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Abstract. Theorems on functional differential inequalities generated by initial
boundary value problems are presented. A comparison theorem given in the paper
shows that classical solutions of nonlinear functional inequalities can be estimated
by maximal solutions of suitable initial problems for ordinary functional differential
equations. Uniqueness criteria for mixed problems are obtained as applications of the
comparison result.
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1. Introduction

Differential inequalities find numerous applications in the theory of first order partial
differential or functional differential equations. The basic examples of such applica-
tions are estimates of solutions of differential equations, estimates of the domain of
the existence of solutions, criteria of uniqueness and estimates of the error of approx-
imate solutions. Discrete version of differential inequalities, the so called difference or
functional difference inequalities, are frequently used to prove convergence of approx-
imation methods. The classical theory of first order partial differential inequalities
has been described extensively in the monographs [6], [7], [9]. Hyperbolic functional
inequalities corresponding to initial or initial boundary value problems have been
studied in the papers [1] - [4] and the monograph [5].

The aim of the paper is to obtain general comparison theorems on functional
differential inequalities with initial boundary conditions. There are two different
types of results on the comparison theorems of functional differential inequalities
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in the literature. The first type of theorems allow to estimate a function of several
variables, while the second one, the so called comparison theorems, give estimates for
functions of one variable. In Section 2 we deal with the first kind of results, while the
comparison theorem is presented in Section 3.

We formulate our functional differential problems. For any metric spaces X, Y we
denote by C(X,Y) the class of all continuous functions from X into Y. We will use
vectorial inequalities with the understanding that the same inequalities hold between
their corresponding components.

Let a > 0, by € Ry, Ry = [0,+00), be fixed and suppose that the functions
a,f:[0,a) = R™", a = (a1,...,a5), 8= (01,-...,0n), satisfy the conditions: « and 3
are of class C! on [0,a) and a(t) < B(t) for t € [0,a). Let E be a generalized Haar
pyramid

E={(t,z) e R"™" :t € (0,a),z € [a(t),B(t)]} (1.1)

and Ey = [—bo, 0] x [bs,b*], b = a(0), b* = 3(0). For (t,z) € E we define the set
Dlt, z] as follows
Dlt,z] = {(r,y) e R"" : 7 <0,(t+ 1,2 +y) € Eg UE}.
It is clear that D[t,z] = Dy[t, x] U D.[t, x], where
Dylt, z] = [=bo — t, —t] x [bs,b"],

D.ft,x] ={(r,y) eR™™: t <7 <0, —~z+at+7)<y< —x+p(t+7)}
Write B = [~bg — a,0] X [¢ — d,d — ], where ¢ = (¢1,...,¢p), d = (dy,...,d,) and

¢; = inf{ay(t) : t €[0,a)}, di =sup{B;(t) : t €[0,a)}, i=1,...,n.

Then we have D[t,z] C B for (t,x) € E. For a function z: Ey U E — R and for a
point (t,z) € E, we define a function z¢ ;): D[t, 2] — R as follows:

Z(t,z)(Ta y) = Z(t+T,1‘+y), (Tay) € D[t,I‘]

Then z(; 4 is the restriction of z to the set (EgUE)N([—bo, ] xR™) and this restriction
is shifted to the set D[t,z]. Write dpFE = IEN((0,a) x R™), where JF is the boundary
of E. Suppose that the sets Ag, A C OF satisfy the conditions:

AgUA =yE, AgNA=0.

The cases Ag = @ or A = () are not excluded. We will assume that differential
functional equations or inequalities are satisfied on Int U A and initial boundary
conditions hold on FyUAq. Suppose that x: [0,a) — R and ¢, = (¢1,...,%n): E —
R™ are given functions. The requirements on x and 1, are that 0 < k(t) < ¢ and
(k(t), Y (t,x)) € EgUE for (t,z) € E. Set ¥(t,z) = (k(t), V. (t,z)) for (t,z) € E.
Write 2 = F x R x C(B,R) x R" and suppose that f: @ - R and ¢: FgUAy — R
are given functions. We will say that the function f satisfies the condition (V) if for
each (t,z,p,q) € E x R x R™ and for w,w € C(B,R) such that w(r,y) = @(r,y) for
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(1,y) € D[Y(t, )] we have f(t,z,p,w,q) = f(t,x,p,w,q). Note that the condition
(V) means that the value of f at the point (¢,2,p,w,q) € Q depends on (¢, z,p, q)
and on the restriction of w to the set D[¢(t, x)] only.

Let z be the unknown function of the variables (t,z) with z = (z1,...,2,). We
consider the following problem consisting of the differential functional equation

atz(ta CE) = f(ta &€, Z(tv 3’]), Zyp(t,x)s azz(tv x)) (12)
with initial boundary condition
z(t,x) = p(t,x) on EyU Ay, (1.3)

where 0,2 = (Oy,2,...,05,2). We assume that f satisfies the condition (V') and we
consider the classical solutions of (1.2), (1.3).

