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Abstract. In this manuscript the system of nonlinear delay differential equa-

tions ẋi(t) =
n∑

j=1

n0∑̀
=1

αij`(t)hij(xj(t − τij`(t))) − βi(t)fi(xi(t)) + ρi(t), t ≥ 0,

1 ≤ i ≤ n is considered. Sufficient conditions are established for the uniform

permanence of the positive solutions of the system. In several particular cases,
explicit formulas are given for the estimates of the upper and lower limit of

the solutions. In a special case, the asymptotic equivalence of the solutions is

investigated.

1. Introduction. Nonlinear differential equations with delays frequently appear
as model equations in physics, engineering, economics and biology. Next we recall
some typical applications.

Compartmental systems are used to model many processes in pharmacokinetics,
metabolism, epidemiology and ecology (see [19, 20, 24]). The nonlinear donor-
controlled compartmental system

q̇i(t) = −kiifi(qi(t)) +

n∑
j=1
j 6=i

kijfj(qj(t− τij)) + Ii, i = 1, . . . , n

was studied in [8, 9]. Here qi(t) is the mass of the ith compartment at time t,
kij > 0 represent the transfer or rate coefficients, Ii ≥ 0 is the inflow to the ith
compartment, and in this model it is assumed that the intercompartmental flows
are functions of the state of the donor compartments only in the form kijfj(qj) with
some positive nonlinear function fj .

The classical Hopfield neural networks [23] have been successfully used in many
different fields of engineering applications, e.g., in signal processing, image process-
ing, pattern recognition. In hardware implementations time delays appear naturally
due to finite switching speed of the amplifiers, see, e.g., [3, 13, 17]. We recall the
system

Ciu̇i(t) = − 1

Ri
ui(t) +

n∑
j=1

Tijgj(uj(t− τij)) + Ii, i = 1, . . . , n,
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which was studied in [17]. Here Ci > 0, Ri > 0 and Ii are capacity, resistance,
bias, respectively, Tij is the interconnection weight, and gi is a strictly monotone
increasing nonlinear function with gi(0) = 0. In [11] the existence, uniqueness and
global stability of asymptotically periodic solutions of the bidirectional associative
memory (BAM) network

ẋi(t) = −ai(t)xi(t) +

k∑
j=1

pji(t)fj(yj(t− τji)) + Ii(t), i = 1, . . . , n,

ẏj(t) = −bj(t)yj(t) +

n∑
i=1

qij(t)fi(xj(t− σij)) + Ji(t), j = 1, . . . , k

was examined.
In [12] the delay model

Ṙ(t) = f(T (t− τ3))− d1R(t)

L̇(t) = r1R(t− τ1)− d2L(t)

Ṫ (t) = r2L(t− τ3)− d3T (t)

was considered for the control of the secretion of the hormone testosterone. Here
R(t), L(t) and T (t) are the concentrations of the gonadotropinreleasing hormone,
luteinizing hormone and testosterone, respectively, r1, r2, d1, d2, d3 are positive con-
stants. Global stability of a positive equilibrium and oscillations of the solutions
were investigated depending on the values of a parameter in the formula of the
positive nonlinear function f .

In [5] the two-dimensional system

ẋ(t) = r1(t)
[
f1(y(t− τ1(t))− x(t)

]
, t ≥ 0 (1)

ẏ(t) = r2(t)
[
f2(x(t− τ2(t))− y(t)

]
, t ≥ 0 (2)

was considered as a special case of a more general two-dimensional system of non-
linear delay equations with distributed delays. Sufficient conditions were given
implying that the solutions of the System (1)-(2) are permanent, i.e., there exist
positive constants a, A, b and B such that a ≤ x(t) ≤ A and b ≤ y(t) ≤ B hold for
t ≥ 0.

Populations are frequently modeled in heterogeneous environments due to, e.g.,
different food-rich patches, different stages of a species according to age or size.
In such models time delays appear naturally due to the time needed for species to
disperse from one patch to another. We recall here the n-dimensional Nicholson’s
blowflies systems with patch structure

ẋi(t) =

n0∑
`=1

βi`xi(t− τi`)e−xi(t−τi`) +

n∑
j=1
j 6=i

aijxj(t)− dixi(t), 1 ≤ i ≤ n, (3)

where di > 0, βi` ≥ 0, aij ≥ 0, τi` ≥ 0 for 1 ≤ i 6= j ≤ n, ` = 1, . . . , n0. Asymptotic
behavior, permanence of the solutions was investigated, e.g., in, [4, 7, 16, 26]. For
the scalar case, this model reduces to the famous Nicholson’s blowflies equation
introduced in [18] to model the Australian sheep-blowfly population.
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The n-dimensional population model with patch structure

ẋi(t) =

n0∑
`=1

λi`(t)xi(t− τi`(t))
1 + γi`(t)xi(t− τi`(t))

+

n∑
j=1
j 6=i

aij(t)xj(t− σij(t))

−µi(t)xi(t)− κi(t)x2i (t), t ≥ 0, 1 ≤ i ≤ n (4)

was introduced in [15], and the permanence of the positive solutions was investi-
gated. Here all functions are nonnegative. It is a generalization of a scalar modified
logistic equation with several delays introduced in [2].

Motivated by the above models, in this paper we consider a system of nonlinear
delay differential equations of the form

ẋi(t) =

n∑
j=1

n0∑
`=1

αij`(t)hij(xj(t− τij`(t)))− βi(t)fi(xi(t)) + ρi(t), t ≥ 0, 1 ≤ i ≤ n,

(5)
where, fi, hij , αij`, βi, ρi and τij` are nonnegative continuous functions. We asso-
ciate the initial condition

xi(t) = ϕi(t), −τ ≤ t ≤ 0, 1 ≤ i ≤ n (6)

to our system, where τ > 0 and 0 ≤ τij`(t) ≤ τ hold for t ≥ 0, 1 ≤ i, j ≤ n and
1 ≤ ` ≤ n0. We study positive solutions of the System (5), so we assume that
ϕi ∈ C+ := {ψ ∈ C([−τ, 0],R+) : ψ(0) > 0}, 1 ≤ i ≤ n, where R+ := [0,∞). Our
main result, Theorem 2.4 below shows that, under certain conditions, the solutions
of the initial value problem (IVP) (5) and (6) is uniformly permanent, i.e., there
exist positive constants k1, . . . , kn,K1, . . . ,Kn, such that for any initial functions
ϕi ∈ C+, i = 1, . . . , n the corresponding solution satisfies

0 < ki ≤ lim inf
t→∞

xi(t) ≤ lim sup
t→∞

xi(t) ≤ Ki, 1 ≤ i ≤ n.

Moreover, the constants k1, . . . , kn and K1, . . . ,Kn are given explicitly, as unique
positive solutions of an associated nonlinear algebraic systems. As a consequence of
the main result, we formulate conditions which imply that all the positive solutions
converge to a constant limit (see Corollary 3.1 below). In Theorem 3.5, for nonlinear
systems of the form

ẋi(t) =

n∑
j=1

n0∑
`=1

αij`(t)xj(t− τij`(t))− βi(t)xqii (t) + ρi(t), t ≥ 0, 1 ≤ i ≤ n,

we give sufficient conditions which imply that the positive solutions are asymptot-
ically equivalent, i.e., the difference of any two positive solutions tends to 0 as the
time goes to ∞.

Permanence of solutions of a differential equation model is especially important
in mathematical biology and ecology [7, 16, 25]. Permanence of solutions of scalar
delay population models was recently studied in [1, 2, 6, 14, 16]. In [21] we consid-
ered a scalar delay population model

ẋ(t) = r(t)
(
g(t, xt)− h(x(t))

)
, t ≥ 0,

where r, h ∈ C(R+,R+), g ∈ C(R+×C([−τ, 0],R),R+), τ > 0 is fixed, and xt(s) =
x(t + s) for s ∈ [−τ, 0]. This manuscript extends the method introduced for the
scalar case in [21] to the nonlinear delay system (5). A key element of the proof of
our Theorem 2.4 is a result proved in [22], where sufficient conditions are formulated
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implying that a certain nonlinear algebraic system associated to (5) has a unique
positive solution (see Lemma 2.3 and Theorem 4.2 below).

The structure of our paper is the following. In Section 2 we formulate our main
results: Theorem 2.4 below gives estimates for the limit inferior and limit superior
of the positive solutions of System (5). In Section 3 we show several corollaries of
our main results and numerical examples. In Section 4 we give the proofs of our
main results, and in Section 5 we summarize our conclusions and formulate some
open questions.

2. Main results. We start this section by listing all conditions on the parameters
of the IVP (5) and (6) will be used in the rest of the manuscript. τ > 0 is a fixed
constant, and all delay functions are assumed to be uniformly bounded by τ .

