:  the number of errors in a given area of paper / textile,  

   3-dimensional:  the number of raisins in a given volume of cake, the number of errors in a 

given amount (volume) of a material, number of pebbles in a volume of clay, number of stars 

in a part of the space, number of dust/pollen particles in a volume of air, etc.  

   general:  number of errors in a material (tube, board, volume),   

 

7.20. Theorem:  If   is Poisson r.v.,  >0    then    M(  )     és    )(D  .         □  

 

7.21. Theorem: The mode(s) of   is(are):  

        if     is not an integer,  

     and   1     if     is an integer.              □  

 

7.22. Theorem:  If 1  is a Poisson r.v. with parameter 1  , 2  is a Poisson r.v. with parameter 

2  ,  further 1  and 2  are independent, then the r.v   =   21     is also a Poisson r.v.  with 

the parameter  21    .                 □  
 

Corollary:  For any Poisson r.v.  on the volume V with parameter   and for any  tR
+
  the 

restriction/extension ("leszűkítés/kiterjesztés") of  to the volume V/t results again a Poisson 

r.v. with parameter /t .   

   This phenomenon is called that the Poisson r.v. can be  unboundedly divided  ("korlátlanul 

osztható").                  □ 

 

Geometrical random variables  
 

7.23. Definition:  The r.v.   has geometrical distribution ("geometriai/mértani")  with the 

parameter  p  ( 10  p )  if it has possible values (outcomes)   Im() = N\{0} = {1,2,…,n,...} , 

the set of all natural numbers except 0, and the distribution is (kN):  
 

     pk =
1)1()(  kppkP   .             □  

 

Remark: Writing the widely used shortening q:=1-p we get pk=pq
k-1

, a geometrical sequence, 

and this formula explains why these r.v. are called geometrical.  
 

7.24. Theorem: In the practice the following types of problems are geometric ones. Let us fix 

an experiment () and an event A  .   Let us repeat the experiment one or several times, in-

dependently from each other and under the same conditions, until the event A first occurs, 

when we stop repeating the experiment. Let  denote the number of experiments we made, in-

cluding the last (successfull) one ("untill A").  Then  is a geometrical r.v. with parameter p = 

P(A), supposing  0<p<1.                 □ 
 

    The proof of this theorem is an easy excercise, left to homework.  

     Let us emphasize, that geometrical r.v. occur when we do not know in advance the number 

of the neccessary experiments when starting, while, on the contrary, at binomial and hipergeo-

metric r.v. we had to decide and fix the number of the experiments before starting!  
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7.25. Examples: the jug goes to the fountain until it brokes (Hungarian proverb: "addig jár a 

korsó a kútra, amíg el nem törik"),  

   we make exams until we pass,  

   we hit the nut until it brokes,   

   we shot to the enemy until we succeed,  

   the duell concludes until the first drop of blood,  

   we (try to) jump the stream until our clothes remain dry,   

   the girls in the harem pass before Sindbad until he chooses,  ... .  
 

Remark, that in the real life, in most of the above examples the requirements   "independently 

from each other and under the same conditions"   are not fulfilled.  Think on your 2nd and 3rd 

exams:  we make more excercies, get more nervous, crib better, or the nuts get tired on many 

previous hits, or Sindbad gets tired/excited, etc. In these cases either we talk about an approxi-

mation of the real problem, or, we think an idealized "theoretical" or "school" ("elméleti/isko-

lai")  version of the problem. 

     See also Theorem 8.14.                □ 
 

7.26. Theorem:  If   is a geometrical r.v. with parameter  p , then  

   
p

M
1

)(       and     
p

p
D




1
)(    .            □  

 

In practical applications we often meet the question  "how many experiments are needed with 

90% success ?"  
 

7.27. Statement:  P(k) = 1- (1-p)
k
 .  

 

Proof:  (this easy calculation is worth reading carefully, q=1-p):  

P(k) = P(=1) + P(=2) + ... + P(=k) = p + pq
1
 + pq

2
 + ... + pq

k-1
 = p

1

1





q

qk

 = p
p

qk



1
  

 =  1-q
k
  .                  □  

 

7.28. Theorem:  If   is geometrical r.v.  then  
 

)()|( nPmnmP    , 
 

i.e. the previous experiments do not have any effect to the forthcoming ones, this is called  is 

not turning younger  ("nem fiatalodó").   
 

