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1. Introdution

Di�erential inequalities �nd numerous appliations in the theory of �rst order partial

di�erential or funtional di�erential equations. The basi examples of suh applia-

tions are estimates of solutions of di�erential equations, estimates of the domain of

the existene of solutions, riteria of uniqueness and estimates of the error of approx-

imate solutions. Disrete version of di�erential inequalities, the so alled di�erene or

funtional di�erene inequalities, are frequently used to prove onvergene of approx-

imation methods. The lassial theory of �rst order partial di�erential inequalities

has been desribed extensively in the monographs [6℄, [7℄, [9℄. Hyperboli funtional

inequalities orresponding to initial or initial boundary value problems have been

studied in the papers [1℄ - [4℄ and the monograph [5℄.

The aim of the paper is to obtain general omparison theorems on funtional

di�erential inequalities with initial boundary onditions. There are two di�erent

types of results on the omparison theorems of funtional di�erential inequalities
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in the literature. The �rst type of theorems allow to estimate a funtion of several

variables, while the seond one, the so alled omparison theorems, give estimates for

funtions of one variable. In Setion 2 we deal with the �rst kind of results, while the

omparison theorem is presented in Setion 3.

We formulate our funtional di�erential problems. For any metri spaes X, Y we

denote by C(X,Y ) the lass of all ontinuous funtions from X into Y . We will use

vetorial inequalities with the understanding that the same inequalities hold between

their orresponding omponents.

Let a > 0, b0 ∈ R+, R+ = [0,+∞), be �xed and suppose that the funtions

α, β : [0, a) → R
n, α = (α1, . . . , αn), β = (β1, . . . , βn), satisfy the onditions: α and β

are of lass C1 on [0, a) and α(t) < β(t) for t ∈ [0, a). Let E be a generalized Haar

pyramid

E = {(t, x) ∈ R
1+n : t ∈ (0, a), x ∈ [α(t), β(t)]} (1.1)

and E0 = [−b0, 0] × [b∗, b
∗], b∗ = α(0), b∗ = β(0). For (t, x) ∈ E we de�ne the set

D[t, x] as follows

D[t, x] = {(τ, y) ∈ R
1+n : τ ≤ 0, (t + τ, x + y) ∈ E0 ∪ E}.

It is lear that D[t, x] = D0[t, x] ∪ D∗[t, x], where

D0[t, x] = [−b0 − t,−t] × [b∗, b
∗],

D∗[t, x] = {(τ, y) ∈ R
1+n : −t ≤ τ ≤ 0,−x + α(t + τ) ≤ y ≤ −x + β(t + τ)}.

Write B = [−b0 − a, 0] × [c − d, d − c], where c = (c1, . . . , cn), d = (d1, . . . , dn) and

ci = inf{αi(t) : t ∈ [0, a)}, di = sup{βi(t) : t ∈ [0, a)}, i = 1, . . . , n.

Then we have D[t, x] ⊂ B for (t, x) ∈ E. For a funtion z : E0 ∪ E → R and for a

point (t, x) ∈ E, we de�ne a funtion z(t,x) : D[t, x] → R as follows:

z(t,x)(τ, y) = z(t + τ, x + y), (τ, y) ∈ D[t, x].

Then z(t,x) is the restrition of z to the set (E0∪E)∩([−b0, t]×R
n) and this restrition

is shifted to the set D[t, x]. Write ∂0E = ∂E∩((0, a)×R
n), where ∂E is the boundary

of E. Suppose that the sets ∆0, ∆ ⊂ ∂E satisfy the onditions:

∆0 ∪ ∆ = ∂0E, ∆0 ∩ ∆ = ∅.

The ases ∆0 = ∅ or ∆ = ∅ are not exluded. We will assume that di�erential

funtional equations or inequalities are satis�ed on IntE ∪ ∆ and initial boundary

onditions hold on E0 ∪∆0. Suppose that κ : [0, a) → R and ψ∗ = (ψ1, . . . , ψn) : E →
R

n are given funtions. The requirements on κ and ψ∗ are that 0 ≤ κ(t) ≤ t and

(κ(t), ψ∗(t, x)) ∈ E0 ∪ E for (t, x) ∈ E. Set ψ(t, x) = (κ(t), ψ∗(t, x)) for (t, x) ∈ E.

Write Ω = E × R × C(B, R) × R
n and suppose that f : Ω → R and ϕ : E0 ∪ ∆0 → R

are given funtions. We will say that the funtion f satis�es the ondition (V ) if for
eah (t, x, p, q) ∈ E × R × R

n and for w, w̃ ∈ C(B, R) suh that w(τ, y) = w̃(τ, y) for
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(τ, y) ∈ D[ψ(t, x)] we have f(t, x, p, w, q) = f(t, x, p, w̃, q). Note that the ondition

(V ) means that the value of f at the point (t, x, p, w, q) ∈ Ω depends on (t, x, p, q)
and on the restrition of w to the set D[ψ(t, x)] only.

Let z be the unknown funtion of the variables (t, x) with x = (x1, . . . , xn). We

onsider the following problem onsisting of the di�erential funtional equation

∂tz(t, x) = f(t, x, z(t, x), zψ(t,x), ∂xz(t, x)) (1.2)

with initial boundary ondition

z(t, x) = ϕ(t, x) on E0 ∪ ∆0, (1.3)

where ∂xz = (∂x1
z, . . . , ∂xn

z). We assume that f satis�es the ondition (V ) and we

onsider the lassial solutions of (1.2), (1.3).

Now we give examples of equations whih an be obtained from (1.2) by speial-

izing the operator f .

