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Abstract — We establish limiting relations between solutions for a large class of func-
tional differential equations with time- and state-dependent delays and solutions of appro-
priately selected sequences of approximating delay differential equations with piecewise
constant arguments. The approximating equations, generated in the above process, lead
naturally to discrete difference equations, well suited for computational purposes, and
thus provide an approximation framework for simulation studies.
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1 Introduction and Problem Formulation

In this paper we consider an Euler-type approximation technique for functional differential equa-
tions (FDEs) with time- and state-dependent delays (see e.g. [4] and [9] for related developments).
As the main result of this paper we present a “new” proof (in comparison to [4] and [9]) for con-
vergence of the above method using appropriately selected sequences of approximating delay
differential equations with piecewise constant arguments (EPCAs). (Note that in [5] a variety
of EPCA based schemes were introduced and applied to linear equations with constant delays.)
We refer the interested reader to [6] for extensive numerical studies of our method. In this direc-
tion, we mention [2], [8] and the references therein for different type of numerical approximation
techniques for FDEs with time- and state-dependent delays.

In this paper, we consider the vector delay differential equation

i(t) = f(Lo®),alt - 7(t,2(1), >0 (1.1)

with initial data
I(t) = (P(t)= te [—)\,0], (12)
where A = —inf{t — 7(t,u) : t >0, —00 < u < o0}.

Throughout this paper we shall use the notation [t], = [t/h]h, where h > 0 and [] is the
greatest integer function. For fixed h > 0 we define the delay differential equation with piecewise
constant arguments associated with (1.1) by

in () = £ ([ yn((80). 9 (100 = [0 we(@))] ). 2> 0. (1.3)
with initial condition corresponding to (1.2)

yn(—kh) = ®(=kh), k=0,1,2,..., —A<—kh<0. (1.4)



By a solution of initial value problem (IVP) (1.3)-(1.4) we mean a function y;, defined on
{=kh : k=0,1,..., —X< —kh <0} by (1.4), which satisfies the following properties on R™:
(i) the function yy is continuous on R*, (ii) the derivative g, (f) exists at each point ¢ € R with
the possible exception of the points kh (k = 0,1,2,...) where finite one-sided derivatives exist,
and (iii) the function yp, satisfies (1.3) on each interval [kh, (k + 1)h) for £ =0,1,2,....

In the next section we show that the solutions of IVP (1.3)-(1.4) approximate solutions of IVP
(1.1)-(1.2) as h — 0T, uniformly on compact time intervals, and establish a rate of convergence
estimate on approximate solutions as well.

We shall assume that the following conditions are satisfied:

(H1) fe C(R* x R*™ , RN), &:[-X,0] - RY, is bounded, and 7 € C (R* x RV, R*),

(H2') the function f(t,u,v) is locally Lipschitz-continuous in u,v on R* x R*V that is, for every
T > 0 and M > 0 there exists a constant Ly = L1 (T, M) such that ||f(t,u,v) — f(¢,a,0)| <
Ly - (lu—all + |lv = o)), for ¢ € [0,T7], u,v,u,v € B(M),

(H2) the function f(¢,u,v) is locally Lipschitz-continuous on R x R*N, that is, for every T' > 0
and M > 0 there exists a constant Ly = Li(T, M) such that ||f(t,u,v) — f(f,@,0)| <
Ll : (|t - ﬂ + ||U - ﬂ|| + ||U - Q_}H)a for taie [O/T]a U,U,ﬂ,’l_} € B(M)a

(H3") the delay function 7 is locally Lipschitz-continuous in its second argument on Rt x RV,
that is, for every T > 0 and M > 0 there exists constant Ly = Lo(T, M) such that
|7(t,u) — 7(t,a)| < La||lu — 4|, for t € [0,T], u,a € B(M)

(H3) the delay function 7 is locally Lipschitz-continuous on Rt x RV, that is, for every T' > 0
and M > 0 there exists a constant Ly = Lo(T, M) such that |7(t,u) — 7(¢, )| < Lo - (Jt —
t| + |lu — al]), for t,t € [0,T], uta € B(M), and
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(H4) the initial function ® is Lipschitz-continuous with Lipschitz constant L3, that is ||®(¢) —
D@ < Lyt — 1], for £, € [-A,0].

Here and throughout || - || denotes a norm on RN, R* =[0,00), and B(M) = {z € RN : ||z| <
M}. If X = oo then the notations [—A,T] and [—A, c0) should be interpreted as (—oo,T] and
(—00, 00), respectively.