(A0) τij` ∈ C(R+,R+) are such that 0 ≤ τij`(t) ≤ τ for t ≥ 0, 1 ≤ i, j ≤ n and
1 ≤ ` ≤ n0;

(A1) βi ∈ C(R+,R+) are such that βi(t) > 0 for t > 0, 1 ≤ i ≤ n, and∫ ∞
0

βi(s) ds =∞, 1 ≤ i ≤ n;

(A2) αij` ∈ C(R+,R+), for all 1 ≤ i, j ≤ n and 1 ≤ ` ≤ n0 are such that

sup
t>0

n0∑̀
=1

αij`(t)

βi(t)
<∞, 1 ≤ i, j ≤ n; (7)

(A3) fi ∈ C(R+,R+), 1 ≤ i ≤ n, are strictly increasing with fi(0) = 0 and fi are
locally Lipschitz continuous;

(A4) hij ∈ C(R+,R+) are increasing, locally Lipschitz continuous, and hij(u) > 0
for u > 0 and 1 ≤ i, j ≤ n;

(A5) ρi ∈ C(R+,R+) and for each i = 1, . . . , n,

either lim inf
t→∞

ρi(t)

βi(t)
> 0 or lim sup

u→0+

fi(u)

hii(u)
< lim inf

t→∞

n0∑̀
=1

αii`(t)

βi(t)
, (8)

sup
t>0

ρi(t)

βi(t)
<∞, lim

u→∞
fi(u) =∞, (9)

and

n∑
j=1

(
lim sup
t→∞

n0∑̀
=1

αij`(t)

βi(t)

)
lim sup
u→∞

hij(u)

fi(u)
< 1; (10)

(A6) (i) fi(u)
hij(u)

is increasing and
hjj(u)
hij(u)

is decreasing on (0,∞), for each 1 ≤ i, j ≤
n;

(ii) for each 1 ≤ i ≤ n, either fi(u)
hii(u)

is strictly increasing on the interval (0,∞)

or
(

lim inf
t→∞

ρi(t)
βi(t)

> 0 and hii(u) is strictly increasing on (0,∞)
)

;

(iii) either lim inf
t→∞

n0∑̀
=1

αij`(t)

βi(t)
= 0 for all i, j ∈ {1, . . . , n} satisfying i 6= j; or

there exist i, j ∈ {1, . . . , n}, i 6= j such that lim inf
t→∞

n0∑̀
=1

αij`(t)

βi(t)
> 0 and
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[
either

fj(u)
hij(u)

is strictly increasing on (0,∞) or
(

lim inf
t→∞

n0∑̀
=1

αjj`(t)

βj(t)
> 0 and

hjj(u)
hij(u)

is strictly decreasing on (0,∞)
)

or
(

lim inf
t→∞

ρj(t)
βj(t)

> 0 and hij(u) is

strictly increasing on (0,∞)
)]

;

(iv) for each 1 ≤ i ≤ n, either fi(u)
hii(u)

is strictly increasing on the interval

(0,∞) or
(

lim sup
t→∞

ρi(t)
βi(t)

> 0 and hii(u) is strictly increasing on (0,∞)
)

;

(v) either lim sup
t→∞

n0∑̀
=1

αij`(t)

βi(t)
= 0 for all i, j ∈ {1, . . . , n} satisfying i 6= j; or

there exist i, j ∈ {1, . . . , n}, i 6= j such that lim sup
t→∞

n0∑̀
=1

αij`(t)

βi(t)
> 0 and

[
either

fj(u)
hij(u)

is strictly increasing on (0,∞) or
(

lim sup
t→∞

n0∑̀
=1

αjj`(t)

βj(t)
> 0

and
hjj(u)
hij(u)

is strictly decreasing on (0,∞)
)

or
(

lim sup
t→∞

ρj(t)
βj(t)

> 0 and

hij(u) is strictly increasing on (0,∞)
)]

.

Clearly, under conditions (A0)-(A5), the IVP (5) and (6) has a unique solution
corresponding to any ϕ = (ϕ1, . . . , ϕn) ∈ Cn+. This solution is denoted by x(ϕ) =
(x1(ϕ), . . . , xn(ϕ)). Note that in [21] a scalar version of (5) was studied where,
instead of the local Lipschitz-continuity, it was assumed that fi are such that for
any nonnegative constants % and L satisfying L 6= %, one has∫ %

L

ds

fi(%)− fi(s)
= +∞. (11)

Hence the solution studied in [21] was not necessary unique. It is easy to see that
the locally Lipschitz-continuity of fi implies condition (11). We assume the locally
Lipschitz-continuity of fi and hij to simplify the presentation, but it can be omitted
as in [21].

We note that assumption (A3) is weaker than that used in the [2, 14], where,
investigating permanence of a scalar population model, it was assumed that the
coefficient function βi is bounded below and above by positive constants.

The monotonicity assumptions of (A6) for the ratios fi(u)
hij(u)

and
hjj(u)
hij(u)

are crucial

for using Lemma 2.3 below. This assumption allows us to include examples when
some ratios are constants, and only some of these functions are strictly monotone.
This week form of the condition will be important when we apply our main results
to the population models (3) and (4) (see Corollary 3.7 and 3.8 below).

The next lemma shows that all solutions of System (5) corresponding to any
initial function ϕ = (ϕ1, ϕ2, . . . , ϕn) ∈ Cn+ are positive on R+.

Lemma 2.1. Assume that τij` satisfies condition (A0), βi satisfies condition (A1),
fi satisfies condition (A3) and αij`, hij , ρi ∈ C(R+,R+) for 1 ≤ i, j ≤ n and
1 ≤ ` ≤ n0. Then for any initial function ϕ = (ϕ1, ϕ2, . . . , ϕn) ∈ Cn+, the solution
x(ϕ)(t) = (x1(ϕ)(t), . . . , xn(ϕ)(t)) of the IVP (5) and (6) obeys xi(ϕ)(t) > 0 for
t ≥ 0 and 1 ≤ i ≤ n.
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The following result implies that, under our conditions, the System (5) is persis-
tent.

Lemma 2.2. Assume that conditions (A0)–(A5) are satisfied. Then for any ϕ ∈
Cn+, the solution x(ϕ)(t) = (x1(ϕ)(t), . . . , xn(ϕ)(t)) of the IVP (5) and (6) satisfies

0 < inf
t≥0

xi(ϕ)(t) ≤ sup
t≥0

xi(ϕ)(t) <∞, 1 ≤ i ≤ n. (12)

The next lemma displays several properties of the positive solutions of the alge-
braic system

fi(xi) =

n∑
j=1

mijhij(xj) + li, 1 ≤ i ≤ n. (13)

We say that x = (x1, . . . , xn) is a positive solution of (13) if xi > 0 for i = 1, . . . , n.

Lemma 2.3. Assume that mij ≥ 0, li ≥ 0 for 1 ≤ i, j ≤ n, fi satisfies condition
(A3) and hij satisfies condition (A4). Suppose that

(H1) fi(u)
hij(u)

is increasing and
hjj(u)
hij(u)

is decreasing on (0,∞) for each 1 ≤ i, j ≤ n;

(H2) for each 1 ≤ i ≤ n, either fi(u)
hii(u)

is strictly increasing on (0,∞) or
(
li > 0

and hii(u) is strictly increasing on (0,∞)
)

;

(H3) either mij = 0 for all i, j ∈ {1, . . . , n} satisfying i 6= j; or there exist i, j ∈
{1, . . . , n}, i 6= j such that mij > 0 and

[
either

fj(u)
hij(u)

is strictly increasing

on (0,∞) or
(
mjj > 0 and

hjj(u)
hij(u)

is strictly decreasing on (0,∞)
)

or
(
lj > 0

and hij(u) is strictly increasing on (0,∞)
)]

;

(H4) the functions fi and hij satisfy

either li > 0 or lim
u→0+

fi(u)

hii(u)
< mii, 1 ≤ i ≤ n, (14)

and
n∑
j=1

mij lim
u→∞

hij(u)

fi(u)
< 1 and lim

u→∞
fi(u) =∞, 1 ≤ i ≤ n. (15)

Then

(i) the System (13) has a unique positive solution x∗ = (x∗1, . . . , x
∗
n).

(ii) For any x = (x1, . . . , xn) satisfying

xi > 0, fi(xi) ≥
n∑
j=1

mijhij(xj) + li, 1 ≤ i ≤ n, (16)

one has
xi ≥ x∗i , 1 ≤ i ≤ n.

(iii) For any x = (x1, . . . , xn) satisfying

xi > 0, fi(xi) ≤
n∑
j=1

mijhij(xj) + li, 1 ≤ i ≤ n,

one has
xi ≤ x∗i , 1 ≤ i ≤ n.



BOUNDEDNESS OF POSITIVE SOLUTIONS OF A SYSTEM OF NONLINEAR DDES 7

We use the following notations in our main theorem:

mij := lim inf
t→∞

n0∑̀
=1

αij`(t)

βi(t)
, mij := lim sup

t→∞

n0∑̀
=1

αij`(t)

βi(t)
, 1 ≤ i, j ≤ n, (17)

li := lim inf
t→∞

ρi(t)

βi(t)
, li := lim sup

t→∞

ρi(t)

βi(t)
, 1 ≤ i ≤ n. (18)

We note that (A2), (A5) and Lemma 2.2 yield 0 ≤ mij < ∞, 0 ≤ mij < ∞,

0 ≤ li <∞, 0 ≤ li <∞ for 1 ≤ i, j ≤ n, and

0 < lim inf
t→∞

xi(t) ≤ lim sup
t→∞

xi(t) <∞, 1 ≤ i ≤ n.

Now, we are ready to formulate the main result of this paper.

Theorem 2.4. Assume that conditions (A0)–(A5) are satisfied.

(i) If, in addition, (A6) (i), (ii) and (iii) hold, then for any initial function
ϕ = (ϕ1, . . . , ϕn) ∈ Cn+, the solution x(ϕ)(t) = (x1(ϕ)(t), . . . , xn(ϕ)(t)) of the
IVP (5) and (6) obeys

x∗i ≤ lim inf
t→∞

xi(ϕ)(t), 1 ≤ i ≤ n,

where (x∗1, . . . , x
∗
n) is the unique positive solution of the algebraic system

fi(xi) =

n∑
j=1

mijhij(xj) + li, 1 ≤ i ≤ n. (19)

(ii) If, in addition, (A6) (i), (iv) and (v) hold, then for any initial function ϕ =
(ϕ1, . . . , ϕn) ∈ Cn+, the solution x(ϕ)(t) = (x1(ϕ)(t), . . . , xn(ϕ)(t)) of the IVP
(5) and (6) obeys

lim sup
t→∞

xi(ϕ)(t) ≤ x∗i , 1 ≤ i ≤ n,

where (x∗1, . . . , x
∗
n) is the unique positive solution of the algebraic system

fi(xi) =

n∑
j=1

mijhij(xj) + li, 1 ≤ i ≤ n. (20)

3. Corollaries and examples. In this section we present several corollaries to
our main result and illustrative numerical examples.