Example 1.1. Suppose that f̃ : E × R × R × R
n → R is a given funtion. Set

f(t, x, p, w, q) = f̃(t, x, p, w(0, θ), q) where θ = (0, . . . , 0) ∈ R
n. Then (1.2) beomes

the di�erential equation with deviated variables

∂tz(t, x) = f̃(t, x, z(t, x), z(ψ(t, x)), ∂xz(t, x)). (1.4)

Example 1.2. Suppose that ψ(t, x) = (t, x), (t, x) ∈ E. For the above f̃ we put

f(t, x, p, w, q) = f̃(t, x, p,

∫

D[t,x]

w(τ, y)dτdy, q).

Then (1.2) is equivalent to the di�erential integral equation

∂tz(t, x) = f̃(t, x, z(t, x),

∫

D[t,x]

z(t,x)(τ, y)dτdy, ∂xz(t, x)). (1.5)

It is lear that more ompliated equations with deviated variables and di�erential

integral equations an be obtained from (1.2).

Su�ient onditions for the existene of solutions to (1.2), (1.3) an be found in

[8℄.

2. Funtional di�erential inequalities

For eah (t, x) ∈ E there exist sets of integers I0[t, x], I−[t, x], I+[t, x] suh that

I−[t, x] ∩ I+[t, x] = ∅ and I0[t, x] ∪ I−[t, x] ∪ I+[t, x] = {1, 2, . . . , n} and

αi(t) < xi < βi(t) for i ∈ I0[t, x],

xi = αi(t) for i ∈ I−[t, x], xi = βi(t, x) for i ∈ I+[t, x].
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Of ourse, the ases I0[t, x] = ∅ or I−[t, x] = ∅ or I+[t, x] = ∅ are possible. For

(t, x) ∈ ∂0E and i ∈ I−[t, x], j ∈ I+[t, x] we write

x[i, α]=(x1, . . . , xi−1, αi(t), xi+1, . . . , xn), x[j, β]=(x1, . . . , xj−1, βj(t), xj+1, . . . , xn).

A funtion z : E0 ∪ E → R will be alled a funtion of lass C∗ if z is ontinuous on

E0 ∪ E, it has �rst order partial derivatives in an interior of E and z possesses the

total di�erential on ∆. Write ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ R
n with 1 standing on the

i -th plae and i = 1, . . . , n. We formulate the main assumption on f , ψ and E as

follows.

Assumption H[ f, ψ,E ]. The funtions α, β : [0, a) → R
n, κ : [0, a) → R, ψ∗ : E →

R
n and f : Ω → R satisfy the onditions

1) α and β are of lass C1 on [0, a) and α(t) < β(t) for t ∈ [0, a);

2) 0 ≤ κ(t) ≤ t for t ∈ (0, a) and α(t) ≤ ψ∗(t, x) ≤ β(t) for (t, x) ∈ E;

3) the funtion f of the variables (t, x, p, w, q), q = (q1, . . . , qn), satis�es the ondi-

tion (V ) and the following monotoniity onditions holds: if (t, x, p, w, q) ∈ Ω,
w̃ ∈ C(B, R) and w(τ, y) ≤ w̃(τ, y) for (τ, y) ∈ B then f(t, x, p, w, q) ≤
f(t, x, p̃, w̃, q);

4) for eah (t, x) ∈ ∆, i ∈ I−[t, x], h < 0, we have

α′

i(t) ≥ −
1

h
[f(t, x[i, α], p, w, q) − f(t, x[i, α], p, w, q − eih)],

where p ∈ R, q ∈ R
n, w ∈ C(B, R);

5) for eah (t, x) ∈ ∆, i ∈ I+[t, x], h > 0, we have

β′

i(t) ≤ −
1

h
[f(t, x[i, β], p, w, q) − f(t, x[i, β], p, w, q − eih)],

where p ∈ R, q ∈ R
n, w ∈ C(B, R).

Write

F [z](t, x) = f(t, x, z(t, x), zψ(t,x), ∂xz(t, x)).

We prove a theorem on strong funtional di�erential inequalities.

Theorem 2.1. Suppose that Assumption H[ f, ψ,E ] is satis�ed and

1) the funtions u, v : E0∪E → R are of the lass C∗ and the following initial boundary

inequalities hold:

u(t, x) ≤ v(t, x) on E0 and u(0, x) < v(0, x) for x ∈ [ b∗, b
∗ ]

and

u(t, x) < v(t, x) for (t, x) ∈ ∆0;
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2) denoted by

Σ = {(t, x) ∈ E\∆0 : u(τ, y) < v(τ, y) on E ∩ ((0, t) × R
n) and u(t, x) = v(t, x)}

we assume that

∂tu(t, x) − F [u](t, x) < ∂tv(t, x) − F [v](t, x) for (t, x) ∈ Σ.

Then we have

u(t, x) < v(t, x) for (t, x) ∈ E. (2.1)

Proof. Suppose, by ontradition, that inequality (2.1) fails to be true. Let

T+ = {t ∈ [0, a) : u(τ, y) < v(τ, y) on E ∩ ([0, t] × R
n) and u(t, x) = v(t, x)}.

Then the set T+ is not empty. Let t̃ = min T+. From the assumption 1) it is lear that

t̃ > 0 and there exists x̃ = (x̃1, . . . , x̃n) suh that u(t̃, x̃) = v(t̃, x̃) and u(t, x) < v(t, x)
on E ∩ ([0, t̃) × R

n). The funtion u − v satis�es the onditions

∂xi
(u − v)(t̃, x̃) ≥ 0 for i ∈ I+[t̃, x̃], ∂xi

(u − v)(t̃, x̃) ≤ 0 for i ∈ I−[t̃, x̃] (2.2)

and

∂xi
(u − v)(t̃, x̃) = 0 for i ∈ I0[t̃, x̃]. (2.3)

Consider the funtion γ = (γ1, . . . , γn) : [0, t̃] → R
n given by:

γi(t) = x̃i for i ∈ I0[t̃, x̃], (2.4)

γi(t) = βi(t) for i ∈ I+[t̃, x̃], γi(t) = αi(t) for i ∈ I−[t̃, x̃], (2.5)

and the funtion ξ(t) = (u − v)(t, γ(t)), t ∈ [0, t̃]. Beause ξ(t) < 0 for t ∈ [0, t̃) and