Proof:  k

ki

k

ki

i p
p

ppppiPkP )1(
)1(1

1
)1()1()()(

1 1

1 


  








  .   

 

mnm      implies    nmpnmPmnmP  )1()()(  ,  
 

so   np
mP

nmP
mnmP )1(

)(

)(
)|( 









 .             □  
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8. Special continous random variables 

 

Continuous uniform random variables  
 

8.1. Definition  For any fixed real numbers  a,bR , a<b  the r.v.     has a continuous uni-

form ("folytonos egyenletes")  distribution with parameters a,b  (on the interval [a,b]) if its 

density function is  

     


 


otherwise

bxaifc
xf

0
)(   .             □  

 

     This subsection contains easy statements with easy or obvious proofs, the calculations are 

useful for everybody.   

8.2. Statement:   c=
ab 

1
    and  
























bxif

bxaif
ab

ax

axif

xF

1

0

)(            □  

 

8.3. Statement:   
2

)(
ba

M


     and    
12

)(
ab

D


  .              □  

 

8.4. Theorem:  In the practice the following type of problems are uniform continuous r.v.: 

choose randomly, independently from each effect, "uniformly" a real number x in the interval 

[a,b] .                    □  

     The above and the forthcoming theorems and statements justify the strong connection bet-

ween the uniform continous r.v. and the geometrical probability fields  (see second half of 

Section 3)!                   □  
 

8.5. Examples:  rolling a cylindrical pen or bottle on which point of its surface it stops,  

   cutting randomly a ribbon/paper strip / wooden stick into two parts,  

   I go to the bus stop randomly (I do not kow the time table)  but the buses come regularly and 

exactly in each 15th minute,  

   we choose a random number in [0,1] with a fixed  4th digit,  etc.  
 

8.6. Statement:   
ab

cd
dcP




 )(     is proportional to the length of the sub-interval.      □ 

 

Exponential random variables  
 

8.7. Definition:  The r.v.   has exponential distribution ("exponenciális eloszlású") with 

the parameter  R
+
, 0   if its density function is  

 

    

 




otherwise

xife
xf

x

0

0
)(



.               □  
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Remark: In the practice the following random variables (measurings) have exponential distri-

butions: life times of machines, tools, non living constructions and objects (like bulbs, wheels, 

computer hardware, etc.),  or the length of working periods  (e.g. telephone calls, repairing 

bikes).  However, this is not a theoretical theorem, but a lot of statistical experiments (measu-

rings)  and hypothesis were justified by the rigorous method (with theoretical proof)  goodness 

of fit  ("illeszkedésvizsgálat").  This method is not included in this semester.          □  

 

8.8. Theorem:  For each exponential r.v.  with parameter    the distribution function is   
 

    









 01

00
)(

xife

xif
xF

x
.            □  

 

8.9. Theorem:     



1

)()(  DM  .            □  

 

8.10. Theorem:  If   is exponential r.v. and 0x , 0y   are arbitrary positive real numbers, 

then  

)()( xPyyxP     .  
 

This equality is called everyoung / not turning to older property ("örökifjú, nem öregedő").□  
 

     Justifying the above theorem is quite trivial, worth to do as a homework.  

     The above equality says (look more carefully)  that the requirement:  "  works x long from 

now (y),  i.e. until x+y "   is independent of y , moreover y can be eliminated  (or say, y=0),  

i.e. the object can be considered as a totally new: without any assumption (the unconditional 

probability on the right side).   Compare this theorem also to Theorem 7.28.  

     The following theorem describes the importance ot the everyoung property in the theory of 

the exponential r.v.    
 

8.11. Theorem:  If    is continuous,  F(0)=0,  F(x)<1 ,  F has derivative for each nonnegative 

real number x ,  0)(lim '

0



xF   and    is  everyoung,  then   must be exponential r.v.    □  

 

8.12. Theorem:  The connection between exponential and Poisson r.v. :  

Let ,...., 21   be independent exponential r.v. with the same parameter  , let T>0 be a fixed 

real number and denote  the (new) random variable:  the number of the objects which went 

wrong until the time point T . Of course we change each bad object immediately it went 

wrong. In mathematical form: let    Im()=N  and  
 

 0   if  T1    and let  1   if T1  but T 21  ,  
 

and in general:  

    k       if      T
k

i

i 
1

   but  T
k

i

i 




1

1

  .  

