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FERENC HARTUNG and JANOS TURIPrograms in Mathematial Sienes, University of Texas at DallasRihardson, TX 75083, USA1. IntrodutionStability properties di�erential equations an be of great importane in appli-ations. For linear delay equations stability of the trivial (x(t) = 0) solution isdetermined by the loation of the zeros of its harateristi equation. Neessary andsuÆient onditions for stability in terms of the parameters (oeÆients, delays) ofthe equation are known only for the simplest equations, even in the ase of linearonstant delay equations. There are numerous suÆient onditions for guaranteeingstability for speial equations (see e.g. [6℄). One possible approah to �nd suÆien-t stability onditions is, analogously to the ODEs ase, Liapunov's method. But,unfortunately, there is no general strategy to onstrut a Liapunov funtional for agiven equation, and if the equation is ompliated (nonlinear, with several time- orstate-dependent delays), obtaining a Liapunov funtional an be very diÆult if notimpossible.For nonlinear autonomous ODEs the linearization method is a very useful one,sine we an dedue stability properties of the solution of the nonlinear equationfrom that of the orresponding linear equation, whih is signi�antly easier to hek.Reently, Cooke and Huang ([2℄) extended this method for nonlinear delay equationswith state-dependent delays of the form_x(t) = g�xt; Z 0�r0 d�(s)g�x(t + s� �(xt))�� ; (1.1)where � : C ! [0; r1℄, � is a matrix valued funtion of bounded variation, r0 > 0,and r is suh that r � r0 + r1.The nonlinear delay system with state dependent delays_x(t) = f �t; x(t); Z 0�r ds�(s; t; xt) x(t+ s)� ; t � 0; (1.2)was investigated in [7℄. The termZ 0�r ds�(s; t; xt)x(t + s) (1.3)1



desribing the delay dependene is a Stieltjes-integral of the solution segment x(t+ �)with respet to �(�; t; xt), whih is a matrix valued funtion of bounded variationsdepending on time, t, and the state of the equation, xt. Here r > 0 is �xed andxt : [�r; 0℄! Rn , xt(s) � x(t + s).To give some motivation and/or justi�ation on the partiular form seleted byEq. (1.3) for the delay terms, assume for example that the delayed term dependslinearly on the state, i.e., has the form Lxt, where L is a bounded linear operator onC � C([�r; 0℄;Rn). In this ase the Riesz Representation Theorem yields Eq. (1.3)with � = �(s). If L = L(t) depends on t, then by the same result we get thatthere exists � = �(s; t) suh that Eq. (1.3) holds. Therefore it seems like a natu-ral extension of the above ases to assume the struture desribed by Eq. (1.3) forthe state-dependent ase. Moreover, representation Eq. (1.3) inludes disrete anddistributed onstant and time-dependent delays, and the \usual" state-dependent de-lays, x(t � �(t; x(t)) or x(t � �(t; xt)) as well. A nie feature of this form is that italso allows delayed terms of the form�(t; xt) = 1Xi=1 Ai(t; xt)x(t� �i(t; xt)) + Z 0��0 G(s; t; xt)x(t + s) ds:In this paper we shall obtain a linearization test similar to that of [2℄ for theautonomous version of Eq. (1.2). Note, that despite the signi�ant tehnial di�er-enes between our presentation and that of [2℄ due to the di�erent form of the twoequations, the main ideas are of ourse the same, sine both follow the steps of theproof of the ODEs ase (see e.g. [10℄), and the two results are equivalent in the sensethat they both provide the same linear equation for nonlinear equations whih an berewritten in both forms. Example 4.4 will show an equation, whih is not inludedin Eq. (1.1), but is overed by Eq. (1.2), and of ourse, examples an be onstrutedfor the opposite diretion as well.We note, that the main diÆulty to obtain linearization results for state-dependentdelay equations is that it is diÆult to di�erentiate the delayed term in the presene ofstate-dependent delays (see a detailed disussion of di�erentiability of solutions withrespet to parameters for state-dependent delay equations in [7℄). We shall de�nea bounded linear operator, F : C ! Rn (see Eq. (3.5) below), as a andidate forthe linearized equation about the trivial solution. This is not the \true" linearizationat zero, sine the delayed term is not neessarily di�erentiable at zero (in the spaeC), but using assumption (H2) (ii), we an get an estimate on the error replaingthe right hand side of the equation by Fxt (see Lemma 3.2 below), whih turns outto be suÆient to prove that the asymptoti stability of the orresponding linearizedequation, Eq. (3.8), implies that of the nonlinear equation, Eq. (2.1).Setion 3 ontains the main results, and in Setion 4 we illustrate the method onseveral examples with onstant, time- and state-dependent delays. In Setion 6 wesummarize the well-posedness results of [7℄ for Eq. (1.2).2



