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Abstract

We investigate stoichiometric reactions and mechanisms from ab-
stract linear algebraic point of view.
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0 Introduction

Dozens of articles use graph theory and linear algebra for studying stoichio-
metric reactions and mechanisms, see eg. [83HS] through [13bSz] and the
reference list in [13aSz]. However each of these works use the elements of
linear algebra.
In this work we focus mainly on the theoretical mathematical aspects

of stoichiometric reactions, mechanisms and systems of mechanisms, using
higher algebra, too. The term hierarchies was invented by prof.Á.Peth½o in
[90P] and indicated in [13aSz]. The present paper is based on P.Sellers�
private communications to the second author in 2002.
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To avoid confusion, let us now �x some (possibly) nonstandard notations.

De�nition 1 (i) N denotes the set of natural numbers, including 0 .
(ii) For any functions (mappings) f : A ! B and g : B ! C the com-
posite function g � f : A! C is de�ned as

(g � f) (a) := g (f (a)) for a 2 A . (1)

(iii) [zu;v]U;V denotes the matrix containing the elements zu;v for 1 � u �
U and 1 � v � V in U rows and V columns. �

In the present work we provide exhaustive explanations because of the
abstract content.

1 The hierarchy

1.1 De�nitions

A chemical (stoichiometric) system is made up of an in�nite hierarchy of
disjoint �nite sets:

De�nition 2 We introduce the (arbitrary) nonempty disjoint �nite sets sets
Ax for x = 0; 1; ::: 2 N as (A;M; E ; C are special notations for A0; :::;A3):
o) A := A0 = fA1; :::; Aag called atoms,

i) M := A1 = fM1; :::;Mmg called molecules or species,

ii) E := A2 = fE1; :::; Eeg called elementary mechanistic steps or
reactions,

iii) C := A3 = fC1; :::; Ccg called (elementary) mechanisms or catal-
izatinos,

...

x) Ax =
n
A
(x)
1 ; :::; A

(x)
d(x)

o
called the x -th level of hierarchy,

... . �
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This hieararchy must have in�nite many levels, since in extremaly com-
pound cases systems of mechanisms can occur, and so on.
In case 0 < x every element A(x)i of each one of these sets Ax corresponds

to a unique linear combination with integer coe¢ cients of elements in the
preceeding set Ax�1 . However, we must not put equality between Ax and
this linear combination, since, for example many di¤erent molecules (e.g.
isomers) posseses the same empirical formula (linear combination). Simi-
larly, complicated mechanisms can be sensitive on the order of the reactions
involved, while di¤erent mechanisms can result the same overall reactions,
etc. This problem explaines the role of the linear mappings �x : Ax ! Lx
(see (3)) as

�x

�
A
(x)
i

�
=

d(x�1)X
j=1

�i;j � A(x�1)j , �j 2 Z . (2)

To be more precise, �rst we have to consider the algebras generated by the
�nite setsAx as bases and the linear mappings�x after. The algebras below
are, in fact �nitely generated free Abelian groups, or simply linear (vector-)
spaces with integer coe¢ cients.

De�nition 3 We de�ne the algebras Lx := (Lx;+; �) for x = 0; 1; ::: 2 N
as the ground sets

Lx :=

8<:
d(x)X
j=1

�j � A(x)j : �j 2 Z

9=; , (3)

abbreviating
Pd(x)

j=1 �j � A
(x)
j as

�
�1; :::; �d(x)

�
, equipped with the usual opera-

tions �
�1; :::; �d(x)

�
+
�
�1; :::; �d(x)

�
:=
�
�1 + �1; :::; �d(x) + �d(x)

�
(4)

and
� �
�
�1; :::; �d(x)

�
:=
�
� � �1; :::; � � �d(x)

�
for � 2 Z . (5)

Clearly the bases of Lx are the sets Ax . �

Since the sets Lx are linear combinations of the corresponding Ax , for
example we can interpret the arbitrary elements of L0 as "combinations of
atoms", of L1 as "combinations of molecules", of L2 as "combinations of
elementary reactions", etc.
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The coe¢ cients �j might be assumed to be non-negative only in the �rst
level L0 ("images" of molecules), since, for example in reactions (elements of
E) we must distinguish the di¤erent sides. In our interpretation L1 contains
the "images" of reactions.
Now we make more precise the connections between the levels of our

hierarchy, started in (2).
Especially, for x = 2 the law of mass-balance requires, that the number

of each kind of atoms taking part in each reaction - a linear combination of
molecules - must be (�nally) zero. This can be expressed using the special
cases of (2)

�1 (Mj) =
aX
k=1

�j;k � Ak , �2 (Ei) =
mX
j=1

�i;j �Mj (1 � i � e) (6)

as
mX
j=1

�i;j � �j;k = 0 for 1 � i � e , 1 � k � a . (7)