Note, that these conditions can be considered “standard” for the well-posedness of IVP (1.1)-
(1.2), (see e.g. [3]).

2 Convergence Results

Using the notation a(k) = yp(kh), and applying the method of steps on the intervals [kh, (k+1)h)
one can easily see the following result.

Theorem 2.1 Assume (H1). Then IVP (1.3)-(1.4) has a unique solution in the form
un(t) = a(k) + F (kh a(k), a(k - dy)) - (¢t = kh), (2.1)

for t € [kh,(k + 1)h), k =0,1,2,..., where d; = [T(kh,a(k))/h}, and the sequence a(k)

satisfies the difference equation

alk+1) = a(k) + f(kh, a(k), a(k — dk)) h
a(—k) = ®(—kh)

k=0,1,2,..., —A<—kh<0

(2.2)
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Remark 2.2 The sequence a(k) is well-defined, because —\ < (k — di)h < kh for every k =
0,1,2,...



We introduce the simplifying notations o(t) =t — 7(¢,2(t)) and o4 (t) = [¢]n — |T([t]n, yr([t]n)) g
The following result shows that there exists a > 0 such that for A~ > 0 the solutions of the
corresponding initial value problems (1.3)-(1.4) on [0, ] form a uniformly bounded family.

Lemma 2.3 Assume (H1) and (H2’). Then for every M > 5sup_,<;<o [|®(?)|| there exist a >0
such that for every h > 0
lyn@I < M, T €[00l (2.3)

PROOF: Fix an M > 5sup_j<;<o [[®(?)]|. Integrating (1.3) and using elementary manipulations
we have the following estimate

lyn(®) =y (O)ll < f%ﬁmwmmmm%@n—dmmmw%wmmww
+ /OtHf([s]h,yh(O), yn(on(0))) | ds.

Assuming that a > 0 is such, that (2.3) holds and using the Lipschitz-continuity of f on the set
[0,a] x B(M) x B(M) with Lipschitz-constant, Ly = Ly (a, M), we get

I =@ < Lo [ (ln(Gla) = 3O + lsn(o(s)) = (o)) ds + Kt

IN

ALljﬁ (Hyh(h]h)—'yh(oﬂ|4'Hyh(0h(8))—'yh(oﬂ|
+ lyn(oa(0)) = ya(O)) ds + Kit. ¢ € [0,al, (2.4)

where Ky = K1 (a) = supq{||f(¢, ®(0), ®(s))|| : t €[0,a], s € [-),0]}.
We define the function ¢y (t) = max{ sup ||®(s)—®(0)]|, max |lyn(s)— yh(0)||} Recalling
<s<0 0<s<t

that op,(s) < s and [s], < s, and using the definition of )y, inequality (2.4) implies

t
lyn(t) = yn(0)|| < Kiao+ Lia - sup  [|®(s) — @(0)]] +/ 2L1¢yn(s)ds,  t€[0,al
—A<s< 0

Define the constant Ky = Ka(a) = Kyja + max{Lia, 1} -sup_,<s<q [|P(s) — ®(0)]]. Tt is easy to
see that o

Yr(t) < Ko + /Ot 2L (s) ds, t €[0,al. (2.5)
By applying the Gronwall-Bellman inequality for (2.5) we find that
lyn(t) — yn(0)]| < ¥n(t) < Ko -exp(2Lit),  t€[0,al. (2.6)
It follows that if we can select @ > 0 such that
K -exp(2Ly0) + [|2(0)]| < M (2.7)

then (2.3) holds and our calculations are valid. Pick an apriori T > 0. Note that we can select
Lipschitz-constant Lq(«, M) such that L (e, M) < Li(T, M) for a < T. Therefore we have that
Ka(a) < Ki(T)a+max{Ly (T, M)a, 1} sup_ <o [(s) - (0)]| < 35up_s,q [B(s)]| for a > 0
such that

Li(T,M)a<1, and Ki(T)a< sup [|®(s)] (2.8)
—A<s<0
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Now, assuming (2.8), we have that Ks(a) - exp (2L1(a,M)a) +12(0)|] < 5sup_y<i<q [[2(H)]]
provided that « satisfies
exp(?Ll(T, M)a) < 4/3. (2.9)



Select @ € (0,T] such that (2.8) and (2.9) hold, then (2.7) is satisfied, which proves the lemma.