2. PreliminariesConsider the nonlinear state-dependent delay system (the autonomous version ofEq. (1.2)) _x(t) = f �x(t); Z 0�r ds�(s; xt) x(t+ s)� ; t � 0 (2.1)with initial ondition x(t) = '(t); t 2 [�r; 0℄: (2.2)(See also Chapter 5 in [7℄.) Introdue the simplifying notations:�( ) � Z 0�r ds�(s;  ) (s) (2.3)and �( ; �) � Z 0�r ds�(s;  )�(s): (2.4)Then, of ourse, �( ) = �( ;  ), and Eq. (2.1) an be written as_x(t) = f(x(t);�(xt)); t � 0:We assume the following onditions throughout the paper:(H1) (i) f : 
1 � 
2 ! Rn is ontinuously di�erentiable, where 
1 and 
2 areopen subsets of Rn ,(ii) 0 2 
1 \ 
2, and f(0; 0) = 0,(H2) �(�;  ) is a matrix valued funtion of bounded variation for every  2 
3, where
3 � C open, suh that(i) sup�����Z 0�r ds�(s;  )�(s)���� :  2 
3; � 2 C; j�jC � 1� <1;(ii) for every � > 0 and M > 0 there exists a onstant L2 = L2(�;M) suhthat for all � 2 W 1;1, t 2 [0; �℄ and  ; � 2 
3, j jC, j � jC �M ,j�( ; �)� �( � ; �)j � L2j�jW 1;1j � � jC;(H3) ' 2 W 1;1, i.e., ' is Lipshitz-ontinuous.Here W 1;1 is the Sobolev spae of absolutely ontinuous funtions  : [�r; 0℄! Rnwith essentially bounded derivatives. The norm in this Banah-spae is de�ned byj jW 1;1 � maxf sups2[�r;0℄ j (s)j; ess sups2[�r;0℄ j _ (s)jg.3



It is easy to see that in order have a well-posed problem, the initial funtion 'and the funtion � have to satisfy that'(0) 2 
1; ' 2 
3; and Z 0�r ds�(s; ')'(s) 2 
2: (2.5)We reall the following result from [7℄ onerning the well-posedness of IVP (2.1)-(2.2).Theorem 2.1 Assume that ( �'; �; f) satisfy (H1){(H3) and Eq. (2.5). Then thereexist � > 0 and Æ > 0 suh that IVP (2.1)-(2.2) orresponding to ('; �; f) has uniquesolution on [0; �℄ for all j'� �'jC < Æ.In the remaining part of this setion we reall some results from [6℄ whih we shallneed in the sequel. Consider a linear delay equation with onstant delays of the form:_x(t) = Lxt; t � 0; (2.6)where L : C ! Rn is a bounded linear operator. It is well-known (e.g. [6℄),that Eq. (2.6) has a unique solution, x(t;'), orresponding to any initial funtion' 2 C, de�ned on t 2 [�r;1). Moreover (see e.g. [6℄), the family of linear operators,fS(t)gt�0, given by S(t)' � x(�;')t; t � 0de�nes a strongly ontinuous semigroup on C.Let de�ne !0 � supnRe� : det(�I � Le��) = 0o;i.e., !0 is the supremum of the real part of the harateristi roots of Eq. (2.6). Weshall need the following lemma:Lemma 2.2 (see e.g. in [6℄) If !0 < 0, then for any !0 < ! < 0 there existsM =M(!) � 1 suh that kS(t)k �Me!t; t � 0:Consider the perturbed equation_x(t) = Lxt + g(t); t � 0; (2.7)where g 2 L1lo([0;1);Rn). Then Eq. (2.7) has a unique solution on [0;1) for allinitial funtion ' 2 C, and the solution, x(t) satis�es the following abstrat variationof onstant formula: 4