Now we give examples of equations which can be obtained from (1.2) by special-
izing the operator f.

Example 1.1. Suppose that f: ExRxRxR" =R is a given function. Set
flt,z,p,w,q) = f(t,x,p,w(0,0),q) where 8 = (0,...,0) € R™. Then (1.2) becomes
the differential equation with deviated variables

dz(t,x) = f(t,x, 2(t,z), 2(¥(t, x)), Dy 2(t, ). (1.4)

Example 1.2. Suppose that (¢, z) = (t,x), (t,x) € E. For the above f we put

[tz p,w,q) Zf(t,xm,/D[ ]w(T,y)dey7q)~
t,x

Then (1.2) is equivalent to the differential integral equation

Oz(t,x) = f(t,x,z(t,:c),/ Z(t,I)(T, y)drdy, 0,z(t, z)). (1.5)

Dit,z]

It is clear that more complicated equations with deviated variables and differential
integral equations can be obtained from (1.2).
Sufficient conditions for the existence of solutions to (1.2), (1.3) can be found in

[8]-
2. Functional differential inequalities

For each (t,z) € E there exist sets of integers Iy[t, ], I_[t,z], [.[t,x] such that
I_[t,z) NI [t,x] =0 and Ly[t,z) U I_[t,z] U I [t,z] = {1,2,...,n} and

a;(t) <z < Bi(t) fori e Iplt,x],

x; =a(t) foriel_[t,z], x;=pi(t,x) foriec It x].
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Of course, the cases Ip[t,z] = 0 or I_[t,x] = 0 or I;[t,z] = 0 are possible. For
(t,x) € OF and i € I_[t,x], j € I[t,x] we write

.f[i,a]:(xh e 7$i713ai(t)axi+la cee ,.’I}n>7 l’[j, B]Z(xh e 7$j717ﬁj<t)axj+17 e 7'177’7,)'

A function z: Eg U E — R will be called a function of class C* if z is continuous on
Ey U E, it has first order partial derivatives in an interior of E and z possesses the
total differential on A. Write e; = (0,...,0,1,0,...,0) € R” with 1 standing on the
1 -th place and ¢ = 1,...,n. We formulate the main assumption on f, ¥ and F as
follows.

Assumption H][ f,1, E|. The functions o, 8: [0,a) — R", k: [0,a) = R, ¢.: E —
R™ and f: Q — R satisfy the conditions

1) « and 3 are of class C! on [0,a) and «(t) < B(t) for t € [0, a);
2) 0<k(t)<tforte (0,a) and a(t) < . (t,z) < B(¢) for (¢t,z) € E;

3) the function f of the variables (¢,x,p,w,q), ¢ = (q1,-.-,qn), satisfies the condi-
tion (V) and the following monotonicity conditions holds: if (¢, z,p,w,q) € Q,
w € C(B,R) and w(r,y) < w(r,y) for (r,y) € B then f(t,z,p,w,q) <
[, z,p,w,q);

4) for each (t,z) € A, i € I_[t,z], h < 0, we have

Ot;(t) Z —%[f(t,x[i,a],p,w,q) - f(t,x[i,a],p,w,q - eih)]v

where p € R, ¢ € R", w € C(B,R);
5) for each (t,z) € A, i € I [t,x], h > 0, we have

ﬂ;(t) S _%[f(tvm[ZaBLpawaq) - f(tvx[i7ﬂ]ap7w7q - Eih)],
where p € R, ¢ € R", w € C(B,R).

Write
F[Z](t,.]?) = f(tvxv Z(t,l‘), Zw(t,z)vawz(tax))-

We prove a theorem on strong functional differential inequalities.

Theorem 2.1. Suppose that Assumption H[ f,, E] is satisfied and
1) the functions u,v: EgUE — R are of the class C* and the following initial boundary
inequalities hold:

u(t,z) <ov(t,z) onEy and u(0,z) <v(0,2) forx € by b"]

and
u(t,z) <ov(t,x) for(t,z) € Ag;
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2) denoted by
Y ={(t,x) € E\A¢ : u(r,y) <v(r,y) on EN((0,t) x R™) and u(t,x) = v(t,z)}
we assume that
Opu(t, ) — Flu)(t,z) < Opw(t,x) — Flv](t,z) for (t,x) € X.