Using matrices (7) can be written as�
�i;j
�
e;m
� [�j;k]m;a = [0]e;a , (8)

or in the language of the linear mappings

�1 ��2 = O i.e. Im (�2) j Ker (�1) (9)

where, of course

�2 : L2 ! L1 and �1 : L1 ! L0 . (10)

(
�
�i;j
�
e;m

is called stoichiometric while [�j;k]m;a is the composition matrix.)
Now we are able to de�ne the mappings �x in general:

De�nition 4 For x 2 N , x 6= 0 we call the linear mappings

�x : Lx ! Lx�1 (11)

stoichiometric connections between Lx and Lx�1 if the requirements

�x ��x+1 = O for x = 1; 2; ::: (12)

where O = Ox : Lx+1 ! Lx�1 is the null-mapping. �
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We drop the adjective "stoichiometric" in what follows.
Though we are talking bases and matrices, we do not have to deal with

base transformations since we �xed the bases we use in each Lx .

Remark 5 The requirement (12) can be written equivalently as

Im (�x+1) j Ker (�x) for x = 1; 2; ::: . (13)

De�nition 6 We call a system of algebras and mappings

H = (Lx;�x+1 : x 2 N) (14)

(stoichiometric) hierarchy, if it satis�es De�nitions 2 through 4. �

1.2 Properties

Now let us have a closer look to some properties of the above hierarchy.

For v =
Pd(x)

j=1 �j � A
(x)
j 2 Lx (0 < x), v 2 Ker (�x) we know that

�x (v) =
Pd(x)

j=1 �j ��x

�
A
(x)
j

�
=
Pd(x)

j=1 �j �
�Pd(x�1)

i=1 �
(j)
i � A(x�1)i

�
=

=
Pd(x�1)

i=1

�Pd(x)
j=1 �j�

(j)
i

�
� A(x�1)i = 0 which includes

d(x)X
j=1

�j�
(j)
i = 0 for i � d (x� 1) (15)

since
n
A
(x)
1 ; :::; A

(x)
d(x)

o
was assumed to be a base.

For example, for any elementary reaction E 2 E = A2 we have that
�2 (E) is a linear combination of molecules (where di¤erent signs of molecules
distinguish starting and �nal ones), and by (13) v := �2 (E) 2 Ker (�1) ,
so (15) means that E must correspond (via �2) to a balanced reaction. The
linearity of�2 implies that any (composite) reaction E 2 L2 also corresponds
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to a balanced reaction. Since Im (�2) � L1 and Im (�2) � Ker (�1) , the
above implies

Im (�2)= the set of all balanced reactions. (16)

Especially, for E 2 Ker (�2) we have�2 (E) = 0 (-reaction) which means
that E is a mechanism resulting the 0 -reaction. In other words

Ker (�2)= the set of all cycle-mechanisms. (17)

In general we say:

De�nition 7 For x > 0 the elements of Ker (�x) and Im (�x) are called
( generalized) cycle-mechanisms and balanced mechanisms, respectively.
�

Clearly, by (13) each balanced mechanisms must be cycles.

We did not prescribe Ker (�x) = ; , so we may use the following termi-
nology.

De�nition 8 For x > 0 we call the vectors w1; w2 2 Lx to be equivalent
modulo Ker (�x) if and only if

w2 � w1 2 Ker (�x) . (18)

We shorten (18) as
w1 � w2 . (19)

�

Clearly (18) can be written as

w2 = w1 + y for some y 2 Ker (�x) . (20)

It is well known, that � is an equivalence relation and the partition Lx
by � (the factor Lx=� ) is isomorphic to Im (�x) � Lx�1 :

Lx=� �= Im (�x) . (21)

For moleculesM1;M2 2M the relationM1 �M2 means thatM1 andM2

contains the same amount of atoms but have di¤erent (graph-) structures.
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For reactions E1; E2 2 E E1 � E2 means that E1 and E2 di¤er only in
a balanced reaction, i.e. which results 0 .

The factorization Lx=� means that w1 and w2 in (20) represent the same
object and y represents the null object in Lx . The phrases "same" and
"equivalent" express the requirement that w1 and w2 �nally must end the
same results. The equality �x

�
w2
�
= �x

�
w1
�
expresses this, too, which is

clearly equivalent to (18) and (20).
That is (writing w instead of w1 )

w +Ker (�x) = set of all objects equivalent to w , (22)

e.g. in case x = 2

E+Ker (�2) = set of all mechanisms resulting the reaction �2 (E) . (23)

Mathematically, the term w+Ker (�x) is a coset (a subspace translated
by a vector), the factor set Lx=� is contained from all of these cosets, as
elements of Lx=� .

1.3 Dual mappings

Now we turn to the dual spaces and mappings

��
x : L�x�1 ! L�x (1 � x). (24)

Recall �rst the general mathematical de�nition of dual spaces and mappings.

De�nition 9 Let V and W be any linear spaces and denote � the set from
scalar coe¢ cients for the elements of V and W can be chosen (usually the
set of real numbers, � = R).
(i) The dual space V � is de�ned as the set of linear mappings (functions)
f : V ! � . The addition and scalar multiplication for f1; f2; f 2 V � and
� 2 � are de�ned pointwise, i.e.