 

In this case   is a Poisson r.v. with parameter     = T .           □  

 

8.13. Example: The life time of a (fixed type) bulb is exponential r.v.  with average life time 

1000 hours. When the bulb goes wrong we change it immediately to the same type. What pro-

bability we need to change at least 2 bulbs during 2500 hours, i.e. P(2)=?  
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Solution: M()=1000, Theorem 8.9 implies =
1
/1000 , by the above theorem =

2500
/1000=2.5 ,  

 

P(2) = 1-P(<2) = 1-P(=1)-P(=1) = 1 - e
-2.5 

 ((2.5)
0
/0! +(2.5)

1
/1!)  0.7127 .  

 

8.14. Theorem:  The connection between exponential and  geometrical  r.v.:  

If   is exponential r.v. with parameter   then    1    is geometrical r.v. with parameter 
 ep 1  ,  q=1-p=e

-
 .  

Proof:  The values of   are Im()={1,2,3,...}  and  

   )1()1(1)()1()1()( )1()1(    eeeekFkFkkPkP kkk =q
k-1
p .  □ 

 

Explanation:    denotes, e.g. that  "how many integer hours does the bulb work",  i.e. how 

many hours have I to wait (repeating) to destroy the bulb (until it goes wrong).          □ 

 

8.15. Example: The telephone company A counts the time continuously and the unit price is 

20 HUF/minute. Company B makes bill for each minute you started, 15 HUF/minute. E.g. if 

you phoned for 2 min 21 sec = 2 
21

/60 = 2.35 min, you should pay 2.3520= 47 HUF to com-

pany A, or 315=45 HUF to company B.  What company you have to choose if your wife's 

calling length is an exponential r.v. with average 2 min ?  

Solution: Denote   the length of the call, 1  and 2  the prices for company A and B respecti-

vely. Then  

   40)(20)( 1   MM  HUF    and       1.38
1

1
15115)(

5.02 



e

MM   HUF .     □ 

 

 

 

 

9. The normal distribution 
 

9.1. Introduction: Having investigated carefully many physical and other practical quantities 

measuring statistical large tables, Gauss oberved that the histograms (column diagrams) of 

these tables can be approximated by the graph of the transformations of the function az 
2xe  .  

These r.v. are called having normal or Gaussian distribution. In general, those quantities are 

normal, which arise as the sum of many (1000 or more)  +/- effects which are very small each, 

e.g. height or weight or volume of a pencil, a man, woman, animal, volume of the rain, tempe-

rature, voltage or power of a battery, etc.  

     There are many experiments illustrating this assumptions, you can find some on my web-

page:  sum of several dices (see also Figure below),  Galton board, etc.   These formulas  (as-

sumptions)  are justified in the Central Limit Theorem 10.5 (see in next Section)  and the 

method goodness of fit ,  not included in this semester.  
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Sums of 7 dices  

http://math.uni-pannon.hu/~szalkai/7kocka.gif  
 

 

9.2. Definition:     is a  standard  normal r.v.   if its density function is  

    2

2

2

1
)(

x

exf






     (xR) .             □  

 

9.3. Theorem:    0)( M     and    1)( D  .              □   

 

9.4. Remark:  It is worth studying the formulas and the graphs of the function 
2xe  and its 

linear transformations!  

     By Liouville's theorem there is no formula for the primitive function of 
2xe . This is why 

we have to use table for F(x)=(x), a small table is included at the end of this booklet.    
 

9.5. Notation:   (x) := 




x

dttfxF )()(        (xR) .            □  

Clearly (x)  is the distribution function F(x) for the standard normal r.v.  
 

9.6. Statement:    )(1)( xx      for any  xR  .          □  
 

Corollary:    is also a standard normal r.v.  

Proof:     )())(1(1)(1)()()( xxxxPxPxF    .          □  

 

9.7. Definition:  Let   standard normal r.v. and let  ,m R  be any real numbers,  >0 . 

Then the r.v.  m    is called normal r.v. with parameters ,m  and denote this fact 

by  ),(~  mN  .                   □  

 

The below theorem gives an alternative to the above definition for normal r.v.:  
 

9.8. Theorem: The density function of   is     
2

2

2

)(

2

1
)( 



mx

exf



     (xR) .          □  

http://math.uni-pannon.hu/~szalkai/7kocka.gif
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9.9. Statement:     mM )(     and     )(D   .            □  
 

9.10. Theorem:  ),(~  mN    implies       F(x) = Fm,(x) = 






 




mx
 .           □  

 

9.11. Theorem:   "k -times  (sigma) rule"  ("k-szor  szabály"):   
 

For ),(~  mN  and kR
+
   1)(2)(  kkmkmP    .        □  

 

Meaning:   The probability that the values of   are at most  k  far from the average m is 

exactly   2(k)-1   (look at the table).   