Then we have
u(t,z) <ov(t,xz) for(t,z) € E. (2.1)

Proof. Suppose, by contradiction, that inequality (2.1) fails to be true. Let
T, ={tel0,a):u(r,y) <v(r,y)on EN([0,t] x R") and u(t,x) = v(t,x)}.
Then the set Ty is not empty. Let { = min T, . From the assumption 1) it is clear that

t > 0 and there exists & = (%1, ...,¥,) such that u(t, %) = v(t,%) and u(t,z) < v(t,z)
on EN([0,) x R™). The function u — v satisfies the conditions

Op,(u—v)(#,%) >0 forie I [t,7], O (u—v){t,x)<0 foriecl [t,7] (2.2)

and
Op,(u—0)(t,7) =0 foriec Iy[t, 7| (2.3)
Consider the function v = (v1,...,79,): [0,7] — R™ given by:
'yi(t) =7; forie Iy[t, 7], (2.4)
vi(t) = Bi(t) forie I [t, 7], ~i(t)=ai(t) forie I [t 7], (2.5)
and the function &(¢) = (u — v)(t,y(t)), t € [0,1]. Because £(t) < 0 for ¢ € [0,) and

£(f) = 0 then ¢'(#) > 0. Since u — v is of class C* we have
0<&(t) = 0,(u—v)EE) + Y (D), (u—0) (),
and consequently

0<(u—v)ED)+ > al(B)da, (u—v)(ET)+ Z Bl(5)8y, (u—v)(E, 7). (2.6)

We also have that (£,%) € ¥. From Assumption H[f,, F] and (2.2) and (2.3), we
deduce that

O¢(u —v)(t, )

N
Qz
SH
S—
E
=
~—~
~
=2

< Z tam(u—v)(f,:%)— S B0, (u - v) (A, B),

which contradicts (2.6). Therefore, the set T} is empty and the statement (2.1)
follows. -
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Remark 2.1. In Theorem 2.1 we can assume instead of condition 2) that
Owu(t,x) < Flul(t,x) and Ow(t,z) > Fv|(t,z),
where (t,z) € E\Ag and for each (t,x) € E\Aq equality holds in at most one place.

Now we consider weak functional differential inequalities. Write I' = [—by — a, 0]
and T'[t] = [~bo — ¢,0], where ¢ € [0,a]. Then, I'[t] C T for t € [0,a]. We need the
operator W: C(B,R) — C(T',R) defined by

Ww](t) = max{|w(t,y)| :y € [c —d,d — ]}, t € T.

For w € C(B,R) and £ € C(I',R), we define w + £: B — R in the following way:
(w+&)(r,y) = w(r,y) +£&(7), (1,y) € B. For a function n: I' U [0,a) — R and for a
point ¢ € [0,a], we define n,: I' — R by n(7) =n(t +7), 7 € I

Suppose that o: [0,a) x Ry x C(I',Ry) — R is a given function. We will say that o
satisfies the condition (V) if for each (t,p,&) € [0,a) x Ry x C(T',Ry), £ € C(I',Ry)

such that £(7) = £(7) for 7 € T'[k(t)] we have o(t,p,&) = o(t,p, &)

Assumption H,[o]. The function o: [0,a) x Ry x C(I',Ry) — R, satisfies the
condition (Vp) and

1) o is continuous and o(¢,0,0) = 0 for ¢ € [0,a) where D € C(I',R}) is given by
O(1) =0 for 7 € T

2) the following monotonicity condition is satisfied: if p € R, ¢, Ce C(T,R;) and
¢(r) <((7) for 7 €T then o(t,p,¢) < o(t,p,();

3) the function 7(t) = 0 for t € [—bg, a) is the unique solution of the Cauchy problem
Ul(t) = U(tvn(t)’nfc(t))v n(t) =0 forte [_b()v O}

Theorem 2.2. Suppose that Assumptions H|[ f,v, E]|, H.[c] are satisfied and
1) the functions u,v: Eg UE — R are of the class C* and

u(t,z) <wv(t,z) for(t,z) e EyU Ag;
2) the estimate
f(t,$7p,'UJ,q) - f(t7x7ﬁaw - EaQ) S U(t7p _2575)

is satisfied for (t,x) € E\Ap, w € C(B,R), £ € C(T,Ry), p,p € R and p > p;
3) denoted by
¥ ={(t,z) € E\Ao : u(t,y) > v(r,y)}

we assume that
Owu(t,x) — Flul(t,x) < dwo(t,xz) — Fv](t,x) for (t,x) € T*.

Then we have

u(t,z) <ov(t,xz) for(t,z) € E. (2.7)



First order partial functional differential inequalities 41

Proof. Let 0 < a < a be fixed. We prove that u(t,z) < v(t,z) on EN([0,a) x R™).
Let us denote by w( -, ¢) the maximal solution of the Cauchy problem

n/(t) = U<t7n(t)’77n(t)) + €, n(t) =¢ forte [—bo, 0}

There exists € > 0 such that for every 0 < € < € the solution w(-,¢) is defined on
[~bo, @) and

lim w(t,e) =0 uniformly on [—by,a).
€— 00

Write
uc(t,z) = u(t,z) —w(te), (t,z)€ EoU[EN([0,a)xR")].