Corollary 3.1. Assume that conditions (A0)–(A6) are satisfied, moreover, the
finite limits

mij := lim
t→∞

n0∑̀
=1

αij`(t)

βi(t)
and li := lim

t→∞

ρi(t)

βi(t)
, 1 ≤ i, j ≤ n

exist. Then, for any initial function ϕ = (ϕ1, . . . , ϕn) ∈ Cn+ , the solution x(ϕ)(t) =
(x1(ϕ)(t), . . . , xn(ϕ)(t)) of the IVP (5) and (6) satisfies

lim
t→∞

xi(ϕ)(t) = x∗i , 1 ≤ i ≤ n,
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where (x∗1, . . . , x
∗
n) is the unique positive solution of the algebraic system

fi(xi) =

n∑
j=1

mijhij(xj) + li, 1 ≤ i ≤ n.

Now, we study a special form of (5). We consider the IVP

ẋi(t) =

n∑
j=1

n0∑
`=1

αij`(t)x
pij
j (t− τij`(t))− βi(t)xqii (t) + ρi(t), t ≥ 0, 1 ≤ i ≤ n,

(21)
with the initial condition

xi(t) = ϕi(t), −τ ≤ t ≤ 0, 1 ≤ i ≤ n, (22)

where τ > 0, ϕ = (ϕ1, ϕ2, . . . , ϕn) ∈ Cn+ and αij`, βi, τij` ∈ C(R+,R+), pij , qi ∈ R+

for 1 ≤ i, j ≤ n and 1 ≤ ` ≤ n0. We remark that (A3), (A4), (A5) and (A6) hold
if

qi > pij > 1, and pij ≥ pjj , 1 ≤ i, j ≤ n (23)

and

either lim inf
t→∞

ρi(t)

βi(t)
> 0 or lim inf

t→∞

n0∑̀
=1

αii`(t)

βi(t)
> 0, i = 1, . . . , n (24)

are satisfied. Therefore Theorem 2.4 has the following consequence.

Corollary 3.2. Assume that τij` satisfies (A0), βi and αij` satisfy (A1) and (A2),

ρi ∈ C(R+,R+) satisfies sup
t>0

ρi(t)
βi(t)

< ∞, 1 ≤ i ≤ n, and (23) and (24) hold.

Then, for any initial function ϕ = (ϕ1, ϕ2, . . . , ϕn) ∈ Cn+ , the solution x(ϕ)(t) =
(x1(ϕ)(t), . . . , xn(ϕ)(t)) of the IVP (21) and (22) satisfies

x∗i ≤ lim inf
t→∞

xi(ϕ)(t) ≤ lim sup
t→∞

xi(ϕ)(t) ≤ x∗i , 1 ≤ i ≤ n,

where (x∗1, . . . , x
∗
n) is the unique positive solution of the algebraic system

xqii =

n∑
j=1

mijx
pij
j + li, 1 ≤ i ≤ n, (25)

and (x∗1, . . . , x
∗
n) is the unique positive solution of the algebraic system

xqii =

n∑
j=1

mijx
pij
j + li, 1 ≤ i ≤ n, (26)

respectively, where mij ,mij , li and li are defined in (17) and (18) for 1 ≤ i, j ≤ n.

We remark that the condition (23) in Corollary 3.2 can be weakened.
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Example 3.3. Consider the following system of nonlinear differential equations in
three dimensions, for t ≥ 0,

ẋ1(t) = t0.1(1 + cos t)x1(t− 2) + t0.1x1(t− 1.5) + t0.1x22(t− 0.05)
+t0.1x22(t− 3) + t0.1(2 + 2 sin t)x33(t− 0.5)
+t0.1x33(t− 2.4) + t0.1x33(t− 2.5)− 2t0.1x41(t)
+0.2t0.1(1.2 + sin t),

ẋ2(t) = x1(t− 1.5) + 2x1(t− 0.5) + x1(t− 0.4)
+6(10 + cos t)x2(t− 0.05) + (3 + 3 cos t)x23(t− 0.09)
+2x23(t− 1.3)− x32(t) + 4.5 + cos t,

ẋ3(t) = 5x21(t− 1.9) + 2x31(t− 0.2) + x31(t− 0.3) + 10x2(t− 1.2)
+(2 + 5 sin t)x2(t− 5) + 6x23(t− 0.01) + 4x23(t− 1)
−2x33(t) + 4.5 + 2 cos t.

(27)

Note that the conditions of Corollary 3.2 are satisfied for (27). So, we see from
Corollary 3.2 that

lim inf
t→∞

x1(t) ≥ x∗1, lim inf
t→∞

x2(t) ≥ x∗2 and lim inf
t→∞

x1(t) ≥ x∗3,

where (x∗1, x
∗
2, x
∗
3) is the unique positive solution of the algebraic system

x41 = 0.5x1 + x22 + x33 + 0.02,
x32 = 4x1 + 54x2 + 2x23 + 3.5,
x33 = 4x21 + 3.5x2 + 5x23 + 1.25.

(28)

We solve the System (28) numerically by the fixed point iteration

x
(k+1)
1 =

4

√
0.5x

(k)
1 + (x

(k)
2 )2 + (x

(k)
3 )3 + 0.02,

x
(k+1)
2 =

3

√
4x

(k)
1 + 54x

(k)
2 + 2(x

(k)
3 )2 + 3.5,

x
(k+1)
3 =

3

√
4(x

(k)
1 )2 + 3.5x

(k)
2 + 5(x

(k)
3 )2 + 1.25.

(29)

We compute the sequence (x
(k)
1 , x

(k)
2 , x

(k)
3 ) defined by (29) starting from the ini-

tial value (x
(0)
1 , x

(0)
2 , x

(0)
3 ) = (0, 0, 0). The first ten terms of this sequence are dis-

played in Table 1. We can observe that the sequence is convergent, and its limit is
(x∗1, x

∗
2, x
∗
3) = (4.5960 . . . , 8.3147 . . . , 7.2095 . . .).

Similarly, we can see that

lim sup
t→∞

x1(t) ≤ x∗1, lim sup
t→∞

x2(t) ≤ x∗2 and lim sup
t→∞

x1(t) ≤ x∗3,

where (x∗1, x
∗
2, x
∗
3) is the unique positive solution of the algebraic system

x41 = 1.5x1 + x22 + 3x33 + 0.22,
x32 = 4x1 + 66x2 + 8x23 + 5.5,
x33 = 4x21 + 8.5x2 + 5x23 + 3.25.

(30)

We solve the System (30) numerically by a fixed point iteration defined similarly
to (29) from the starting value (0, 0, 0). The numerical results can be seen in Table
2. We conclude that (x∗1, x

∗
2, x
∗
3) = (6.7840 . . . , 11.1161 . . . , 8.7126 . . .). Therefore

Corollary 3.2 yields

4.5960 . . . ≤ lim inf
t→∞

x1(t) ≤ lim sup
t→∞

x1(t) ≤ 6.7840 . . . ,

8.3147 . . . ≤ lim inf
t→∞

x2(t) ≤ lim sup
t→∞

x2(t) ≤ 11.1161 . . . ,

7.2095 . . . ≤ lim inf
t→∞

x3(t) ≤ lim sup
t→∞

x3(t) ≤ 8.7126 . . . .

(31)
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We plotted the numerical solution of (27) in Figure 1 corresponding to the con-
stant initial functions (ϕ1(t), ϕ2(t), ϕ3(t)) = (2.5, 6, 2.5) and (ϕ1(t), ϕ2(t), ϕ3(t)) =
(3.5, 8, 4). The horizontal lines in Figure 1 correspond to the upper and lower bounds
listed in (31), respectively. We also observe that the difference of the components
of the two solutions converges to zero, i.e., the positive solutions are asymptotically
equivalent. The numerical results demonstrate the theoretical bounds (31).
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Figure 1. Numerical solution of the System (27).

k x
(k)
1 x

(k)
2 x

(k)
3

0 0 0 0
1 0.3761 1.7105 1.9834
2 1.8185 4.8060 3.7077
3 3.6353 7.5553 5.9214
4 4.0406 7.9252 6.4602
5 4.4130 8.1962 6.9628
6 4.5364 8.2765 7.1294
7 4.5767 8.3023 7.1836
8 4.5958 8.3146 7.2092
9 4.5960 8.3147 7.2095
10 4.5960 8.3147 7.2095

Table 1. Numerical solution
of the System (28)

k x
(k)
1 x

(k)
2 x

(k)
3

0 0 0 0
1 0.6849 2.0198 2.8145
2 2.9151 5.9799 5.0354
3 5.5288 9.7858 7.5194
4 6.4086 10.7362 8.3557
5 6.6740 11.0053 8.6081
6 6.7520 11.0838 8.6822
7 6.7747 11.1067 8.7038
8 6.7839 11.1159 8.7125
9 6.7840 11.1161 8.7126
10 6.7840 11.1161 8.7126

Table 2. Numerical solution
of the System (30)

Next we study the asymptotic equivalence of positive solutions for a special case
of the System (21). We consider the IVP

ẋi(t) =

n∑
j=1

n0∑
`=1

αij`(t)xj(t− τij`(t))− βi(t)xqii (t) + ρi(t), t ≥ 0, 1 ≤ i ≤ n,

(32)
with the initial condition

xi(t) = ϕi(t), −τ ≤ t ≤ 0, 1 ≤ i ≤ n, (33)

where τ > 0, ϕ = (ϕ1, ϕ2, . . . , ϕn) ∈ Cn+, αij`, τij`, βi ∈ C(R+,R+), 0 ≤ τij`(t) ≤ τ
for t ≥ 0, 1 ≤ i, j ≤ n, 1 ≤ ` ≤ n0 and qi ∈ N, qi > 1, 1 ≤ i ≤ n.
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Remark 3.4. Equation (25) corresponding to (32) has the form

xqii =

n∑
j=1

mijxj + li, 1 ≤ i ≤ n.