ξ(t̃) = 0 then ξ′(t̃) ≥ 0. Sine u − v is of lass C∗ we have

0 ≤ ξ′(t) = ∂t(u − v)(t̃, x̃) +

n
∑

i=1

γ′

i(t̃)∂xi
(u − v)(t̃, x̃),

and onsequently

0 ≤ ∂t(u−v)(t̃, x̃)+
∑

i∈I
−

[t̃,x̃]

α′

i(t̃)∂xi
(u−v)(t̃, x̃)+

∑

i∈I+[t̃,x̃]

β′

i(t̃)∂xi
(u−v)(t̃, x̃). (2.6)

We also have that (t̃, x̃) ∈ Σ. From Assumption H[ f, ψ,E ] and (2.2) and (2.3), we

dedue that

∂t(u − v)(t̃, x̃) < F [u](t̃, x̃) − F [v](t̃, x̃)

≤ −
∑

i∈I
−

[t̃,x̃]

α′

i(t̃)∂xi
(u − v)(t̃, x̃) −

∑

i∈I+[t̃,x̃]

β′

i(t̃)∂xi
(u − v)(t̃, x̃),

whih ontradits (2.6). Therefore, the set T+ is empty and the statement (2.1)

follows. ¤
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Remark 2.1. In Theorem 2.1 we an assume instead of ondition 2) that

∂tu(t, x) ≤ F [u](t, x) and ∂tv(t, x) ≥ F [v](t, x),

where (t, x) ∈ E\∆0 and for eah (t, x) ∈ E\∆0 equality holds in at most one plae.

Now we onsider weak funtional di�erential inequalities. Write Γ = [−b0 − a, 0]
and Γ[t] = [−b0 − t, 0], where t ∈ [0, a]. Then, Γ[t] ⊂ Γ for t ∈ [0, a]. We need the

operator W : C(B, R) → C(Γ, R+) de�ned by

W [w](t) = max{|w(t, y)| : y ∈ [c − d, d − c]}, t ∈ Γ.

For w ∈ C(B, R) and ξ ∈ C(Γ, R), we de�ne w + ξ : B → R in the following way:

(w + ξ)(τ, y) = w(τ, y) + ξ(τ), (τ, y) ∈ B. For a funtion η : Γ ∪ [0, a) → R and for a

point t ∈ [0, a], we de�ne ηt : Γ → R by ηt(τ) = η(t + τ), τ ∈ Γ.
Suppose that σ : [0, a)×R+ ×C(Γ, R+) → R+ is a given funtion. We will say that σ
satis�es the ondition (V0) if for eah (t, p, ξ) ∈ [0, a)×R+ ×C(Γ, R+), ξ̃ ∈ C(Γ, R+)
suh that ξ(τ) = ξ̃(τ) for τ ∈ Γ[κ(t)] we have σ(t, p, ξ) = σ(t, p, ξ̃)

Assumption H∗[σ ]. The funtion σ : [0, a) × R+ × C(Γ, R+) → R+ satis�es the

ondition (V0) and

1) σ is ontinuous and σ(t, 0,O) = 0 for t ∈ [0, a) where O ∈ C(Γ, R+) is given byO(τ) = 0 for τ ∈ Γ;

2) the following monotoniity ondition is satis�ed: if p ∈ R, ζ, ζ̃ ∈ C(Γ, R+) and

ζ(τ) ≤ ζ̃(τ) for τ ∈ Γ then σ(t, p, ζ) ≤ σ(t, p, ζ̃);

3) the funtion η̃(t) = 0 for t ∈ [−b0, a) is the unique solution of the Cauhy problem

η′(t) = σ(t, η(t), ηκ(t)), η(t) = 0 for t ∈ [−b0, 0].

Theorem 2.2. Suppose that Assumptions H[ f, ψ,E ], H∗[σ ] are satis�ed and

1) the funtions u, v : E0 ∪ E → R are of the lass C∗ and

u(t, x) ≤ v(t, x) for (t, x) ∈ E0 ∪ ∆0;

2) the estimate

f(t, x, p, w, q) − f(t, x, p̃, w − ξ, q) ≤ σ(t, p − p̃, ξ)

is satis�ed for (t, x) ∈ E\∆0, w ∈ C(B, R), ξ ∈ C(Γ, R+), p, p̃ ∈ R and p ≥ p̃;
3) denoted by

Σ∗ = {(t, x) ∈ E\∆0 : u(τ, y) > v(τ, y)}

we assume that

∂tu(t, x) − F [u](t, x) ≤ ∂tv(t, x) − F [v](t, x) for (t, x) ∈ Σ∗.

Then we have

u(t, x) ≤ v(t, x) for (t, x) ∈ E. (2.7)
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Proof. Let 0 < ã < a be �xed. We prove that u(t, x) ≤ v(t, x) on E ∩ ([0, ã) × R
n).

Let us denote by ω( ·, ǫ ) the maximal solution of the Cauhy problem

η′(t) = σ(t, η(t), ηκ(t)) + ǫ, η(t) = ǫ for t ∈ [−b0, 0].

There exists ǫ̃ > 0 suh that for every 0 < ǫ < ǫ̃ the solution ω( ·, ǫ ) is de�ned on

[−b0, ã) and
lim

ǫ→∞

ω(t, ǫ) = 0 uniformly on [−b0, ã).

Write

uǫ(t, x) = u(t, x) − ω(t, ǫ), (t, x) ∈ E0 ∪
[

E ∩ ([0, ã) × R
n)

]

.

We will show that

uǫ(t, x) < v(t, x) for (t, x) ∈ E ∩ ([0, ã) × R
n). (2.8)

It is lear that the following initial boundary inequality is satis�ed

uǫ(t, x) < v(t, x) for E0 ∪ ∆0.