We will show that
ue(t,x) <wv(t,xz) for (t,x) € EN(]0,a) x R™). (2.8)
It is clear that the following initial boundary inequality is satisfied
ue(t,x) <wv(t,x) for EgUAg.
Write

Y = {(t,z) € (E\Ap) N ([0,a) x R™) : uc(r,y) < v(r,y) on EN((0,¢) x R™)
and u(t,z) = v(t,z)}.

We prove that
Oyue(t, x) — Flul(t,z) < dw(t,z) — Fu](t,z) for (t,z) € X.

Suppose that (¢,z) € X. Then (t,z) € ©* and

Opue(t, ) — Flu(t, z)

<
< Ow(t,x) — Fll(t,z) — ' (t, ) + o(t,w(t, €), wew (- €))
< Ow(t,x) — Ful(t, x),

which completes the proof of (2.6). O

Then we deduce (2.8) from Theorem 2.1. From the above inequality we obtain
inequality u(t,z) < wv(t,z) on EN([0,a) x R™). By the arbitrariness of 0 < @ < a, the
assertion follows.

Remark 2.2. Condition 2) in Theorem 2.2 can be replaced by the following assump-
tion:

f(tvxap7w7Q) - f(taxaﬁ7ﬁ)7q) S O'(tap —ﬁ,W[w - TD]),

where (t,z) € E\Ag, ¢ € R", p,p € R, w,w € C(B,R) and p > p, w(r,y) > 0(r,y)
for (1,y) € B.
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Now we prove a theorem in which strong differential functional inequalities and weak
initial boundary inequalities for u,v: FgUFE — R imply the estimate u(t, z) < v(¢, x)
for (t,x) € E\Ao.

Theorem 2.3. Suppose that Assumption H| f,¢, E], Hi[o| are satisfied and
1) the functions u,v: Eg UE — R are of the class C* and

u(t,z) <wv(t,z) for(t,x) € EgU Ag;
2) the estimate

f(tvxvpvwaq) _f(t,xvﬁvw _gaq) < U(tvp_ﬁ7£)

is satisfied for (t,x) € E\Ao, w € C(B,R), £ € C(I',R;), p,p €R and p > p;
3) denoted by
e ={(t,z) € E\Ag : u(7,y) > v(7,y)}

we assume that
Owu(t,x) — Flul(t,x) < dwo(t,x) — Fv](t,x) for (t,z) € X*.

Then
u(t,z) <ov(t,xz) for(t,z) € E. (2.9)

This assertion can be proved by applying Theorem 2.3 and then repeating the argu-
ment used in the proof of Theorem 2.1.

In the next theorem we assume that Ag = @ and we prove that weak functional
differential inequalities and strong initial inequality for u,v: Ey U E — R imply the
estimate u(t,z) < v(t,z) on E.

Assumption Hy[o]. The function o: [0,a) x R_ — Ry, R_ = (—00, 0], satisfies the
conditions:

1) o is continuous and o(t,0) = 0 for ¢ € [0, a);

2) the left hand minimal solution of the problem
' (t) = o(t,n(t), lim n(t) =0 (2.10)
is7(t) =0, t€0,a).
Theorem 2.4. Suppose that Assumptions H| f,, E'] and Hy|o| are satisfied, Ao = 0
and
1) the functions u,v: Eg UE — R are of class C* and

Owu(t, ) — Flu](t,z) < dw(t,x) — F[v](t,x) for(t,x) € E; (2.11)
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2) for (t,x) € Ey we have u(t,z) < v(t,x) and u(0,z) < v(0,2) for x € [by, b*];
3)if (t,z,p,w,q) € Q, h >0 and £ € C(I',R,), then

ftx,pow,q) — f(t,2,p+how+ & q) < o(t, —min{h, [[€]r}).
Under these assumptions, we have

u(t,z) <ov(t,xz) for(t,z) € E. (2.12)

Proof. 'We will prove (2.12) for (t,z) € EN([0,a — €) x R™), where 0 < € < a. Write
0 < pp < min{v(0,z) —u(0,z) : = € [by,b"]}.

For 6 > 0, we denote by w(-,d) the right hand side minimal solution of the Cauchy
problem

n'(t) = —o(t,—n(t)) =4, n(0) = po. (2.13)
For fixed pp > 0 and € > 0 the solution w(-,d) exists on [0,a — €) and w(t,d) > 0
for t € [0,a —€). Let § > 0 be such a small constant that w(-,d) satisfies the above
conditions. Let us denote by Z: Ey — R a continuous function such that

u(t,z) < Z(t,z) < o(t, z) for (t,x) € Ep and 2(0,z) = u(0, z) + po for x € [b*,b,].

