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Bifurcations of a one-loop circadian rhythm model
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Received October 27, 2008; accepted January 11, 2009

Abstract. A four-variable circadian rhythm model is studied from the bifurcation
point of view. Using the parametric representation method we give the bifurcation
diagram, that is, we divide the parameter plane into regions where the number and
the stability of stationary points are the same.
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1. Introduction

Several living beings have improved endogenous roughly-24-hour rhythm to fit the
environment. These circadian rhythms exist in constant light or darkness and are
relatively independent of temperature. Many models have been developed to investi-
gate this phenomenon. One of these models is the mixed feedback loop (MFL) model
introduced by François and Hakim [1]. The MFL model can be applied to describe
the circadian rhythm of Neurospora Crassa [2]. In the present article we study the
MFL model from the bifurcation point of view. Here we justify the results obtained
by the simplification of the MFL [1] and consider the case not studied in [2]. For
this purpose the parametric representation method (PRM) is used. This is a useful
tool if the parameter dependence of the system is simpler than the dependence on
the state variables. In Section 2 the main theorems of the PRM are summarized.
The MFL [1] model is also introduced here. In Section 3 the discriminant curve is
determined in the plane of two control parameters, that is, we divide the parameter
plane into regions, where the number of stationary points is constant. In Section 4 we
determine the region, where the stability of the stationary points is the same, that is,
the H-curve is given. In Section 5 we construct the bifurcation diagrams for different
values of parameters.
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2. The method and the model

In this section we give a summary of the PRM and refer to [4, 5] for details. Let us
consider the equation

Ẋ(t) = F(X(t), u), (2.1)

where F : R
n × R

2 → R
n is a differentiable function, X ∈ R

n is the vector of state
variables and u ∈ R

2 is the vector of parameters.
Let us suppose that the system of equations F(X, u) = 0 giving the stationary

points can be reduced to a single equation. We assume that the control parameters
u1 and u2 are involved linearly in the right-hand side of the reduced equation. Hence
we can write the reduced equation into the form

f(x, u1, u2) = f0(x) + f1(x)u1 + f2(x)u2 = 0. (2.2)

The implicit function theorem states that the number of solutions of equation (2.2)
can change if f(x, u1, u2) = 0 and f ′(x, u1, u2) = 0, where prime denotes the dif-
ferentiation with respect to x. We introduce the saddle-node bifurcation set S :
S = {u ∈ R

2 : ∃x ∈ R, f(x, u1, u2) = f ′(x, u1, u2) = 0}, which can be given by the
PRM as a curve parameterized by x. Hence S can be easily constructed and the so-
lutions belonging to a given parameter pair can be determined by a simple geometric
algorithm.

Let us solve the system of equations f(x, u1, u2) = 0 and f ′(x, u1, u2) = 0 for
(u1, u2). This solution defines the D-curve: D : R → R

2, x 7→ (D1(x), D2(x)),
D1(x) := u1, D2(x) := u2. Using this curve we can determine the number and the
value of the solutions x of (2.2), because the following lemmas hold [4].

Lemma 2.1. (Tangential property) The number x ∈ R is a solution of equation
(2.2) for the parameter values u1 and u2 if and only if a tangent line can be drawn
from the point (u1, u2) to the D-curve at the point D(x).

Lemma 2.2. (Convexity property) The D-curve consists of convex arcs that join
with common tangent or asymptote. The convexity of the separate arcs means that
they lie on one side of the tangent line belonging to any point of the arc.

Lemma 2.3. (Cusp point) Let b(x) = f ′′

0 (x) + f ′′

1 (x)D1(x) + f ′′

2 (x)D2(x). If b(x)
changes its sign at x0, then the D-curve has a cusp point at x0. (The formal definition
can be found in [4].)

The D-curve can be plotted in the u1−u2 plane. Let (u⋆
1, u

⋆
2) be a parameter pair

that is moved in the parameter plane. If (u⋆
1, u

⋆
2) crosses the D-curve, the number of

stationary points of (2.2) changes by two (see Figure 1). The following lemma and
its proof can be found in [3].
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Figure 1: Schematic figure of a D-curve (solid line) with a cusp point at the origin
and tangents drawn from point U(u⋆

1, u
⋆
2) (dashed lines).