The  k*  rule  can be easily checked by 9.10. and 9.6., this calculation is an easy homework.  

Below we give some special cases of the k*  rule :  
 

9.12. Theorem:  Special cases:  

 k=1    68.0)(   mmP  ,  

 k=2    95.0)22(   mmP  ,  

 k=3    997.0)33(   mmP  .    □ 
 

9.13. Theorem:  If ),(~  mN  and ba    , a0  then   ),(~  abamN   .          □  

 

9.14. Theorem:  If  ),(~ 11  mN   and  ),(~ 22  mN   are independent r.v. then  

   ),(~ 2

2

2

121   mmN .              □  
 

Remark: We already know from the general Theorems 6.4. and 6.10. that the mean and dis-

persion of  +  are  m1+m2  and  2

2

2

1    .  The above Theorem adds that the sum of nor-

mal distributions is again a normal one.              □  

     The below theorem is often used in practical applications and follows from the above one:  
 

9.15. Theorem:  If  ),(~,...., 21  mNn   are independent normal r.v. with the same distri-

bution, then  

  ),(~
1

nnmN
n

i

i 


     and     










n
mN

n

n

i

i 


,~1   .             □  

 

Remark:  We have already mentioned several times, that in the practice  (not only in the labo-

ratory)  we have to measure anything several times and calculating average, instead of a single 

measuring. This method decreases the dispersion and makes the measuring more precise. It is 

useful to know, that both the sum, difference and the average of the measurements are also 

normal distribution r.v.                 □  
 

9.16. Example: The weight of an adult is a normal r.v. with mean 75 kg and dispersion 15kg, 

children at school have weight in mean 35kg and dispersion 6kg.   If we consider the two r.v. 

independent, then what is the probability of  

  a)  that an adult is heavier than a child,  

  b)  the weight of an adult and a child together is between 80kg and 140 kg?  
 

9.17. Example: We plan an elevator (lift) for 8 person, the weight of the people is a r.v. with 

mean 75kg and dispersion 15kg, can be considered to be independent.  How strong we have to 

plan the elevator that would be able to lift 8 person with 99% probability?  
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Solution:  i ~ N(75,15), i=1,...,8,  m=75, =15 and let  :=


8

1i

i  .  By Theorem 9.15 we have  

 ~ N(8m, 8 ) = N(875, 8 15) = N(600,42.43).  The question is to find an  xR such that   













xP
i

i

8

1

 =P(<x)=0.99.  Since  P(<x)=F(x)= 99.0
43.42

600








 


x
  and from the table of 

  we have  (2.32)=0.99,  so  32.2
43.42

600


x
  and so  x=698.5 ~ 700 kg .           □  

 

Other random variables, derived from normal distributions  
 

The following Theorems will be used in mathematical Statistics.  
 

9.18. Theorem:  If  )1,0(~ N    then  the distribution and density functions of  2    are:  

     









01)(2

00
)(

xifx

xif
xF   ,   














otherwise

xife
xxf

x

0

0
2

1

)(
2

    and   M()=1 .   

Proof:  F = P(<x) = P(
2
<x) = P(-x<<x) = (x)-(-x) = (x)-(1-(x)) = 2(x)-1,  f = F' = ...  .  □  

 

9.19. Theorem:  For any  nN  and independent r.v.  1,...,n ~N(0,1)  the density functions of  

n = (1)
2
+...+(n)

2
   is  2

1
2)(

xn

ecxxf


   for  0<x .             □  
 

9.20. Definition: The above n is called 
2
 i.e.chi-squared ("khí-négyzet") r.v.of parameter n.

                   □  

9.21. Definition: For any nN and independent r.v.  ,1,...,n ~N(0,1) the r.v.  

n

n

i

i

n






1

2


    

is called  Student- or t- distribution  of parameter  n.   □ 
 

9.22. Theorem:  The density function is  

2

1
2

1
2

2

1

)(




























 



n

n

xn
n

n

xf





 where 



0

1)( dtetx tx  is the gamma function (eg. (n)=(n-1)! ).  

