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Abstract. Global exponential stability for a class of cellular neural networks (CNNs)
with time-varying delay is considered. By using the method of Lyapunov Krasovskii
functional and linear matrix inequality (LMI) technique, some sufficient conditions
for global exponential stability of CNNs are obtained. The conditions presented here
are related to the size of delay. An example is given to illustrate the feasibility of our
results.
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1. Introduction

Cellular Neural Network (CNN) was introduced by Chua and Yang [1]. Applica-
tions of CNN in physical systems include connected component detection, hole filling,
optimization, associative memories, pattern recognition, and signal processing [2].
However, in order to deal with moving images, one must introduce the time delay
in signal transmission among the cells. This leads to the model of CNN with de-
lay (DCNN) [3]. It is well known that time delay may cause instability, divergent
oscillation in many systems. In recent years, the stability of DCNN has become an
important topic of theoretical studies. As a result, many sufficient conditions ensuring
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global asymptotic stability and global exponential stability for CNN with constant or
time-varying delays have been derived. Some of them can be found in, for example,
[4-10]. In this note, we study the exponential stability of DCNN. Some criteria on
exponential stability are presented by employing a more general type of Lyapunov-
Krasovskii functional and linear matrix inequality (LMI). These conditions in our
criteria are dependent on the size of delay. One example is presented to show the
applicability of our results.

2. Notations

For convenience of expressions, throughout this paper, we will use the following no-
tations:
B T: transpose of matrix B;
B−1: inverse of matrix B;
λm(B): minimal eigenvalue of matrix B;
λM (B): maximal eigenvalue of matrix B;
diag{bi > 0}: diagonal matrix with the positive diagonal elements bi, i = 1, 2, · · ·n;
B > 0 (resp. B < 0): B is a positive (resp., negative) definite and symmetric
matrix;
xt: segment of x(s) on [t − τ(t), t];
‖ xt ‖: sup

t−τ(t)≤s≤t

‖ x(s) ‖.

3. Preliminaries

Consider the following DCNN:

u̇i(t) = −ui(t) +

n
∑

j=1

aijgj(uj(t)) +

n
∑

j=1

bijgj(uj(t − τ(t))) + Ii ,

or equivalently

u̇(t) = −u(t) + Ag(u(t)) + Bg(u(t − τ(t))) + I, (1)

where u(t) = [u1(t), u2(t), · · · , un(t)]T, u(t − τ(t)) = [u1(t − τ(t)), u2(t − τ(t)), · · · ,

un(t−τ(t))]T, n ≥ 2 is the number of neurons in the network; g(u(t)) = [g1(u1(t)), · · · ,

gn(un(t))]T ∈ Rn denotes the activation function of the neurons; A = [aij ]n×n and
B = [bij ]n×n are known constant matrices, A is referred to as the feedback matrix,
B represents the delayed feedback matrix, I = (I1, I2, · · · , In)T is an external bias
vector, τ(t) is nonnegative, bounded, and differentiable with 0 ≤ τ(t) ≤ τM and
τ ′(t) ≤ d < 1 where

τM = sup
tǫR

τ(t) and d = sup
tǫR

τ ′(t).

Lemma 1. ([13], Theorem 2.3) Suppose that there exist non-negative constants pj

and qj such that | gj(x) |≤ pj | x | +qj for all x ∈ R1 and j = 1, 2, · · · , n. Let
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κ̄ij = (| aij | + | bij |)pj and K̄ = (κ̄ij)n×n. If ρ(K̄) < 1, then system (1) has at least
one equilibrium.

The following assumptions will be employed in our main results.

(H1) There exists a non-negative constant l such that

0 ≤ gi(x) − gi(y)

x − y
≤ l, ∀x 6= y.

(H2) ρ(K) < 1, where ρ(K) denotes the spectral radius of matrix K = (κij)n×n and
κij = l(| aij | + | bij |).

Lemma 2. Suppose that (H1) and (H2) are satisfied, then system (1) has at least
one equilibrium.
Proof. In view of (H1), we have

0 ≤ gi(x) − gi(0)

x
≤ l for x 6= 0.

It follows that,
| gi(x) − gi(0) |≤ l | x | .