Write a(t, x) = Z(t, x) for (t,x) € Ey, a(t,x) = u(t,z) +w(t,o) for (t,z) € EN([0,a —
€) x R™). We will show that

a(t,z) <wv(t,z) for (t,z) € EN([0,a—€) x R™). (2.14)
It follows from Assumption Hy[o] and from (2.11) that

!
£
o~
8

) — Fla](t, =) + '(t,6)

Ut ), U105 Ot )

5))(t7 .’L‘), (u + w( " 6)>w(t,m)7 8a:u(t> I)) + w,(tv 6)
o(t,—w(t,8)) + ' (t,0)

=4, (t,x) € EN((0,a — €) x R"),

<
—~

and consequently
ou(t,x) — Fla](t,z) < Opo(t,z) — Flv](t,z) for (t,z) € EN((0,a —¢€) x R™).

It follows from Theorem 2.1 that estimate (2.14) is satisfied and consequently, u(t, z) <
v(t,x) for (t,z) € EN((0,a —€) x R™). Since 0 < € < a is arbitrary, inequality (2.12)
holds true. O

It is clear that conditions 4), 5) of Assumption H|[ f, v, E] are important in the-
orems on functional differential inequalities. We give examples of the sets E, A, and
Ao and we formulate suitable assumptions on A.
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Remark 2.3. Write

E={(t,z) e R"™™ . t€(0,a),x € [~b+ Mt,b— Mt]}, Ey = [~bo,0] x [~b,D],
(2.15)
where a > 0, bg € Ry, b = (by,...,b,) € R", b; >0 fori=1,...,n and M =
(My,...,My) € RY. We assume that b > Ma. Suppose that we have defined the sets
Ji,JJ- C{1,...,n}. The cases Jr =0 or J_ =0 are not excluded. Write

Ap ={(t,x) € OF : there isi € J; such thatz; = b; — M;t}, (2.16)

A_ ={(t,x) € OF : there isi € J_ such thatz; = —b; + M;t} (2.17)

and A = AL UA_. Then (1.2), (1.3) reduces to the initial boundary value problem
with solutions defined on the classical Haar pyramid. Write

a(t)=—-b+ Mt, B(t)=b— Mt, t€]0,a).

If
M; > —%[f(t,w[i,a],p,qu) — f(t.zli,a],pw,qg —eh)], i€ J-, (2.18)
Mi S—%[f(t,x[z,ﬁ],p,w,q)—f(t,m[l,ﬁ],p,w,q—ezh)], iEJ+a (219)

where p € R, ¢ € R", w € C(B,R) then conditions 4), 5) of Assumption H[ f,1, E]
are satisfied. The theorems presented in Section 2 concern functional differential
inequalities corresponding to initial boundary value problems with solutions defined
on the Haar pyramid. These theorems are new.

Suppose that Jy = J_ = {1,...,n}. Then Ay = 0, A = &HFE and (1.2), (1.3)
reduces to the Cauchy problem with solutions defined on the classical Haar pyramid.

Theorems on functional differential inequalities generated by initial problems can be
found in [5], Chapter 1.

Remark 2.4. Suppose that E is given by (1.1) and Eq = [—bg, 0] X [b«, b*]. Assume
that

1) the partial derivatives (Oq, f,...,0q,f) = 0qf exist on Q and 0, f € C(,R"™);

2) the differential inequalities

a;(t) = =0, f(t, x[i, o], p,w,q), (t,x) €A, i€ [t ],
ﬂz/(t) S _8qif(t7x[i7ﬂ]apaw7q)’ (t7x) € A’ 1€ I+[t,],‘],

are satisfied. Then conditions 4), 5) of Assumption H[ f,1, E] are satisfied.

Remark 2.5. Suppose that k € Z, 0 < k < n is fired. For each x = (x1,...,2,) €
R™ we write x = (2/,2") where ' = (x1,...,z1), " = (Tr41,...,2Tn). We have

' =x fork=mn and x"" = x for k =0. Write

E=(0,a) x [=b,b], Eo=[bo,0] x [~b,b], (2.20)
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where a >0, bg € Ry, b= (by,...,b,) ER™ and b; >0 for 1 <i <n. Put
Ao = (0,a) x ([=b',6']\(=0",0']) x ([=b", 0" ]\[-b",0")), A =0E\Ay. (2.21)

Then (1.2), (1.3) reduces to the mized problem for the nonlinear functional differential
equations. Suppose that f satisfies the condition: if §,q € R™, § = (G1,.--,qn),
q=(q1,---,qn) and §; < q; fori=1,....k, ¢ > q; fori=k+1,...,n, then

f(t7x7p’w’6) S f(t’m)p7w7q)7

where (t,z,p,w) € ExRxC(B,R). Then conditions 4), 5) of Assumption H[ f,, F|
are satisfied.