 

9.23. Theorem:  If  )1,0(~ N   then the distribution and density functions of  e  ,   the 

so called  lognormal r.v. ("lognormális eloszlás")  are:  
 

     









0)(ln

00
)(

xifx

xif
xF   ,   and   M()= e  .  

   
 

Proof:  F = P(<x) = P(e

<x) = P(<ln(x)) = ( ln(x)),   f = F' = ...  .            □  

 

 

The following table can be found on my webpage in higher resolution:   

 http://math.uni-pannon.hu/~szalkai/Eloszlasok(pdf)+kezjav+.gif   

http://math.uni-pannon.hu/~szalkai/Eloszlasok(pdf)+kezjav+.gif
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10. Laws of large numbers  
 

("Nagy számok törvényei") 

 

     The forthcoming formulas and inequalities give us general approximations for any type of 

r.v.  The error of these approximations decreases when the number of measurements is high. 

Of course for specific r.v. these inequalities could be highly improved.  

 

10.1. Theorem: Markov-inequality ("Markov egyenlőtlenség") 

     If  M()  of the r.v.    does exist, then for every positive number  aR
+
 we have  

a

M
aP

)(
)(


    .  □  

Explanation:  The above inequality says that the outcome of the measuring () may be large, 

but the probability of this is small. The higher of the measure is (a) the lower is its proba-

bility.  When a goes to infinity  (a→∞)  the probability of measuring higher than a is smaller 

than M/a , which tends to 0 .  
 

10.2. Theorem:  Chebyshev-inequality ("Csebisev egyenlőtlenség")  

If  M()  and  D()  of the r.v.    do exist, then for every positive numbers  k,R
+
  we have  

 

 
2

1
)()(

k
kDMP    ,        i.e.          

2

2 )(
)(






D
MP    ,  

 

or, the negation of the event:  
 

 
2

2 )(
1)(






D
MP    .  □  

 

Explanation:  We think that the results of a measuring () are about, not far from the mean  

(M()), the subformula |-M()| calculates the distance of these quantities. Chebyshev proved, 

that the probability of large differences is small.  More precisely (see the first two formulas): 

the difference  |-M|  can be sometimes larger than  kM() or  ε , but with probability less than 

1/k
2
 and D()

2
/ε

2
 , both these upper bounds go to 0 when k and ε go to ∞ .   On other hand, if 

D() is smaller, the upper bound D()
2
/ε

2 
 is smaller, too. In other words (see the third formu-

la):  the probability of small distances is close to 1 , think on the case when  ε 0 .  
 

10.3. Theorem: Law of large numbers by Bernoulli  

("Bernoulli-féle nagy számok törvénye") 

   Let A be any fixed event with  P(A)=p  and  q:=1-p.  Denote ξn the frequency of the event  

(i.e. how many times occured)  A  during we executed  n  many independent experiments.  

Then for any R
+
 and nN we have  

n

pq
p

n
P n

2












  ,        i.e.        

n

pq
p

n
P n

2
1














  . 

In other words:  

   For any  >0  and  >0  there is an integer number n0 ("treshold") such that for every n>n0 :  
 












 p

n
P n  ,        i.e.        











 1p

n
P n  . 

where   =
n

pq
2

 ,  so  →0  whenever  n→∞ .              □  
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Explanation:  Observe first, that  ξn/n  is the relative frequency of the event A.  

The theorem calculates the difference of the theoretical  probability  (p)  and the empirical 

(practical, greek, "tapasztalati") relative frequency (ξn/n).  To be more precise, the theorem 

calculates "only" the probability of large differences (see the left hand side formulas), and 

results that this probability is small,  moreover this probability tends to 0 if n  (the number of 

experiments)  goes to infinity, i.e. very large.  This means  (see also the right hand side for-

mulas),  that the statement  "the difference is small"  is valild with almost 100% probability, 

i.e. the negation  "the difference is not small"  can have probability less than any small number 

 .  Though, these formulas do not say, that the relative frequency ξn/n would converge to the 

(theoretical) probability p.  

     If we do not know p, then we can use the general inequality  p(1-p)1/4  (valid for all pR) 

and state  1/4
2
n  which also tends to 0 when n .   

 

10.4. Theorem:  The weak law of large numbers by Chebyshev  

("A nagy számok gyenge törvénye, Csebisev-alak)"  

   Let   1 , 2 , ... , n  be independent r.v. with the same distribution, which do have (the same) 

mean  m:=M(i)  and dispersion  :=D(i)  (i=1,2,…,n,... ).  Let further   Sn:= 1+2+…+n  .  