Therefore,
| gi(x) | = | (gi(x) − gi(0)) + gi(0) |

≤ | gi(x) − gi(0) | + | gi(0) |
≤ l | x | + | gi(0) |,

which, together with (H2) and Lemma 1, implies that system (1) has at least one
equilibrium. �

Definition 1. An equilibrium u∗ = (u∗
1, u

∗
2, · · · , u∗

n)T of (1) is said to be globally
exponentially stable, if there exist k > 0 and γ(k) > 0 such that for any solution u(t)
of (1), we have,

‖ u(t) − u∗ ‖≤ γ(k)e−kt sup
−τ(0)≤s≤0

‖ u(s) − u∗ ‖, t ≥ 0,

where k is convergence rate of exponential stability.

We point out that if a u∗ is global exponential stable, then it must be unique.

4. Global exponential stability analysis

In this section, we always assume that (H1) and (H2) hold so that there is an equi-
libribirum u∗ = (u∗

1, u
∗
2, · · · , u∗

n)T for (1). In order to study the global exponential
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stability of this equilibrium, we let x(t) = u(t) − u∗. Then model (1) is transformed
to the following:

ẋ(t) = −x(t) + Af(x(t)) + Bf(x(t − τ(t))), (2)

where fi(xi) = gi(xi +u∗
i )−gi(u

∗
i ) with fi(0) = 0 for i = 1, 2, · · · , n. Note that under

the assumption (H1) the functions fi(xi) satisfies the condition 0 ≤ fi(xi)
xi

≤ l for
xi 6= 0, i = 1, 2, · · · , n.

Theorem 1. The equilibrium u∗ is globally exponentially stable, if there exist positive
definite matrices P and Q, a positive diagonal matrix D, and positive constants β and
k, such that the following conditions are satisfied:

Ω1(β, k) = P − 2kP − 2kβlD − e2kτM

1 − d
PBQ−1B TP > 0, (3)

Ω2(β, k) =
2βD

l
− β(DA + ATD) − ATPA − 2Q − β2e2kτM

1 − d
DBQ−1B TD ≥ 0.

(4)

Proof. To prove the theorem, it suffices to show that the trivial equilibrium x = 0 of
system (2) is globally exponentially stable.

Set the following positive definite Lyapunov functional:

V (x(t)) = e2ktxT(t)Px(t) + 2βe2kt
n
∑

i=1

di

∫ xi(t)

0

fi(s) ds

+2

∫ t

t−τ(t)

e2ksf T(x(s))Qf(x(s)) ds,

where P = P T > 0, Q = QT > 0, D = diag{di}, di > 0, i = 1, 2, · · ·n, and β and k

are positive constants. Calculate the derivatives of V (x(t)) along the solutions of (2),
we have

V̇ (x(t)) = 2ke2ktxT(t)Px(t) + 2e2ktxT(t)P ẋ(t) + 4kβe2kt
n
∑

i=1

di

∫ xi(t)

0

fi(s) ds

+2βe2ktf T(x(t))Dẋ(t) + 2e2ktf T(x(t))Qf(x(t))

−2e2k(t−τ(t))(1 − τ̇ (t))f T(x(t − τ(t)))Qf(x(t − τ(t))).

Since
∫ xi(t)

0

fi(s) ds ≤ l

2
x2

i (t),

we have
n
∑

i=1

di

∫ xi(t)

0

fi(s) ds ≤
n
∑

i=1

l

2
dix

2
i (t) =

l

2
xT(t)Dx(t).
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Thus, we can write

V̇ (x(t)) ≤ e2kt{2kxT(t)Px(t) + 2xT(t)P (−x(t) + Af(x(t)) + Bf(x(t − τ(t))))

+2kβlxT(t)Dx(t) + 2βf T(x(t))D(−x(t) + Af(x(t))

+Bf(x(t − τ(t)))) + 2f T(x(t))Qf(x(t))

−2(1 − d)e−2kτ(t)fT (x(t − τ(t)))Qf(x(t − τ(t)))}
≤ e2kt{2kxT(t)Px(t) − 2xT(t)Px(t) + 2xT(t)PAf(x(t))

+2xT(t)PBf(x(t − τ(t))) + 2kβlxT(t)Dx(t) − 2βf T(x(t))Dx(t)

+2βf T(x(t))DAf(x(t)) + 2βf T(x(t))DBf(x(t − τ(t)))

+2f T(x(t))Qf(x(t)) − (1 − d)e−2kτM f T(x(t − τ(t)))Qf(x(t − τ(t)))

−(1 − d)e−2kτM f T(x(t − τ(t)))Qf(x(t − τ(t)))}.