Write

Σ̃ = {(t, x) ∈ (E\∆0) ∩ ([0, ã) × R
n) : uǫ(τ, y) < v(τ, y) onE ∩ ((0, t) × R

n)

anduǫ(t, x) = v(t, x)}.

We prove that

∂tuǫ(t, x) − F [uǫ](t, x) < ∂tv(t, x) − F [v](t, x) for (t, x) ∈ Σ̃.

Suppose that (t, x) ∈ Σ̃. Then (t, x) ∈ Σ∗ and

∂tuǫ(t, x) − F [uǫ](t, x) ≤ ∂tv(t, x) − F [v](t, x) − ω′(t, ǫ) − F [uǫ](t, x) + F [u](t, x)

≤ ∂tv(t, x) − F [v](t, x) − ω′(t, x) + σ(t, ω(t, ǫ), ωκ(t)(·, ǫ))

< ∂tv(t, x) − F [v](t, x),

whih ompletes the proof of (2.6). ¤

Then we dedue (2.8) from Theorem 2.1. From the above inequality we obtain

inequality u(t, x) ≤ v(t, x) on E ∩ ([0, ã)×R
n). By the arbitrariness of 0 < ã < a, the

assertion follows.

Remark 2.2. Condition 2) in Theorem 2.2 an be replaed by the following assump-

tion:

f(t, x, p, w, q) − f(t, x, p̃, w̃, q) ≤ σ(t, p − p̃,W [w − w̃]),

where (t, x) ∈ E\∆0, q ∈ R
n, p, p̃ ∈ R, w, w̃ ∈ C(B, R) and p ≥ p̃, w(τ, y) ≥ w̃(τ, y)

for (τ, y) ∈ B.
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Now we prove a theorem in whih strong di�erential funtional inequalities and weak

initial boundary inequalities for u, v : E0 ∪E → R imply the estimate u(t, x) < v(t, x)
for (t, x) ∈ E\∆0.

Theorem 2.3. Suppose that Assumption H[ f, ψ,E ], H∗[σ ] are satis�ed and

1) the funtions u, v : E0 ∪ E → R are of the lass C∗ and

u(t, x) ≤ v(t, x) for (t, x) ∈ E0 ∪ ∆0;

2) the estimate

f(t, x, p, w, q) − f(t, x, p̃, w − ξ, q) ≤ σ(t, p − p̃, ξ)

is satis�ed for (t, x) ∈ E\∆0, w ∈ C(B, R), ξ ∈ C(Γ, R+), p, p̃ ∈ R and p ≥ p̃;
3) denoted by

Σ∗ = {(t, x) ∈ E\∆0 : u(τ, y) > v(τ, y)}

we assume that

∂tu(t, x) − F [u](t, x) < ∂tv(t, x) − F [v](t, x) for (t, x) ∈ Σ∗.

Then

u(t, x) < v(t, x) for (t, x) ∈ E. (2.9)

This assertion an be proved by applying Theorem 2.3 and then repeating the argu-

ment used in the proof of Theorem 2.1.

In the next theorem we assume that ∆0 = ∅ and we prove that weak funtional

di�erential inequalities and strong initial inequality for u, v : E0 ∪ E → R imply the

estimate u(t, x) < v(t, x) on E.

Assumption H0[σ ]. The funtion σ : [0, a)×R− → R+, R− = (−∞, 0], satis�es the
onditions:

1) σ is ontinuous and σ(t, 0) = 0 for t ∈ [0, a);

2) the left hand minimal solution of the problem

η′(t) = σ(t, η(t)), lim
t→a

−

η(t) = 0 (2.10)

is η̃(t) = 0, t ∈ [0, a).

Theorem 2.4. Suppose that Assumptions H[ f, ψ,E ] and H0[σ] are satis�ed, ∆0 = ∅
and

1) the funtions u, v : E0 ∪ E → R are of lass C∗ and

∂tu(t, x) − F [u](t, x) ≤ ∂tv(t, x) − F [v](t, x) for (t, x) ∈ E; (2.11)
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2) for (t, x) ∈ E0 we have u(t, x) ≤ v(t, x) and u(0, x) < v(0, x) for x ∈ [b∗, b
∗];

3) if (t, x, p, w, q) ∈ Ω, h > 0 and ξ ∈ C(Γ, R+), then

f(t, x, p, w, q) − f(t, x, p + h,w + ξ, q) ≤ σ(t,−min{h, ‖ξ‖Γ}).

Under these assumptions, we have

u(t, x) < v(t, x) for (t, x) ∈ E. (2.12)

Proof. We will prove (2.12) for (t, x) ∈ E ∩ ([0, a− ǫ)×R
n), where 0 < ǫ < a. Write

0 < p0 < min{v(0, x) − u(0, x) : x ∈ [b∗, b
∗]}.

For δ > 0, we denote by ω( · , δ) the right hand side minimal solution of the Cauhy

problem

η′(t) = −σ(t,−η(t)) − δ, η(0) = p0. (2.13)

For �xed p0 > 0 and ǫ > 0 the solution ω( · , δ) exists on [0, a − ǫ) and ω(t, δ) > 0
for t ∈ [0, a − ǫ). Let δ > 0 be suh a small onstant that ω( · , δ) satis�es the above

onditions. Let us denote by z̃ : E0 → R a ontinuous funtion suh that

u(t, x) ≤ z̃(t, x) ≤ v(t, x) for (t, x) ∈ E0 and z̃(0, x) = u(0, x) + p0 for x ∈ [b∗, b∗].