(f1 � f2) (v) : = f1 (v) + f2 (v)

(�� f) (v) : = � � f (v) (v 2 V , � 2 �). (25)

(ii) For any linear mappingM : V ! W , the dual mapping

M� : W � ! V � , g 7�! f (26)
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or f :=M� (g) 2 V � (g 2 W �) is de�ned as

M� (g) :=M� g (27)

i.e.
f (v) :=M (g (v)) (v 2 V ). (28)

�

Note thatM� is also linear sinceM was linear itself.
The elements of V � are called also functionals or valuations, their stoi-

chiometric aspects, together some linar algebraic citations are discussed in
detail in [00Sz].
It is well known that �xing any base B = fb1; :::; bng of V , then the

corresponding functions (dual vectors) B� = ffb1 ; :::; fbng where fbi (bj) =
�i;j

(1), form a base for V � . This means, that the dimensions of V and V �

are the same, so V and V � are, in fact, isomorphic. Moreover, the dual base
B� = ffb1 ; :::; fb1g implies the natural correspondance between V and V � as
follows.
Using the notations for v; w 2 V

v =
nX
j=1

�j � bj , w =
nX
i=1

�i � bi , (29)

the functional fv =
P

j �j � fbj 2 V �, related to v , works for any w as

fv (w) =
nX
j=1

�j � fbj (
Pn

i=1 �i � bi) =
nX
j=1

nX
i=1

�j � �i � �i;j =
nX
i=1

�j � �i (30)

that is

fv (w) = hv; wiB ==
nX
i=1

�j � �i (31)

where hv; wiB is called the Euclidean scalar product over the base B.
(Recall, that dim (V ) = n is equivalent to that V is isomorphic to Rn.)

By (11) and (24) the below de�nition is natural.

1 ) here �i;j denotes the Kronecker-delta, i.e. �i;j = 1 for i = j and �i;j = 0 for i 6= j .
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De�nition 10 The dual mappings ��
x : L�x�1 ! L�x (1 � x) are called

dual stoichiometric connections. �

It is well known that the matrices of ��
x are the transposes of the ma-

trices of �x .
The below connection among the dual mappings ��

x is also an easy con-
sequence of (12) and (13).

Lemma 11 For each x = 1; 2; ::: the assumptions (12) and (13) are equiv-
alent to

��
x+1 ���

x = O
� (32)

and
Im (��

x) j Ker
�
��
x+1

�
(33)

where O� = O�x : L�x�1 ! L�x+1 is the null-functional. �

Similarly to (16) and (17), Ker (��
x) and Im (�

�
x) could be meaningful

for some x > 0. First we consider

Ker (��
2) = fg 2 L1 ! R : g ��2 = Og (34)

where g ��2 = O means

g (w) = g (�2 (v)) = 0 for all v 2 L1 . (35)

The latter equality means in our interpretation, that each "combination of
molecules" (w) resulted from "combination of elementary reactions" (v) via
�2 must satisfy the condition g (w) = 0 . Since we consider (managed) all
balanced reactions as zero vectors (see the comment just before (6)), the
requirement (35) explains Ker (��

2) as:

Ker (��
2) = set of all conservation conditions (36)

where, of course by "conservation condition" we mean the condition we re-
quire to preserve during each (combination of) reactions. As mentioned, each
g 2 Ker (��

2) is a functional, a valuation operator in other words.

Second we see
Im (��

1) = ff ��1 : f 2 L�1g (37)
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where f � �1 : L2 ! R is a linear functional, ordering a real number to
each "combination" of molecules M . Since �1 (M) "counts" the atoms in
M , and �1 and f are linear, (f ��1) (M) �nally counts the weighted sum
(according to f) of the atoms contained in M . By (31) and (37) f = fa for
all possible a 2 Ra (see Def.2), which explains the equality

(f ��1) (M) = c (38)

as the weighted sum (by a) of atoms in M is required to be c . In short:

Im (��
1) = set of all "mass-conservation" conditions (39)

By (36) and (39) we are allowed to introduce the below general notions,
which are in synchron with (33).

De�nition 12 For x > 0 the elements of Ker (��
x) and Im (�

�
x) are called

( generalized) conservation- andmass-conservation conditions, respec-
tively. �

In practice, the term "condition" would rather mean an equality than a
functional. Fortunately (38) makes the bridge between practice and present
theory.

In some chemical applications Im (�x+1) = Ker (�x) is assumed instead
of (13) for some x 2 N , e.g. for x = 1 . This is equivalent to Im (��

x) j
Ker

�
��
x+1

�
by Lemma 11. In fact, from �2 : E ! M one can guess �1 :

M!A in the case Im (�2) = Ker (�1) , and similarly for ��
1 and �

�
2 .

2 Combinatorial properties

### de�nitions, reference to the results and open problem listed in [13aSz]
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