Lemma 2.4. Let J be the Jacobian of Ẋ(t) = F(X(t), u), where F : R
4 × R

k → R
4

is a differentiable function, X ∈ R
4 is the vector of state variables and u ∈ R

k is
the vector of parameters. Let P (·) denote the characteristic polynomial of J , P (λ) =
c0 + c1λ + c2λ

2 + c3λ
3 + λ4. The matrix J has two pure imaginary eigenvalues if and

only if
c0c

2
3 − c1c2c3 + c2

1 = 0 and c1c3 > 0. (2.3)

We can investigate the stability of a stationary point using Lemma 2.4. We define
the H-curve by equations (2.2) and (2.3). The H-curve can be plotted in the u1 − u2

plane. Let (u⋆
1, u

⋆
2) be a parameter pair that is moved in the u1−u2 plane. If (u⋆

1, u
⋆
2)

crosses the H-curve, the stability of the stationary points changes.
In what follows we introduce the mixed feedback loop model. The MFL consist of

two proteins (A and B) coded by their genes (ga and g). We assume that ga is constant
and A supposed to be produced at a given rate. Variable r denotes the transcripts
rate for g. Introducing dimensionless variables we have four equations describing the
MFL [1]:

ġ = θ̃

[

(1 − g) − g
A

A0

]

(2.4)

ṙ = ρ0g + ρ1(1 − g) − r (2.5)

Ḃ =
1

δ
(r − AB) − dbB (2.6)

Ȧ =
1

δ
(1 − AB) + µθ̃

[

(1 − g) − g
A

A0

]

− daA. (2.7)

Transforming of the equations into dimensionless form, the parameters lose their
biological meaning, hence we only mention that parameters θ̃, A0, ρ0, ρ1, da, db, δ,

µ are positive constants, and we refer to [1] for the detailed description. Equation
(2.4)–(2.7) can model the circadian rhythm of Neurospora Crassa. In this case, A

stands for the protein frequency (FRQ), and B for the white-collar complex (WCC)
[2].
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3. The D-curve

Let us determine the stationary points of the system (2.4)–(2.7). From equation (2.4)
we have g in terms of A:

g = A0(A + A0)
−1. (3.1)

Using (3.1) from (2.5) and (2.6) we have

r = (ρ0A0 + ρ1A)(A + A0)
−1, B = (ρ0A0 + ρ1A)((A + A0)(A + δdb))

−1. (3.2)

Let us substitute (3.1)-(3.2) into (2.7). Introducing

f0 = δdaA − 1 (3.3)

f1 = A2((A + A0)(A + δdb))
−1 (3.4)

f2 = A0A((A + A0)(A + δdb))
−1 (3.5)

we reduced the system of equations for the stationary points to a single equation of
the form of (2.2)

0 = f0 + ρ1f1 + ρ0f2 = f(A, ρ1, ρ0). (3.6)

Since the state variables denote concentrations in (2.4)–(2.7), we investigate stationary
points only with positive coordinates. The number of such stationary points is equal
to the number of positive solutions of (3.6). If A is a positive solution of (3.6), we
can see from (3.1)–(3.2) that g, r, B are positive as well. In what follows we consider
A as a positive real number. Now we solve the f(A, ρ1, ρ0) = 0 and f ′(A, ρ1, ρ0) = 0
system of equations to have ρ1 and ρ0. The solution gives us the parametric form of
the D-curve:

ρ1 = 1 − 2daδA −
A0dbδ

A2
− A0daδ − dadbδ

2 (3.7)

ρ0 = 1 +
A2daδ + dbδ

A0

+
2dbδ

A
− dadbδ

2. (3.8)

Using Mathematica we plotted the D-curve numerically in the ρ1 − ρ0 plane (see
Figure 2). The other parameters were fixed at the values given in [1] as follows:

δ = 0.003, da = db = 0.33, A0 = 4, µ = 0.31, θ̃ = 1.33. (3.9)

Our numerical investigation shows that the value of the parameters in (3.9) does
not change the D-curve qualitatively. However, if δ is large enough then there is no
part of the D-curve lying in the positive quadrant (see Figure 3). More precisely the
following lemmas hold.