On the other hand, we have

2xT(t)PAf(x(t)) = −[P 1/2x(t) − P 1/2Af(x(t))]T[P 1/2x(t) − P 1/2Af(x(t))]

+xT(t)Px(t) + f T(x(t))ATPAf(x(t))

≤ xT(t)Px(t) + f T(x(t))ATPAf(x(t)), (5)

− (1 − d)e−2kτM f T(x(t − τ(t)))Qf(x(t − τ(t))) + 2xT(t)PBf(x(t − τ(t)))

= −[
√

1 − de−kτM Q1/2f(x(t − τ(t))) − 1√
1 − d

ekτM Q−1/2B TPx(t)]T

[
√

1 − de−kτM Q1/2f(x(t − τ(t))) − 1√
1 − d

ekτM Q−1/2B TPx(t)]

+
1

1 − d
e2kτM xT(t)PBQ−1B TPx(t)

≤ 1

1 − d
e2kτM xT(t)PBQ−1B TPx(t), (6)

− (1 − d)e−2kτM f T(x(t − τ(t)))Qf(x(t − τ(t))) + 2βf T(x(t))DBf(x(t − τ(t)))

= −[
√

1 − de−kτM Q1/2f(x(t − τ(t))) − β√
1 − d

ekτM Q−1/2B TDf(x(t))]T

[
√

1 − de−kτM Q1/2f(x(t − τ(t))) − β√
1 − d

ekτM Q−1/2B TDf(x(t))]

+
β2

1 − d
e2kτM f T(x(t))DBQ−1B TDf(x(t))

≤ β2

1 − d
e2kτM f T(x(t))DBQ−1B TDf(x(t)), (7)

−2βf T(x(t))Dx(t) ≤ −2β

l
f T(x(t))Df(x(t)). (8)
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From the inequalities (5)-(8), it follows that

V̇ (x(t)) ≤ −e2ktxT(t)(P − 2kP − 2kβlD − 1

1 − d
e2kτM PBQ−1B TP )x(t)

−e2ktf T(x(t))(
2βD

l
− β(DA + ATD) − ATPA − 2Q

− β2

1 − d
e2kτM DBQ−1B TD)f(x(t))

= −e2ktxT(t)Ω1(β, k)x(t) − e2ktf T(x(t))Ω2(β, k)f(x(t)). (9)

Since Ω2(β, k) ≥ 0, (9) can be written as

V (x(t)) ≤ V (x(0)).

Noting that

V (x(0)) = xT(0)Px(0) + 2β

n
∑

i=1

di

∫ xi(0)

0

fi(s) ds

+2

∫ 0

−τ(0)

e2ksf T(x(s))Qf(x(s)) ds

≤ λM (P ) ‖ φ ‖2 +βldM ‖ φ ‖2 +2λM (Q)l2 ‖ φ ‖2

∫ 0

−τ(0)

e2ks ds

= {λM (P ) + βldM + 2λM (Q)l2
1 − e−2kτ(0)

2k
} ‖ φ ‖2,

where dM = max(di), and ‖ φ ‖= sup
−τ(0)≤s≤0

‖ x(s) ‖, we also have

V (x(t)) ≥ e2ktλm(P ) ‖ x(t) ‖2,

which implies that

e2ktλm(P ) ‖ x(t) ‖2≤ {λM (P ) + βldM + 2λM (Q)l2
1 − e−2kτ(0)

2k
} ‖ φ ‖2 .

Therefore, we obtain

‖ x(t) ‖≤

√

λM (P ) + βldM + 2λM (Q)l2 1−e−2kτ(0)

2k

λm(P )
‖ φ ‖ e−kt.

This implies that the origin of (2) is exponentially stable with convergence rate k > 0,
the proof is complete. �

Theorem 2. The equilibrium u∗ is globally exponentially stable, if there exist a
positive definite matrix P , positive diagonal matrices D and Q, and positive constants
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β and k, such that the following conditions are satisfied:

Ω3(β, k) = P − 2kP − 2Q − 2kβlD − l2e2kτM

1 − d
PBQ−1B TP > 0, (10)

Ω4(β, k) =
2βD

l
− β(DA + ATD) − ATPA − l2β2e2kτM

1 − d
DBQ−1B TD ≥ 0. (11)

Proof. To obtain the result, it suffices to show that the origin is a equilibrium of
system (2) and it is globally exponentially stable.

