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1. Introdu
tion

Di�erential inequalities �nd numerous appli
ations in the theory of �rst order partial

di�erential or fun
tional di�erential equations. The basi
 examples of su
h appli
a-

tions are estimates of solutions of di�erential equations, estimates of the domain of

the existen
e of solutions, 
riteria of uniqueness and estimates of the error of approx-

imate solutions. Dis
rete version of di�erential inequalities, the so 
alled di�eren
e or

fun
tional di�eren
e inequalities, are frequently used to prove 
onvergen
e of approx-

imation methods. The 
lassi
al theory of �rst order partial di�erential inequalities

has been des
ribed extensively in the monographs [6℄, [7℄, [9℄. Hyperboli
 fun
tional

inequalities 
orresponding to initial or initial boundary value problems have been

studied in the papers [1℄ - [4℄ and the monograph [5℄.

The aim of the paper is to obtain general 
omparison theorems on fun
tional

di�erential inequalities with initial boundary 
onditions. There are two di�erent

types of results on the 
omparison theorems of fun
tional di�erential inequalities
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in the literature. The �rst type of theorems allow to estimate a fun
tion of several

variables, while the se
ond one, the so 
alled 
omparison theorems, give estimates for

fun
tions of one variable. In Se
tion 2 we deal with the �rst kind of results, while the


omparison theorem is presented in Se
tion 3.

We formulate our fun
tional di�erential problems. For any metri
 spa
es X, Y we

denote by C(X,Y ) the 
lass of all 
ontinuous fun
tions from X into Y . We will use

ve
torial inequalities with the understanding that the same inequalities hold between

their 
orresponding 
omponents.

Let a > 0, b0 ∈ R+, R+ = [0,+∞), be �xed and suppose that the fun
tions

α, β : [0, a) → R
n, α = (α1, . . . , αn), β = (β1, . . . , βn), satisfy the 
onditions: α and β

are of 
lass C1 on [0, a) and α(t) < β(t) for t ∈ [0, a). Let E be a generalized Haar

pyramid

E = {(t, x) ∈ R
1+n : t ∈ (0, a), x ∈ [α(t), β(t)]} (1.1)

and E0 = [−b0, 0] × [b∗, b
∗], b∗ = α(0), b∗ = β(0). For (t, x) ∈ E we de�ne the set

D[t, x] as follows

D[t, x] = {(τ, y) ∈ R
1+n : τ ≤ 0, (t + τ, x + y) ∈ E0 ∪ E}.

It is 
lear that D[t, x] = D0[t, x] ∪ D∗[t, x], where

D0[t, x] = [−b0 − t,−t] × [b∗, b
∗],

D∗[t, x] = {(τ, y) ∈ R
1+n : −t ≤ τ ≤ 0,−x + α(t + τ) ≤ y ≤ −x + β(t + τ)}.

Write B = [−b0 − a, 0] × [c − d, d − c], where c = (c1, . . . , cn), d = (d1, . . . , dn) and

ci = inf{αi(t) : t ∈ [0, a)}, di = sup{βi(t) : t ∈ [0, a)}, i = 1, . . . , n.

Then we have D[t, x] ⊂ B for (t, x) ∈ E. For a fun
tion z : E0 ∪ E → R and for a

point (t, x) ∈ E, we de�ne a fun
tion z(t,x) : D[t, x] → R as follows:

z(t,x)(τ, y) = z(t + τ, x + y), (τ, y) ∈ D[t, x].

Then z(t,x) is the restri
tion of z to the set (E0∪E)∩([−b0, t]×R
n) and this restri
tion

is shifted to the set D[t, x]. Write ∂0E = ∂E∩((0, a)×R
n), where ∂E is the boundary

of E. Suppose that the sets ∆0, ∆ ⊂ ∂E satisfy the 
onditions:

∆0 ∪ ∆ = ∂0E, ∆0 ∩ ∆ = ∅.

The 
ases ∆0 = ∅ or ∆ = ∅ are not ex
luded. We will assume that di�erential

fun
tional equations or inequalities are satis�ed on IntE ∪ ∆ and initial boundary


onditions hold on E0 ∪∆0. Suppose that κ : [0, a) → R and ψ∗ = (ψ1, . . . , ψn) : E →
R

n are given fun
tions. The requirements on κ and ψ∗ are that 0 ≤ κ(t) ≤ t and

(κ(t), ψ∗(t, x)) ∈ E0 ∪ E for (t, x) ∈ E. Set ψ(t, x) = (κ(t), ψ∗(t, x)) for (t, x) ∈ E.

Write Ω = E × R × C(B, R) × R
n and suppose that f : Ω → R and ϕ : E0 ∪ ∆0 → R

are given fun
tions. We will say that the fun
tion f satis�es the 
ondition (V ) if for
ea
h (t, x, p, q) ∈ E × R × R

n and for w, w̃ ∈ C(B, R) su
h that w(τ, y) = w̃(τ, y) for
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(τ, y) ∈ D[ψ(t, x)] we have f(t, x, p, w, q) = f(t, x, p, w̃, q). Note that the 
ondition

(V ) means that the value of f at the point (t, x, p, w, q) ∈ Ω depends on (t, x, p, q)
and on the restri
tion of w to the set D[ψ(t, x)] only.

Let z be the unknown fun
tion of the variables (t, x) with x = (x1, . . . , xn). We


onsider the following problem 
onsisting of the di�erential fun
tional equation

∂tz(t, x) = f(t, x, z(t, x), zψ(t,x), ∂xz(t, x)) (1.2)

with initial boundary 
ondition

z(t, x) = ϕ(t, x) on E0 ∪ ∆0, (1.3)

where ∂xz = (∂x1
z, . . . , ∂xn

z). We assume that f satis�es the 
ondition (V ) and we


onsider the 
lassi
al solutions of (1.2), (1.3).

Now we give examples of equations whi
h 
an be obtained from (1.2) by spe
ial-

izing the operator f .