Therefore

xi(x
qi−1
i −mii) =

n∑
j=1
j 6=i

mijxj + li, 1 ≤ i ≤ n.

So its positive solution (x∗1, . . . , x
∗
n) satisfies x∗i ≥ m

1
qi−1

ii , hence Corollary 3.2 yields
that for every ϕ ∈ Cn+ the solution xi(ϕ)(t) of (32)-(33) satisfies

lim inf
t→∞

xi(ϕ)(t) ≥ x∗i ≥ m
1

qi−1

ii , 1 ≤ i ≤ n. (34)

Theorem 3.5. Suppose that τij`, βi and αij` satisfy (A0), (A1) and (A2), qi ∈ N,

ρi ∈ C(R+,R+) satisfies sup
t>0

ρi(t)
βi(t)

<∞ for 1 ≤ i ≤ n, and

n∑
j=1

mij < qimii, qi > 1, 1 ≤ i ≤ n. (35)

Then, for any initial functions ϕ,ψ ∈ Cn+, the corresponding solutions x(ϕ)(t) and
x(ψ)(t) of the IVP (32) and (33) satisfy

lim
t→∞

(
xi(ϕ)(t)− xi(ψ)(t)

)
= 0, 1 ≤ i ≤ n,

i.e., any positive solutions of Equation (32) are asymptotically equivalent.

Proof. Let ϕ,ψ ∈ Cn+ be fixed and define νi(t) := xi(ϕ)(t) and ωi(t) := xi(ψ)(t).
Then

ν̇i(t) =

n∑
j=1

n0∑
`=1

αij`(t)νj(t− τij`(t))− βi(t)νqii (t) + ρi(t), t ≥ 0, 1 ≤ i ≤ n,

and

ω̇i(t) =

n∑
j=1

n0∑
`=1

αij`(t)ωj(t− τij`(t))− βi(t)ωqii (t) + ρi(t), t ≥ 0, 1 ≤ i ≤ n.

Now, introduce zi(t) := νi(t)− ωi(t), then for t ≥ 0

żi(t) =

n∑
j=1

n0∑
`=1

αij`(t)zj(t− τij`(t))− βi(t)zi(t)
qi−1∑
r=0

νri (t)ωqi−1−ri (t), 1 ≤ i ≤ n,

or equivalently

żi(t) = −ai(t)zi(t) +

n∑
j=1

n0∑
`=1

αij`(t)zj(t− τij`(t)), t ≥ 0, 1 ≤ i ≤ n, (36)

where ai(t) := βi(t)
qi−1∑
r=0

νri (t)ωqi−1−ri (t). We can consider (36) as the perturbation

of the scalar ordinary differential equation

ẏi(t) = −ai(t)yi(t), t ≥ 0, 1 ≤ i ≤ n.
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Thus, for any T ≥ 0 and 1 ≤ i ≤ n, the solution of (36) satisfies

zi(t) = zi(T )e−
∫ t
T
ai(u)du +

∫ t

T

e−
∫ t
s
ai(u)du

n∑
j=1

n0∑
`=1

αij`(s)zj(s− τij`(s)) ds, t ≥ T.

(37)
The definition of ai(t), (34) and assumption (35) yield, for each i = 1, . . . , n,

lim sup
t→∞

n∑
j=1

n0∑̀
=1

αij`(t)

ai(t)
≤ lim sup

t→∞

1
qi−1∑
r=0

νri (t)ωqi−1−ri (t)

lim sup
t→∞

n∑
j=1

n0∑̀
=1

αij`(t)

βi(t)

≤ 1

qimii

n∑
j=1

lim sup
t→∞

n0∑̀
=1

αij`(t)

βi(t)

≤

n∑
j=1

mij

qimii

< 1.

Thus, there exist 0 < η < 1 and T1 ≥ 0 such that

n∑
j=1

n0∑̀
=1

αij`(t)

ai(t)
< η < 1, t ≥ T1,

or equivalently

n∑
j=1

n0∑
`=1

αij`(t) ≤ ηai(t), t ≥ T1, 1 ≤ i ≤ n. (38)

We introduce zj(∞) := lim sup
t→∞

zj(t), 1 ≤ j ≤ n. For every ε > 0, there exists a

T ≥ T1 such that

|zj(s− τij`(s))| ≤ zj(∞) + ε ≤ max
1≤l≤n

zl(∞) + ε, s ≥ T, 1 ≤ i, j ≤ n, 1 ≤ ` ≤ n0.

(39)
Using (37), (38) and (39), we get

|zi(t)| ≤ |zi(T )|e−
∫ t
T
ai(u) du +

∫ t

T

e−
∫ t
s
ai(u) du

n∑
j=1

n0∑
`=1

αij`(s)|zj(s− τij`(s))| ds

≤ |zi(T )|e−
∫ t
T
ai(u) du +

(
max
1≤j≤n

zj(∞) + ε
)
η

∫ t

T

e−
∫ t
s
ai(u) duai(s) ds

= |zi(T )|e−
∫ t
T
ai(u) du +

(
max
1≤j≤n

zj(∞) + ε
)
η(1− e−

∫ t
T
ai(u) du)
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for t ≥ T and 1 ≤ i ≤ n. Taking the limit supremum for both sides as t→∞, and
using (A1) and Lemma 2.2, and that∫ ∞

T

ai(u)du =

∫ ∞
T

βi(u)

qi−1∑
r=0

νri (u)ωqi−1−ri (u)du

≥

(
inf
t≥T

qi−1∑
r=0

νri (t)ωqi−1−ri (t)

)∫ ∞
T

βi(u)du

= ∞,

we obtain

zi(∞) ≤ η( max
1≤l≤n

zl(∞) + ε), 1 ≤ i ≤ n.

Thus

max
1≤i≤n

zi(∞) ≤ η max
1≤i≤n

zi(∞) + ηε,

which implies

max
1≤i≤n

zi(∞) ≤ ηε

1− η
.

Since ε > 0 can be arbitrary small, we get max
1≤i≤n

zi(∞) = 0 and consequently

lim
t→∞

zi(t) = 0, 1 ≤ i ≤ n. Hence the proof is completed.

Example 3.6. Consider the following system of nonlinear differential equations in
two dimensions, for t ≥ 0,

ẋ1(t) = (1.7 + 0.2 cos t)x1(t− 2) + (0.25 + 0.1 sin t)x2(t− 1.5)
−0.5x21(t) + 8 + 2 cos t,

ẋ2(t) = (0.02 + 0.01 sin t)x1(t− 0.3) + (1.2 + 0.2 cos t)x2(t− 10)
−0.2x22(t) + 2.2 + 2 sin t.

(40)

Note that the conditions of Theorem 3.5 are satisfied for (40), where m11 =
3,m11 = 3.8,m12 = 0.7,m22 = 5,m21 = 0.15 and m22 = 7 satisfy (35) for i, j = 1, 2.
Also, using Corollary 3.2, we see that

lim inf
t→∞

x1(t) ≥ x∗1 and lim inf
t→∞

x2(t) ≥ x∗2,

where (x∗1, x
∗
2) is the unique positive solution of the algebraic system

x21 = 3x1 + 0.3x2 + 12,
x22 = 0.05x1 + 5x2 + 1.

(41)

We solve the System (41) numerically by a fixed point iteration

x
(k+1)
1 =

√
3x

(k)
1 + 0.3x

(k)
2 + 12,

x
(k+1)
2 =

√
0.05x

(k)
1 + 5x

(k)
2 + 1.

(42)

We compute the sequence defined by (42) starting from the initial value (0, 0). The
first ten terms of this sequence are displayed in Table 3. We can observe that the
sequence is convergent and its limit is (x∗1, x

∗
2) = (5.4778 . . . , 5.2430 . . .).

Similarly, we can see that

lim sup
t→∞

x1(t) ≤ x∗1 and lim sup
t→∞

x2(t) ≤ x∗2,
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where (x∗1, x
∗
2) is the unique positive solution of the algebraic system

x21 = 3.8x1 + 0.7x2 + 20,
x22 = 0.15x1 + 7x2 + 21.