Theorems presented in Section 2 concern, as particular cases, functional differen-
tial inequalities corresponding to mixed problems with solutions defined on rectangu-
lar domains.

Note that we do not assume that there exists 9,f = (9,, f,--., 0, f)- It follows
that our results are generalisations of theorems on functional differential inequalities
presented in [5] (Chapter 5), see also [1].

Remark 2.6. Suppose that E and Eq are given by (2.20). Put Ay = 0, A = OyE.
Then (1.2), (1.3) reduces to the Cauchy problem with solutions considered on rectan-
gular domains.

Suppose that

1) the partial derivatives Oqf = (g, f,- .-, 0q f) exist on Q and 9, f € C(,R™);

2) there is & = (Z1,...,%,) € (—b,b) such that

(x; — £:)0q, f(t, z,p,w,q) <0 onQ forl <i<n. (2.22)

Then conditions 4), 5) of Assumption H[ f,1, E| are satisfied. Section 2 contains new
theorems on functional inequalities with solutions defined on rectangular domains.

3. Comparison theorem

First order partial differential or functional differential equations have the following
properties. Theorems on uniqueness of solutions to an initial or initial boundary
value problem are consequences of suitable comparison theorems. They give estimates
for functions of several variables by means of solutions of ordinary differential or
functional differential equations.

The fundamental result, known as the Haar - Wazewski inequality, shows that a
function of several variables which is of class C'' on the Haar pyramid and satisfies
a linear differential inequality can be estimated by solution of a linear ordinary dif-
ferential equation (7], [10]). There exist many generalizations of the above classical
result. The differential inequality may be nonlinear with respect to the unknown
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function and assumptions on the regularity of the unknown function considered on
the Haar pyramid may be weakened [9]. A functional differential version of the Haar
- Wazewski inequality can be found in [5].

We extend the Haar - Wazewski inequality (1.2) on initial boundary value prob-
lems. We prove that a function satisfying a functional differential inequality and
initial boundary conditions can be estimated by a solution of initial value problem for
an ordinary functional differential equation.

For a function z € C(Ey U E,R), we put

Eplz] ={(t,x) € E : [2(t,2)| = [2(t,y)|  fory € [a(t), B()]}-

Assumption H[o]. The function o: [0,a) xR xC(T',R;) — R, satisfies condition
(Vo) and

(i) o is continuous and satisfies monotonicity condition: if £,€€C(I,Ry) and £(7) <

&(7) for 7 € T then o(t,p,&) < o(t,p,&) where (¢,p) € [0,a) X Ry;
(#4) the function k: [0,a) — R is continuous and 0 < x(t) < ¢ for ¢t € [0,a);
(#it) for every n € C'([—bg, 0], Ry) the maximal solution of the Cauchy problem
S = oltwl®).wn) WO =0, te[bo0l ()
is defined on [—by, a).
We will need the following lemma on functional differential inequalities.

Lemma 3.1. Suppose that Assumption H[o | is satisfied and

1) §,€ € C([—bo,a),Ry) and £(0) < £(0);
2) denoted by

Ty ={te€(0,a):&(r) <&(r) forT€[0,1), £(t) =£(1)},
and assume that
D—g(t) - U(tag(t)vfn(t)) < D—g(t) - U(tvg(t)7én(t))a te T+

where D_ is the left hand side Dini derivative.
Then &(t) < £(t) fort € [0, a).

The proof of the above lemma can be found in [5].
For w € C(B,R), we write

[l pit,2) = max{|w(r,y)| : (r,y) € D[t x]}.
Now we will prove the main theorem of this Section.

Theorem 3.1. Suppose that the Assumption H|o] is satisfied and
1) function u: Ey UE — R is the class of C* and

fu(t,2)| < @(t) on Eo, (3.2)
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where 7 € C([—bo, 0], R1);
2) w(-,7): [bo,a) — Ry is the mazimal solution of the problem

W'(t) =o(t,w(t),wew), w(t)=mn(t) forte [—by,0], (3.3)
and the following boundary inequality holds:
lu(t, )| <w(t,n) on Ag; (3.4)
3) the function u satisfies the functional differential inequality

Du(t,z)] < ot Jut,2)], [ugew D) + D, () [0a,u(t, )]

i€l_[t,x]

- Y B 0sult @), (3.5)

i€l [t,a:]

where (t,z) € E4[u]\Ag.
Then
lu(t, z)| <w(t,7) onkE. (3.6)

Proof. Defining
§(t) = max{lu(r, )| : (1,y) € Eg UE], 7 <t}, t€[=boa),

we have that & € C([—bo, a), R4 ) and the statement (3.6) is equivalent to the inequal-
ity £(t) < w(t,7) for t € [0,a). Let 0 < @ < a be fixed. We denote by w(-,7,¢€) the
maximal solution of the Cauchy problem

wl(t) = U(ta w(t)a wrc(t)) + €, w(t) = ﬁ(t) +e L€ [_b(]v 0] (37)

