In this chapter we prove Gödel’s 1’st Non-Completeness Theorem:
If Γ is recursive, consistent and $\Gamma \vdash PA$ then Γ is not complete.

First we code every expression $k \in K(L)$ and formulae $\varphi \in F(L)$ with a natural number $\nu(k)$ and $\nu(\varphi) \in \mathbb{N}$, then we prove Gödel’s 1st Non-completeness Theorem. Let us emphasize in advance that not the technical details of the coding ν are important but only the existence of such a coding! In other words, other coding functions also would do. In fact, every coding function of finite sequences (strings) with natural numbers are usually called ”Gödel-coding”.

Before we need the notion and properties of primitive and general recursive functions.

1. Primitive recursive functions

For the definitions and explanations of primitive/partial recursive and recursive-enumerable functions and sets please refer to the 3rd Part of the green book ”Diszkrét matematika és az algoritmuselmélet alapjai” by I.Szalkai (in Hungarian).

Definition: Any set $A \subseteq \mathbb{N}$ is recursive (decidable), if its characteristic function $\chi_A : \mathbb{N} \rightarrow \{0, 1\}$ is recursive, i.e. there is a T.M. which decides "$n \in A$" for every $n \in \mathbb{N}$.

2. Gödel-coding

Lemma 1: There is a primitive recursive function

$$\beta : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$$

with the property: for every number $n \in \mathbb{N}$ and every finite sequence of natural numbers length of n

$$\vec{a} = (a_1, \ldots, a_n) \in \mathbb{N}^n$$

there is a $c \in \mathbb{N}$, the code of \vec{a}, such that

$$\beta(c, 0) = n \quad \text{and} \quad \beta(c, i) = a_i \quad (i \leq n) \quad \Box$$

Definition 2: Clearly β induces a coding function

$$s : \mathbb{N}^* \rightarrow \mathbb{N}$$

$$s(\vec{a}) = c \quad \Box$$

(For example, we can have: $s(a_1, \ldots, a_n) := p_1^{\alpha_1+1} \cdot \ldots \cdot p_n^{\alpha_n+1}$ where p_i is the i ‘th prime number.)
Lemma 3: The set of codes

\[C := \{ c \in \mathbb{N} : c \text{ is the code for some } \overline{a} \in \mathbb{N}^* \} \]

is primitive recursive (i.e. the statement "\(c \in \mathbb{N} \) is a code for a finite sequence" is primitive recursive decidable). \(\square \)

Lemma 4: The decoding function

\[B : C \to \mathbb{N}^* \]

is primitive recursive. \(\square \)

Lemma 5: The predicate "\(B(c) \) is an initial segment of \(B(d) \)" is primitive recursive, too. (We mean that \(B(c) = (a_1, ..., a_n) \) and \(B(d) = (a_1, ..., a_m) \) where \(n \leq m \).) \(\square \)

Lemma 6: The function \(\ell : C \to \mathbb{N} \) where \(\ell(c) \) is the length of the sequence \(B(c) \) (coded by \(c \)) is primitive recursive. \(\square \)

Note 7: Since \(C \subseteq \mathbb{N} \) is primitive recursive and the functions \(s : \mathbb{N}^* \to C \), \(B : C \to \mathbb{N}^* \) both are bijective (one-to-one and onto) and primitive recursive, we do not distinguish the sequences \(\overline{a} \in \mathbb{N}^* \) and their codes \(c = s(\overline{a}) \in \mathbb{N} \) at all, in what follows.

Now we code all the expressions and formulas.
Let \(\mathcal{L} = (f_1, ..., f_n, P_1, ..., P_m) \) be any first order (fixed) language. Clearly \(\mathcal{L} \) contains also the symbols \(\land, \lor, \exists, (,) \), and the variable symbols \(x_1, ..., x_i, ... \).

Let first

\[\nu_0 : \mathcal{L} \to \mathbb{N} \]

be any fixed bijection. Extend then \(\nu_0 \) to \(K(\mathcal{L}) \cup F(\mathcal{L}) \) as (for example):

Definition 8: (i) \(\nu(x_0) := s(\nu_0(x_i)) \) if \(k = x_i \) is a 0-order expression,