(43)

We solve the System (43) numerically by a fixed point iteration defined similarly to
(42) from the starting value (0, 0). The numerical results can be seen in Table 4.
We conclude that (x∗1, x

∗
2) = (7.3921 . . . , 9.3616 . . .). Therefore Corollary 3.2 yields

5.4778 . . . ≤ lim inf
t→∞

x1(t) ≤ lim sup
t→∞

x1(t) ≤ 7.3921 . . . ,

5.2430 . . . ≤ lim inf
t→∞

x2(t) ≤ lim sup
t→∞

x2(t) ≤ 9.3616 . . . .
(44)

We plotted the numerical solution of (40) in Figure 2 corresponding to the initial
functions (ϕ1(t), ϕ2(t)) = (3, 2), (ϕ1(t), ϕ2(t)) = (7, 7) and (ϕ1(t), ϕ2(t)) = (9, 10).
The horizontal lines in Figure 2 correspond to the upper and lower bounds listed
in (44), respectively. We also observe that the difference of the components of
every two solutions converges to zero, i.e., the positive solutions are asymptotically
equivalent which coincide (3.5) in Theorem 3.5.

k x
(k)
1 x

(k)
2

0 0 0
1 3.4641 1.0831
2 4.7663 2.5795
3 5.2031 3.7627
4 5.4246 4.8659
5 5.4659 5.1549
6 5.4721 5.2008
7 5.4751 5.2419
8 5.4777 5.2429
9 5.4778 5.2430
10 5.4778 5.2430

Table 3. Numerical solu-
tion of the System (41)

k x
(k)
1 x

(k)
2

0 0 0
1 4.4721 4.6552
2 6.3445 7.3850
3 7.0199 8.5877
4 7.2586 9.0666
5 7.3436 9.2503
6 7.3744 9.3198
7 7.3918 9.3608
8 7.3920 9.3615
9 7.3921 9.3616
10 7.3921 9.3616

Table 4. Numerical solu-
tion of the System (43)
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Figure 2. Numerical solution of the System (40).
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Next, we consider again the population model (4):

ẋi(t) =

n0∑
`=1

λi`(t)xi(t− τi`(t))
1 + γi`(t)xi(t− τi`(t))

+

n∑
j=1
j 6=i

aij(t)xj(t− σij(t))

−µi(t)xi(t)− κi(t)x2i (t), t ≥ 0, 1 ≤ i ≤ n, (45)

with the initial condition

xi(t) = ϕi(t), −τ ≤ t ≤ 0, 1 ≤ i ≤ n. (46)

We assume that ϕ = (ϕ1, ϕ2, . . . , ϕn) ∈ Cn0 , where C0 := {ψ ∈ C([−τ, 0],R+) :
ψ(t) > 0, −τ ≤ t ≤ 0}. Note that C0 ⊂ C+.

The permanence of positive solutions of (45) was investigated in [15] for the case
when the delays in the model can be unbounded. Next, we show that, for the
bounded delay case, our Theorem 2.4 gives permanence of the positive solutions for
this model under weak conditions. We note that we do not need the boundedness
of the functions λi`, aij , µi and κi which was assumed in [15].

Corollary 3.7. Assume λi`, γi`, aij , µi, κi ∈ C(R+,R+), and τi`, σij ∈ C(R+,R+)
with 0 ≤ τi`(t) ≤ τ and 0 ≤ σij(t) ≤ τ for t ≥ 0, 1 ≤ i 6= j ≤ n and ` = 1, . . . , n0.
Moreover, we assume that there exist positive constants γ

i
, γi, πi and πi such that,

for all 1 ≤ i 6= j ≤ n and 1 ≤ ` ≤ n0,

0 < γ
i
≤ γi`(t) ≤ γi, 0 < πi ≤

κi(t)

µi(t)
≤ πi, t > 0 and

∫ ∞
0

µi(t) dt =∞, (47)

and

sup
t>0

n0∑̀
=1

λi`(t)

µi(t)
<∞, sup

t>0

aij(t)

µi(t)
<∞, j 6= i, and lim inf

t→∞

n0∑̀
=1

λi`(t)

µi(t)
> 1. (48)

Then, for any initial function ϕ = (ϕ1, ϕ2, . . . , ϕn) ∈ Cn0 , the solution x(ϕ)(t) =
(x1(ϕ)(t), . . . , xn(ϕ)(t)) of the IVP (45) and (46) satisfies

x∗i ≤ lim inf
t→∞

xi(ϕ)(t) ≤ lim sup
t→∞

xi(ϕ)(t) ≤ x∗i , 1 ≤ i ≤ n,

where (x∗1, . . . , x
∗
n) is the unique positive solution of the algebraic system

xi + πix
2
i =

miixi
1 + γixi

+

n∑
j=1
j 6=i

mijxj , 1 ≤ i ≤ n, (49)

and (x∗1, . . . , x
∗
n) is the unique positive solution of the algebraic system

xi + πix
2
i =

miixi
1 + γ

i
xi

+

n∑
j=1
j 6=i

mijxj , 1 ≤ i ≤ n, (50)

respectively, where mii := lim inf
t→∞

n0∑̀
=1

λi`(t)

µi(t)
, mii := lim sup

t→∞

n0∑̀
=1

λi`(t)

µi(t)
, 1 ≤ i ≤ n, and

mij := lim inf
t→∞

aij(t)
µi(t)

, mij := lim sup
t→∞

aij(t)
µi(t)

for 1 ≤ i 6= j ≤ n.
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Proof. All conditions of Lemma 2.1 hold for the System (45), therefore it implies
that xi(t) = xi(ϕ)(t) > 0 for t ≥ 0 and i = 1, . . . , n. Since we assumed that ϕi ∈ C0

for all i = 1, . . . , n, it follows xi(t − τi`(t)) > 0 for t ≥ 0 and i = 1, . . . , n. From

(47), we have γi`(t) ≤ γi and κi(t)
µi(t)

≤ πi, for t > 0. Thus, we get from (45) for t ≥ 0

and i = 1, . . . , n that

ẋi(t) ≥
n0∑
`=1

λi`(t)xi(t− τi`(t))
1 + γixi(t− τi`(t))

+

n∑
j=1
j 6=i

aij(t)xj(t− σij(t))− µi(t)[xi(t) + πix
2
i (t)].

By comparison theorem of differential inequalities, we have xi(t) ≥ yi(t) for t ≥ 0
and i = 1, . . . , n, where yi(t) is the positive solution of the differential equation

ẏi(t) =

n0∑
`=1

λi`(t)yi(t− τi`(t))
1 + γiyi(t− τi`(t))

+

n∑
j=1
j 6=i

aij(t)yj(t− σij(t))

−µi(t)[yi(t) + πiy
2
i (t)], 1 ≤ i ≤ n, (51)

with the initial condition

yi(t) = ϕi(t), −τ ≤ t ≤ 0, 1 ≤ i ≤ n. (52)

Next, we check that conditions (A0)–(A6) of Theorem 2.4 are satisfied for the
System (51). First note that we can rewrite (51) in the form (5) with

αij`(t) :=

 λi`(t), j = i, ` = 1, . . . , n0,
aij(t), j 6= i, ` = 1,

0, j 6= i, ` 6= 1,

hij(u) :=

{ u
1+γiu

, j = i,

u, j 6= i,

τij`(t) :=

 τi`(t), j = i, ` = 1, . . . , n0,
σij(t), j 6= i, ` = 1,

0, j 6= i, ` 6= 1,

and βi(t) := µi(t), fi(u) := u + πiu
2 and ρi(t) := 0, 1 ≤ i, j ≤ n. We have

lim
u→0+

fi(u)
hii(u)

= lim
u→0+

(u+πiu
2)(1+γiu)
u = 1 and lim

u→∞
hij(u)
fi(u)

= 0 for all 1 ≤ i, j ≤ n.

Therefore, by our assumptions (47) and (48), we can see that conditions (A0)–
(A5) hold. To check condition (A6), we observe that

fi(u)

hij(u)
=

{
(1 + πiu)(1 + γiu), j = i,

1 + πiu, j 6= i,

is strictly increasing and

hjj(u)

hij(u)
=

u

u(1 + γiu)
=

1

1 + γiu

is strictly decreasing on (0,∞), for each 1 ≤ i 6= j ≤ n. We see that mjj =

lim inf
t→∞

n0∑̀
=1

λj`(t)

µj(t)
> 1 by (48), and

hjj(u)
hij(u)

is strictly decreasing on (0,∞), for all

j 6= i. Hence conditions (A6) (i), (ii) and (iii) are satisfied, and we can ap-
ply Theorem 2.4 (i) to the System (51). Therefore we get the lower estimates
lim inf
t→∞

xi(ϕ)(t) ≥ lim inf
t→∞

yi(ϕ)(t) ≥ x∗i , 1 ≤ i ≤ n, where (x∗1, . . . , x
∗
n) is the unique
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positive solution of the algebraic system (49). Similarly, we can get the upper es-
timates lim sup

t→∞
xi(ϕ)(t) ≤ x∗i , 1 ≤ i ≤ n, where (x∗1, . . . , x

∗
n) is the unique positive

solution of the algebraic system (50).

Now, we consider a time-dependent version of the n-dimensional Nicholson’s
blowflies system (3) for t ≥ 0:

ẋi(t) =

n0∑
`=1

bi`(t)xi(t− σi`(t))e−xi(t−σi`(t)) +

n∑
j=1
j 6=i

aij(t)xj(t)− di(t)xi(t), 1 ≤ i ≤ n

(53)
with the initial condition

xi(t) = ϕi(t), −τ ≤ t ≤ 0, 1 ≤ i ≤ n, (54)

where τ > 0, ϕ = (ϕ1, ϕ2, . . . , ϕn) ∈ Cn+, bi`, aij , di ∈ C(R+,R+), and σi` ∈
C(R+,R+) with 0 ≤ σi`(t) ≤ τ for t ≥ 0, 1 ≤ i 6= j ≤ n, ` = 1, . . . , n0. The
the persistence and permanence of the autonomous system (3) was investigated in
[16]. Unfortunately, our method does not work for this population model, since
the function ue−u is not monotone increasing, and so condition (A4) of our main
Theorem 2.4 is not satisfied for (53). But we can apply our method to get an upper
bound of the limit superior of the solutions of (53). We formulate this result next.