Write ũ(t, x) = z̃(t, x) for (t, x) ∈ E0, ũ(t, x) = u(t, x)+ω(t, δ) for (t, x) ∈ E ∩ ([0, a−
ǫ) × R

n). We will show that

ũ(t, x) < v(t, x) for (t, x) ∈ E ∩ ([0, a − ǫ) × R
n). (2.14)

It follows from Assumption H0[σ] and from (2.11) that

∂tũ(t, x) − F [ũ](t, x)

= ∂tu(t, x) + ω′(t, δ)

≤ ∂tv(t, x) − F [v](t, x) + F [u](t, x) − F [ũ](t, x) + ω′(t, δ)

≤ ∂tv(t, x) − F [v](t, x) + f(t, x, u(t, x), uψ(t,x), ∂xu(t, x))

−f(t, x, (u + ω( · , δ))(t, x), (u + ω( · , δ))ψ(t,x), ∂xu(t, x)) + ω′(t, δ)

≤ ∂tv(t, x) − F [v](t, x) + σ(t,−ω(t, δ)) + ω′(t, δ)

≤ ∂tv(t, x) − F [v](t, x) − δ, (t, x) ∈ E ∩ ((0, a − ǫ) × R
n),

and onsequently

∂tũ(t, x) − F [ũ](t, x) < ∂tv(t, x) − F [v](t, x) for (t, x) ∈ E ∩ ((0, a − ǫ) × R
n).

It follows from Theorem 2.1 that estimate (2.14) is satis�ed and onsequently, u(t, x)≤
v(t, x) for (t, x) ∈ E ∩ ((0, a− ǫ)×R

n). Sine 0 < ǫ < a is arbitrary, inequality (2.12)

holds true. ¤

It is lear that onditions 4), 5) of Assumption H[ f, ψ,E ] are important in the-

orems on funtional di�erential inequalities. We give examples of the sets E, ∆, and

∆0 and we formulate suitable assumptions on ∆.
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Remark 2.3. Write

E = {(t, x) ∈ R
1+n : t ∈ (0, a), x ∈ [−b + Mt, b − Mt]}, E0 = [−b0, 0] × [−b, b],

(2.15)

where a > 0, b0 ∈ R+, b = (b1, . . . , bn) ∈ R
n, bi > 0 for i = 1, . . . , n and M =

(M1, . . . ,Mn) ∈ R
n
+. We assume that b > Ma. Suppose that we have de�ned the sets

J+, J− ⊂ {1, . . . , n}. The ases J+ = ∅ or J− = ∅ are not exluded. Write

∆+ = {(t, x) ∈ ∂E : there is i ∈ J+ suh thatxi = bi − Mit}, (2.16)

∆− = {(t, x) ∈ ∂E : there is i ∈ J− suh thatxi = −bi + Mit} (2.17)

and ∆ = ∆+ ∪ ∆−. Then (1.2), (1.3) redues to the initial boundary value problem

with solutions de�ned on the lassial Haar pyramid. Write

α(t) = −b + Mt, β(t) = b − Mt, t ∈ [0, a).

If

Mi ≥ −
1

h
[f(t, x[i, α], p, w, q) − f(t, x[i, α], p, w, q − eih)], i ∈ J−, (2.18)

Mi ≤ −
1

h
[f(t, x[i, β], p, w, q) − f(t, x[i, β], p, w, q − eih)], i ∈ J+, (2.19)

where p ∈ R, q ∈ R
n, w ∈ C(B, R) then onditions 4), 5) of Assumption H[ f, ψ,E ]

are satis�ed. The theorems presented in Setion 2 onern funtional di�erential

inequalities orresponding to initial boundary value problems with solutions de�ned

on the Haar pyramid. These theorems are new.

Suppose that J+ = J− = {1, . . . , n}. Then ∆0 = ∅, ∆ = ∂0E and (1.2), (1.3)

redues to the Cauhy problem with solutions de�ned on the lassial Haar pyramid.

Theorems on funtional di�erential inequalities generated by initial problems an be

found in [5℄, Chapter 1.

Remark 2.4. Suppose that E is given by (1.1) and E0 = [−b0, 0] × [b∗, b
∗]. Assume

that

1) the partial derivatives (∂q1
f, . . . , ∂qn

f) = ∂qf exist on Ω and ∂qf ∈ C(Ω, Rn);
2) the di�erential inequalities

α′

i(t) ≥ −∂qi
f(t, x[i, α], p, w, q), (t, x) ∈ ∆, i ∈ I−[t, x],

β′

i(t) ≤ −∂qi
f(t, x[i, β], p, w, q), (t, x) ∈ ∆, i ∈ I+[t, x],

are satis�ed. Then onditions 4), 5) of Assumption H[ f, ψ,E ] are satis�ed.

Remark 2.5. Suppose that k ∈ Z, 0 ≤ k ≤ n is �xed. For eah x = (x1, . . . , xn) ∈
R

n we write x = (x′, x′′) where x′ = (x1, . . . , xk), x′′ = (xk+1, . . . , xn). We have

x′ = x for k = n and x′′ = x for k = 0. Write

E = (0, a) × [−b, b], E0 = [−b0, 0] × [−b, b], (2.20)
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where a > 0, b0 ∈ R+, b = (b1, . . . , bn) ∈ R
n and bi > 0 for 1 ≤ i ≤ n. Put

∆0 = (0, a) × ([−b′, b′]\(−b′, b′]) × ([−b′′, b′′]\[−b′′, b′′)), ∆ = ∂0E\∆0. (2.21)

Then (1.2), (1.3) redues to the mixed problem for the nonlinear funtional di�erential

equations. Suppose that f satis�es the ondition: if q̃, q ∈ R
n, q̃ = (q̃1, . . . , q̃n),

q = (q1, . . . , qn) and q̃i ≤ qi for i = 1, . . . , k, q̃i ≥ qi for i = k + 1, . . . , n, then

f(t, x, p, w, q̃) ≤ f(t, x, p, w, q),

where (t, x, p, w) ∈ E×R×C(B, R). Then onditions 4), 5) of Assumption H[ f, ψ,E ]
are satis�ed.

Theorems presented in Setion 2 onern, as partiular ases, funtional di�eren-

tial inequalities orresponding to mixed problems with solutions de�ned on retangu-

lar domains.