Example 1.1. Suppose that f̃ : E × R × R × R
n → R is a given fun
tion. Set

f(t, x, p, w, q) = f̃(t, x, p, w(0, θ), q) where θ = (0, . . . , 0) ∈ R
n. Then (1.2) be
omes

the di�erential equation with deviated variables

∂tz(t, x) = f̃(t, x, z(t, x), z(ψ(t, x)), ∂xz(t, x)). (1.4)

Example 1.2. Suppose that ψ(t, x) = (t, x), (t, x) ∈ E. For the above f̃ we put

f(t, x, p, w, q) = f̃(t, x, p,

∫

D[t,x]

w(τ, y)dτdy, q).

Then (1.2) is equivalent to the di�erential integral equation

∂tz(t, x) = f̃(t, x, z(t, x),

∫

D[t,x]

z(t,x)(τ, y)dτdy, ∂xz(t, x)). (1.5)

It is 
lear that more 
ompli
ated equations with deviated variables and di�erential

integral equations 
an be obtained from (1.2).

Su�
ient 
onditions for the existen
e of solutions to (1.2), (1.3) 
an be found in

[8℄.

2. Fun
tional di�erential inequalities

For ea
h (t, x) ∈ E there exist sets of integers I0[t, x], I−[t, x], I+[t, x] su
h that

I−[t, x] ∩ I+[t, x] = ∅ and I0[t, x] ∪ I−[t, x] ∪ I+[t, x] = {1, 2, . . . , n} and

αi(t) < xi < βi(t) for i ∈ I0[t, x],

xi = αi(t) for i ∈ I−[t, x], xi = βi(t, x) for i ∈ I+[t, x].
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Of 
ourse, the 
ases I0[t, x] = ∅ or I−[t, x] = ∅ or I+[t, x] = ∅ are possible. For

(t, x) ∈ ∂0E and i ∈ I−[t, x], j ∈ I+[t, x] we write

x[i, α]=(x1, . . . , xi−1, αi(t), xi+1, . . . , xn), x[j, β]=(x1, . . . , xj−1, βj(t), xj+1, . . . , xn).

A fun
tion z : E0 ∪ E → R will be 
alled a fun
tion of 
lass C∗ if z is 
ontinuous on

E0 ∪ E, it has �rst order partial derivatives in an interior of E and z possesses the

total di�erential on ∆. Write ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ R
n with 1 standing on the

i -th pla
e and i = 1, . . . , n. We formulate the main assumption on f , ψ and E as

follows.

Assumption H[ f, ψ,E ]. The fun
tions α, β : [0, a) → R
n, κ : [0, a) → R, ψ∗ : E →

R
n and f : Ω → R satisfy the 
onditions

1) α and β are of 
lass C1 on [0, a) and α(t) < β(t) for t ∈ [0, a);

2) 0 ≤ κ(t) ≤ t for t ∈ (0, a) and α(t) ≤ ψ∗(t, x) ≤ β(t) for (t, x) ∈ E;

3) the fun
tion f of the variables (t, x, p, w, q), q = (q1, . . . , qn), satis�es the 
ondi-

tion (V ) and the following monotoni
ity 
onditions holds: if (t, x, p, w, q) ∈ Ω,
w̃ ∈ C(B, R) and w(τ, y) ≤ w̃(τ, y) for (τ, y) ∈ B then f(t, x, p, w, q) ≤
f(t, x, p̃, w̃, q);

4) for ea
h (t, x) ∈ ∆, i ∈ I−[t, x], h < 0, we have

α′

i(t) ≥ −
1

h
[f(t, x[i, α], p, w, q) − f(t, x[i, α], p, w, q − eih)],

where p ∈ R, q ∈ R
n, w ∈ C(B, R);

5) for ea
h (t, x) ∈ ∆, i ∈ I+[t, x], h > 0, we have

β′

i(t) ≤ −
1

h
[f(t, x[i, β], p, w, q) − f(t, x[i, β], p, w, q − eih)],

where p ∈ R, q ∈ R
n, w ∈ C(B, R).

Write

F [z](t, x) = f(t, x, z(t, x), zψ(t,x), ∂xz(t, x)).

We prove a theorem on strong fun
tional di�erential inequalities.

Theorem 2.1. Suppose that Assumption H[ f, ψ,E ] is satis�ed and

1) the fun
tions u, v : E0∪E → R are of the 
lass C∗ and the following initial boundary

inequalities hold:

u(t, x) ≤ v(t, x) on E0 and u(0, x) < v(0, x) for x ∈ [ b∗, b
∗ ]

and

u(t, x) < v(t, x) for (t, x) ∈ ∆0;
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2) denoted by

Σ = {(t, x) ∈ E\∆0 : u(τ, y) < v(τ, y) on E ∩ ((0, t) × R
n) and u(t, x) = v(t, x)}

we assume that

∂tu(t, x) − F [u](t, x) < ∂tv(t, x) − F [v](t, x) for (t, x) ∈ Σ.

Then we have

u(t, x) < v(t, x) for (t, x) ∈ E. (2.1)

Proof. Suppose, by 
ontradi
tion, that inequality (2.1) fails to be true. Let

T+ = {t ∈ [0, a) : u(τ, y) < v(τ, y) on E ∩ ([0, t] × R
n) and u(t, x) = v(t, x)}.

Then the set T+ is not empty. Let t̃ = min T+. From the assumption 1) it is 
lear that

t̃ > 0 and there exists x̃ = (x̃1, . . . , x̃n) su
h that u(t̃, x̃) = v(t̃, x̃) and u(t, x) < v(t, x)
on E ∩ ([0, t̃) × R

n). The fun
tion u − v satis�es the 
onditions

∂xi
(u − v)(t̃, x̃) ≥ 0 for i ∈ I+[t̃, x̃], ∂xi

(u − v)(t̃, x̃) ≤ 0 for i ∈ I−[t̃, x̃] (2.2)

and

∂xi
(u − v)(t̃, x̃) = 0 for i ∈ I0[t̃, x̃]. (2.3)

Consider the fun
tion γ = (γ1, . . . , γn) : [0, t̃] → R
n given by:

γi(t) = x̃i for i ∈ I0[t̃, x̃], (2.4)