Lemma 2.3 (see e.g. [6℄) The solution, x(t), of Eq. (2.7), orresponding to an ini-tial funtion ' 2 C has the form:xt = S(t)'+ Z t0 S(t� s)X0g(s) ds;where X0 : [�r; 0℄! Rn�n ; X0(u) � � 0; u < 0;I; u = 0: (2.8)We shall need the following variation of Lemma 2.3.Lemma 2.4 The solution, x(t), of Eq. (2.7) satis�esxt = S(t� r)xr + Z t�r0 S(t� r � s)X0g(s+ r) ds; t � r;where X0 is de�ned by Eq. (2.8).Proof By applying Lemma 2.3, semigroup properties of S(t), and hange of variableswe getxt = S(t)'+ Z t0 S(t� s)X0g(s) ds= S(t� r)S(r)'+ S(t� r) Z r0 S(r � s)X0g(s) ds+ Z tr S(t� s)X0g(s) ds= S(t� r)xr + Z t�r0 S(t� r � s)X0g(s+ r) ds;whih proves the lemma.3. Main resultsFirst we introdue onstants whih we shall use throughout this setion.It follows from the assumption that 
1 and 
2 are open subsets of Rn and 0 2
1 \
2 that there exists a onstant Æ1 > 0 suh that GRn(Æ1) � 
1 \
2. Assumption(H1) implies that there exists a onstant L1 = L1(Æ1) suh thatjf(x; y)� f(�x; �y)j � L1(jx� �xj+ jy � �yj); for x; �x; y; �y 2 GRn(Æ1): (3.1)Assumption (H2) (i) and the linearity of �( ; �) in � yield that there exists aonstant L3 > 0 suh that j�( ; �)j � L3j�jC;  2 
3: (3.2)5



Inequality (3.2) and jx(t)j � jxtjC yield thatx(t) 2 GRn(Æ1) and �(xt) 2 GRn(Æ1) for xt 2 GC(Æ2); (3.3)where Æ2 � Æ1minf1; 1=L3g.We shall need the following estimate.Lemma 3.1 Assume (H1){(H3). Let x be the solution of IVP (2.1)-(2.2) orre-sponding to initial funtion ' satisfying j'jC � Æ2. Assume that � > 0 is suh thatjxtj � Æ2 for 0 � t � �. Then the solution x satis�es the inequalityjxtj � j'jC exp�L1(1 + L3)t�; t 2 [0; �℄:Proof Let � > 0 satisfy the ondition of the lemma, and let t 2 [0; �℄. The integratedform of Eq. (2.1), and relations (3.1), (3.3) and (H1) (ii) yield the following estimates.jx(t)j � j'(0)j+ Z t0 jf(x(u);�(xu))j du� j'jC + L1 Z t0 jx(u)j+ j�(xu)j du� j'jC + L1 Z t0 jx(u)j+ L3jxujC du: (3.4)The assumption j'jC � Æ2 and Eq. (3.4) imply thatmax�r�v�t jx(v)j � j'jC + L1(1 + L3) Z t0 max�r�v�u jx(v)j du; t 2 [0; �℄;whih, using Gronwall-Bellman inequality, yields the statement of the lemma.De�ne the linear operatorF : C ! Rn ; F � �f�x (0; 0) (0) + �f�y (0; 0)�(0;  ) (3.5)and the funtion G : C ! Rn ; G( ) � f( (0);�( ))� F : (3.6)Note, that F is a bounded operator, sine by Eq. (3.2) it follows thatjF j � ��f�x (0; 0)+ �f�y (0; 0)L3� j jC :6



By this notation we an rewrite Eq. (2.1) as_x(t) = Fxt +G(xt); t � 0; (3.7)and therefore we an onsider it as a perturbation of the onstant delay equation_x(t) = Fxt; t � 0 (3.8)by the funtion G.We shall need the following estimate of G.Lemma 3.2 Assume (H1){(H3). There exists a onstant N > 0 suh that for every� > 0 there exists a onstant � = �(�) > 0 suh thatjG( )j � N�� + j jW 1;1�j jC (3.9)for all  2 W 1;1 suh that j jC � �.Proof The de�nition of F , (H1), and elementary estimates implyjG( )j � ����f� (0);�( )�� �f�x (0; 0) (0)� �f�y (0; 0)�(0;  )����= ����f� (0);�( )�� f(0; 0)� �f�x (0; 0) (0)� �f�y (0; 0)�(0;  )����� sup0���1 �f�x (� (0); ��( ))� �f�x (0; 0) j (0)j+ �f�y (0; 0) j�( )� �(0;  )j+ sup0���1 �f�y (� (0); ��( ))� �f�x (0; 0) j�( )j : (3.10)By the ontinuous di�erentiability of f guaranteed by (H1) (i), for every � > 0 thereexists 0 < �1(�) � Æ1 suh that if jxj; jyj < �1(�) then�f�x (x; y)� �f�x (0; 0) < � and �f�y (x; y)� �f�y (0; 0) < �It follows from Eq. (3.2), �1(�) � Æ1 and the de�nition of Æ2 that the onstant � =�(�) � �1(�)minf1; 1=L3g satis�es � � Æ2, and if  2 GC(�) then�f�x (� (0); ��( ))� �f�x (0; 0) < � and �f�y (� (0); ��( ))� �f�y (0; 0) < �(3.11)7



