Preservation of bifurcations under Runge-Kutta methods

Lajos Lócsia,∗, Joseph Páez Chávezb

aDepartment of Numerical Analysis, Eötvös Loránd University, Budapest, Hungary
bInstituto de Ciencias Matemáticas, Escuela Superior Politécnica del Litoral, Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador

Received October 29, 2008; accepted April 8, 2009

Abstract. We prove that fold, cusp and Bogdanov-Takens bifurcations of \(N \)-dimensional, continuous-time systems persist under Runge-Kutta methods. Compact formulae for the computation of the discretized normal form coefficients and critical generalized eigenvectors are derived.

AMS Subject Classifications: 65L99, 65P30, 65L06, 34C20, 34C23

Keywords: Runge-Kutta methods; Codimension two bifurcations; Normal form coefficients.

1. Introduction

Consider a continuous-time dynamical system depending on parameters

\[\dot{x}(t) = f(x(t), \alpha), \]

(1.1)

where \(f \in C^k(\Omega \times \Lambda, \mathbb{R}^N) \) with open sets \(0 \in \Omega \subset \mathbb{R}^N, 0 \in \Lambda \subset \mathbb{R}^p, k \geq 1 \) sufficiently large, \(N \geq 1, p = 1 \) or 2. A common task in mathematical analysis is to understand the dynamics generated by the vector field (1.1). To accomplish this, we can appeal to one-step methods, which approximate the evolution operator by a discrete-time system (at previously fixed step-size)

\[x \mapsto g(x, \alpha), \]

(1.2)

\[E\text{-}mail \ addresses:\ lloczi@cs.elte.hu (L. Lócsi), jpaez@espol.edu.ec (J. Páez Chávez)
\]

∗Corresponding author. This research was supported by the DFG Research Group “Spektrale Analysis, asymptotische Entwicklungen und stochastische Dynamik” at Bielefeld University, further the Hungarian Scientific Research Fund OTKA under Grants No. T037491 and K72537.