γi(t) = βi(t) for i ∈ I+[t̃, x̃], γi(t) = αi(t) for i ∈ I−[t̃, x̃], (2.5)

and the fun
tion ξ(t) = (u − v)(t, γ(t)), t ∈ [0, t̃]. Be
ause ξ(t) < 0 for t ∈ [0, t̃) and

ξ(t̃) = 0 then ξ′(t̃) ≥ 0. Sin
e u − v is of 
lass C∗ we have

0 ≤ ξ′(t) = ∂t(u − v)(t̃, x̃) +

n
∑

i=1

γ′

i(t̃)∂xi
(u − v)(t̃, x̃),

and 
onsequently

0 ≤ ∂t(u−v)(t̃, x̃)+
∑

i∈I
−

[t̃,x̃]

α′

i(t̃)∂xi
(u−v)(t̃, x̃)+

∑

i∈I+[t̃,x̃]

β′

i(t̃)∂xi
(u−v)(t̃, x̃). (2.6)

We also have that (t̃, x̃) ∈ Σ. From Assumption H[ f, ψ,E ] and (2.2) and (2.3), we

dedu
e that

∂t(u − v)(t̃, x̃) < F [u](t̃, x̃) − F [v](t̃, x̃)

≤ −
∑

i∈I
−

[t̃,x̃]

α′

i(t̃)∂xi
(u − v)(t̃, x̃) −

∑

i∈I+[t̃,x̃]

β′

i(t̃)∂xi
(u − v)(t̃, x̃),

whi
h 
ontradi
ts (2.6). Therefore, the set T+ is empty and the statement (2.1)

follows. ¤
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Remark 2.1. In Theorem 2.1 we 
an assume instead of 
ondition 2) that

∂tu(t, x) ≤ F [u](t, x) and ∂tv(t, x) ≥ F [v](t, x),

where (t, x) ∈ E\∆0 and for ea
h (t, x) ∈ E\∆0 equality holds in at most one pla
e.

Now we 
onsider weak fun
tional di�erential inequalities. Write Γ = [−b0 − a, 0]
and Γ[t] = [−b0 − t, 0], where t ∈ [0, a]. Then, Γ[t] ⊂ Γ for t ∈ [0, a]. We need the

operator W : C(B, R) → C(Γ, R+) de�ned by

W [w](t) = max{|w(t, y)| : y ∈ [c − d, d − c]}, t ∈ Γ.

For w ∈ C(B, R) and ξ ∈ C(Γ, R), we de�ne w + ξ : B → R in the following way:

(w + ξ)(τ, y) = w(τ, y) + ξ(τ), (τ, y) ∈ B. For a fun
tion η : Γ ∪ [0, a) → R and for a

point t ∈ [0, a], we de�ne ηt : Γ → R by ηt(τ) = η(t + τ), τ ∈ Γ.
Suppose that σ : [0, a)×R+ ×C(Γ, R+) → R+ is a given fun
tion. We will say that σ
satis�es the 
ondition (V0) if for ea
h (t, p, ξ) ∈ [0, a)×R+ ×C(Γ, R+), ξ̃ ∈ C(Γ, R+)
su
h that ξ(τ) = ξ̃(τ) for τ ∈ Γ[κ(t)] we have σ(t, p, ξ) = σ(t, p, ξ̃)

Assumption H∗[σ ]. The fun
tion σ : [0, a) × R+ × C(Γ, R+) → R+ satis�es the


ondition (V0) and

1) σ is 
ontinuous and σ(t, 0,O) = 0 for t ∈ [0, a) where O ∈ C(Γ, R+) is given byO(τ) = 0 for τ ∈ Γ;

2) the following monotoni
ity 
ondition is satis�ed: if p ∈ R, ζ, ζ̃ ∈ C(Γ, R+) and

ζ(τ) ≤ ζ̃(τ) for τ ∈ Γ then σ(t, p, ζ) ≤ σ(t, p, ζ̃);

3) the fun
tion η̃(t) = 0 for t ∈ [−b0, a) is the unique solution of the Cau
hy problem

η′(t) = σ(t, η(t), ηκ(t)), η(t) = 0 for t ∈ [−b0, 0].

Theorem 2.2. Suppose that Assumptions H[ f, ψ,E ], H∗[σ ] are satis�ed and

1) the fun
tions u, v : E0 ∪ E → R are of the 
lass C∗ and

u(t, x) ≤ v(t, x) for (t, x) ∈ E0 ∪ ∆0;

2) the estimate

f(t, x, p, w, q) − f(t, x, p̃, w − ξ, q) ≤ σ(t, p − p̃, ξ)

is satis�ed for (t, x) ∈ E\∆0, w ∈ C(B, R), ξ ∈ C(Γ, R+), p, p̃ ∈ R and p ≥ p̃;
3) denoted by

Σ∗ = {(t, x) ∈ E\∆0 : u(τ, y) > v(τ, y)}

we assume that

∂tu(t, x) − F [u](t, x) ≤ ∂tv(t, x) − F [v](t, x) for (t, x) ∈ Σ∗.

Then we have

u(t, x) ≤ v(t, x) for (t, x) ∈ E. (2.7)
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Proof. Let 0 < ã < a be �xed. We prove that u(t, x) ≤ v(t, x) on E ∩ ([0, ã) × R
n).

Let us denote by ω( ·, ǫ ) the maximal solution of the Cau
hy problem

η′(t) = σ(t, η(t), ηκ(t)) + ǫ, η(t) = ǫ for t ∈ [−b0, 0].

There exists ǫ̃ > 0 su
h that for every 0 < ǫ < ǫ̃ the solution ω( ·, ǫ ) is de�ned on

[−b0, ã) and
lim

ǫ→∞

ω(t, ǫ) = 0 uniformly on [−b0, ã).

Write

uǫ(t, x) = u(t, x) − ω(t, ǫ), (t, x) ∈ E0 ∪
[

E ∩ ([0, ã) × R
n)

]

.

We will show that

uǫ(t, x) < v(t, x) for (t, x) ∈ E ∩ ([0, ã) × R
n). (2.8)

It is 
lear that the following initial boundary inequality is satis�ed

uǫ(t, x) < v(t, x) for E0 ∪ ∆0.