There exist € > 0 such that for every 0 < ¢ < € the solution w(-,7],€) is defined on
[~bo,a) and
lim w(t,7,€) = w(t,7) uniformly on T'U [0, a).

e—0

We will show that
E(t) <wl(t,i,e) forte[0,a). (3.8)

We will prove the inequality by using Lemma 3.1. It follows that the initial estimate
() <n(t)+e t €[—bp,0], is satisfied. Set T4

T+ ={t € (0,a):&(1) <w(r,7,¢), T€[0,t), &) =w(tne}. (3.9)

We prove ~
D_&(t) <o(t,&(t),Eewy) +€ forteTy. (3.10)

Let t € T, be fixed. Then £(t) = w(t, 7, €) and &(t) = |u(t, z)| for some = € [a(t), B(1)].
It is clear that (t,2) € E;[u]. It follows from (3.4) that (¢,x) ¢ Ag. Then we have
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that (i) &£(t) = u(t,x) or (i) &£(t) = —u(t,x). We will consider the case (7). Let
¥ =(7,---y7n): [0,t] = R™ be defined by

~i(1T) =ax; fori € Iyt,x],

%i(T) = Bi(r) forie Lift,z], 7l(7)=oay(r) foriel [t ],
and £(1) = u(r,v(r)), 7 € [0,t]. Then, we have £(7) < &(7) for 7 € [0,t) and

&(t) = &(t). We deduce that
Op,u(t, ) >0 forie Iyft,z], Opu(t,z) <0 forie I_[t, ],
Op,u(t,x) =0 fori € Iy[t, z].
Then
D_g(t) < D_&(t) = (1)

drult,x) + 3 A4() (s, ult )

i=1

= Owu(t,x) Z Bi(t) |0x,ult, )| — Z i (t) |0, u(t, )|
1€l [t,x] iel_[t,x]

< U(tag(t)vgn(t))

< U<t7§(t)a£n(t)> +¢ (311)

which proves (3.10). In a similar way, we can prove (3.10) in the case (7).

We conclude from Lemma 3.1 that inequality (3.8) is satisfied and consequently,
lu(t,z)| < w(t,n,€) for (t,z) € EN([0,a) x R"). From the above inequality, we
obtain in the limit, letting € tend to 0, inequality (3.6) on E N ([0,a) x R™). By the
arbitrariness of 0 < @ < a the assertion follows. U

In the following, we prove that the difference between two solutions of the func-
tional differential equation (1.2) can be estimated by a solution of a suitable ordinary
differential equation.

Assumption Hy[ f,1,A] The function f: Q — R satisfies the condition (V) and
1) a, 3: [0,a) — R™ are of class C* and a(t) < §(t) for t € [0, a);
2) for each (t,z) € A, i€ I_[t,x], h # 0, we have

a;’(t) 2 _%[f(tam[i)a]’]%qu + eih) - f(tax[ivoé],nwﬂ)]

where p € R, w € C(B,R), ¢ € R™;
3) for each (t,z) € A, i € I [t,z], h # 0, we have

BUE) <~ L, B, p,w, g+ esh) — F(0,ali, B, )

where p € R, w € C(B,R), ¢ € R™;
4) Kk € C([0,a),Ry), ¥y € C’(E R™) and s(t) < ¢ for t € [0,a) and a(t) <
Pult, ) < B(2) for (t,2) €
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Theorem 3.2. Suppose that Assumptions H[o | and Hyl f,v, A] are satisfied and
1) the estimate
|f(t’xap7w7Q) - f(tazaﬁ7waq)| < U(tv |p _f)|7 ||UJ - IDHB) (312)

holds on €;
2) the functions u,v: Eg U E — R are solutions of (1.2) and they are of class C*;
3) 1€ C([—=bo,0],Ry) and |u(t,z) —v(t,z)| < 7(t) on Ey and boundary estimate

lu(t,z) —v(t,z)| <w(t,n), (t,z)€ Ay (3.13)

is satisfied, where w(-,n) is the mazimal solution of (3.3).
Under these assumptions, we have

lu(t,z) —v(t,z)| <w(t,n) onkE. (3.14)

Proof. We will show that function u — v satisfies assumptions of Theorem 3.1. The
initial boundary inequalities follows from assumption 3). Let (¢,2) € Ey[u — v]. We
prove that

O —v)(ta)| < ot |(u— ><t D) 1w = )y [ piee1)
+ 3 B0, (u—v)(t2)

i€l_[t,x]

+ Y B0, (u—v)(t, )| (3.15)

i€l [t,x]
We have that (i) (u — v)(¢t,z) = [(u — v)(t,2)| or (i7) (u—v)(t,x) = —|(u—v)(t, )|
We consider the case (7). It follows that
Op,(u—0)(t,x) = 0 forie Iyt x],
Op,(u—0)(t,x) > 0 forielift,z], O (u—v)(t,z) <0 forieI_[tx].

