
Applied Mathematis Letters, 8:6 (1995) 19{24.On Numerial Approximations for a Class of Di�erentialEquations with Time- and State-Dependent DelaysIstv�an Gy}oriDepartment of Mathematis and Computing, University of Veszpr�emH-8201 Veszpr�em, HungaryFeren Hartung and Janos TuriPrograms in Mathematial Sienes, University of Texas at DallasRihardson, TX 75083, U.S.A.Abstrat | We establish limiting relations between solutions for a large lass of fun-tional di�erential equations with time- and state-dependent delays and solutions of appro-priately seleted sequenes of approximating delay di�erential equations with pieewiseonstant arguments. The approximating equations, generated in the above proess, leadnaturally to disrete di�erene equations, well suited for omputational purposes, andthus provide an approximation framework for simulation studies.Keywords|Delay equations, State-dependent delays, Approximation, Euler's method,Equations with pieewise onstant arguments.1 Introdution and Problem FormulationIn this paper we onsider an Euler-type approximation tehnique for funtional di�erential equa-tions (FDEs) with time- and state-dependent delays (see e.g. [4℄ and [9℄ for related developments).As the main result of this paper we present a \new" proof (in omparison to [4℄ and [9℄) for on-vergene of the above method using appropriately seleted sequenes of approximating delaydi�erential equations with pieewise onstant arguments (EPCAs). (Note that in [5℄ a varietyof EPCA based shemes were introdued and applied to linear equations with onstant delays.)We refer the interested reader to [6℄ for extensive numerial studies of our method. In this dire-tion, we mention [2℄, [8℄ and the referenes therein for di�erent type of numerial approximationtehniques for FDEs with time- and state-dependent delays.In this paper, we onsider the vetor delay di�erential equation_x(t) = f�t; x(t); x(t � �(t; x(t)))�; t � 0 (1.1)with initial data x(t) = �(t); t 2 [��; 0℄; (1.2)where � � � infft� �(t; u) : t � 0; �1 < u <1g.Throughout this paper we shall use the notation [t℄h � [t=h℄h, where h > 0 and [�℄ is thegreatest integer funtion. For �xed h > 0 we de�ne the delay di�erential equation with pieewiseonstant arguments assoiated with (1.1) by_yh(t) = f �[t℄h; yh([t℄h); yh �[t℄h � h�([t℄h; yh([t℄h))ih�� ; t � 0: (1.3)with initial ondition orresponding to (1.2)yh(�kh) = �(�kh); k = 0; 1; 2; : : : ; �� � �kh � 0: (1.4)1



2By a solution of initial value problem (IVP) (1.3)-(1.4) we mean a funtion yh de�ned onf�kh : k = 0; 1; : : : ; �� � �kh � 0g by (1.4), whih satis�es the following properties on R+:(i) the funtion yh is ontinuous on R+, (ii) the derivative _yh(t) exists at eah point t 2 R+ withthe possible exeption of the points kh (k = 0; 1; 2; : : :) where �nite one-sided derivatives exist,and (iii) the funtion yh satis�es (1.3) on eah interval [kh; (k + 1)h) for k = 0; 1; 2; : : :.In the next setion we show that the solutions of IVP (1.3)-(1.4) approximate solutions of IVP(1.1)-(1.2) as h ! 