We comment that if the Lipschitz-constant of f is independent of M, (i.e., f is Lipschitz-
continuous on [0, T'] x R*" for arbitrary T' > 0), or the function f is bounded on [0,7] x R?", then
(2.6) and the definition of K, or the latter case (1.3) yields that {yn(¢)} is uniformly bounded
on every compact time interval.

Lemma 2.3 allows us to obtain existence results for IVP (1.1)-(1.2) following the steps of the
classical Cauchy-Peano Theorem (see e.g. [1] or [9]): the approximate solutions {yx(¢t) : h > 0}
form a uniformly bounded family of functions on some interval [0,a]. It is easy to see using
(1.3) that yp(t) for h > 0 are also equicontinuous functions on [0, a], and therefore there exists
a sequence hy — 0, such that the corresponding functions converge to a continuous function,
ie., z(t) = limg_oo yn, (t) exists and continuous on [—A,«]. Then it is easy to show (using a
continuity argument) that x(¢) satisfies (1.1), i.e., IVP (1.1)-(1.2) has a solution on [0,a]. (We
refer to [3] for related well-posedness result using fixed point arguments.)

In particular, we have the following theorem (see the detailed proof in [7]):

Theorem 2.4 Assume that (H1) and (H2’) hold and ® € C([—A,0], R). Then there exists T > 0
such that IVP (1.1)-(1.2) has a solution on [-\,T].

Assuming that the initial function ® is Lipschitz-continuous and the delay function 7 is locally
Lipschitz-continuous with respect to its second argument we can prove the following convergence
result for our approximating scheme, which also implies the uniqueness of solutions of IVP (1.1)-
(1.2).

Theorem 2.5 Assume (H1), (H2’), (H3’) and (H4). Then if IVP (1.1)-(1.2) has a solution
z(t) on [0,T], then the solution is unique and lim,_,o+ maxo<i<t ||Z(t) — yn(t)|| = 0, where yp
is the solution of IVP (1.3)-(1.4). If in addition (H2) and (H3) hold, then there exist constants
M;3(T,®) > 0 and hg > 0 such that ||z(t) — yn(t)|] < M3h, fort € [0,T] and 0 < h < hg.

ProOOF: Let T > 0 be such that IVP (1.1)-(1.2) has a solution, z(t), on [0,T]. For the u-
niqueness of solution it is enough to prove that limj_,o+ maxo<i<7||z(t) — yn(t)|| = 0. Let
My = max{]||z(t)|| : t € [-X\,T]} + 1. Suppose that there exists hg > 0 such that

@l <My, te[0.T], 0<h<h (2.10)
Define the constant M, = max{||f(t,u,v)|| : t € [0,T], u,v € B(M;)}, then y; satisfies
lyn(t1) —yn(t2)|l < Maltr —tof, 1,82 €[0,T], 0 <h< ho. (2.11)

Equations (1.1), (1.3), the assumed relation (2.10) and the assumptions of the theorem yield the
following inequalities

o) =moll < | #(s-2).ato(61) = £ (1shs (9. 2t | as
[ (1002660, 260 (61) = £ (1D Gla) (om0 | s
< #(s-2).ato(61) = £ (1shs 29, 2t | as

+ Ll/o (HCU(S) = yn([s]n)ll + llz(a(s)) — yh(ah(s))H) ds, (2.12)

where Ly = Li(T, M;). Using the notation n5(s) = [s]n — [T([s]h,m([s]h))]h, and elementary

manipulations on the last term of the right hand side of (2.12) we have

let) ~moll < [ 14 (566120 (9) = £ ([sn-a(s). (o)) | s



+ I, /0 (Ila:(s) —yn ()| + llyn(s) = ya([s])]| + [|2(a(s)) — z(na(s))]|
+ [l ()) = g (o ()11 + 19 031 (5)) =y (on ()] ) ds. (2.13)

Now we shall estimate the term ||yn(nn(s)) — yn(on(s))|| in (2.13).
Let A = min{nx(s),on(s)} and B = max{nx(s),on(s)}. We need to study three cases: First we
assume that 0 < A < B. Then (2.11) yields ||[yn(n(s)) —yn(on(s))|| < M2]A—-B|. f A< B<0
then the assumed Lipschitz-continuity of ® implies ||yn(nr(s)) —yn(on(s))|| < L3|A— B|. Finally,
if A <0 < B then inequality (2.11) and the Lipschitz-continuity of ® imply

lyn(n(s)) = yn(on ()l < llyn(A) =y )]l + [[ya(0) — yn (B
S maX{Lg,MQ}'|A—B|.