for all 0 � � � 1. It follows from assumption (H2) (ii) with L2 = L2(Æ1), � � Æ2 andEq. (3.3), that for  2 GC(�) \W 1;1j�( )� �(0;  )j = j�( ;  )� �(0;  )j� L2(Æ1)j jW 1;1j jC : (3.12)By ombining Eq. (3.10), Eq. (3.11) and Eq. (3.12) we get for  2 GC(�)\W 1;1 thatjG( )j � �j jC + �L3j jC + �f�y (0; 0)L2(Æ1)j jW 1;1j jC� N(� + j jW 1;1)j'jC;where N � maxn1 + L3; �f�y (0; 0)L2(Æ1)o.Let S(t) be the semigroup generated by the linear onstant-delay Eq. (3.8), and!0 be the supremum of the real part of the harateristi roots of equation Eq. (3.8).(See Setion 2 for the de�nition of S(t) and !0.) We show that the stability propertiesof the trivial solution of the nonlinear state-dependent autonomous equation Eq. (2.1)an be obtained by that of the linear onstant-delay Eq. (3.8).Theorem 3.3 Assume (H1){(H3), and that the semigroup S(t) is asymptotiallystable, i.e., !0 < 0. Then for every ! > !0 there exist K = K(!) > 0 and Æ = Æ(!) >0 suh that for all ' 2 GC(Æ) the orresponding solution, x(t), of IVP (2.1)-(2.2) isde�ned for t 2 [0;1), and satis�esjx(t)j � Ke!tj'jC ; t � 0:Proof Fix an arbitrary !0 < ! < 0 and �x !� suh that !0 < !� < !. Then byLemma 2.2, there exists a onstant M =M(!�) � 1 suh thatjS(t)'jC �Me!�tj'jC ; t � 0; ' 2 C: (3.13)Let x(t) be the solution of Eq. (3.7) (or equivalently Eq. (2.1)) orresponding to aninitial funtion ' 2 C. By Lemma 2.4 we get thatxt = S(t� r)xr + Z t�r0 S(t� r � s)X0G(xs+r) ds; t � r; (3.14)where X0 is de�ned by Eq. (2.8).Let N > 0 be the onstant given by Lemma 3.2, de�ne� � ! � !�4MN ;8



and let �(�) be the onstant orresponding to this � from Lemma 3.2. Finally, de�netwo more onstantsÆ3 � min�Æ2; ! � !�4MN ; ! � !�4MNL1(1 + L3)Æ2 ; �(�)� ;and Æ � Æ3 exp��L1(1 + L3)r� 1M e!�r:We omment, that 1M e!�r � 1 sine M � 1 and !� < 0, and hene Æ � Æ3 � Æ2.Let j'jC < Æ. Then by Eq. (3.3) and Æ � Æ2 it follows that '(0) 2 
1 and�(') 2 
2, and therefore Theorem 2.1 implies that there exists a solution if IVP(2.1)-(2.2) x(t) orresponding to ' on an interval [0; �℄. Sine, by Eq. (3.3) andTheorem 2.1, the solution is ontinuable till xt 2 GC(Æ2), and sine Lemma 3.1 andthe de�nition of Æ imply the relation jxrjC < Æ3 � Æ2, it follows that there existsr < t1 � � suh that jxtjC < Æ3 on t 2 [0; t1). Suppose that there exists t2 suh thatr < t2 � � and the solution satis�esjxtjC < Æ3 for t 2 [0; t2); and jxt2 jC = Æ3: (3.15)For t 2 [r; t2) and j'jC � Æ, estimate Eq. (3.1), Eq. (3.2), Eq. (3.15), Æ3 � Æ2 and thede�nition of Æ3 imply that j _x(t)j = jf(x(t);�(xt))j� L1(jx(t)j+ j�(xt)j)� L1(1 + L3)jxtj� L1(1 + L3)Æ3� ! � !�4MN : (3.16)Then Eq. (3.16) yields that supt�r�s�t j _x(s)j � ! � !�4MN ;and hene, by using Eq. (3.15), we also havejxtjW 1;1 � ! � !�4MN ; for t 2 [r; t2); j'jC � Æ: (3.17)Sine for t 2 [r; t2), j'jC < Æ3 and 0 � s � t relation Eq. (3.15) yields thatjxs+rjC � Æ3 � �(�), then Lemma 3.2, Eq. (3.13), Eq. (3.14), Eq. (3.17) and therelation jX0zjC = jzj (for z 2 Rn) imply thatjxtjC � kS(t� r)kjxrjC + Z t�r0 kS(t� r � s)kjG(xs+r)j ds9