Write

Σ̃ = {(t, x) ∈ (E\∆0) ∩ ([0, ã) × R
n) : uǫ(τ, y) < v(τ, y) onE ∩ ((0, t) × R

n)

anduǫ(t, x) = v(t, x)}.

We prove that

∂tuǫ(t, x) − F [uǫ](t, x) < ∂tv(t, x) − F [v](t, x) for (t, x) ∈ Σ̃.

Suppose that (t, x) ∈ Σ̃. Then (t, x) ∈ Σ∗ and

∂tuǫ(t, x) − F [uǫ](t, x) ≤ ∂tv(t, x) − F [v](t, x) − ω′(t, ǫ) − F [uǫ](t, x) + F [u](t, x)

≤ ∂tv(t, x) − F [v](t, x) − ω′(t, x) + σ(t, ω(t, ǫ), ωκ(t)(·, ǫ))

< ∂tv(t, x) − F [v](t, x),

whi
h 
ompletes the proof of (2.6). ¤

Then we dedu
e (2.8) from Theorem 2.1. From the above inequality we obtain

inequality u(t, x) ≤ v(t, x) on E ∩ ([0, ã)×R
n). By the arbitrariness of 0 < ã < a, the

assertion follows.

Remark 2.2. Condition 2) in Theorem 2.2 
an be repla
ed by the following assump-

tion:

f(t, x, p, w, q) − f(t, x, p̃, w̃, q) ≤ σ(t, p − p̃,W [w − w̃]),

where (t, x) ∈ E\∆0, q ∈ R
n, p, p̃ ∈ R, w, w̃ ∈ C(B, R) and p ≥ p̃, w(τ, y) ≥ w̃(τ, y)

for (τ, y) ∈ B.
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Now we prove a theorem in whi
h strong di�erential fun
tional inequalities and weak

initial boundary inequalities for u, v : E0 ∪E → R imply the estimate u(t, x) < v(t, x)
for (t, x) ∈ E\∆0.

Theorem 2.3. Suppose that Assumption H[ f, ψ,E ], H∗[σ ] are satis�ed and

1) the fun
tions u, v : E0 ∪ E → R are of the 
lass C∗ and

u(t, x) ≤ v(t, x) for (t, x) ∈ E0 ∪ ∆0;

2) the estimate

f(t, x, p, w, q) − f(t, x, p̃, w − ξ, q) ≤ σ(t, p − p̃, ξ)

is satis�ed for (t, x) ∈ E\∆0, w ∈ C(B, R), ξ ∈ C(Γ, R+), p, p̃ ∈ R and p ≥ p̃;
3) denoted by

Σ∗ = {(t, x) ∈ E\∆0 : u(τ, y) > v(τ, y)}

we assume that

∂tu(t, x) − F [u](t, x) < ∂tv(t, x) − F [v](t, x) for (t, x) ∈ Σ∗.

Then

u(t, x) < v(t, x) for (t, x) ∈ E. (2.9)

This assertion 
an be proved by applying Theorem 2.3 and then repeating the argu-

ment used in the proof of Theorem 2.1.

In the next theorem we assume that ∆0 = ∅ and we prove that weak fun
tional

di�erential inequalities and strong initial inequality for u, v : E0 ∪ E → R imply the

estimate u(t, x) < v(t, x) on E.

Assumption H0[σ ]. The fun
tion σ : [0, a)×R− → R+, R− = (−∞, 0], satis�es the

onditions:

1) σ is 
ontinuous and σ(t, 0) = 0 for t ∈ [0, a);

2) the left hand minimal solution of the problem

η′(t) = σ(t, η(t)), lim
t→a

−

η(t) = 0 (2.10)

is η̃(t) = 0, t ∈ [0, a).

Theorem 2.4. Suppose that Assumptions H[ f, ψ,E ] and H0[σ] are satis�ed, ∆0 = ∅
and

1) the fun
tions u, v : E0 ∪ E → R are of 
lass C∗ and

∂tu(t, x) − F [u](t, x) ≤ ∂tv(t, x) − F [v](t, x) for (t, x) ∈ E; (2.11)
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2) for (t, x) ∈ E0 we have u(t, x) ≤ v(t, x) and u(0, x) < v(0, x) for x ∈ [b∗, b
∗];

3) if (t, x, p, w, q) ∈ Ω, h > 0 and ξ ∈ C(Γ, R+), then

f(t, x, p, w, q) − f(t, x, p + h,w + ξ, q) ≤ σ(t,−min{h, ‖ξ‖Γ}).

Under these assumptions, we have

u(t, x) < v(t, x) for (t, x) ∈ E. (2.12)

Proof. We will prove (2.12) for (t, x) ∈ E ∩ ([0, a− ǫ)×R
n), where 0 < ǫ < a. Write

0 < p0 < min{v(0, x) − u(0, x) : x ∈ [b∗, b
∗]}.

For δ > 0, we denote by ω( · , δ) the right hand side minimal solution of the Cau
hy

problem

η′(t) = −σ(t,−η(t)) − δ, η(0) = p0. (2.13)

For �xed p0 > 0 and ǫ > 0 the solution ω( · , δ) exists on [0, a − ǫ) and ω(t, δ) > 0
for t ∈ [0, a − ǫ). Let δ > 0 be su
h a small 
onstant that ω( · , δ) satis�es the above


onditions. Let us denote by z̃ : E0 → R a 
ontinuous fun
tion su
h that

u(t, x) ≤ z̃(t, x) ≤ v(t, x) for (t, x) ∈ E0 and z̃(0, x) = u(0, x) + p0 for x ∈ [b∗, b∗].