Note that we do not assume that there exists ∂qf = (∂q1
f, . . . , ∂qn

f). It follows

that our results are generalisations of theorems on funtional di�erential inequalities

presented in [5℄ (Chapter 5), see also [1℄.

Remark 2.6. Suppose that E and E0 are given by (2.20). Put ∆0 = ∅, ∆ = ∂0E.

Then (1.2), (1.3) redues to the Cauhy problem with solutions onsidered on retan-

gular domains.

Suppose that

1) the partial derivatives ∂qf = (∂q1
f, . . . , ∂q1

f) exist on Ω and ∂qf ∈ C(Ω, Rn);
2) there is x̃ = (x̃1, . . . , x̃n) ∈ (−b, b) suh that

(xi − x̃i)∂qi
f(t, x, p, w, q) ≤ 0 on Ω for 1 ≤ i ≤ n. (2.22)

Then onditions 4), 5) of Assumption H[ f, ψ,E ] are satis�ed. Setion 2 ontains new

theorems on funtional inequalities with solutions de�ned on retangular domains.

3. Comparison theorem

First order partial di�erential or funtional di�erential equations have the following

properties. Theorems on uniqueness of solutions to an initial or initial boundary

value problem are onsequenes of suitable omparison theorems. They give estimates

for funtions of several variables by means of solutions of ordinary di�erential or

funtional di�erential equations.

The fundamental result, known as the Haar - Wa»ewski inequality, shows that a

funtion of several variables whih is of lass C1 on the Haar pyramid and satis�es

a linear di�erential inequality an be estimated by solution of a linear ordinary dif-

ferential equation ([7℄, [10℄). There exist many generalizations of the above lassial

result. The di�erential inequality may be nonlinear with respet to the unknown
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funtion and assumptions on the regularity of the unknown funtion onsidered on

the Haar pyramid may be weakened [9℄. A funtional di�erential version of the Haar

- Wa»ewski inequality an be found in [5℄.

We extend the Haar - Wa»ewski inequality (1.2) on initial boundary value prob-

lems. We prove that a funtion satisfying a funtional di�erential inequality and

initial boundary onditions an be estimated by a solution of initial value problem for

an ordinary funtional di�erential equation.

For a funtion z ∈ C(E0 ∪ E, R), we put

E+[z] = {(t, x) ∈ E : |z(t, x)| ≥ |z(t, y)| for y ∈ [α(t), β(t)]}.

Assumption H[σ ]. The funtion σ : [0, a)×R+×C(Γ, R+) → R+ satis�es ondition

(V0) and

(i) σ is ontinuous and satis�es monotoniity ondition: if ξ, ξ̃ ∈ C(Γ, R+) and ξ(τ) ≤
ξ̃(τ) for τ ∈ Γ then σ(t, p, ξ) ≤ σ(t, p, ξ̃) where (t, p) ∈ [0, a) × R+;

(ii) the funtion κ : [0, a) → R is ontinuous and 0 ≤ κ(t) ≤ t for t ∈ [0, a);

(iii) for every η ∈ C([−b0, 0], R+) the maximal solution of the Cauhy problem

ω′(t) = σ(t, ω(t), ωκ(t)), ω(t) = η(t), t ∈ [−b0, 0], (3.1)

is de�ned on [−b0, a).

We will need the following lemma on funtional di�erential inequalities.

Lemma 3.1. Suppose that Assumption H[σ ] is satis�ed and

1) ξ, ξ̃ ∈ C([−b0, a), R+) and ξ(0) < ξ̃(0);
2) denoted by

T+ = {t ∈ (0, a) : ξ(τ) < ξ̃(τ) for τ ∈ [0, t), ξ(t) = ξ̃(t)},

and assume that

D−ξ(t) − σ(t, ξ(t), ξκ(t)) < D−ξ̃(t) − σ(t, ξ̃(t), ξ̃κ(t)), t ∈ T+

where D− is the left hand side Dini derivative.

Then ξ(t) < ξ̃(t) for t ∈ [0, a).

The proof of the above lemma an be found in [5℄.

For w ∈ C(B, R), we write

‖w‖D[t,x] = max{|w(τ, y)| : (τ, y) ∈ D[t, x]}.

Now we will prove the main theorem of this Setion.

Theorem 3.1. Suppose that the Assumption H[σ ] is satis�ed and

1) funtion u : E0 ∪ E → R is the lass of C∗ and

|u(t, x)| ≤ η̃(t) on E0, (3.2)
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where η̃ ∈ C([−b0, 0], R+);
2) ω( ·, η̃) : [−b0, a) → R+ is the maximal solution of the problem

ω′(t) = σ(t, ω(t), ωκ(t)), ω(t) = η̃(t) for t ∈ [−b0, 0], (3.3)

and the following boundary inequality holds:

|u(t, x)| ≤ ω(t, η̃) on ∆0; (3.4)

3) the funtion u satis�es the funtional di�erential inequality

|∂tu(t, x)| ≤ σ(t, |u(t, x)|, ‖uψ(t,x)‖D[ψ(t,x)]) +
∑

i∈I
−

[t,x]

α′

i(t) |∂xi
u(t, x)|

−
∑

i∈I+[t,x]

β′

i(t) |∂xi
u(t, x)|, (3.5)

where (t, x) ∈ E+[u]\∆0.

Then

|u(t, x)| ≤ ω(t, η̃) on E. (3.6)

Proof. De�ning

ξ(t) = max{|u(τ, y)| : (τ, y) ∈ E0 ∪ E], τ ≤ t}, t ∈ [−b0, a),

we have that ξ ∈ C([−b0, a), R+) and the statement (3.6) is equivalent to the inequal-

ity ξ(t) ≤ ω(t, η̃) for t ∈ [0, a). Let 0 < ã < a be �xed. We denote by ω( ·, η̃, ǫ) the

maximal solution of the Cauhy problem

ω′(t) = σ(t, ω(t), ωκ(t)) + ǫ, ω(t) = η̃(t) + ǫ, t ∈ [−b0, 0]. (3.7)

There exist ǫ̃ > 0 suh that for every 0 < ǫ < ǫ̃ the solution ω( ·, η̃, ǫ) is de�ned on

[−b0, ã) and
lim
ǫ→0

ω(t, η̃, ǫ) = ω(t, η̃) uniformly on Γ ∪ [0, ã).