� Me!�(t�r)jxrjC + Z t�r0 MNe!�(t�r�s)�� + jxs+rjW 1;1�jxs+rjC ds� Me!�(t�r)jxrjC + Z tr MNe!�(t�s)�� + ! � !�4MN �jxsjC ds:Multiplying both sides by e�!�t and hanging a variable in the integral we getjxtjCe�!�t � Me�!�rjxrjC + Z tr MNe�!�s�� + ! � !�4MN �jxsjC ds:Applying Gronwall-Bellman inequality for the funtion jxtjCe�!�t we getjxtjCe�!�t �Me�!�rjxrjC exp�MN �� + ! � !�4MN � t�; r � t � t2;or equivalently, for r � t � t2jxtjC �Me�!�rjxrjC exp��MN �� + ! � !�4MN � + !�� t�:From the de�nition of � it follows thatjxtjC � Me�!�rjxrjC exp��! � !�2 + !�� t�< Me�!�rjxrjCe!t; r � t � t2: (3.18)Then this estimate, Lemma 3.1 and the de�nition of Æ imply for j'jC < Æ thatjxtjC < Me�!�rj'jCeL1(1+L3)re!t< Æ3; r � t � t2;whih ontradits to the de�nition of t2. Therefore jxtj < Æ3 for r � t � �, but thisimplies that � = 1, and Eq. (3.18) holds for all t � r, therefore, by Eq. (3.15) andEq. (3.18), the statement of the theorem is proved with K �Me!�rÆ3.Remark 3.4 We note, that if !0 > 0, i.e., the trivial solution of the linear equationis unstable, then so is the trivial solution of the nonlinear equation. Sine instabilityresults are of less interest in appliations, and the detailed proof is rather lengthy,tehnial, and also similar to the state-independent ase, we omit it. (See Setion 10.1in [6℄ for the state-independent ase.)
10



4. AppliationsIn this setion we show examples, when by the linearization tehnique of theprevious setion, we an �nd onditions implying asymptoti stability of a nonlineardelay equation. The appliability of this linearization method depends on whetherwe are able to hek the asymptoti stability of the linearized equation, whih is adiÆult problem in general, but in the examples we present in this setion we anrefer to existing onditions from the literature.Example 4.1 Consider the salar onstant delay equation_x(t) = �ax(t� 1)(1 + x(t)); t � 0; (a > 0): (4.1)This equation arises as we transform the delayed logisti equation_x(t) = �x(t)(1� x(t� �)=K)by the new variable y(t) = �1+ x(t)=K, and hange the time sale. (See e.g. [9℄.) Itis known (e.g. [9℄), that the trivial solution of Eq. (4.1) is asymptotially stable fora < �=2, and unstable for a > �=2. We an obtain this result by using Theorem 3.3.Equation Eq. (4.1) has the form Eq. (2.1) with r = 1, f(x; y) = �ay(1 + x) and�( ; �) = �(�1). Sine �f�x(0; 0) = 0, �f�y (0; 0) = �a, the linearized equation Eq. (3.8)for this equation is _x(t) = �ax(t� 1); t � 0: (4.2)Sine the trivial solution of Eq. (4.2) is asymptotially stable for a < �=2, and unsta-ble for a > �=2 (see e.g. [6℄), the same result holds for the trivial solution of Eq. (4.1)by Theorem 3.3 and Remark 3.4.Example 4.2 Consider the salar delay equation_x(t) = x(t)�a+ bx(t � �)� x2(t� �)�; t � 0;where a > 0 and  > 0. This is a delayed Lotka-Volterra type population modelintrodued by Gopalsamy and Ladas (see e.g. in [9℄). The equation has a uniquepositive equilibrium point, �x = (b + pb2 + 4a)=(2). By the new variable y(t) =x(t)� �x we an transform the equilibrium point to zero, and get the equation_y(t) = �(y(t) + �x)�(2�x� b)y(t� �) + y2(t� �)�; t � 0: (4.3)We an rewrite Eq. (4.3) in the form Eq. (2.1) with f(u; v) = �(u+ �x)�(2�x� b)v +v2� and �( ; �) = �(��). Sine �f�u(0; 0) = 0 and �f�v (0; 0) = ��x(2�x � b), thelinearized form of Eq. (4.3) is_x(t) = ��x(2�x� b)x(t� �); t � 0;11