Write ũ(t, x) = z̃(t, x) for (t, x) ∈ E0, ũ(t, x) = u(t, x)+ω(t, δ) for (t, x) ∈ E ∩ ([0, a−
ǫ) × R

n). We will show that

ũ(t, x) < v(t, x) for (t, x) ∈ E ∩ ([0, a − ǫ) × R
n). (2.14)

It follows from Assumption H0[σ] and from (2.11) that

∂tũ(t, x) − F [ũ](t, x)

= ∂tu(t, x) + ω′(t, δ)

≤ ∂tv(t, x) − F [v](t, x) + F [u](t, x) − F [ũ](t, x) + ω′(t, δ)

≤ ∂tv(t, x) − F [v](t, x) + f(t, x, u(t, x), uψ(t,x), ∂xu(t, x))

−f(t, x, (u + ω( · , δ))(t, x), (u + ω( · , δ))ψ(t,x), ∂xu(t, x)) + ω′(t, δ)

≤ ∂tv(t, x) − F [v](t, x) + σ(t,−ω(t, δ)) + ω′(t, δ)

≤ ∂tv(t, x) − F [v](t, x) − δ, (t, x) ∈ E ∩ ((0, a − ǫ) × R
n),

and 
onsequently

∂tũ(t, x) − F [ũ](t, x) < ∂tv(t, x) − F [v](t, x) for (t, x) ∈ E ∩ ((0, a − ǫ) × R
n).

It follows from Theorem 2.1 that estimate (2.14) is satis�ed and 
onsequently, u(t, x)≤
v(t, x) for (t, x) ∈ E ∩ ((0, a− ǫ)×R

n). Sin
e 0 < ǫ < a is arbitrary, inequality (2.12)

holds true. ¤

It is 
lear that 
onditions 4), 5) of Assumption H[ f, ψ,E ] are important in the-

orems on fun
tional di�erential inequalities. We give examples of the sets E, ∆, and

∆0 and we formulate suitable assumptions on ∆.
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Remark 2.3. Write

E = {(t, x) ∈ R
1+n : t ∈ (0, a), x ∈ [−b + Mt, b − Mt]}, E0 = [−b0, 0] × [−b, b],

(2.15)

where a > 0, b0 ∈ R+, b = (b1, . . . , bn) ∈ R
n, bi > 0 for i = 1, . . . , n and M =

(M1, . . . ,Mn) ∈ R
n
+. We assume that b > Ma. Suppose that we have de�ned the sets

J+, J− ⊂ {1, . . . , n}. The 
ases J+ = ∅ or J− = ∅ are not ex
luded. Write

∆+ = {(t, x) ∈ ∂E : there is i ∈ J+ su
h thatxi = bi − Mit}, (2.16)

∆− = {(t, x) ∈ ∂E : there is i ∈ J− su
h thatxi = −bi + Mit} (2.17)

and ∆ = ∆+ ∪ ∆−. Then (1.2), (1.3) redu
es to the initial boundary value problem

with solutions de�ned on the 
lassi
al Haar pyramid. Write

α(t) = −b + Mt, β(t) = b − Mt, t ∈ [0, a).

If

Mi ≥ −
1

h
[f(t, x[i, α], p, w, q) − f(t, x[i, α], p, w, q − eih)], i ∈ J−, (2.18)

Mi ≤ −
1

h
[f(t, x[i, β], p, w, q) − f(t, x[i, β], p, w, q − eih)], i ∈ J+, (2.19)

where p ∈ R, q ∈ R
n, w ∈ C(B, R) then 
onditions 4), 5) of Assumption H[ f, ψ,E ]

are satis�ed. The theorems presented in Se
tion 2 
on
ern fun
tional di�erential

inequalities 
orresponding to initial boundary value problems with solutions de�ned

on the Haar pyramid. These theorems are new.

Suppose that J+ = J− = {1, . . . , n}. Then ∆0 = ∅, ∆ = ∂0E and (1.2), (1.3)

redu
es to the Cau
hy problem with solutions de�ned on the 
lassi
al Haar pyramid.

Theorems on fun
tional di�erential inequalities generated by initial problems 
an be

found in [5℄, Chapter 1.

Remark 2.4. Suppose that E is given by (1.1) and E0 = [−b0, 0] × [b∗, b
∗]. Assume

that

1) the partial derivatives (∂q1
f, . . . , ∂qn

f) = ∂qf exist on Ω and ∂qf ∈ C(Ω, Rn);
2) the di�erential inequalities

α′

i(t) ≥ −∂qi
f(t, x[i, α], p, w, q), (t, x) ∈ ∆, i ∈ I−[t, x],

β′

i(t) ≤ −∂qi
f(t, x[i, β], p, w, q), (t, x) ∈ ∆, i ∈ I+[t, x],

are satis�ed. Then 
onditions 4), 5) of Assumption H[ f, ψ,E ] are satis�ed.

Remark 2.5. Suppose that k ∈ Z, 0 ≤ k ≤ n is �xed. For ea
h x = (x1, . . . , xn) ∈
R

n we write x = (x′, x′′) where x′ = (x1, . . . , xk), x′′ = (xk+1, . . . , xn). We have

x′ = x for k = n and x′′ = x for k = 0. Write

E = (0, a) × [−b, b], E0 = [−b0, 0] × [−b, b], (2.20)
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where a > 0, b0 ∈ R+, b = (b1, . . . , bn) ∈ R
n and bi > 0 for 1 ≤ i ≤ n. Put

∆0 = (0, a) × ([−b′, b′]\(−b′, b′]) × ([−b′′, b′′]\[−b′′, b′′)), ∆ = ∂0E\∆0. (2.21)

Then (1.2), (1.3) redu
es to the mixed problem for the nonlinear fun
tional di�erential

equations. Suppose that f satis�es the 
ondition: if q̃, q ∈ R
n, q̃ = (q̃1, . . . , q̃n),

q = (q1, . . . , qn) and q̃i ≤ qi for i = 1, . . . , k, q̃i ≥ qi for i = k + 1, . . . , n, then

f(t, x, p, w, q̃) ≤ f(t, x, p, w, q),

where (t, x, p, w) ∈ E×R×C(B, R). Then 
onditions 4), 5) of Assumption H[ f, ψ,E ]
are satis�ed.

Theorems presented in Se
tion 2 
on
ern, as parti
ular 
ases, fun
tional di�eren-

tial inequalities 
orresponding to mixed problems with solutions de�ned on re
tangu-

lar domains.