We will show that

ξ(t) < ω(t, η̃, ǫ) for t ∈ [0, ã). (3.8)

We will prove the inequality by using Lemma 3.1. It follows that the initial estimate

ξ(t) ≤ η(t) + ǫ, t ∈ [−b0, 0], is satis�ed. Set T̃+

T̃+ = {t ∈ (0, a) : ξ(τ) < ω(τ, η̃, ǫ), τ ∈ [0, t), ξ(t) = ω(t, η̃, ǫ)}. (3.9)

We prove

D−ξ(t) < σ(t, ξ(t), ξκ(t)) + ǫ for t ∈ T̃+. (3.10)

Let t ∈ T̃+ be �xed. Then ξ(t) = ω(t, η̃, ǫ) and ξ(t) = |u(t, x)| for some x ∈ [α(t), β(t)].
It is lear that (t, x) ∈ E+[u]. It follows from (3.4) that (t, x) /∈ ∆0. Then we have
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that (i) ξ(t) = u(t, x) or (ii) ξ(t) = −u(t, x). We will onsider the ase (i). Let

γ = (γ1, . . . , γn) : [0, t] → R
n be de�ned by

γi(τ) = xi for i ∈ I0[t, x],

γi(τ) = βi(τ) for i ∈ I+[t, x], γi(τ) = αi(τ) for i ∈ I−[t, x],

and ξ̃(τ) = u(τ, γ(τ)), τ ∈ [0, t]. Then, we have ξ̃(τ) ≤ ξ(τ) for τ ∈ [0, t) and

ξ̃(t) = ξ(t). We dedue that

∂xi
u(t, x) ≥ 0 for i ∈ I+[t, x], ∂xi

u(t, x) ≤ 0 for i ∈ I−[t, x],

∂xi
u(t, x) = 0 for i ∈ I0[t, x].

Then

D−ξ(t) ≤ D−ξ̃(t) = ξ̃′(t)

= ∂tu(t, x) +
n

∑

i=1

γ′

i(t) (∂xi
u(t, x))

= ∂tu(t, x) +

n
∑

i∈I+[t,x]

β′

i(t) |∂xi
u(t, x)| −

n
∑

i∈I
−

[t,x]

α′

i(t) |∂xi
u(t, x)|

≤ σ(t, ξ(t), ξκ(t))

< σ(t, ξ(t), ξκ(t)) + ǫ, (3.11)

whih proves (3.10). In a similar way, we an prove (3.10) in the ase (ii).
We onlude from Lemma 3.1 that inequality (3.8) is satis�ed and onsequently,

|u(t, x)| < ω(t, η̃, ǫ) for (t, x) ∈ E ∩ ([0, ã) × R
n). From the above inequality, we

obtain in the limit, letting ǫ tend to 0, inequality (3.6) on E ∩ ([0, ã) × R
n). By the

arbitrariness of 0 < ã < a the assertion follows. ¤

In the following, we prove that the di�erene between two solutions of the fun-

tional di�erential equation (1.2) an be estimated by a solution of a suitable ordinary

di�erential equation.

Assumption H0[ f, ψ,∆] The funtion f : Ω → R satis�es the ondition (V ) and
1) α, β : [0, a) → R

n are of lass C1 and α(t) < β(t) for t ∈ [0, a);
2) for eah (t, x) ∈ ∆, i ∈ I−[t, x], h 6= 0, we have

α′

i(t) ≥ −
1

h
[f(t, x[i, α], p, w, q + eih) − f(t, x[i, α], p, w, q)]

where p ∈ R, w ∈ C(B, R), q ∈ R
n;

3) for eah (t, x) ∈ ∆, i ∈ I+[t, x], h 6= 0, we have

β′

i(t) ≤ −
1

h
[f(t, x[i, β], p, w, q + eih) − f(t, x[i, β], p, w, q)]

where p ∈ R, w ∈ C(B, R), q ∈ R
n;

4) κ ∈ C([0, a), R+), ψ∗ ∈ C(E, Rn) and κ(t) ≤ t for t ∈ [0, a) and α(t) ≤
ψ∗(t, x) ≤ β(t) for (t, x) ∈ E.
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Theorem 3.2. Suppose that Assumptions H[σ ] and H0[ f, ψ,∆] are satis�ed and

1) the estimate

|f(t, x, p, w, q) − f(t, x, p̃, w̃, q)| ≤ σ(t, |p − p̃|, ‖w − w̃‖B) (3.12)

holds on Ω;

2) the funtions u, v : E0 ∪ E → R are solutions of (1.2) and they are of lass C∗;

3) η̃ ∈ C([−b0, 0], R+) and |u(t, x) − v(t, x)| ≤ η̃(t) on E0 and boundary estimate

|u(t, x) − v(t, x)| ≤ ω(t, η), (t, x) ∈ ∆0 (3.13)

is satis�ed, where ω( ·, η) is the maximal solution of (3.3).

Under these assumptions, we have

|u(t, x) − v(t, x)| ≤ ω(t, η̃) on E. (3.14)

Proof. We will show that funtion u − v satis�es assumptions of Theorem 3.1. The

initial boundary inequalities follows from assumption 3). Let (t, x) ∈ E+[u − v]. We

prove that

|∂t(u − v)(t, x)| ≤ σ(t, |(u − v)(t, x)|, ‖(u − v)ψ(t,x)‖D[t,x])

+
∑

i∈I
−

[t,x]

α′

i(t) |∂xi
(u − v)(t, x)|

+
∑

i∈I+[t,x]

β′

i(t) |∂xi
(u − v)(t, x)|. (3.15)

We have that (i) (u − v)(t, x) = |(u − v)(t, x)| or (ii) (u − v)(t, x) = −|(u − v)(t, x)|.
We onsider the ase (i). It follows that

∂xi
(u − v)(t, x) = 0 for i ∈ I0[t, x],

∂xi
(u − v)(t, x) ≥ 0 for i ∈ I+[t, x], ∂xi

(u − v)(t, x) ≤ 0 for i ∈ I−[t, x].