whih is asymptotially stable if 0 < �x(2�x� b)� < �=2, or equivalently,bpb2 + 4a+ b2 + 4a2 � < �2 ;and therefore under this assumption the trivial solution of Eq. (4.3) is asymptotiallystable as well.Example 4.3 Consider the salar delay equation with state-dependent delay_x(t) = x(t)�a� bx(t)� mXi=1 bix(t� �i)� x(t� �(xt))�; t � 0;where a > 0; and b > mXi=1 jbij+ jj: (4.4)This population model with state-dependent delay term was studied in [1℄, where itwas shown that Eq. (4.4) yields that the unique positive equilibrium, �x = a=(b +Pmi=1 bi + ), of the equation is globally asymptotially stable (for initial funtions'(s) > M with someM > 0). We an show this result (for loal asymptoti stability)by using linearization tehnique. By the new variable y(t) = x(t) � �x we transformthe equilibrium point to the origin, and the orresponding equation is_y(t) = �(y(t) + �x)�by(t) + mXi=1 biy(t� �i) + y(t� �(yt + �x))�; (4.5)whih has the form Eq. (2.1) with f(u; v) = �(u+�x)(bu+v), �( ; �) =Pmi=1 bi�(��i)+�(��( + �x)). (Here and later, �x in the argument of � denotes a onstant fun-tion with value equal to �x.) We have that �f�u(0; 0) = �b�x, �f�v (0; 0) = ��x, and�(0; �) =Pmi=1 bi�(��i)+ �(��(�x)). Therefore the linearized equation of Eq. (4.5) is_x(t) = �b�xx(t)� �x mXi=1 bix(t� �i) + x(t� �(�x))! : (4.6)By a result from [6℄ (page 154) it follows that Eq. (4.4) yields the asymptoti sta-bility of the trivial solution of Eq. (4.6), for arbitrary delay funtion �(�), whih, byTheorem 3.3, implies that the trivial solution of Eq. (4.5) is asymptotially stable aswell.Example 4.4 Consider the salar onstant delay equation_x(t) = x(t) 1� mXi=1 aix(t� �i)1 + ix(t� �i)! : (4.7)12



This is the so-alled Mihaelis-Menton single speies growth equation (see e.g. in [9℄).We assume that > 0; ai > 0; i > 0; �i > 0; and mXi=1 ai1 + i = 1:The last assumption yields that �x = 1 is a positive equilibrium point of Eq. (4.7).It was shown in [9℄ that r � 1 implies the global asymptoti stability of �x, wherer = maxi=1;:::;m �i.By letting y(t) = x(t)� 1, we get_y(t) = �(y(t) + 1) mXi=1 aiy(t� �i)(1 + i)(1 + i + iy(t� �i)) : (4.8)We an rewrite Eq. (4.8) in the form of Eq. (2.1), by seleting f(u; v) = �(u+ 1)v,and �( ; �) = mXi=1 ai(1 + i)(1 + i + i (��i))�(��i):We have that �f�u(0; 0) = 0 and �f�y (0; 0) = �, therefore the orresponding linearizedequation is _x(t) = � mXi=1 ai(1 + i)2x(t� �i): (4.9)By a ondition from e.g. [5℄ or [8℄, it follows that the trivial solution of Eq. (4.8) isasymptotially stable if  mXi=1 ai(1 + i)2 �i < 1:It follows from the assumptions Pmi=1 ai1+i = 1, i > 0 and r = maxi=1;:::;m �i that mXi=1 ai(1 + i)2 �i < r mXi=1 ai1 + i = r;therefore the ondition r � 1 implies that trivial solution of Eq. (4.9), and henethat of Eq. (4.8) is asymptotially stable.Note, that the delayed term of Eq. (4.8) an not be written in the form given bythe Stieltjes-integral in Eq. (1.1), and hene this equation is not inluded in Eq. (1.1)(without multiple delay terms).Example 4.5 In [9℄ the salar equation_x(t) = f �Z ���r x(t + s) d�(s)�� g(x(t))has been studied, where r > � > 0, and 13



