Convergence of Discrete–Time Neural Networks with Delays*

Lin Wanga,†, Xingfu Zoub

aDepartment of Mathematics and Statistics, University of New Brunswick, Fredericton, NB, Canada E3B 5A3
bDepartment of Applied Mathematics, University of Western Ontario, London, ON, Canada N6A 5B7

Received November 8, 2007; accepted December 12, 2007

To Professor Zhicheng Wang on the occasion of his retirement

Abstract. An LMI (Linear Matrix Inequality) approach and an embedding technique are employed to derive some sufficient conditions for the global exponential stability of discrete-time neural networks with time-dependent delays and constant parameters. For networks with time-dependent parameters but constant delays, by using the property of internally chain transitive sets, it is shown that these conditions are also sufficient for the convergence of the networks.

AMS Subject Classifications: 92B20, 39A11

Keywords: Delay; Difference equation; Discrete-time neural networks; Exponential stability; Internally chain transitive set; Monotone system.

1. Introduction

When a neural network is updated discretely, the model describing the network is in the form of system of difference equations (See, e.g., Hopfield [6]). Also, in numerical simulations and practical implementation of a continuous-time neural network, discretization is needed, which leads again to a system of difference equations. Therefore, it is of both theoretical and practical importance to study the dynamics of discrete-time neural networks.

Recently, there has been increasing interest in the effects of delays on neural dynamics of continuous-time networks. See, for example, [1, 13, 14, 18]. It has been