Thus in all the above cases using the Lipschitz-continuity of 7 we have

lyn(n(s)) = yn(on()Il < Ks|r([s]n, z([s]n)) — 7([s]n, yn([s]n))| + 2K5h

< KsLalla(lsla) — yn(is))l + 2Ksh (2.14)
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where K3 = maX{Lg,MQ} and LQ = LQ(T, Ml)
Let e, (t) = ||z(t) — yn(t)|]. Combining (2.13) and (2.14) and using the definition of ¢;, we get

en(t) < Ly /Ot (20(5) + 20 (m(5) + KsLaen([sln) ) ds + g (). (2.15)
where
) = [ t(Hf(s,w(s)w(a(s))) ~ (lslnsa(),2(0(s)) | + (2.16)

+ 21 (1 (s) = v (0001 + (o 9) = (6D + 2ek) ) s,
Let ¢y (t) = Jnax, en(s). Now, =X < np(s) < s, forevery s > 0 and if 55 (s) < 0 then e, (nn(s)) =0

therefore it follows from (2.15) that vy (t) satisfies

o) < / L2+ K3 L) (s) ds + g ().

Since g (t) is a monotone nondecreasing function, an application of the Gronwall-Bellmann in-
equality yields

lz() = yn ()]l < ¥a(t) < exp(L1(2 +K3L2)T) cgn(T),  telo,T). (2.17)
Define the functions w,(h) = max{||z(t) — z@)| : ¢t € [-\T], |t — ¢t < h}, wr(h) =

max{|7(¢t,u) — 7(t,u)| : t,t € [0,T], [t —t] < h, u € B(M)}, and wy(h) = max{ || f(t,u,v) —
fE&u,v)|| : t,t€[0,T], |t —¢ <h, u,v € B(M;y)}. Then from (2.16) and from the inequality

lo(s) —nmn(s)] < |r(s,2(s)) — 7([s]n, 2(s))| + |7 ([s]n, x(s)) — 7([s]n, z([s]n)| + R
< (s, 2z(s)) — 7([s]n, 2(s))| + La||z(s) — z([s]n)|| + h
< wr(h) 4+ Lowg(h) + h
it follows that
gn(T) < (wf(h) + L1 Msh + Lyw, (wT(h) + Lowg (h) + h) + 2L1K3h)T. (2.18)

The function z(¢) is uniformly continuous on [-\,T] (we have that the initial function & is
Lipschitz-continuous on [—), 0]), and hence w,(h) — 0, as h — 0", and similarly by, the uniform



continuity of f and 7 on [0,T] x B(My) x B(M;y) and [0,T] x B(My), respectively, we also have
that ws(h) and w,(h) go to zero as h — 0F. Therefore (2.18) yields that

gn(T) — 0, ash — 0+. (2.19)

Select hg > 0 such that
exp (L1(2 + K3L2)T) : (wf(ho) + Ly Mahg + Liw, (wr(ho) + Low, (ho) + ho) + 2L1K3h0)T <1,

then from inequalities (2.17), (2.18) and definition of M; it follows that hq satisfies (2.10). Hence
our calculation is valid, and (2.17) with (2.19) imply the first statement of the theorem.

To show the second statement of the theorem, observe that the definition of M; and equation
(1.1) yield that ||2(¢)|] < max{||f(t,u,v)|| : ¢t € [0,T], u,v € B(M;)} for t € [0,T], hence
wz (h) < K4h, where K4 = max{Lg,max{Hf(t,u,v)H : t€]0,T), u,v € B(Ml)}} Assumption
(H2) and (H3) imply wy(h) < Lih and w,(h) < Lah, respectively, where Ly = Lo(T, M;) and
Ly = Li(T, My). Inequalities (2.17) and (2.18) yield the second statement of the theorem using
these estimates of w, (h), wy(h) and w,(h), with constant

M; = exp (L1(2 + K3L2)T) : (El 4 LiMs + LiKy(Ls + LKy + 1) + 2L1K3) T.
The proof of the theorem is complete.

We close the paper by noting that our results can be extended in a rather straightforward
fashion to the case when the equation has multiple delays.
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