Then for every R
+
  we have:  

 

2

2

1





n
m

n

S
P n 








  ,     equivalently     

2

2






n
m

n

S
P n 








   .  □  

 

Explanation: Since the r.v.  1 , 2 , ... , n  have the same distribution, the represent the re-

peated, independent measurements of the same quantity. So  Sn/n  calculates the empirical 

(practical) arithmetical mean, i.e. the average. This means, that the formulas above calculate 

the difference of the practical average (Sn/n) and the theoretical mean (m).  More precisely, 

the formulas count the probability of this difference  (|Sn/n - m|)  to be small () or not small 

(>).  Observe, that for any fixed  >0  the upper bound  σ
2
/nε

2
 → 0  as  n → ∞ ,  i.e. when the 

number of experiments is large.  So, by the left hand side formula, the statement  "the diffe-

rence is small"  can be valid with almost 100% probability.  

   Bernoulli's Theorem 10.3. is a special case of the present formulas since in theorem 10.3. we 

have  m=M(ξn/n)=p  and  2
=pq .  

 

10.5. Theorem:  The strong law of large numbers, or Central limit theorem  

("Nagy számok erős törvénye, vagy Központi (=centrális) határeloszlás tétel")  

   Let   1 , 2 , ... , n  be independent r.v. with the same distribution, which do have (the same) 

mean  m:=M(i)  and dispersion  :=D(i)  (i=1,2,…,n,... ).   If  
 

 
n

mnn
n









...1  ,     then    )()(lim yyP n
n




  .          □  

 

Explanation:  The r.v.  n  calculates the standardized version of the sum  n :=1+2+…+n , 

i.e.  n = (n-M(n))/D(n)  because the original sum n would go to +∞  (limn→∞ n = +∞)  

since all the terms i have the same mean m .  However, the standardized  n  has M(n)=0 and 

D(n)=1 for each n.   Now, the final conclusion of the theorem says that the limit of the distri-

bution function of n is , i.e. the limit of n is the standard normal distribution!  This limit 

was explained in Section 9 as  "the sum of many small +/- quantities always results a normal 

distribution" .  
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10.6. Moivre-Laplace Theorem:   For any numbers  0≤p≤1  and   u,vR   

*)(*)(lim uvqp
k

n
knk

vku
n





















 




  ,  

or in simpler form  

*)(*)( uvqp
k

n
knk

vku








 



   

where  



mu

npq

npu
u





*      and     



mv

npq

npv
v





*   .    □ 

Explanation:  Inside the summation () we see the formula of the (discrete) binomial distri-

bution. This means, that repeating the same experiment, the binomial distribution can be app-

roximated with a normal distribution. In fact, this theorem is a speial case of the central limit 

theorem.  But how to understand and memorize the above formulas. The second, approxima-

ting formula is, in fact the well known one  

P(u<<v) = F(v)-F(u) = (v*)-(u*) = 






 




mv
 - 







 




mu
 .  

 

Summary: We learned, that for large n  (larger than 30)  hypergeometric distributions can be 

approximated by binomial ones, which, further can be approximated by Poisson r.v., and 

finally, all these can be approximated by normal distributions (r.v.). 

     The below example gives an important explanation of this summary!  

 

10.7. Main example:  We have N=1000 many animals in a farm, and a non epidemic illness 

kills each animal, independently with probability 0.3 .  What is the probability that the number 

of surviving animals is between     and    ?  

Solution:  

Part 1.:  The problem is, in fact a binomial (Bernoulli) r.v.:  

N=1000 ,   p=P(recovers)=0,7 ,   q=1-p=0,3 ,   ξ:=how many animals survives.  

Binomial r.v.:   P(ξ=k)=      (k=0;1;…;n=1000)   

P( ≤ ξ ≤ ) =     . 

Since there are many terms in the above calculations, too large and too small, we need an app-

roximating method. 
 

Part 2.:  We use the Poisson approximation: 
 

P(ξ=k)=    (k=0;1;…) ,   λ = np = 10000,7 = 700 ,  so  

P( ≤ ξ ≤ ) =    . 
 

Part 3.:  The above formula is still hard to calculate, we use the Moivre-Laplace theorem.  