Corollary 3.8. Assume bi`, aij , di ∈ C(R+,R+), and σi` ∈ C(R+,R+) with 0 ≤
σi`(t) ≤ τ for t ≥ 0, 1 ≤ i 6= j ≤ n and ` = 1, . . . , n0. Moreover, we assume that,
for all 1 ≤ i, j ≤ n,

di(t) > 0, t > 0 and

∫ ∞
0

di(t) dt =∞, (55)

sup
t>0

n0∑̀
=1

bi`(t)

di(t)
<∞ and sup

t>0

aij(t)

di(t)
<∞, j 6= i, (56)

and

lim inf
t→∞

n0∑̀
=1

bi`(t)

di(t)
> 1 and

n∑
j=1
j 6=i

lim sup
t→∞

aij(t)

di(t)
< 1. (57)

Then, for any initial function ϕ = (ϕ1, ϕ2, . . . , ϕn) ∈ Cn+, the solution x(ϕ)(t) =
(x1(ϕ)(t), . . . , xn(ϕ)(t)) of the IVP (53) and (54) satisfies

xi(ϕ)(t) > 0, t ≥ 0, and lim sup
t→∞

xi(ϕ)(t) ≤ x∗i , 1 ≤ i ≤ n,

where (x∗1, . . . , x
∗
n) is the unique positive solution of the algebraic system

xi = miiH(xi) +

n∑
j=1
j 6=i

mijxj , 1 ≤ i ≤ n, (58)

where mii := lim sup
t→∞

n0∑̀
=1

bi`(t)

di(t)
, 1 ≤ i ≤ n, and mij := lim sup

t→∞

aij(t)
di(t)

for 1 ≤ i 6= j ≤

n, and H(u) :=

{
ue−u, u ≤ 1,

1
e , u > 1.
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Proof. All conditions of Lemma 2.1 hold for the System (53), therefore it implies
that xi(ϕ)(t) > 0 for t ≥ 0 and i = 1, . . . , n. We have ue−u ≤ H(u) for u ≥ 0,
therefore (53) yields

ẋi(t) ≤
n0∑
`=1

bi`(t)H(xi(t− σi`(t))) +

n∑
j=1
j 6=i

aij(t)xj(t)− di(t)xi(t), 1 ≤ i ≤ n.

By comparison theorem of differential inequalities, we have xi(t) ≤ yi(t) for t ≥ 0,
i = 1, . . . , n, where yi(t) is the positive solution of the differential equation

ẏi(t) =

n0∑
`=1

bi`(t)H(yi(t− σi`(t))) +

n∑
j=1
j 6=i

aij(t)yj(t)− di(t)yi(t), 1 ≤ i ≤ n, (59)

with the initial condition

yi(t) = ϕi(t), −τ ≤ t ≤ 0, 1 ≤ i ≤ n. (60)

Next, we check that (A0)–(A6) of Theorem 2.4 are satisfied for the System (59).
First note that we can rewrite (59) in the form (5) with

αij`(t) :=

 bi`(t), j = i, ` = 1, . . . , n0,
aij(t), j 6= i, ` = 1,

0, j 6= i, ` 6= 1,

hij(u) :=

{
H(u), j = i,
u, j 6= i,

τij`(t) :=

{
σi`(t), j = i, ` = 1, . . . , n0,

0, otherwise,

and βi(t) := di(t), fi(u) := u and ρi(t) := 0, 1 ≤ i, j ≤ n. We have

lim
u→0+

fi(u)

hii(u)
= lim
u→0+

u

H(u)
= 1 and lim

u→∞

hij(u)

fi(u)
=

{
0, j = i,
1, j 6= i

for 1 ≤ i, j ≤ n. Thus, by our assumptions (55), (56) and (57), we can see that
conditions (A0)–(A5) hold. To check condition (A6), we observe that

fi(u)

hij(u)
=

 eu, u ≤ 1, j = i,
eu, u > 1, j = i,
1, u > 1, j 6= i,

is increasing and

hjj(u)

hij(u)
=

H(u)

hij(u)
=

{
e−u, u ≤ 1, j 6= i,
1
eu , u > 1, j 6= i,

is strictly decreasing on (0,∞), for each 1 ≤ i, j ≤ n. Moreover, for each 1 ≤ i ≤ n,

fi(u)
hii(u)

is strictly increasing on (0,∞). For each j = 1, . . . , n, mjj ≥ lim inf
t→∞

n0∑̀
=1

bj`(t)

dj(t)
>

1 by (57), and
hjj(u)
hij(u)

is strictly decreasing on (0,∞), for all j 6= i. Hence conditions

(A6) (i), (iv) and (v) are satisfied, and we can apply Theorem 2.4 (ii) to the System
(59). Therefore we get the upper estimates lim sup

t→∞
xi(ϕ)(t) ≤ lim sup

t→∞
yi(ϕ)(t) ≤ x∗i ,

1 ≤ i ≤ n, where (x∗1, . . . , x
∗
n) is the unique positive solution of the algebraic system

(58).
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4. Proof of the main results. In this section we provide the proofs of our main
results formulated in Section 2. First we recall the following result from [21].

Lemma 4.1. (see [21]) Let 1 ≤ i ≤ n be fixed and y(T, y0 , c, βi, fi)(t) be the solution
of the IVP

ẏ(t) = βi(t)
(
c− fi(y(t))

)
, t ≥ T ≥ 0, (61)

y(T ) = y0, (62)

where c ≥ 0, βi satisfies condition (A1) and fi satisfies condition (A3). Then for
any T ≥ 0, y

0
> 0, and c ≥ 0 the corresponding solution y(T, y

0
, c, βi, fi)(t) of the

IVP (61) and (62) is uniquely defined on [T,∞), moreover we have

(i) c > 0 and 0 < y
0
< f−1i (c) yield that

0 < y(T, y
0
, c, βi, fi)(t) < f−1i (c), ẏ(T, y

0
, c, βi, fi)(t) > 0, t ≥ T

and

lim
t→∞

y(T, y0 , c, βi, fi)(t) = f−1i (c);

(ii) y0 = f−1i (c) yields that y(T, y0 , c, βi, fi)(t) = f−1i (c), t ≥ T ;

(iii) c ≥ 0 and y
0
> f−1i (c) yield that

y(T, y
0
, c, βi, fi)(t) > f−1i (c), ẏ(T, y

0
, c, βi, fi)(t) < 0, t ≥ T

and

lim
t→∞

y(T, y0 , c, βi, fi)(t) = f−1i (c).

Proof of Lemma 2.1 Since xi(0) = ϕi(0) > 0, 1 ≤ i ≤ n, then if xi(t) > 0 for
t ≥ 0, 1 ≤ i ≤ n, then we are done. Otherwise at least one of x1(t), . . . , xn(t) is
equal to zero for some positive t. Since the functions x1(t), . . . , xn(t) are continuous,
then in the last case there exists a t1 ∈ (0,∞) such that xi(t) > 0 for 0 ≤ t < t1,
1 ≤ i ≤ n and min{x1(t1), . . . , xn(t1)} = 0. Since αij`(t) ≥ 0, τij`(t) ≥ 0, ρi(t) ≥ 0,
t ≥ 0, 1 ≤ i, j ≤ n, 1 ≤ ` ≤ n0, and hij(u) ≥ 0, u ≥ 0, 1 ≤ i, j ≤ n, then from (5)
we have

ẋi(t) ≥ −βi(t)fi(xi(t)), 1 ≤ i ≤ n, 0 ≤ t ≤ t1.
But from the comparison theorem of the differential inequalities (see [10]), we have

xi(t) ≥ yi(t), 1 ≤ i ≤ n, 0 ≤ t ≤ t1,

where yi(t) = y(0, ϕi(0), 0, βi, fi)(t), 1 ≤ i ≤ n is the unique positive solution of
(61) with c = 0 and with the initial condition

yi(0) = xi(0) = ϕi(0) > 0, 1 ≤ i ≤ n.

Lemma 4.1 yields yi(t) > 0, for all t ≥ 0. Then at t = t1 we get xi(t1) ≥ yi(t1) > 0,
1 ≤ i ≤ n, which contradicts our assumption that min{x1(t1), . . . , xn(t1)} = 0.
Hence xi(t) > 0, 1 ≤ i ≤ n for t ∈ R+. �

Proof of Lemma 2.2 First we show that

inf
t≥0

xi(t) > 0, 1 ≤ i ≤ n. (63)

Let ϕ = (ϕ1, ϕ2, . . . , ϕn) ∈ Cn+ be an arbitrary fixed initial function. Then, by
Lemma 2.1, the solution x(t) = x(ϕ)(t) = (x1(ϕ)(t), . . . , xn(ϕ)(t)) obeys xi(t) > 0,
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1 ≤ i ≤ n, t ≥ 0. We claim that there exist T > 0 and c > 0 such that the following
inequalities are satisfied, for every i = 1, . . . , n,

min
0≤t≤T

xi(t) > c and

n∑
j=1

n0∑̀
=1

αij`(t)hij(c)

βi(t)
+
ρi(t)

βi(t)
> fi(c), t ≥ T. (64)

From (8), we have two cases:

(i) if i is such that lim inf
t→∞

ρi(t)
βi(t)

> 0, then fix a ξi > 0 such that

lim inf
t→∞

ρi(t)

βi(t)
> ξi > 0.

Thus there exists Ti > 0 such that

ρi(t)

βi(t)
> ξi > 0, for t ≥ Ti.

Lemma 2.1 and (A3) imply that there exists a ci > 0 such that

min
0≤t≤T

xi(t) > ci and fi(u) < ξi for 0 < u ≤ ci.

Therefore (64) is satisfied for such i.

(ii) if i is such that lim sup
u→0+

fi(u)
hii(u)

< lim inf
t→∞

n0∑̀
=1

αii`(t)

βi(t)
, then let Ki > 0 be such that

lim sup
u→0+

fi(u)

hii(u)
< Ki < lim inf

t→∞

n0∑̀
=1

αii`(t)

βi(t)
.