0+, uniformly on ompat time intervals, and establish a rate of onvergeneestimate on approximate solutions as well.We shall assume that the following onditions are satis�ed:(H1) f 2 C(R+ �R2N ; RN); � : [��; 0℄! RN , is bounded, and � 2 C �R+ �RN ; R+�,(H2') the funtion f(t; u; v) is loally Lipshitz-ontinuous in u; v on R+�R2N , that is, for everyT > 0 andM > 0 there exists a onstant L1 = L1(T;M) suh that kf(t; u; v)�f(t; �u; �v)k �L1 � (ku� �uk+ kv � �vk), for t 2 [0; T ℄, u; v; �u; �v 2 B(M),(H2) the funtion f(t; u; v) is loally Lipshitz-ontinuous on R+�R2N , that is, for every T > 0and M > 0 there exists a onstant ~L1 = ~L1(T;M) suh that kf(t; u; v) � f(�t; �u; �v)k �~L1 � (jt� �tj+ ku� �uk+ kv � �vk), for t; �t 2 [0; T ℄, u; v; �u; �v 2 B(M),(H3') the delay funtion � is loally Lipshitz-ontinuous in its seond argument on R+ �RN ,that is, for every T > 0 and M > 0 there exists onstant L2 = L2(T;M) suh thatj�(t; u)� �(t; �u)j � L2ku� �uk, for t 2 [0; T ℄, u; �u 2 B(M),(H3) the delay funtion � is loally Lipshitz-ontinuous on R+ �RN , that is, for every T > 0and M > 0 there exists a onstant ~L2 = ~L2(T;M) suh that j�(t; u) � �(�t; �u)j � ~L2 � (jt ��tj+ ku� �uk), for t; �t 2 [0; T ℄, u �u 2 B(M), and(H4) the initial funtion � is Lipshitz-ontinuous with Lipshitz onstant L3, that is k�(t)��(�t)k � L3jt� �tj, for t; �t 2 [��; 0℄.Here and throughout k � k denotes a norm on RN , R+ � [0;1), and B(M) � fx 2 RN : kxk �Mg. If � = 1 then the notations [��; T ℄ and [��;1) should be interpreted as (�1; T ℄ and(�1;1), respetively.Note, that these onditions an be onsidered \standard" for the well-posedness of IVP (1.1)-(1.2), (see e.g. [3℄).2 Convergene ResultsUsing the notation a(k) � yh(kh), and applying the method of steps on the intervals [kh; (k+1)h)one an easily see the following result.Theorem 2.1 Assume (H1). Then IVP (1.3)-(1.4) has a unique solution in the formyh(t) = a(k) + f�kh; a(k); a(k � dk)� � (t� kh); (2.1)for t 2 [kh; (k + 1)h), k = 0; 1; 2; : : :, where dk � h�(kh; a(k))=hi, and the sequene a(k)satis�es the di�erene equationa(k + 1) = a(k) + f�kh; a(k); a(k � dk)��h; k = 0; 1; 2; : : : ;a(�k) = �(�kh); k = 0; 1; 2; : : : ; �� � �kh � 0: (2.2)Remark 2.2 The sequene a(k) is well-de�ned, beause �� � (k � dk)h � kh for every k =0; 1; 2; : : :



3We introdue the simplifying notations �(t) � t� �(t; x(t)) and �h(t) � [t℄h� h�([t℄h; yh([t℄h))ih.The following result shows that there exists � > 0 suh that for h > 0 the solutions of theorresponding initial value problems (1.3)-(1.4) on [0; �℄ form a uniformly bounded family.Lemma 2.3 Assume (H1) and (H2'). Then for every M � 5 sup���t�0 k�(t)k there exist � > 0suh that for every h > 0 kyh(t)k �M; t 2 [0; �℄: (2.3)Proof: Fix an M � 5 sup���t�0 k�(t)k. Integrating (1.3) and using elementary manipulationswe have the following estimatekyh(t)� yh(0)k � Z t0 f�[s℄h; yh([s℄h); yh(�h(s))�� f�[s℄h; yh(0); yh(�h(0))� ds+ Z t0 f�[s℄h; yh(0); yh(�h(0))� ds:Assuming that � > 0 is suh, that (2.3) holds and using the Lipshitz-ontinuity of f on the set[0; �℄�B(M)�B(M) with Lipshitz-onstant, L1 = L1(�;M), we getkyh(t)� yh(0)k � L1 Z t0 �kyh([s℄h)� yh(0)k+ kyh(�h(s)) � yh(�h(0))k� ds+K1t� L1 