Note that we do not assume that there exists ∂qf = (∂q1
f, . . . , ∂qn

f). It follows

that our results are generalisations of theorems on fun
tional di�erential inequalities

presented in [5℄ (Chapter 5), see also [1℄.

Remark 2.6. Suppose that E and E0 are given by (2.20). Put ∆0 = ∅, ∆ = ∂0E.

Then (1.2), (1.3) redu
es to the Cau
hy problem with solutions 
onsidered on re
tan-

gular domains.

Suppose that

1) the partial derivatives ∂qf = (∂q1
f, . . . , ∂q1

f) exist on Ω and ∂qf ∈ C(Ω, Rn);
2) there is x̃ = (x̃1, . . . , x̃n) ∈ (−b, b) su
h that

(xi − x̃i)∂qi
f(t, x, p, w, q) ≤ 0 on Ω for 1 ≤ i ≤ n. (2.22)

Then 
onditions 4), 5) of Assumption H[ f, ψ,E ] are satis�ed. Se
tion 2 
ontains new

theorems on fun
tional inequalities with solutions de�ned on re
tangular domains.

3. Comparison theorem

First order partial di�erential or fun
tional di�erential equations have the following

properties. Theorems on uniqueness of solutions to an initial or initial boundary

value problem are 
onsequen
es of suitable 
omparison theorems. They give estimates

for fun
tions of several variables by means of solutions of ordinary di�erential or

fun
tional di�erential equations.

The fundamental result, known as the Haar - Wa»ewski inequality, shows that a

fun
tion of several variables whi
h is of 
lass C1 on the Haar pyramid and satis�es

a linear di�erential inequality 
an be estimated by solution of a linear ordinary dif-

ferential equation ([7℄, [10℄). There exist many generalizations of the above 
lassi
al

result. The di�erential inequality may be nonlinear with respe
t to the unknown
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fun
tion and assumptions on the regularity of the unknown fun
tion 
onsidered on

the Haar pyramid may be weakened [9℄. A fun
tional di�erential version of the Haar

- Wa»ewski inequality 
an be found in [5℄.

We extend the Haar - Wa»ewski inequality (1.2) on initial boundary value prob-

lems. We prove that a fun
tion satisfying a fun
tional di�erential inequality and

initial boundary 
onditions 
an be estimated by a solution of initial value problem for

an ordinary fun
tional di�erential equation.

For a fun
tion z ∈ C(E0 ∪ E, R), we put

E+[z] = {(t, x) ∈ E : |z(t, x)| ≥ |z(t, y)| for y ∈ [α(t), β(t)]}.

Assumption H[σ ]. The fun
tion σ : [0, a)×R+×C(Γ, R+) → R+ satis�es 
ondition

(V0) and

(i) σ is 
ontinuous and satis�es monotoni
ity 
ondition: if ξ, ξ̃ ∈ C(Γ, R+) and ξ(τ) ≤
ξ̃(τ) for τ ∈ Γ then σ(t, p, ξ) ≤ σ(t, p, ξ̃) where (t, p) ∈ [0, a) × R+;

(ii) the fun
tion κ : [0, a) → R is 
ontinuous and 0 ≤ κ(t) ≤ t for t ∈ [0, a);

(iii) for every η ∈ C([−b0, 0], R+) the maximal solution of the Cau
hy problem

ω′(t) = σ(t, ω(t), ωκ(t)), ω(t) = η(t), t ∈ [−b0, 0], (3.1)

is de�ned on [−b0, a).

We will need the following lemma on fun
tional di�erential inequalities.

Lemma 3.1. Suppose that Assumption H[σ ] is satis�ed and

1) ξ, ξ̃ ∈ C([−b0, a), R+) and ξ(0) < ξ̃(0);
2) denoted by

T+ = {t ∈ (0, a) : ξ(τ) < ξ̃(τ) for τ ∈ [0, t), ξ(t) = ξ̃(t)},

and assume that

D−ξ(t) − σ(t, ξ(t), ξκ(t)) < D−ξ̃(t) − σ(t, ξ̃(t), ξ̃κ(t)), t ∈ T+

where D− is the left hand side Dini derivative.

Then ξ(t) < ξ̃(t) for t ∈ [0, a).

The proof of the above lemma 
an be found in [5℄.

For w ∈ C(B, R), we write

‖w‖D[t,x] = max{|w(τ, y)| : (τ, y) ∈ D[t, x]}.

Now we will prove the main theorem of this Se
tion.

Theorem 3.1. Suppose that the Assumption H[σ ] is satis�ed and

1) fun
tion u : E0 ∪ E → R is the 
lass of C∗ and

|u(t, x)| ≤ η̃(t) on E0, (3.2)
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where η̃ ∈ C([−b0, 0], R+);
2) ω( ·, η̃) : [−b0, a) → R+ is the maximal solution of the problem

ω′(t) = σ(t, ω(t), ωκ(t)), ω(t) = η̃(t) for t ∈ [−b0, 0], (3.3)

and the following boundary inequality holds:

|u(t, x)| ≤ ω(t, η̃) on ∆0; (3.4)

3) the fun
tion u satis�es the fun
tional di�erential inequality

|∂tu(t, x)| ≤ σ(t, |u(t, x)|, ‖uψ(t,x)‖D[ψ(t,x)]) +
∑

i∈I
−

[t,x]

α′

i(t) |∂xi
u(t, x)|

−
∑

i∈I+[t,x]

β′

i(t) |∂xi
u(t, x)|, (3.5)

where (t, x) ∈ E+[u]\∆0.

Then

|u(t, x)| ≤ ω(t, η̃) on E. (3.6)

Proof. De�ning

ξ(t) = max{|u(τ, y)| : (τ, y) ∈ E0 ∪ E], τ ≤ t}, t ∈ [−b0, a),

we have that ξ ∈ C([−b0, a), R+) and the statement (3.6) is equivalent to the inequal-

ity ξ(t) ≤ ω(t, η̃) for t ∈ [0, a). Let 0 < ã < a be �xed. We denote by ω( ·, η̃, ǫ) the

maximal solution of the Cau
hy problem

ω′(t) = σ(t, ω(t), ωκ(t)) + ǫ, ω(t) = η̃(t) + ǫ, t ∈ [−b0, 0]. (3.7)

There exist ǫ̃ > 0 su
h that for every 0 < ǫ < ǫ̃ the solution ω( ·, η̃, ǫ) is de�ned on

[−b0, ã) and
lim
ǫ→0

ω(t, η̃, ǫ) = ω(t, η̃) uniformly on Γ ∪ [0, ã).