Thus there exists Ti > 0 such that

Ki <

n0∑̀
=1

αii`(t)

βi(t)
, t ≥ Ti.

Also, there exists ci > 0 such that

fi(u)

hii(u)
< Ki, for 0 < u ≤ ci and min

0≤t≤T
xi(t) > ci.

Then we have

n∑
j=1

n0∑̀
=1

αij`(t)hij(c)

βi(t)
≥ 1

Ki
fi(u)

n0∑̀
=1

αii`(t)

βi(t)
> fi(u), t ≥ Ti, 0 < u ≤ ci,

and hence (64) holds for such i. Therefore (64) is satisfied, for all i = 1, . . . , n, with
T = max{T1, . . . , Tn} and c = min{c1, . . . , cn}.

Now, in virtue of (64), either xi(t) > c for all t ≥ 0, 1 ≤ i ≤ n, or there exists
t2 ∈ (T,∞) such that min{x1(t2), . . . , xn(t2)} = c and xi(t) > c for t ∈ [0, t2),
1 ≤ i ≤ n. In this case at least one of the values of x1(t2), . . . , xn(t2) is equal to c.
Assume, e.g., that x1(t2) = c, then ẋ1(t2) ≤ 0. On the other hand, the monotonicity
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of h1j and (64) yield that

ẋ1(t2) = β1(t2)


n∑
j=1

n0∑̀
=1

α1j`(t2)h1j(xj(t2 − τ1j`(t2)))

β1(t2)
− f1(x1(t2)) +

ρ1(t2)

β1(t2)



≥ β1(t2)


n∑
j=1

n0∑̀
=1

α1j`(t2)h1j(c)

β1(t2)
+
ρ1(t2)

β1(t2)
− f1(c)


> 0,

which is a contradiction, since ẋ1(t2) ≤ 0. Hence x1(t) > c for all t ≥ 0. Similarly,
we can show that xi(t) > c, for all t ≥ 0, 2 ≤ i ≤ n, and therefore (63) holds.

Now we show that

sup
t≥0

xi(t) <∞, 1 ≤ i ≤ n. (65)

We claim that there exist T > 0 and M > 0 such that the following inequalities are
satisfied, for every i = 1, . . . , n,

max
0≤t≤T

xi(t) < M and


n∑
j=1

n0∑̀
=1

αij`(t)hij(M)

βi(t)
+
ρi(t)

βi(t)

 < fi(M), t ≥ T.

(66)
The second relation of (66) holds if

n∑
j=1

n0∑̀
=1

αij`(t)
hij(M)
fi(M)

βi(t)
+

1

fi(M)

ρi(t)

βi(t)

 < 1, t ≥ T. (67)

Using (10), there exists a µi > 0 such that

n∑
j=1

(
lim sup
t→∞

n0∑̀
=1

αij`(t)

βi(t)

)
lim sup
u→∞

hij(u)

fi(u)
< µi < 1,

then there exists an δ > 0 such that

n∑
j=1

(
lim sup
t→∞

n0∑̀
=1

αij`(t)

βi(t)
+ δ
)(

lim sup
u→∞

hij(u)

fi(u)
+ δ
)
< µi.

Thus there exist Ti > 0 and V1i > 0 such that

n∑
j=1

(
sup
t≥Ti

n0∑̀
=1

αij`(t)

βi(t)

)hij(u)

fi(u)
< µi, u ≥ V1i.

Moreover, using (9), there exists a V2i > 0 such that

1

fi(u)
sup
t≥Ti

ρi(t)

βi(t)
< 1− µi, u ≥ V2i,
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and so there exists a large M > 0 such that (67) holds and max
0≤t≤T

xi(t) < M , with

T = max{T1, . . . , Tn}, for all 1 = 1, . . . , n. Hence inequality (66) is satisfied for each
i = 1, . . . , n. Now, in virtue of (66), either xi(t) < M for all t ≥ 0, 1 ≤ i ≤ n, or
there exists t3 ∈ (T,∞) such that max{x1(t3), . . . , xn(t3)} = M , and xi(t) < M for
t ∈ [0, t3) and i = 1, . . . , n. In this case at least one of the values of x1(t3), . . . , xn(t3)
is equal to M . Assume, e.g., that x1(t3) = M , then ẋ1(t3) ≥ 0. On the other hand,
using (66) and the monotonicity of h1j , we have

ẋ1(t3) = β1(t3)


n∑
j=1

n0∑̀
=1

α1j`(t3)h1j(xj(t3 − τ1j`(t3)))

β1(t3)
− f1(x1(t3)) +

ρ1(t3)

β1(t3)



≤ β1(t3)


n∑
j=1

n0∑̀
=1

α1j`(t3)h1j(M)

β1(t3)
− f1(M) +

ρ1(t3)

β1(t3)


< 0,

which is a contradiction, since ẋ1(t3) ≥ 0. Hence x1(t) < M, for all t ≥ 0. Similarly,
we can show that xi(t) < M, for all t ≥ 0, 2 ≤ i ≤ n, and therefore (65) holds. �

Now, we consider the system of nonlinear algebraic equations

γi(xi) =

n∑
j=1

gij(xj), 1 ≤ i ≤ n, (68)

where γi ∈ C(R+,R), gij ∈ C(R+,R+), 1 ≤ i, j ≤ n.
In [22] sufficient conditions were given to guarantee the existence of a unique

positive solution of (68). We recall this result next.

Theorem 4.2. ([22]) Let γi ∈ C(R+,R) and gij ∈ C(R+,R+), 1 ≤ i, j ≤ n be such
that

(A) for each 1 ≤ i ≤ n, there exists a u∗i > 0 satisfying

γi(u)

 < 0, if 0 < u < u∗i ,
= 0, if u = u∗i ,
> 0, if u > u∗i ,

and γi is strictly increasing on [u∗i ,∞).
(B) gij, 1 ≤ i, j ≤ n is increasing on R+, and there exists a u∗∗i ≥ u∗i such that

n∑
j=1

gij(u) < γi(u), u > u∗∗i , 1 ≤ i ≤ n. (69)

Then the System (68) has a positive solution.
Moreover, assume that

(C) for each 1 ≤ i, j ≤ n, either gij(u) > 0 for u > 0 or gij(u) = 0 for u > 0;

(D) for each 1 ≤ i, j ≤ n,
γj(u)
gij(u)

is monotone increasing on (u∗j ,∞), assuming

gij(u) > 0 for u > 0, and there exist i, j such that gij(u) > 0 for u > 0 and
γj(u)
gij(u)

is strictly monotone increasing on (u∗j ,∞).

Then the System (68) has a unique positive solution.
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We note that uniqueness of Theorem 4.2 was proved in [22] under the condition
that

(D*) for each 1 ≤ i, j ≤ n,
γj(u)
gij(u)

is strictly monotone increasing on (u∗j ,∞),

assuming gij(u) > 0 for u > 0.

We note that the uniqueness of the positive solutions of (68) also holds if we assume
(D) instead of (D*), and the proof is an obvious extension of that presented in
[22].

Proof of Lemma 2.3 The proof of part (i) is obtained directly from Theorem 4.2,
where we can rewrite (13) in the form (68) with γi(u) := fi(u)−miihii(u)− li and
gij(u) := mijhij(u) for each 1 ≤ i 6= j ≤ n and gii(u) = 0. Now, to prove the
existence of a positive solution for System (13), we check that conditions (A) and
(B) of Theorem 4.2 are satisfied. For condition (A), we have that γi(u) = 0 if and
only if

fi(u)

hii(u)
=

li
hii(u)

+mii, 1 ≤ i ≤ n. (70)

The left hand side of (70) is increasing and the right hand side of (70) is decreasing,
moreover, assumption (H2) yields that either the left hand side or the right hand
side is a strictly monotone function. Therefore, condition (A) of Theorem 4.2 holds,
if we show

lim
u→0+

fi(u)

hii(u)
< lim
u→0+

li
hii(u)

+mii, 1 ≤ i ≤ n, (71)

and

lim
u→∞

fi(u)

hii(u)
> lim
u→∞

li
hii(u)

+mii, 1 ≤ i ≤ n. (72)

If li > 0 and hii(0) = 0, then (71) follows, since the left hand side of (71) is always

finite, since fi(u)
hii(u)

is monotone increasing. If li > 0 and hii(0) > 0, then the right

hand side of (71) is finite and positive, but lim
u→0+

fi(u)
hii(u)

= 0 using (A3). If li = 0,

then assumption (14) yields (71). Relation (72) follows immediately from (15).
Hence condition (A) is satisfied.

To check condition (B), we see that gij(u) := mijhij(u), 1 ≤ i 6= j ≤ n, and
gii(u) = 0 are increasing on R+, and relation (69) is equivalent to

n∑
j=1
j 6=i

mijhij(u) < fi(u)−miihii(u)− li,

which is satisfied if and only if

n∑
j=1

mij
hij(u)

fi(u)
+

li
fi(u)

< 1.