 ( ) – ( )         , where:  =  =   and  =  =  ,  

M=m=np= 10000.7= 700 ,   D=σ=  =  =  ≈14.49 ,  

P( ≤ ξ ≤ ) =  ( ) – ( ) =  

= (-2,35) – (-25,26)  =  1 – (2,35) – 0  =  1 – 0,99065  =  0.00935  .     □  
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Appendix  

Probability theory - Mathematical dictionary 
 

Probabiliy Theory Mathematics  

 

Sample space (=all outcomes of an experiment)  H ≠ ø  (arbitrary) base set (or )  

 outcome of an experiment  x  H  any element of H  

event (actual outcome of an experiment) A  H  (any) subset 

elementary event {x}  H  a subset consisting of a single  

 element (singleton)  

”A event happened/realized” x  A  

”A event did not happen/realized” x  A  

sure event H  H  (base set itself), or:  if  P(A)=1  

impossible event ø  H  (empty set),        or:  if  P(A)=0  

negation of an event A¯  (complement set)  

sum of the events  A+B  ("or")  AB  (union)  

product of events  A·B   ("and") AB  (intersection)  

difference of events  A-B A\B  (difference)  

excluding events  AB= ø  (disjont sets),  or:  if P(AB)=0  

B follows from A  ( A implies B)  A  B    (A is a subset of B)  

 

 

Probability  P(A) P: P(H)→R any function  

     (P(H) is the power set of H) 

  with the axioms of Kolmogorov (like area)  

independent events A,B P(AB) = P(A)·P(B)  

complete system of events a partition of H  

random variable (numerical outcome of a measuring) ξ : H → R       any function  

discrete random variable Im(ξ) = {x1,x2,...,xn,...}  any enumerable set  

the distribution of the discrete r.v. {p(x1), p(x2), ..., p(xn), ... }  

continuous random variables there is an  [a,b]Im(ξ)  interval  

 

 

distribution function  F : R→R  any function with the axioms  

    or:   F(t) := P(ξ<t)  

    or:  primitive function of f :  F(t) =  

t

f(x)dx  

density function f : R→R  any function with axioms  

    or:  derivative function of F :     f(x)=F'(x)  

P(a≤ξ<b)  =  
b

a
f(x)dx  =  F(b)-F(a) Newton-Leibniz ’s  Rule  

mean or expected value   M(ξ) = E(ξ)  average, arithmetical mean  

dispersion   D(ξ) sprinkling/scattering of the measurings values  
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Table of the standard normal distribution function () 
 

 

X (x)  z (x)  x (x)  x (x) 