(ii)

\[\nu(k) := s(\nu_0(f_1), \nu_0(), \nu(k_1), \nu_0(), \nu(k_2), \nu_0(), ..., \nu_0(), \nu(k_m), \nu_0()) \]

if \(k = f_1(k_1, ..., k_m) \) is a \(\ell + 1 \)-order expression,

(iii)

\[\nu(\varphi) := s(\nu_0(P_1), \nu_0(), \nu(k_1), \nu_0(), \nu(k_2), \nu_0(), ..., \nu_0(), \nu(k_v), \nu_0()) \]

if \(\varphi = P_1(k_1, ..., k_v) \) is a 0-order formula,

(iv)

\[\nu(\varphi) : = s(\nu_0(\varphi), \nu(\psi)) \]

\[\nu(\psi \lor \vartheta) : = s(\nu(\psi), \nu_0(\lor), \nu(\vartheta)) \]

\[\nu(\exists x_i \psi) : = s(\nu_0(\exists), \nu_0(x_i), \nu(\psi)) \]

for the \(\ell + 1 \)-order expressions \(\varphi \), \(\psi \lor \vartheta \) and \(\exists x_i \psi \). \(\square \)

Please observe and understand the trivial base idea of coding all expressions and formulas: eg. for coding the expression \(k = f_1(k_1, ..., k_m) \) we just code the sequence of the codes of the components of \(k \) : \(f_1, (, k_1, , , ..., , k_m ,) \). Or, in some more detail: we code the sequence \(\nu_0(f_1), \nu_0(), \nu(k_1), \nu_0(), \nu(k_2), \nu_0(), ..., \nu_0(), \nu(k_m), \nu_0() \), as it is written in the definition above. Further, please take care of when to use \(\nu_0 \) and when \(\nu \).

Let us emphasize again, that not the details of the coding

\[\nu : K(\mathcal{L}) \cup F(\mathcal{L}) \to \mathbb{N} \]
but the existence of such coding is important. Moreover, the main aim of such codings is: to represent and examine formulas, proofs, axiom systems (everything) with natural numbers.

Theorem 9: The function $\nu: K(\mathcal{L}) \cup F(\mathcal{L}) \to \mathbb{N}$ is one-to-one. □

Now we go on. All the proofs below are omitted because of their simplicity, unless it is stated otherwise. Since

$$\text{Im}(\nu) \subseteq \text{Im}(s) = C,$$

we can consider the following predicates (questions):

Theorem 10: The following predicates and functions on C are primitive recursive $(c, e, x, ..., \in C)$:

- $\text{Var}(c) := " c$ is a ν-code for a variable "$
- \text{Kif}(c) := " \ell \text{ is an } \nu\text{-expression}"$
- $\text{Fml}(c) := " \ell \text{ is a } \nu\text{-formula}"$
- $\text{Free}(e, x) := $ " $Fml(e)$ and $\text{Var}(x)$ and x is a ν-code for a free variable of the formula (coded by e)"
- $\text{Subst}(d, x, \ell) :=$ the code for the formula, obtained by the substitution $\varphi_{x_m}(k)$ where $d = \nu(\varphi)$, $x = \nu(x_m)$, $\ell = \nu(k)$ and (of course) $\text{Kif}(\ell)$, $\text{Fml}(d)$ and $\text{Var}(x)$ yield,
- $\text{AllSubst}(h, d, x, \ell) := $ " the substitution $h=\text{Subst}(d, x, \ell)$ is an allowed one",
- $\text{LogAx}(g) := " g$ is a ν-code for a logical axiom",
- $\text{DedRul}(u, w) := " (\vartheta | \varphi) \text{ is a deduction rule where } u = \nu(\vartheta) \text{ and } w = \nu(\varphi)"
- $\text{DedRul}(u, v, w) := " (\vartheta, \tau | \varphi) \text{ is a deduction rule where } u = \nu(\vartheta), v = \nu(\tau) \text{ and } w = \nu(\varphi)"
- $\text{Biz}_T(a, b) := "$ b is a ν-code of a proof (sequence of formulas connected with & and deduction rules) from Γ of the formula coded by a"

Let us note that Γ above is a fixed axiom system, and moreover the set

$$\{\nu(\gamma) : \gamma \in \Gamma\} \subseteq C$$

must be primitive recursive.

Definition 11: $\text{Köv}_\Gamma(a) := \exists b \text{Biz}_T(a, b)$ (a is provable from Γ). □

Definition 12: $\text{Köv}_\Gamma := \{a \in C : \text{Köv}_\Gamma(a)\}$ (the set of consequences of Γ). □

Please keep in mind that Γ is a fixed axiom system, and Köv_Γ is the set of $(\nu$-codes of) the formulas which are provable from Γ ("corollaries of $\Gamma"$). This is not the set of $(\nu$-codes of) formulas decidable by Γ, but ... think a little bit on this question, please.

In general, Köv_Γ is even not general recursive (see 15, 16 below).

