Exponential Decay in Integrodifferential Equations with Nonlocal Conditions

Khalil Ezzinbia, Fang Lib, James H. Liuc,*, Nguyen Van Minhd

aDepartement de Mathematiques, Faculte des Sciences Semlalia, B.P. 2390, Marrakech, Morocco
bDepartment of Mathematics, University of Science and Technology of China, Hefei 230026, P. R. China
cDepartment of Mathematics, James Madison University, Harrisonburg, VA 22807
dDepartment of Mathematics, University of West Georgia, Carrollton, GA, 30118

Received July 9, 2007; accepted November 23, 2007

Abstract. We study the existence, uniqueness, and exponential decay of solutions for a semi-linear integrodifferential equation with a nonlocal initial condition

$$u'(t) = Au(t) + \int_0^t F(t-s)Au(s)ds + f(t, u(t)), \quad t \geq 0,$$

$$u(0) = \int_0^\infty g(s)u(s)ds + u_0,$$

in a Banach space X, with A the generator of a strongly continuous semigroup. The nonlocal condition can be applied in physics with better effect than the “classical” Cauchy problem $u(0) = u_0$ since more measurements at $t \geq 0$ are allowed. The variation of constants formula for solutions via a resolvent operator and the iteration techniques are used in the study.

AMS Subject Classifications: 45K05, 34G20

Keywords: Integrodifferential equations; Nonlocal conditions; Exponential decay

*Corresponding author