Then we have

Ot(u —v)(t, )
= flt,z,ult, ), uyq), Ozult, ) — f(t,2,v(t, ), Vy(t,2), 00 (t, 7))
< ot [(uw =)@ @) [ (w =)y, | Do)
+f(t,x,v(t, x), Vy(t,z)5 Ozu(t,z)) — f(t,x,v(t,x),v¢(t7w), O,v(t,x))
o(t, [(u—v)(t, @), [(u = v)y ) | D))

+ Y a0 (u—v)(te) = D Bt (u—v)(t )

i€l [t,x] i€l [t,x]

= ot |(u—v)(t z)|, H(u—v) =) | Dpwe.2)

+ Z |8x - ‘_ Z 6 ‘6x - )(t7$)|

t€I_[t,x] i€l [t,x]

IN
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In the similar way, we show that

Op(u—0)(t,x) = —o(t,[(u—0)Et2)[[(u =)yl D))
— Y aOe(u—0) )+ Y Bi()]0s (u—v)(t, ).

i€l_[t,x] 1€l [t,x]

That shows (3.15) in case (). In the similar way, we prove (3.15) in the case (i7). That

shows that all assumptions of Theorem 3.1 are satisfied and the assertion follows.
O

The following result is a consequence of Theorem 3.1.

Theorem 3.3. Suppose that Assumption H[o | and Hy[ f,, A] are satisfied

1) the function ©(t) = 0, t € [—boy,a), is the mazimal solution of (3.3) with n(t) =0
fort € [=by,0];

2) the estimate (3.12) holds.

Under these assumptions, the mized problem (1.2), (1.3) admits at most one solution
u: BEgUFE — R of class C*.

It is clear that conditions 2), 3) of Assumption Hy[ f,¢,A] are important in
our considerations. To show this, we give examples of the sets ' and we formulate
corresponding assumptions on A.

Remark 3.1. Let E, Ey and A be the sets defined in Remark 2.3. Suppose that con-
ditions (2.18), (2.19) are satisfied for p € R, ¢ € R™, w € C(B,R). Then conditions
2), 3) of Assumption Hy| f,v, E| are satisfied. Theorems 3.2 and 3.3 concern initial
boundary value problems for (1.2) with solutions defined on the Haar pyramid. These
theorems are new.

Suppose that Jy = J_ = {1,...,n}. Then Ay = 0, A = &HFE and (1.2), (1.3)
reduces to the Cauchy problem with solutions defined on the classical Haar pyramid.

Remark 3.2. Let E, Ey and A be the sets defined in Remark 2.5. Then (1.2), (1.3)
reduces to a mized problem for nonlinear functional differential equations. Suppose
that

>~

_7[f(t7x[i7a]7p7waq+eih) - f(t,x[i,a]7p7w7Q)] < 07 1= 17' . 'aka
and

7%[f(t’x[z’ﬁ]7p3w7q+elh)7f(t7x[z7/3]3p’w7q)] ZO’ i:k+1""7n'

The conditions 2), 3) of Assumption Hyl f,1,A] are satisfied.

Theorems 3.2 and 3.3 concern mized problems with solutions defined on rectan-
gular domains.

Note that we do not assume that there exist the derwatives (Og, f,...,0q,f). It
follows that our results are generalizations of theorems on mized problems presented

in [1], (see also [5], Chapter 5).
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Remark 3.3. Let E, Eg and A be the sets defined in Remark 2.6. Suppose that there
exist the derivatives (Oq, f,...,04,f), Ogf € C(Q,R) and there is T € (—b,b) such
that condition (2.22) is satisfied. Then conditions 2), 3) of Assumption Hy| f ¥, A]
are satisfied. Section 8 contains new theorems on initial problems for functional dif-
ferential equations with solutions defined on a rectangular domain.

Remark 3.4. Note that the connection with a functional differential comparison
problem is essential for the uniqueness criterion stated in Theorem 3.3. The fol-
lowing example points out this property. If 8 > a > 1 and A,B € R, then the
mazximal solution of the Cauchy problem

W(t) =AY/ w(t?) + Bw(t), w(0) =0 (3.16)

is@w(t) = 0 fort € [0,a] where a < 1. Note that maximal solution of (3.16) with o > 1
and 8 =1 is positive on (0, a].

Remark 3.5. Results presented in the paper can be extended on functional differen-
tial systems

Orzi(t,x) = fi(t,x, 2(t,x), 2yt ,2), O zi(t, @), i = 1,...,m,

where z = (21, .-+, Zm).
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