Z t0 �kyh([s℄h)� yh(0)k+ kyh(�h(s)) � yh(0)k+ kyh(�h(0))� yh(0)k� ds+ K1t; t 2 [0; �℄; (2.4)where K1 � K1(�) � supfkf(t;�(0);�(s))k : t 2 [0; �℄; s 2 [��; 0℄g.We de�ne the funtion  h(t) � max� sup���s�0 k�(s)��(0)k; max0�s�t kyh(s)�yh(0)k�: Reallingthat �h(s) � s and [s℄h � s, and using the de�nition of  h, inequality (2.4) implieskyh(t)� yh(0)k � K1�+ L1� � sup���s�0 k�(s)��(0)k+ Z t0 2L1 h(s) ds; t 2 [0; �℄:De�ne the onstant K2 � K2(�) � K1�+maxfL1�; 1g �sup���s�0 k�(s)� �(0)k. It is easy tosee that  h(t) � K2 + Z t0 2L1 h(s) ds; t 2 [0; �℄: (2.5)By applying the Gronwall-Bellman inequality for (2.5) we �nd thatkyh(t)� yh(0)k �  h(t) � K2 � exp(2L1t); t 2 [0; �℄: (2.6)It follows that if we an selet � > 0 suh thatK2 � exp(2L1�) + k�(0)k �M (2.7)then (2.3) holds and our alulations are valid. Pik an apriori T > 0. Note that we an seletLipshitz-onstant L1(�;M) suh that L1(�;M) � L1(T;M) for � � T . Therefore we have thatK2(�) � K1(T )�+maxfL1(T;M)�; 1g sup���s�0 k�(s)��(0)k � 3 sup���s�0 k�(s)k for � > 0suh that L1(T;M)� � 1; and K1(T )� � sup���s�0 k�(s)k: (2.8)Now, assuming (2.8), we have that K2(�) � exp�2L1(�;M)�� + k�(0)k � 5 sup���t�0 k�(t)k,provided that � satis�es exp�2L1(T;M)�� � 4=3: (2.9)



4Selet � 2 (0; T ℄ suh that (2.8) and (2.9) hold, then (2.7) is satis�ed, whih proves the lemma.We omment that if the Lipshitz-onstant of f is independent of M , (i.e., f is Lipshitz-ontinuous on [0; T ℄�R2n for arbitrary T > 0), or the funtion f is bounded on [0; T ℄�R2n, then(2.6) and the de�nition of K2, or the latter ase (1.3) yields that fyh(t)g is uniformly boundedon every ompat time interval.Lemma 2.3 allows us to obtain existene results for IVP (1.1)-(1.2) following the steps of thelassial Cauhy-Peano Theorem (see e.g. [1℄ or [9℄): the approximate solutions fyh(t) : h > 0gform a uniformly bounded family of funtions on some interval [0; �℄. It is easy to see using(1.3) that yh(t) for h > 0 are also equiontinuous funtions on [0; �℄, and therefore there existsa sequene hk ! 0, suh that the orresponding funtions onverge to a ontinuous funtion,i.e., x(t) � limk!1 yhk(t) exists and ontinuous on [��; �℄. Then it is easy to show (using aontinuity argument) that x(t) satis�es (1.1), i.e., IVP (1.1)-(1.2) has a solution on [0; �℄. (Werefer to [3℄ for related well-posedness result using �xed point arguments.)In partiular, we have the following theorem (see the detailed proof in [7℄):Theorem 2.4 Assume that (H1) and (H2') hold and � 2 C([��; 0℄; R). Then there exists T > 0suh that IVP (1.1)-(1.2) has a solution on [��; T ℄.Assuming that the initial funtion � is Lipshitz-ontinuous and the delay funtion � is loallyLipshitz-ontinuous with respet to its seond argument we an prove the following onvergeneresult for our approximating sheme, whih also implies the uniqueness of solutions of IVP (1.1)-(1.2).Theorem 2.5 Assume (H1), (H2'), (H3') and (H4). Then if IVP (1.1)-(1.2) has a solutionx(t) on [0; T ℄, then the solution is unique and limh!0+ max0�t�T kx(t) � yh(t)k = 0, where yhis the solution of IVP (1.3)-(1.4). If in addition (H2) and (H3) hold, then there exist onstantsM3(T;�) > 0 and h0 > 0 suh that kx(t)� yh(t)k �M3h, for t 2 [0; T ℄ and 0 < h � h0.Proof: Let T > 0 be suh that IVP (1.1)-(1.2) has a solution, x(t), on [0; T ℄. For the u-niqueness of solution it is enough to prove that limh!0+ max0�t�T kx(t) � yh(t)k = 0. LetM1 � maxfkx(t)k : t 2 [��; T ℄g+ 1. Suppose that there exists h0 > 0 suh thatkyh(t)k �M1; t 2 [0; T ℄; 0 < h � h0: (2.10)De�ne the onstant M2 � maxfkf(t; u; v)k : t 2 [0; T ℄; u; v 2 B(M1)g, then yh satis�eskyh(t1)� yh(t2)k �M2jt1 � t2j; t1; t2 2 [0; T ℄; 0 < h � h0: (2.11)Equations (1.1), (1.3), the assumed relation (2.10) and the assumptions of the theorem yield thefollowing inequalitieskx(t)� yh(t)k � Z t0 f�s; x(s); x(�(s))� � f�[s℄h; x(s); x(�(s))� ds+ Z t0 f�[s℄h; x(s); x(�(s))� � f�[s℄h; yh([s℄h); yh(�h(s))� ds� Z t0 f�s; x(s); x(�(s))� � f�[s℄h; x(s); x(�(s))� ds+ L1 Z t0 �kx(s)� yh([s℄h)k+ kx(�(s))� yh(�h(s))k� ds; (2.12)where L1 = L1(T;M1). Using the notation �h(s) � [s℄h � h�([s℄h; x([s℄h))ih; and elementarymanipulations on the last term of the right hand side of (2.12) we havekx(t)� yh(t)k � Z t0 f�s; x(s); x(�(s))� � f�[s℄h; x(s); x(�(s))� ds



5+ L1 Z t0 �kx(s)� yh(s)k+ kyh(s)� yh([s℄h)k+ kx(�(s))� x(�h(s))k+ kx(�h(s))� yh(�h(s))k+ kyh(�h(s))� yh(�h(s))k� ds: (2.13)Now we shall estimate the term kyh(�h(s))� yh(�h(s))k in (2.13).Let A � minf�h(s); �h(s)g and B � maxf�h(s); �h(s)g. We need to study three ases: First weassume that 0 � A � B. Then (2.11) yields kyh(�h(s))� yh(�h(s))k �M2jA�Bj. If A � B � 0then the assumed Lipshitz-ontinuity of � implies kyh(�h(s))�yh(�h(s))k � L3jA�Bj. Finally,if A � 0 � B then inequality (2.11) and the Lipshitz-ontinuity of � implykyh(�h(s)) � yh(�h(s))k � kyh(A)� yh(0)k+ kyh(0)� yh(B)k� maxfL3;M2g � jA�Bj:Thus in all the above ases using the Lipshitz-ontinuity of � we havekyh(�h(s))� yh(�h(s))k � K3j�([s℄h; x([s℄h))� �([s℄h; yh([s℄h))j+ 2K3h� K3L2kx([s℄h)� yh([s℄h)k+ 2K3h; (2.14)where K3 � maxfL3;M2g and L2 = L2(T;M1).Let "h(t) � kx(t)� yh(t)k. Combining (2.13) and (2.14) and using the de�nition of "h we get"h(t) � L1 Z t0 �"h(s) + "h(�h(s)) +K3L2"h([s℄h)� ds+ gh(t); (2.15)where gh(t) � Z t0 �f�s; x(s); x(�(s))� � f�[s℄h; x(s); x(�(s))�+ (2.16)+ L1�kyh(s)� yh([s℄h)k+ kx(�(s)) � x(�h(s))k+ 2K3h�� ds:Let  h(t) � max0�s�t "h(s). Now, �� � �h(s) � s, for every s � 0 and if �h(s) � 0 then "h(�h(s)) = 0therefore it follows from (2.15) that  h(t) satis�es h(t) � Z t0 L1(2 +K3L2) h(s) ds+ gh(t):Sine gh(t) is a monotone nondereasing funtion, an appliation of the Gronwall-Bellmann in-equality yieldskx(t)� yh(t)k �  h(t) � exp�L1(2 +K3L2)T� � gh(T ); t 2 [0; T ℄: (2.17)De�ne the funtions !x(h) � maxf kx(t) � x(�t)k : t; �t 2 [��; T ℄; jt � �tj � hg, !� (h) �maxfj�(t; u) � �(�t; u)j : t; �t 2 [0; T ℄; jt � �tj � h; u 2 B(M1)g, and !f (h) � maxf kf(t; u; v)�f(�t; u; v)k : t; �t 2 [0; T ℄; jt� �tj � h; u; v 2 B(M1)g. Then from (2.16) and from the inequalityj�(s) � �h(s)j � j�(s; x(s)) � �([s℄h; x(s))j+ j�([s℄h; x(s)) � �([s℄h; x([s℄h)j+ h� j�(s; x(s)) � �([s℄h; x(s))j+ L2kx(s)� x([s℄h)k+ h� !� (h) + L2!x(h) + hit follows thatgh(T ) � �!f (h) + L1M2h+ L1!x�!� (h) + L2!x(h) + h�+ 2L1K3h�T: (2.18)The funtion x(t) is uniformly ontinuous on [��; T ℄ (we have that the initial funtion � isLipshitz-ontinuous on [��; 0℄), and hene !x(h)! 0, as h! 0+, and similarly by, the uniform