0,00 0,5000  0,34 0,6331  0,68 0,7517  1,02 0,8461 

0,01 0,5040  0,35 0,6368  0,69 0,7549  1,03 0,8485 

0,02 0,5080  0,36 0,6406  0,70 0,7580  1,04 0,8508 

0,03 0,5120  0,37 0,6443  0,71 0,7611  1,05 0,8531 

0,04 0,5160  0,38 0,6480  0,72 0,7642  1,06 0,8554 

0,05 0,5199  0,39 0,6517  0,73 0,7673  1,07 0,8577 

0,06 0,5239  0,40 0,6554  0,74 0,7704  1,08 0,8599 

0,07 0,5279  0,41 0,6591  0,75 0,7734  1,09 0,8621 

0,08 0,5319  0,42 0,6628  0,76 0,7764  1,10 0,8643 

0,09 0,5359  0,43 0,6664  0,77 0,7794  1,11 0,8665 

0,10 0,5398  0,44 0,6700  0,78 0,7823  1,12 0,8686 

0,11 0,5438  0,45 0,6736  0,79 0,7852  1,13 0,8708 

0,12 0,5478  0,46 0,6772  0,80 0,7881  1,14 0,8729 

0,13 0,5517  0,47 0,6808  0,81 0,7910  1,15 0,8749 

0,14 0,5557  0,48 0,6844  0,82 0,7939  1,16 0,8770 

0,15 0,5596  0,49 0,6879  0,83 0,7967  1,17 0,8790 

0,16 0,5636  0,50 0,6915  0,84 0,7995  1,18 0,8810 

0,17 0,5675  0,51 0,6950  0,85 0,8023  1,19 0,8830 

0,18 0,5714  0,52 0,6985  0,86 0,8051  1,20 0,8849 

0,19 0,5753  0,53 0,7019  0,87 0,8078  1,21 0,8869 

0,20 0,5793  0,54 0,7054  0,88 0,8106  1,22 0,8888 

0,21 0,5832  0,55 0,7088  0,89 0,8133  1,23 0,8907 

0,22 0,5871  0,56 0,7123  0,90 0,8159  1,24 0,8925 

0,23 0,5910  0,57 0,7157  0,91 0,8186  1,25 0,8944 

0,24 0,5948  0,58 0,7190  0,92 0,8212  1,26 0,8962 

0,25 0,5987  0,59 0,7224  0,93 0,8238  1,27 0,8980 

0,26 0,6026  0,60 0,7257  0,94 0,8264  1,28 0,8997 

0,27 0,6064  0,61 0,7291  0,95 0,8289  1,29 0,9015 

0,28 0,6103  0,62 0,7324  0,96 0,8315  1,30 0,9032 

0,29 0,6141  0,63 0,7357  0,97 0,8340  1,31 0,9049 

0,30 0,6179  0,64 0,7389  0,98 0,8365  1,32 0,9066 

0,31 0,6217  0,65 0,7422  0,99 0,8389  1,33 0,9082 

0,32 0,6255  0,66 0,7454  1,00 0,8413  1,34 0,9099 

0,33 0,6293  0,67 0,7486  1,01 0,8438  1,35 0,9115 
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x (x)  x (x)  x (x)  x (x) 

1,36 0,9131  1,70 0,9554  2,08 0,9812  2,76 0,9971 

1,37 0,9147  1,71 0,9564  2,10 0,9821  2,78 0,9973 

1,38 0,9162  1,72 0,9573  2,12 0,9830  2,80 0,9974 

1,39 0,9177  1,73 0,9582  2,14 0,9838  2,82 0,9976 

1,40 0,9192  1,74 0,9591  2,16 0,9846  2,84 0,9977 

1,41 0,9207  1,75 0,9599  2,18 0,9854  2,86 0,9979 

1,42 0,9222  1,76 0,9608  2,20 0,9861  2,88 0,9980 

1,43 0,9236  1,77 0,9616  2,22 0,9868  2,90 0,9981 

1,44 0,9251  1,78 0,9625  2,24 0,9875  2,92 0,9982 

1,45 0,9265  1,79 0,9633  2,26 0,9881  2,94 0,9984 

1,46 0,9279  1,80 0,9641  2,28 0,9887  2,96 0,9985 

1,47 0,9292  1,81 0,9649  2,30 0,9893  2,98 0,9986 

1,48 0,9306  1,82 0,9656  2,32 0,9898  3,00 0,9987 

1,49 0,9319  1,83 0,9664  2,34 0,9904  3,05 0,9989 

1,50 0,9332  1,84 0,9671  2,36 0,9909  3,10 0,9990 

1,51 0,9345  1,85 0,9678  2,38 0,9913  3,15 0,9992 

1,52 0,9357  1,86 0,9686  2,40 0,9918  3,20 0,9993 

1,53 0,9370  1,87 0,9693  2,42 0,9922  3,25 0,9994 

1,54 0,9382  1,88 0,9699  2,44 0,9927  3,30 0,9995 

1,55 0,9394  1,89 0,9706  2,46 0,9931  3,35 0,9996 

1,56 0,9406  1,90 0,9713  2,48 0,9934  3,40 0,9997 

1,57 0,9418  1,91 0,9719  2,50 0,9938  3,45 0,9997 

1,58 0,9429  1,92 0,9726  2,52 0,9941  3,50 0,9998 

1,59 0,9441  1,93 0,9732  2,54 0,9945  3,55 0,9998 

1,60 0,9452  1,94 0,9738  2,56 0,9948  3,60 0,9998 

1,61 0,9463  1,95 0,9744  2,58 0,9951  3,65 0,9999 

1,62 0,9474  1,96 0,9750  2,60 0,9953  3,70 0,9999 

1,63 0,9484  1,97 0,9756  2,62 0,9956  3,75 0,9999 

1,64 0,9495  1,98 0,9761  2,64 0,9959  3,80 0,9999 

1,65 0,9505  1,99 0,9767  2,66 0,9961    

1,66 0,9515  2,00 0,9772  2,68 0,9963    

1,67 0,9525  2,02 0,9783  2,70 0,9965    

1,68 0,9535  2,04 0,9793  2,72 0,9967    

1,69 0,9545  2,06 0,9803  2,74 0,9969    
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