Consider the following Lyapunov functional defined by

V (x(t)) = e2ktxT(t)Px(t)+2βe2kt
n
∑

i=1

di

∫ xi(t)

0

fi(s) ds+2

∫ t

t−τ(t)

e2ksxT(s)Qx(s) ds,

where P = P T > 0, D = diag{di}, di > 0, i = 1, 2, · · ·n, Q is a positive diagonal
matrix, and β and k are positive constants. Calculate the time derivative of the
functional along the trajectories of system (2), we obtain

V̇ (x(t)) = 2ke2ktxT(t)Px(t) + 2e2ktxT(t)P ẋ(t) + 4kβe2kt
n
∑

i=1

di

∫ xi(t)

0

fi(s) ds

+2βe2ktf T(x(t))Dẋ(t) + 2e2ktxT(t)Qx(t)

−2e2k(t−τ(t))(1 − τ̇ (t))xT(t − τ(t))Qx(t − τ(t)).

From 0 ≤ fi(xi)
xi

≤ l for xi 6= 0 and i = 1, 2, · · ·n, it follows that

V̇ (x(t)) ≤ e2kt{2kxT(t)Px(t) − 2xT(t)Px(t) + 2xT(t)PAf(x(t))

+2xT(t)PBf(x(t − τ(t))) + 2kβlxT(t)Dx(t) − 2βf T(x(t))Dx(t)

+2βf T(x(t))DAf(x(t)) + 2βf T(x(t))DBf(x(t − τ(t)))

+2xT(t)Qx(t) − 1 − d

l2
e−2kτM f T(x(t − τ(t)))Qf(x(t − τ(t)))

−1 − d

l2
e−2kτM f T(x(t − τ(t)))Qf(x(t − τ(t)))}.

On the other hand, we have

− 1 − d

l2
e−2kτM f T(x(t − τ(t)))Qf(x(t − τ(t))) + 2xT(t)PBf(x(t − τ(t)))

= −[

√
1 − d

l
e−kτM Q1/2f(x(t − τ(t))) − l√

1 − d
ekτM Q−1/2B TPx(t)]T

[

√
1 − d

l
e−kτM Q1/2f(x(t − τ(t))) − l√

1 − d
ekτM Q−1/2B TPx(t)]

+
l2

1 − d
e2kτM xT(t)PBQ−1B TPx(t)

≤ l2

1 − d
e2kτM xT(t)PBQ−1B TPx(t), (12)
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− 1 − d

l2
e−2kτM f T(x(t − τ(t)))Qf(x(t − τ(t))) + 2βf T(x(t))DBf(x(t − τ(t)))

= −[

√
1 − d

l
e−kτM Q1/2f(x(t − τ(t))) − lβ√

1 − d
ekτM Q−1/2B TDf(x(t))]T

[

√
1 − d

l
e−kτM Q1/2f(x(t − τ(t))) − lβ√

1 − d
ekτM Q−1/2B TDf(x(t))]

+
l2β2

1 − d
e2kτM f T(x(t))DBQ−1B TDf(x(t))

≤ l2β2

1 − d
e2kτM f T(x(t))DBQ−1B TDf(x(t)). (13)

Base on the inequalities (5), (8), (12) and (13), we obtain that

V̇ (x(t)) ≤ −e2ktxT(t)(P − 2kP − 2Q − 2kβlD − l2

1 − d
e2kτM PBQ−1B TP )x(t)

−e2ktf T(x(t))(
2βD

l
− β(DA + ATD)

−ATPA − l2β2

1 − d
e2kτM DBQ−1B TD)f(x(t))

= −e2ktxT(t)Ω3(β, k)x(t) − e2ktf T(x(t))Ω4(β, k)f(x(t))

≤ −e2ktxT(t)Ω3(β, k)x(t).

The remaining part of the proof is similar to that of Theorem 1.
It is easy to show that

‖ x(t) ‖≤

√

λM (P ) + βldM + 2λM (Q)1−e−2kτ(0)

2k

λm(P )
‖ φ ‖ e−kt,

which means that the origin of system (2) is exponentially stable. �

If we take β = 1 in Theorem 1, then the conditions (3) and (4) become into the
following (14) and (15) respectively:

Ω1(1, k) = P − 2kP − 2klD − e2kτM

1 − d
PBQ−1B TP > 0, (14)

Ω2(1, k) =
2D

l
− (DA + ATD) − ATPA − 2Q − e2kτM

1 − d
DBQ−1B TD ≥ 0. (15)

We now rewrite (14) into

Ω1(1, k) = P − PBQ−1B TP

1 − d
− 2kP − 2klD − e2kτM − 1

1 − d
PBQ−1B TP > 0. (16)