We will show that

ξ(t) < ω(t, η̃, ǫ) for t ∈ [0, ã). (3.8)

We will prove the inequality by using Lemma 3.1. It follows that the initial estimate

ξ(t) ≤ η(t) + ǫ, t ∈ [−b0, 0], is satis�ed. Set T̃+

T̃+ = {t ∈ (0, a) : ξ(τ) < ω(τ, η̃, ǫ), τ ∈ [0, t), ξ(t) = ω(t, η̃, ǫ)}. (3.9)

We prove

D−ξ(t) < σ(t, ξ(t), ξκ(t)) + ǫ for t ∈ T̃+. (3.10)

Let t ∈ T̃+ be �xed. Then ξ(t) = ω(t, η̃, ǫ) and ξ(t) = |u(t, x)| for some x ∈ [α(t), β(t)].
It is 
lear that (t, x) ∈ E+[u]. It follows from (3.4) that (t, x) /∈ ∆0. Then we have
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that (i) ξ(t) = u(t, x) or (ii) ξ(t) = −u(t, x). We will 
onsider the 
ase (i). Let

γ = (γ1, . . . , γn) : [0, t] → R
n be de�ned by

γi(τ) = xi for i ∈ I0[t, x],

γi(τ) = βi(τ) for i ∈ I+[t, x], γi(τ) = αi(τ) for i ∈ I−[t, x],

and ξ̃(τ) = u(τ, γ(τ)), τ ∈ [0, t]. Then, we have ξ̃(τ) ≤ ξ(τ) for τ ∈ [0, t) and

ξ̃(t) = ξ(t). We dedu
e that

∂xi
u(t, x) ≥ 0 for i ∈ I+[t, x], ∂xi

u(t, x) ≤ 0 for i ∈ I−[t, x],

∂xi
u(t, x) = 0 for i ∈ I0[t, x].

Then

D−ξ(t) ≤ D−ξ̃(t) = ξ̃′(t)

= ∂tu(t, x) +
n

∑

i=1

γ′

i(t) (∂xi
u(t, x))

= ∂tu(t, x) +

n
∑

i∈I+[t,x]

β′

i(t) |∂xi
u(t, x)| −

n
∑

i∈I
−

[t,x]

α′

i(t) |∂xi
u(t, x)|

≤ σ(t, ξ(t), ξκ(t))

< σ(t, ξ(t), ξκ(t)) + ǫ, (3.11)

whi
h proves (3.10). In a similar way, we 
an prove (3.10) in the 
ase (ii).
We 
on
lude from Lemma 3.1 that inequality (3.8) is satis�ed and 
onsequently,

|u(t, x)| < ω(t, η̃, ǫ) for (t, x) ∈ E ∩ ([0, ã) × R
n). From the above inequality, we

obtain in the limit, letting ǫ tend to 0, inequality (3.6) on E ∩ ([0, ã) × R
n). By the

arbitrariness of 0 < ã < a the assertion follows. ¤

In the following, we prove that the di�eren
e between two solutions of the fun
-

tional di�erential equation (1.2) 
an be estimated by a solution of a suitable ordinary

di�erential equation.

Assumption H0[ f, ψ,∆] The fun
tion f : Ω → R satis�es the 
ondition (V ) and
1) α, β : [0, a) → R

n are of 
lass C1 and α(t) < β(t) for t ∈ [0, a);
2) for ea
h (t, x) ∈ ∆, i ∈ I−[t, x], h 6= 0, we have

α′

i(t) ≥ −
1

h
[f(t, x[i, α], p, w, q + eih) − f(t, x[i, α], p, w, q)]

where p ∈ R, w ∈ C(B, R), q ∈ R
n;

3) for ea
h (t, x) ∈ ∆, i ∈ I+[t, x], h 6= 0, we have

β′

i(t) ≤ −
1

h
[f(t, x[i, β], p, w, q + eih) − f(t, x[i, β], p, w, q)]

where p ∈ R, w ∈ C(B, R), q ∈ R
n;

4) κ ∈ C([0, a), R+), ψ∗ ∈ C(E, Rn) and κ(t) ≤ t for t ∈ [0, a) and α(t) ≤
ψ∗(t, x) ≤ β(t) for (t, x) ∈ E.
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Theorem 3.2. Suppose that Assumptions H[σ ] and H0[ f, ψ,∆] are satis�ed and

1) the estimate

|f(t, x, p, w, q) − f(t, x, p̃, w̃, q)| ≤ σ(t, |p − p̃|, ‖w − w̃‖B) (3.12)

holds on Ω;

2) the fun
tions u, v : E0 ∪ E → R are solutions of (1.2) and they are of 
lass C∗;

3) η̃ ∈ C([−b0, 0], R+) and |u(t, x) − v(t, x)| ≤ η̃(t) on E0 and boundary estimate

|u(t, x) − v(t, x)| ≤ ω(t, η), (t, x) ∈ ∆0 (3.13)

is satis�ed, where ω( ·, η) is the maximal solution of (3.3).

Under these assumptions, we have

|u(t, x) − v(t, x)| ≤ ω(t, η̃) on E. (3.14)

Proof. We will show that fun
tion u − v satis�es assumptions of Theorem 3.1. The

initial boundary inequalities follows from assumption 3). Let (t, x) ∈ E+[u − v]. We

prove that

|∂t(u − v)(t, x)| ≤ σ(t, |(u − v)(t, x)|, ‖(u − v)ψ(t,x)‖D[t,x])

+
∑

i∈I
−

[t,x]

α′

i(t) |∂xi
(u − v)(t, x)|

+
∑

i∈I+[t,x]

β′

i(t) |∂xi
(u − v)(t, x)|. (3.15)

We have that (i) (u − v)(t, x) = |(u − v)(t, x)| or (ii) (u − v)(t, x) = −|(u − v)(t, x)|.
We 
onsider the 
ase (i). It follows that

∂xi
(u − v)(t, x) = 0 for i ∈ I0[t, x],

∂xi
(u − v)(t, x) ≥ 0 for i ∈ I+[t, x], ∂xi

(u − v)(t, x) ≤ 0 for i ∈ I−[t, x].