Definition 13: Any set of formulas F is recursive if and only if its characteristic function $\chi_F : C \to \{0, 1\}$ is recursive. □
The following theorem reveals the real importance and strength of PA, Peano’s Axiom system for arithmetic): we can talk about recursive sets and formulas inside Γ:

Theorem 14: (Representation Theorem for Recursive Sets) For any recursive set $Q \subset \mathbb{N}^n$ (predicate over \mathbb{N}^n) there is a formula $\varphi = \varphi_Q \in F(\mathcal{L}_{PA})$ such that:

- if $\overline{b} \in Q$ then $PA \vdash \varphi_Q(\overline{b})$,
- if $\overline{b} \notin Q$ then $PA \vdash \varphi_Q(\overline{b})$

for every $\overline{b} = (b_1, ..., b_n) \in \mathbb{N}^n$.

Proof: Easy but boring a bit: using the inductive definition of recursive functions and sets (basic functions, opertors, ...) we can actually construct the formula φ_Q itself (see the 3rd Part of the green book ”*Diszkrét matematika és az algoritmuselmélet alapjai*” by I. Szalkai).

14.b.) **Remark**, that we can not write ”if and only if” in none of the statement lines of the previous Theorem.

Further, in the case $\Gamma \vdash PA$ (possibly after a neccesary conservative extension) we can replace PA by Γ in the above Theorem.

3. The 1st Non-completeness Theorem

Definition: Γ is decidable if for every φ the question ”$\Gamma \vdash \varphi$” can be decided.

Statement 15: Γ is decidable if and only if Köv_Γ is recursive. □

Theorem 16: (A. Church) If $\Gamma \vdash PA$ and Γ is consistent then Γ is not decidable.

Proof: Suppose on indirect way that Köv_Γ is recursive. Then the predicates

$$P(a, b) := \text{Köv}_\Gamma(Subst(a, x_0, b))$$

and

$$Q(b) := \varphi \text{ with free variable } x_0$$

both are recursive, too. Now let the formula $\varphi \in F(\mathcal{L}_\Gamma)$ represent Q as in Theorem 14. Clearly $V(\varphi) = \{x_0\}$, i.e. φ has exactly one free variable.

This means, for every $b \in C$:

$$Q(b) = \uparrow \text{ if and only if } PA \vdash \varphi_{x_0}[b] = \uparrow.$$ Denote ν the ν-code for φ : $\nu(\varphi) = a$.

Now either $Q(a) = \uparrow$ or $Q(a) = \downarrow$ we reach to a contradiction:

- if $Q(a) = \uparrow$ then $\Gamma \vdash \varphi_{x_0}[a]$ then $\|P(a, a)$ then $\|\text{Köv}_\Gamma(Subst(a, x_0, a))$
 - then $\Gamma \not\vdash \varphi_{x_0}[a]$ contradiction,

- if $Q(a) = \downarrow$ then $\Gamma \vdash \varphi_{x_0}[a]$ then $\Gamma \not\vdash \varphi_{x_0}[a]$ and $P(a, a)$ then $\text{Köv}_\Gamma(Subst(a, x_0, a))$
 - then $\Gamma \vdash \varphi_{x_0}[a]$ contradiction. □

Lemmas 17 and 18 below are, in some sense, the opposite of Theorem 16.
Lemma 17: If \(R, Q \subseteq \mathbb{N}^2 \) are recursive sets and \(P \subseteq \mathbb{N} \) is any subset, such that for each \(a \in \mathbb{N} \)

\[
P(a) \text{ if and only if } \exists u \ Q(a, u) \\
\neg P(a) \text{ if and only if } \exists v \ R(a, v)
\]

then \(P \) is recursive. \(\square \)

Lemma 18: \(\) If \(\Gamma \) is complete then it is decidable.

Proof: For any complete axiom system \(\Gamma \) we have

\[
K\bar{\nu}_\Gamma(a) \text{ if and only if } \exists u \ Biz_\Gamma(a, u)
\]
\[
\neg K\bar{\nu}_\Gamma(a) \text{ if and only if } \exists v \ Biz_\Gamma(\neg a, v)
\]

So \(K\bar{\nu}_\Gamma \) must be recursive by Lemma 17, and use Statement 15. \(\square \)

Theorem 19: \(\) (Gödel’s 1’st Non-Completeness Theorem)

If \(\Gamma \vdash PA \) and \(\Gamma \) is consistent then \(\Gamma \) is not complete.

Proof: Lemma 18 contradicts to Church’s Theorem 16. \(\square \)

Note that Gödel’s Theorem 19. is a strenghtening of Church’s Theorem 16.