6ontinuity of f and � on [0; T ℄�B(M1)�B(M1) and [0; T ℄�B(M1), respetively, we also havethat !f (h) and !� (h) go to zero as h! 0+. Therefore (2.18) yields thatgh(T )! 0; as h! 0+: (2.19)Selet h0 > 0 suh thatexp�L1(2 +K3L2)T� � �!f (h0) +L1M2h0 +L1!x�!� (h0) +L2!x(h0) + h0�+ 2L1K3h0�T � 1;then from inequalities (2.17), (2.18) and de�nition ofM1 it follows that h0 satis�es (2.10). Heneour alulation is valid, and (2.17) with (2.19) imply the �rst statement of the theorem.To show the seond statement of the theorem, observe that the de�nition of M1 and equation(1.1) yield that k _x(t)k � maxfkf(t; u; v)k : t 2 [0; T ℄; u; v 2 B(M1)g for t 2 [0; T ℄, hene!x(h) � K4h, where K4 � maxnL3;maxfkf(t; u; v)k : t 2 [0; T ℄; u; v 2 B(M1)go. Assumption(H2) and (H3) imply !f (h) � ~L1h and !� (h) � ~L2h, respetively, where ~L2 = ~L2(T;M1) and~L1 = ~L1(T;M1). Inequalities (2.17) and (2.18) yield the seond statement of the theorem usingthese estimates of !x(h), !f (h) and !� (h), with onstantM3 � exp�L1(2 +K3L2)T���~L1 + L1M2 + L1K4(~L2 + L2K4 + 1) + 2L1K3�T:The proof of the theorem is omplete.We lose the paper by noting that our results an be extended in a rather straightforwardfashion to the ase when the equation has multiple delays.Referenes[1℄ E. A. Coddington and N. Levinson, Theory of Ordinary Di�erential Equations, KriegerPublishing (1985).[2℄ C.W. Cryer, Numerial Methods for funtional di�erential equations, in Delay and FuntionalDi�erential Equations and Their Appliations, K. Shmitt ed., Aademi Press, New York,17{101 (1972).[3℄ R.D. Driver, Existene theory for a delay-di�erential system, Contributions to Di�erentialEquations, 1 317{336 (1961).[4℄ A. Feldstein, Disretization methods for retarded ordinary di�erential equations, Dotoralthesis and Teh. Rep., Dept. of Math., Univ. of California, Los Angeles (1964).[5℄ I. Gy}ori, On approximation of the solutions of delay di�erential equations by using pieewiseonstant arguments, Internat. J. of Math. & Math. Si., 14 (1) 111-126 (1991).[6℄ I. Gy}ori, F. Hartung and J. Turi, On numerial solutions for a lass of nonlinear delayequations with time- and state-dependent delays, to appear in the Proeedings of the WorldCongress of Nonlinear Analysts, Tampa, Florida (1992).[7℄ I. Gy}ori, F. Hartung and J. Turi, An approximation framework for funtional di�erentialequations with time- and state-dependent delays using equations with pieewise onstantarguments, IMA Preprint Series #1130, April (1993).[8℄ K.W. Neves and S. Thompson, Software for the numerial solution of systems of funtionaldi�erential equations with state-dependent delays, Applied Numerial Mathematis, 9 385{401 (1992).[9℄ L. Tavernini, The approximate solution of Volterra di�erential systems with state-dependenttime lags, SIAM J. Numer. Anal., 15 (5) 1039{1052 (1978).