Since k > 0, it is obvious that (16) implies

P − PBQ−1B TP

1 − d
> 0, (17)
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which means that (14) implies (17). Similarly, from (15), it can be observed that
Ω2(1, k) ≥ 0 implies the condition:

2D

l
− (DA + ATD) − ATPA − 2Q − 1

1 − d
DBQ−1B TD > 0. (18)

On the other hand, note that k > 0 and

lim
k→0+

Ω1(1, k) = P − PBQ−1B TP

1 − d

and

lim
k→0+

Ω2(1, k) =
2D

l
− (DA + ATD) − ATPA − 2Q − 1

1 − d
DBQ−1B TD,

it is easy to see that when (17) holds, (14) also holds for 0 < k ≪ 1 (i.e. k > 0 is
sufficiently small), and that when (18) holds, (15) also holds for 0 < k ≪ 1.

Summarizing the above, in view of Theorem 1, we have the following.

Theorem 3. The equilibrium u∗ is globally exponentially stable, if there exist positive
definite matrices P and Q, a positive diagonal matrix D, such that the following
conditions are satisfied:

(

A1 02n

02n A2

)

> 0,

where

A1 =

(

P −PB√
1−d

−B TP√
1−d

Q

)

, A2 =

(

M −DB√
1−d

−B TD√
1−d

Q

)

,

and M = 2D
l − DA − ATD − ATPA − 2Q.

When take β = 1 in Theorem 2, the conditions (10) and (11) become into the
following (19) and (20) respectively:

Ω3(1, k) = P − 2kP − 2Q − 2klD − l2e2kτM

1 − d
PBQ−1B TP > 0, (19)

Ω4(1, k) =
2D

l
− (DA + ATD) − ATPA − l2e2kτM

1 − d
DBQ−1B TD ≥ 0. (20)

By an argument similar to above, in view of Theorem 2, we can obtain the fol-
lowing.

Theorem 4. The equilibrium u∗ is globally exponentially stable, if there exist a
positive definite matrix P , positive diagonal matrices D and Q, such that the following
conditions are satisfied:

(

B1 02n

02n B2

)

> 0,
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where

B1 =

(

P − 2Q −lPB√
1−d

−lB TP√
1−d

Q

)

, B2 =

(

N −lDB√
1−d

−lB TD√
1−d

Q

)

,

and N = 2D
l − DA − ATD − ATPA.

Remark 1. Theorem 5 and Theorem 6 in [12] are the special case where l = 1 and
τ(t) ≡ τ( non-negative constant) of our Theorem 3 and Theorem 4 respectively.

5. Example

Consider a two-neuron DCNN:
{

ẋ1(t) = −x1(t) − 1
8 [g1(x1(t)) + g2(x2(t)) − g1(x1(t − τ(t))) + g2(x2(t − τ(t)))]+I1,

ẋ2(t) = −x2(t) − 1
8 [g1(x1(t)) − g2(x2(t)) − g1(x1(t − τ(t))) − g2(x2(t − τ(t)))]+I2,

(21)

where I1 and I2 are constants, τ(t) = sin2(t)
2 , and the activation function is described

by a PWL function gi(x) = 0.5(| x + 1 | − | x − 1 |)(i = 1, 2).
For such a system, we have

τM = 0.5, d =
1

2
, A = B =

(

− 1
8

1
8

− 1
8 − 1

8

)

.

Clearly, gi(x) satisfy the condition (H1) with l=1. By some simple calculations,
we obtain

K =

(

1
4

1
4

1
4

1
4

)

, ρ(K) = 0.5 < 1,

which means (H2) holds. In Theorem 1, take β = 1, P = D = 3I and Q = I, where
I denotes the 2 × 2 identity matrix, we have

Ω1(1, k) =

(

3 0
0 3

)

−
(

6k 0
0 6k

)

−
(

6k 0
0 6k

)

−
(

9ek

16 0

0 9ek

16

)

=

(

3 − 12k − 9ek

16 0

0 3 − 12k − 9ek

16

)

,

Ω2(1, k) =

(

6 0
0 6

)

−
(

− 3
4 0

0 − 3
4

)

−
(

3
32 0
0 3

32

)

−
(

2 0
0 2

)

−
(

9ek

16 0

0 9ek

16

)

=

(

149
32 − 9ek

16 0

0 149
32 − 9ek

16

)

.

It is clear that sufficiently small k can ensure that Ω1(1, k) > 0 and Ω2(1, k) > 0.
Therefore, it follows from Theorem 1 that system (21) possesses exactly one equilib-
rium, and it is globally exponentially stable. �
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