(i) �(s) is nondereasing and �(��)� �(�r) = 1,(ii) f(x) is stritly dereasing, f(0) > 0, limx!1 f(x) = 0,(iii) g(x) is stritly inreasing, g(0) = 0, limx!1 g(x) =1,and a ondition was derived for the global asymptoti stability of the unique positiveequilibrium.We study the loal asymptoti stability of the state-dependent version of thisequation, i.e., onsider_x(t) = f �Z ���r x(t + s) d�(s; xt)�� g(x(t)); (4.10)where we assume r > � > 0, (ii), (iii) above and modify (i) as(i') for all  2 C, the funtion �(�;  ) is nondereasing and �(��;  )��(�r;  ) = 1.Under this assumptions, Eq. (4.10) has a unique positive equilibrium point, �x, sinethe funtionf �Z ���r �x d�(s; �x)�� g(�x) = f��x(�(��; �x)� �(�r; �x))�� g(�x)= f(�x)� g(�x)has a unique positive zero. (Here and later, �x in the seond argument of � denotesa onstant funtion with value �x.) Using y(t) = x(t)� �x and an argument similar tothe one above, we get_y(t) = f �Z ���r y(t+ s) d�(s; yt + �x) + �x�� g�y(t) + �x�: (4.11)We an rewrite Eq. (4.11) in the form Eq. (2.1) with F (u; v) = f(v+�x)�g(u+�x), and�( ; �) = R ���r �(s) d�(s;  +�x). We have that �F�u (0; 0) = �g0(�x) and �F�v (0; 0) = f 0(�x).Therefore the linearized version of Eq. (4.11) is_x(t) = �g0(�x)x(t) + f 0(�x) Z ���r x(t + s) d�(s; �x): (4.12)Note that g0(�x) > 0 and f 0(�x) < 0 by the assumptions. Theorem 1.1 of [8℄ yields thatthe trivial solution of Eq. (4.12) is asymptotially stable if�f 0(�x) Z ���r s d�(s; �x) < 32 ;and therefore by our theorem, if this ondition is satis�ed, then the trivial solutionof Eq. (4.11) is asymptotially stable as well.14
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(A1) f : [0; T ℄�
1 �
2 ! Rn is ontinuous, where 
1 and 
2 are open subsets ofRn ,(A2) �(�; t;  ) is a matrix valued funtion of bounded variation for every t 2 [0; T ℄, 2 
3, where 
3 � C open, suh that(i) sup�����Z 0�r ds�(s; t;  )�(s)���� : t 2 [0; T ℄;  2 
3; � 2 C; j�jC � 1� <1;(ii) for eah � 2 C the funtion [0; T ℄� 
3 ! Rn , (t;  ) 7! R 0�r ds�(s; t;  )�(s)is ontinuous,(A3) ' 2 C,(A4) for every � > 0, M > 0 there exists a onstant L1 = L1(�;M) suh that for allt 2 [0; �℄, x; �x 2 
1, y; �y 2 
2, jxj, j�xj, jyj, j�yj �Mjf(t; x; y)� f(t; �x; �y)j � L1�jx� �xj+ jy � �yj�;(A5) for every � > 0 and M > 0 there exists a onstant L2 = L2(�;M) suh that forall � 2 W 1;1, t 2 [0; �℄ and  ; � 2 
3, j jC, j � jC �Mj�(t;  ; �)� �(t; � ; �)j � L2j�jW 1;1j � � jC ;(A6) ' 2 W 1;1, i.e., ' is Lipshitz-ontinuous.Introdue the Banah spae BC([0; T ℄ � 
1 � 
2;Rn) as the spae of boundedontinuous funtions f : [0; T ℄�
1�
2 ! Rn with norm kfk � supfjf(t; x; y)j : t 2[0; T ℄; x 2 
1; y 2 
2g. Introdue �C(T;
3) as the Banah spae of funtions � :[0; T ℄�
3 ! NBV([�r; 0℄;Rn) whih satisfy (A2) (i) and (ii), where �(�; t;  ) is the im-age funtion orresponding to t 2 [0; T ℄ and  2 C. The norm in �C(T;
3) is de�nedby k�k � supn���R 0�r ds�(s; t;  )�(s)��� <1 : t 2 [0; T ℄;  2 
3; � 2 C; j�jC � 1o.De�ne two versions of parameter spaes �0(T;
1;
2;
3) � C � �C(T;
3) �BC�[0; T ℄�
1�
2; Rn� and �1(T;
1;
2;
3) � W 1;1��C(T;
3)�BC�[0; T ℄�
1 � 
2; Rn� with norms kk�0 � j'jC + k�k + kfk and kk�1 � j'jW 1;1 + k�k +kfk, respetively, and two versions of sets of feasible parameters �0(T;
1;
2;
3) �n('; �; f) 2 �0(T;
1;
2;
3) : '(0) 2 
1; ' 2 
3; and R 0�r ds�(s; 0; ')'(s) 2 
2o,and �1(T;
1;
2;
3) � �0(T;
1;
2;
3) \ �1(T;
1;
2;
3), respetively.We have the following results on the loal existene of solutions of IVP (6.1)-(6.2).Theorem 6.1 Assume (A1){(A3). Given � � ( �'; ��; �f) 2 �0(T;
1;
2;
3) thenthere exist positive onstants � = �(�) and Æ = Æ(�) suh that if  � ('; �; f) 2�0(T;
1;
2;
3) and k � �k�0 < Æ then  2 �0(T;
1;
2;
3), and IVP (6.1)-(6.2)orresponding to  has a solution, x(t; ), on [�r; �℄.16