Then we have

∂t(u − v)(t, x)

= f(t, x, u(t, x), uψ(t,x), ∂xu(t, x)) − f(t, x, v(t, x), vψ(t,x), ∂xv(t, x))

≤ σ(t, |(u − v)(t, x)|, ‖(u − v)ψ(t,x)‖D[ψ(t,x)])

+f(t, x, v(t, x), vψ(t,x), ∂xu(t, x)) − f(t, x, v(t, x), vψ(t,x), ∂xv(t, x))

≤ σ(t, |(u − v)(t, x)|, ‖(u − v)ψ(t,x)‖D[ψ(t,x)])

+
∑

i∈I
−

[t,x]

α′

i(t)(−∂xi
(u − v)(t, x)) −

∑

i∈I+[t,x]

β′

i(t)∂xi
(u − v)(t, x)

= σ(t, |(u − v)(t, x)|, ‖(u − v)ψ(t,x)‖D[ψ(t,x)])

+
∑

i∈I
−

[t,x]

α′

i(t)|∂xi
(u − v)(t, x)| −

∑

i∈I+[t,x]

β′

i(t)|∂xi
(u − v)(t, x)|.
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In the similar way, we show that

∂t(u − v)(t, x) ≥ −σ(t, |(u − v)(t, x)|, ‖(u − v)ψ(t,x)‖D[ψ(t,x)])

−
∑

i∈I
−

[t,x]

α′

i(t)|∂xi
(u − v)(t, x)| +

∑

i∈I+[t,x]

β′

i(t)|∂xi
(u − v)(t, x)|.

That shows (3.15) in ase (i). In the similar way, we prove (3.15) in the ase (ii). That
shows that all assumptions of Theorem 3.1 are satis�ed and the assertion follows.

¤

The following result is a onsequene of Theorem 3.1.

Theorem 3.3. Suppose that Assumption H[σ ] and H0[ f, ψ,∆] are satis�ed

1) the funtion ω̃(t) = 0, t ∈ [−b0, a), is the maximal solution of (3.3) with η(t) = 0
for t ∈ [−b0, 0];
2) the estimate (3.12) holds.

Under these assumptions, the mixed problem (1.2), (1.3) admits at most one solution

u : E0 ∪ E → R of lass C∗.

It is lear that onditions 2), 3) of Assumption H0[ f, ψ,∆] are important in

our onsiderations. To show this, we give examples of the sets E and we formulate

orresponding assumptions on ∆.

Remark 3.1. Let E,E0 and ∆ be the sets de�ned in Remark 2.3. Suppose that on-

ditions (2.18), (2.19) are satis�ed for p ∈ R, q ∈ R
n, w ∈ C(B, R). Then onditions

2), 3) of Assumption H0[ f, ψ,E ] are satis�ed. Theorems 3.2 and 3.3 onern initial

boundary value problems for (1.2) with solutions de�ned on the Haar pyramid. These

theorems are new.

Suppose that J+ = J− = {1, . . . , n}. Then ∆0 = ∅, ∆ = ∂0E and (1.2), (1.3)

redues to the Cauhy problem with solutions de�ned on the lassial Haar pyramid.

Remark 3.2. Let E,E0 and ∆ be the sets de�ned in Remark 2.5. Then (1.2), (1.3)

redues to a mixed problem for nonlinear funtional di�erential equations. Suppose

that

−
1

h
[f(t, x[i, α], p, w, q + eih) − f(t, x[i, α], p, w, q)] ≤ 0, i = 1, . . . , k,

and

−
1

h
[f(t, x[i, β], p, w, q + eih) − f(t, x[i, β], p, w, q)] ≥ 0, i = k + 1, . . . , n.

The onditions 2), 3) of Assumption H0[ f, ψ,∆] are satis�ed.

Theorems 3.2 and 3.3 onern mixed problems with solutions de�ned on retan-

gular domains.

Note that we do not assume that there exist the derivatives (∂q1
f, . . . , ∂qn

f). It

follows that our results are generalizations of theorems on mixed problems presented

in [1℄, (see also [5℄, Chapter 5).
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Remark 3.3. Let E,E0 and ∆ be the sets de�ned in Remark 2.6. Suppose that there

exist the derivatives (∂q1
f, . . . , ∂qn

f), ∂qf ∈ C(Ω, R) and there is x̃ ∈ (−b, b) suh

that ondition (2.22) is satis�ed. Then onditions 2), 3) of Assumption H0[ f, ψ,∆]
are satis�ed. Setion 3 ontains new theorems on initial problems for funtional dif-

ferential equations with solutions de�ned on a retangular domain.

Remark 3.4. Note that the onnetion with a funtional di�erential omparison

problem is essential for the uniqueness riterion stated in Theorem 3.3. The fol-

lowing example points out this property. If β ≥ α > 1 and A,B ∈ R+, then the

maximal solution of the Cauhy problem

ω′(t) = A α

√

ω(tβ) + Bω(t), ω(0) = 0 (3.16)

is ω̄(t) = 0 for t ∈ [0, a] where a ≤ 1. Note that maximal solution of (3.16) with α > 1
and β = 1 is positive on (0, a].

Remark 3.5. Results presented in the paper an be extended on funtional di�eren-

tial systems

∂tzi(t, x) = fi(t, x, z(t, x), zψ(t,x), ∂xzi(t, x)), i = 1, . . . ,m,

where z = (z1, . . . , zm).
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