Then we have

∂t(u − v)(t, x)

= f(t, x, u(t, x), uψ(t,x), ∂xu(t, x)) − f(t, x, v(t, x), vψ(t,x), ∂xv(t, x))

≤ σ(t, |(u − v)(t, x)|, ‖(u − v)ψ(t,x)‖D[ψ(t,x)])

+f(t, x, v(t, x), vψ(t,x), ∂xu(t, x)) − f(t, x, v(t, x), vψ(t,x), ∂xv(t, x))

≤ σ(t, |(u − v)(t, x)|, ‖(u − v)ψ(t,x)‖D[ψ(t,x)])

+
∑

i∈I
−

[t,x]

α′

i(t)(−∂xi
(u − v)(t, x)) −

∑

i∈I+[t,x]

β′

i(t)∂xi
(u − v)(t, x)

= σ(t, |(u − v)(t, x)|, ‖(u − v)ψ(t,x)‖D[ψ(t,x)])

+
∑

i∈I
−

[t,x]

α′

i(t)|∂xi
(u − v)(t, x)| −

∑

i∈I+[t,x]

β′

i(t)|∂xi
(u − v)(t, x)|.
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In the similar way, we show that

∂t(u − v)(t, x) ≥ −σ(t, |(u − v)(t, x)|, ‖(u − v)ψ(t,x)‖D[ψ(t,x)])

−
∑

i∈I
−

[t,x]

α′

i(t)|∂xi
(u − v)(t, x)| +

∑

i∈I+[t,x]

β′

i(t)|∂xi
(u − v)(t, x)|.

That shows (3.15) in 
ase (i). In the similar way, we prove (3.15) in the 
ase (ii). That
shows that all assumptions of Theorem 3.1 are satis�ed and the assertion follows.

¤

The following result is a 
onsequen
e of Theorem 3.1.

Theorem 3.3. Suppose that Assumption H[σ ] and H0[ f, ψ,∆] are satis�ed

1) the fun
tion ω̃(t) = 0, t ∈ [−b0, a), is the maximal solution of (3.3) with η(t) = 0
for t ∈ [−b0, 0];
2) the estimate (3.12) holds.

Under these assumptions, the mixed problem (1.2), (1.3) admits at most one solution

u : E0 ∪ E → R of 
lass C∗.

It is 
lear that 
onditions 2), 3) of Assumption H0[ f, ψ,∆] are important in

our 
onsiderations. To show this, we give examples of the sets E and we formulate


orresponding assumptions on ∆.

Remark 3.1. Let E,E0 and ∆ be the sets de�ned in Remark 2.3. Suppose that 
on-

ditions (2.18), (2.19) are satis�ed for p ∈ R, q ∈ R
n, w ∈ C(B, R). Then 
onditions

2), 3) of Assumption H0[ f, ψ,E ] are satis�ed. Theorems 3.2 and 3.3 
on
ern initial

boundary value problems for (1.2) with solutions de�ned on the Haar pyramid. These

theorems are new.

Suppose that J+ = J− = {1, . . . , n}. Then ∆0 = ∅, ∆ = ∂0E and (1.2), (1.3)

redu
es to the Cau
hy problem with solutions de�ned on the 
lassi
al Haar pyramid.

Remark 3.2. Let E,E0 and ∆ be the sets de�ned in Remark 2.5. Then (1.2), (1.3)

redu
es to a mixed problem for nonlinear fun
tional di�erential equations. Suppose

that

−
1

h
[f(t, x[i, α], p, w, q + eih) − f(t, x[i, α], p, w, q)] ≤ 0, i = 1, . . . , k,

and

−
1

h
[f(t, x[i, β], p, w, q + eih) − f(t, x[i, β], p, w, q)] ≥ 0, i = k + 1, . . . , n.

The 
onditions 2), 3) of Assumption H0[ f, ψ,∆] are satis�ed.

Theorems 3.2 and 3.3 
on
ern mixed problems with solutions de�ned on re
tan-

gular domains.

Note that we do not assume that there exist the derivatives (∂q1
f, . . . , ∂qn

f). It

follows that our results are generalizations of theorems on mixed problems presented

in [1℄, (see also [5℄, Chapter 5).
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Remark 3.3. Let E,E0 and ∆ be the sets de�ned in Remark 2.6. Suppose that there

exist the derivatives (∂q1
f, . . . , ∂qn

f), ∂qf ∈ C(Ω, R) and there is x̃ ∈ (−b, b) su
h

that 
ondition (2.22) is satis�ed. Then 
onditions 2), 3) of Assumption H0[ f, ψ,∆]
are satis�ed. Se
tion 3 
ontains new theorems on initial problems for fun
tional dif-

ferential equations with solutions de�ned on a re
tangular domain.

Remark 3.4. Note that the 
onne
tion with a fun
tional di�erential 
omparison

problem is essential for the uniqueness 
riterion stated in Theorem 3.3. The fol-

lowing example points out this property. If β ≥ α > 1 and A,B ∈ R+, then the

maximal solution of the Cau
hy problem

ω′(t) = A α

√

ω(tβ) + Bω(t), ω(0) = 0 (3.16)

is ω̄(t) = 0 for t ∈ [0, a] where a ≤ 1. Note that maximal solution of (3.16) with α > 1
and β = 1 is positive on (0, a].

Remark 3.5. Results presented in the paper 
an be extended on fun
tional di�eren-

tial systems

∂tzi(t, x) = fi(t, x, z(t, x), zψ(t,x), ∂xzi(t, x)), i = 1, . . . ,m,

where z = (z1, . . . , zm).
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