The next theorem shows that (A1){(A6) guarantee the existene of unique solutionof IVP (6.1)-(6.2).Theorem 6.2 Let  2 �0(T;
1;
2;
3) and assume that (A1){(A6) are satis�ed.Then there exists � > 0 suh that IVP (6.1)-(6.2) has a unique solution on [0; �℄.The following examples show that if we violate assumptions (A4), (A5) and (A6),then we may also loose uniqueness of the solution.Example 6.3 Consider the salar IVP_x(t) = 4px(t� �(t)); t � 0; (6.3)x(t) = 0; �1 � t � 0; (6.4)where �(t) � minft=2; 1g. It is easy to see that IVP (6.3)-(6.4) has two solutions on[0; 2℄: x1(t) = 0 and x2(t) = t2.Example 6.4 Consider the salar IVP with state-dependent delay_x(t) = x�t� �(x(t))�; t � 0; (6.5)x(t) = �2t; �2 � t � 0; (6.6)where �(x) � 2minnpjxj; 1o. It is easy to hek that this IVP has two solutions:x1(t) = 0, t � 0 and x2(t) = t2 for t 2 [0; 1℄. We an rewrite IVP (6.5)-(6.6) in theform _x(t) = Z 0�2 ds�(s; xt)x(t+ s); t � 0; (6.7)x(t) = �2t; �2 � t � 0; (6.8)by de�ning �(s;  ) � �[��( (0));0℄(s); s 2 [�2; 0℄:We have that if j (0)j � 1 then�( ; �) = Z 0�r ds�(s;  )�(s) = �(��( (0))) = � ��2pj (0)j� ;whih does not satisfy (A5). (It is enough to onsider �(s) = s, and onstant funtionsfor  .)Example 6.5 Consider the salar IVP with state-dependent delay_x(t) = x�t� �(x(t))�; t � 0x(t) = 8<: 1; �2 � t � �11� 2p1 + t; �1 � t � �3443t + 1; �34 � t � 0;17



where �(x) = minfjxj; 2g. The initial funtion is not Lipshitz-ontinuous (hene(A6) is not satis�ed), therefore the uniqueness is not guaranteed by Theorem 6.2.In fat, the IVP has two solutions: t + 1 is solution for t 2 [0; 1℄ and the analytiexpression on [0; 0:5℄ for the other solution is t+ 1� t2.It is easy to see that the solution of IVP (6.1)-(6.2) is a W 1;1 funtion assuming(A1){(A6). The next theorem shows that in the norm of �1, the solution of IVP(6.1)-(6.2) is Lipshitz-ontinuous with respet to the parameters.Theorem 6.6 Assume that � = ( �'; ��; �f) 2 �1(T;
1;
2;
3) satis�es (A1){(A6).Then there exist onstants � > 0, Æ > 0 and L3 = L3(�; �; Æ), suh that IVP (6.1)-(6.2) has a unique solution on [0; �℄ for all  2 G�1(T;
1;
2;
3)(�; Æ), andjx(�; )t � x(�; �)tjW 1;1 � L3k � �k�1; t 2 [0; �℄:For the proofs and more details we refer the interested reader to [7℄.
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