Therefore, using (15), (69) is satisfied when u is large enough and hence condition
(B) is satisfied. Therefore (13) has a positive solution. For the proof of the unique-
ness of the positive solution of the System (13), we check that conditions (C) and
(D) of Theorem 4.2 are satisfied. Since mij ≥ 0 and hij(u) > 0 for u > 0, for
each 1 ≤ i, j ≤ n, then condition (C) is satisfied. To check condition (D) assume
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mij > 0. Then the function

γj(u)

gij(u)
=

fj(u)−mjjhjj(u)− lj
mijhij(u)

=
fj(u)

mijhij(u)
− mjjhjj(u)

mijhij(u)
− lj
mijhij(u)

is monotone increasing on (0,∞), by (A4) and (H1). By assumption (H3), there

exists i 6= j such that
γj(u)
gij(u)

is strictly monotone increasing on (0,∞), and so

condition (D) is satisfied. Hence the System (13) has a unique positive solution.
Now we prove (ii). From (16) we have

xi ≥ f−1i

 n∑
j=1

mijhij(xj) + li

 , 1 ≤ i ≤ n. (73)

Assumption (A3) and (14) yield that there exists a small u∗ such that

0 < u∗ < xi, 1 ≤ i ≤ n. (74)

and

1 ≤
n∑
j=1

mij
hij(u

∗)

fi(u∗)
+

li
fi(u∗)

,

or equivalently,

0 < u∗ ≤ f−1i

 n∑
j=1

mijhij(u
∗) + li

 , 1 ≤ i ≤ n. (75)

Now we construct a sequence (x
(0)
i , . . . , x

(k)
i , . . .) such that

x
(0)
i = u∗ and x

(k+1)
i = f−1i

 n∑
j=1

mijhij(x
(k)
j ) + li

 , k ≥ 0, 1 ≤ i ≤ n,

(76)

and we prove that the sequence (x
(0)
i , . . . , x

(k)
i , . . .) converges. For this, we prove that

the sequence (x
(0)
i , . . . , x

(k)
i , . . .) is monotone increasing and bounded from above.

First we show
x
(k+1)
i ≥ x(k)i , for all k ≥ 0, 1 ≤ i ≤ n. (77)

For this aim, we use the mathematical induction. At k = 0 we have, by (75) and
(76),

x
(1)
i = f−1i

 n∑
j=1

mijhij(x
(0)
j ) + li


= f−1i

 n∑
j=1

mijhij(u
∗) + li


≥ u∗

= x
(0)
i , 1 ≤ i ≤ n.

Next, we assume, for some k ≥ 0, that

x
(k)
i ≥ x(k−1)i , 1 ≤ i ≤ n. (78)
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Then, by (76) and (78),

x
(k+1)
i = f−1i

 n∑
j=1

mijhij(x
(k)
j ) + li


≥ f−1i

 n∑
j=1

mijhij(x
(k−1)
j ) + li


= x

(k)
i , 1 ≤ i ≤ n.

Hence the sequence (x
(0)
i , . . . , x

(k)
i , . . .) is monotone increasing for all k ≥ 0, 1 ≤ i ≤

n. Now, to prove that the sequence (x
(0)
i , . . . , x

(k)
i , . . .) is bounded from above for

all k ≥ 0, 1 ≤ i ≤ n, we show that

x
(k+1)
i ≤ xi, for all k ≥ 0, 1 ≤ i ≤ n.

Again, we use the mathematical induction. At k = 0 we have, by (73), (74) and
(76),

x
(1)
i = f−1i

 n∑
j=1

mijhij(x
(0)
j ) + li


= f−1i

 n∑
j=1

mijhij(u
∗) + li


≤ f−1i

 n∑
j=1

mijhij(xj) + li


≤ xi, 1 ≤ i ≤ n.

Next, we assume, for some k ≥ 0, that

x
(k)
i ≤ xi, 1 ≤ i ≤ n. (79)

Then, by (73), (76) and (79), we have

x
(k+1)
i = f−1i

 n∑
j=1

mijhij(x
(k)
j ) + li


≤ f−1i

 n∑
j=1

mijhij(xj) + li


≤ xi, 1 ≤ i ≤ n,

and hence the sequence (x
(0)
i , . . . , x

(k)
i , . . .) is bounded from above for all k ≥ 0,

1 ≤ i ≤ n. Now, since the sequence is monotone increasing and bounded from
above, it converges and has a finite limit, i.e.,

lim
k→∞

x
(k)
i = x∗i , 1 ≤ i ≤ n,

and clearly, x∗ = (x∗1, . . . , x
∗
n) is the unique positive solution of (13). On the other

hand, we know that

x
(k)
i ≤ xi, k ≥ 0, 1 ≤ i ≤ n,
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which implies

x∗i ≤ xi, 1 ≤ i ≤ n,
and hence the proof of (ii) is completed.

The proof of part (iii) is similar to that of part (ii), so it is omitted here. �

Now, we are ready to prove the main result of the manuscript.
Proof of Theorem 2.4 In the proof we will use the notations

xϕi (∞) := lim inf
t→∞

xi(ϕ)(t) and xϕi (∞) := lim sup
t→∞

xi(ϕ)(t).

By conditions (7), (8), (9) and relation (12), we have for any T ≥ τ that

0 ≤ mij(T ) := inf
t≥T

n0∑̀
=1

αij`(t)

βi(t)
≤ sup
t≥T

n0∑̀
=1

αij`(t)

βi(t)
=: Mij(T ) <∞, 1 ≤ i, j ≤ n;

(80)

0 ≤ li(T ) := inf
t≥T

ρi(t)

βi(t)
≤ sup
t≥T

ρi(t)

βi(t)
=: Li(T ) <∞, 1 ≤ i ≤ n; (81)

and

0 < xi(T ) := inf
t≥T−τ

xi(t) ≤ sup
t≥T−τ

xi(t) =: xi(T ) <∞, 1 ≤ i ≤ n. (82)

Thus from (80), (81), (82) in (5) we get

ẋi(t) ≥ βi(t)

 n∑
j=1

n0∑̀
=1

αij`(t)

βi(t)
hij(xj(T )) + li(T )− fi(xi(t))



≥ βi(t)

 n∑
j=1

inf
t≥T

n0∑̀
=1

αij`(t)

βi(t)
hij(xj(T )) + li(T )− fi(xi(t))


≥ βi(t)

 n∑
j=1

mij(T )hij(xj(T )) + li(T )− fi(xi(t))

 , t ≥ T, 1 ≤ i ≤ n,

or equivalently

ẋi(t) ≥ βi(t) [Ci(T )− fi(xi(t))] , t ≥ T, 1 ≤ i ≤ n, (83)

where Ci(T ) :=
n∑
j=1

mij(T )hij(xj(T )) + li(T ). From (83) and the comparison theo-

rem of differential inequalities we get

xi(t) ≥ yi(t), t ≥ T, 1 ≤ i ≤ n,

where yi(t) = y(T, ϕi(T ), Ci(T ), βi, fi)(t), 1 ≤ i ≤ n are the solutions of the differ-
ential equations (61) with c = Ci(T ) and with the initial condition

yi(T ) = xi(T ), 1 ≤ i ≤ n. (84)

So, from Lemma 4.1, we see that

lim
t→∞

yi(t) = f−1i (Ci(T )) , 1 ≤ i ≤ n.
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Thus, for any T ≥ τ ,

xϕi (∞) := lim inf
t→∞

xi(ϕ)(t) ≥ lim
t→∞

yi(t) = f−1i (Ci(T )) , 1 ≤ i ≤ n.

But

lim
T→∞

f−1i (Ci(T )) = lim
T→∞

f−1i

 n∑
j=1

mij(T )hij(xj(T )) + li(T )


= f−1i

 n∑
j=1

lim
T→∞

mij(T )hij(xj(T )) + lim
T→∞

li(T )


= f−1i

 n∑
j=1

mijhij(x
ϕ
j (∞)) + li

 , 1 ≤ i ≤ n.

Therefore

xϕi (∞) ≥ f−1i

 n∑
j=1

mijhij(x
ϕ
j (∞)) + li

 , 1 ≤ i ≤ n,

or equivalently

fi(x
ϕ
i (∞)) ≥

n∑
j=1

mijhij(x
ϕ
j (∞)) + li, 1 ≤ i ≤ n.

Since all the conditions of Lemma 2.3 are satisfied with mij = mij and li = li, it
can be applied, and we obtain

xϕi (∞) ≥ x∗i , 1 ≤ i ≤ n,
where x∗ = (x∗1, . . . , x

∗
n) is the unique positive solution of the System (19). In a

similar way we can get

xϕi (∞) ≤ x∗i , 1 ≤ i ≤ n,
where x∗ = (x∗1, . . . , x

∗
n) is the unique positive solution of the System (20). Hence

the proof is completed. �

5. Conclusions. In this manuscript we obtained sufficient conditions for the uni-
form permanence of the positive solutions of a system of nonlinear differential equa-
tions with delays of the form

ẋi(t) =

n∑
j=1

n0∑
`=1

αij`(t)hij(xj(t− τij`(t)))− βi(t)fi(xi(t)) + ρi(t), t ≥ 0, 1 ≤ i ≤ n.

It is an interesting future question to extend our method under weaker conditions,
e.g., when some functions hij are decreasing. The key technical result we used in
the proof of the main result is Theorem 4.2, where we gave sufficient conditions to
guarantee that the algebraic system

γi(xi) =

n∑
j=1

gij(xj), 1 ≤ i ≤ n,

has a unique positive solution. It is challenging to extend this result to the case
when some functions gij are increasing, but some others are decreasing.
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In Corollary 3.2 we formulated explicit conditions for the uniform permanence
of the special system when hij(u) = upij and fi(u) = uqi , i, j = 1, . . . , n. We also
gave explicit conditions implying that all positive solutions of the system

ẋi(t) =

n∑
j=1

n0∑
`=1

αij`(t)xj(t− τij`(t))− βi(t)xqii (t) + ρi(t), t ≥ 0, 1 ≤ i ≤ n

are asymptotically equivalent (see Theorem 3.5). It is an open problem to extend
this result to a broader class of nonlinear delay systems, even for equations of the
form

ẋi(t) =

n∑
j=1

n0∑
`=1

αij`(t)x
pij
j (t− τij`(t))− βi(t)xqii (t) + ρi(t), t ≥ 0, 1 ≤ i ≤ n

such that qi > pij > 0. We investigated some population models and presented
several examples to illustrate our main result.
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