Lemma 3.1. The D-curve of the system (2.4)–(2.7) has a cusp point at A = 3

√

A0db

da

.
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Figure 2: The D-curve

Proof: In order to prove the existence of a cusp point we show, that b(A) = f ′′

0 (A) +

f ′′

1 (A)ρ1(A) + f ′′

2 (A)ρ0(A) changes its sign at A = Ac =
3

√

A0dbd
−1
a (Lemma 2.3).

Using (3.3)–(3.5) straightforward calculation shows, that

b(A) = −
2δ(A0db − A3da)

A2(A + A0)(A + δdb)
.

It is easy to see that if A < Ac then b(A) < 0, and if A > Ac then b(A) > 0. �

Lemma 3.2. If ρ1(A
c) > 0, then the D-curve divides the positive quadrant into two

regions, see Figure 2.

• If (ρ⋆
1, ρ

⋆
0) ∈ E1, then (2.4)–(2.7) with parameters ρ⋆

1, ρ⋆
0 has three stationary

points.

• If (ρ⋆
1, ρ

⋆
0) ∈ E2, then (2.4)–(2.7) with parameters ρ⋆

1, ρ⋆
0 has one stationary

point.

Proof: Let us notice, that ρ1 < ρ0 for all A ∈ R
+. ρ1(A

c) > 0 thus ρ0(A
c) > 0,

hence the cusp point is in the positive quadrant. We are finishing our proof by using
the tangential property in Lemma 2.1 and the convexity property in Lemma 2.2 (see
Figure 1). �

Lemma 3.3. If ρ0(A
c) < 0, then the system (2.4)–(2.7) has one stationary point.

Proof: ρ0(A
c) < 0 implies ρ1(A

c) < 0. The cusp point lies in the 3rd quadrant, hence
the positive quadrant is a proper subset of region E1 (see Figure 3). �
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Figure 3: The D-curve for δ = 0.002, δ = 2 and δ = 20, respectively.
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4. The H-curve

The Jacobian of the system (2.4)–(2.7) can be written as follows:

J =









−α 0 0 −β

ρ0 − ρ1 −1 0 0
0 ǫ −κ −Bǫ

−µα 0 −Aǫ −γ









,

where α = θ̃
(

1 + A
A0

)

, β = θ̃g
A0

, ǫ = 1

δ
, γ = Bǫ + µβ + da, κ = Aǫ + db. The

characteristic polynomial P (·) of J is: P (λ) = λ4 − TrJλ3 + C2λ
2 − C1λ + DetJ,

where TrJ and DetJ denotes the trace and the determinant of J , respectively, and
C2 = α(1 − βµ + γ + κ) + κ + γ + γκ − ABǫ2, C1 =

∑4

i=1
Jii, where Jii is the

corresponding minor of J.

As we have seen in Section 2, we define the H-curve by equations (2.3) and (3.6) in
the following way: H : R → R

2, R
+ ∋ A 7→ (H1(A), H2(A)). That is, the parametric

form of the H-curve is H1(A) := ρ1, H2(A) := ρ0, where ρ1, ρ0 are determined by
the system

0 = f0 + ρ1f1 + ρ0f2

0 = DetJ · (TrJ)2 − C1 · C2 · TrJ + C1
2, 0 < C1 · TrJ.

We solved this system of equations numerically and plotted the H-curve in the ρ1−ρ0

parameter plane using Mathematica. The other parameters were fixed at the values
given in (3.9). See Figure 4. We found that if (ρ1, ρ0) ∈ E2, then the stationary point
is stable. If (ρ1, ρ0) ∈ E3, then the system (2.4)–(2.7) has one unstable stationary
point and a stable limit cycle. Our numerical investigation shows that the qualitative
shape of the H-curve does not change when the parameters in (3.9) vary.
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Figure 4: The H-curve for δ = 0.003

5. Conclusion

In this section we give the bifurcation diagram of the MFL model for δ = 0.003 and
δ = 20, which sum up our results shown in Section 3 and 4. See Figure 5. We found,
that if δ is large, then the H-curve is in the 4th quadrant, hence there are no such
ρ1, ρ0 parameters in the positive quadrant where a stable limit cycle exists.
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Figure 5: The bifurcation diagrams for δ = 0.003 and δ = 20. For the description of
E1, E2 and E3, see Section 3 and 4.

In this article the mixed feedback loop model is investigated from the bifurcation
point of view. We verified the results of [1] and studied the case when δ is large. The
bifurcation diagrams for different values of parameter δ are also given.
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