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Abstract

In this paper we formulate a stability theorem by means of linearization around a
trivial solution in a cass of autonomous neutral functional differential equations with
state-dependent delay. We prove that if the trivial solution of the linearized equation is
exponentially stable, then the trivial solution of the nonlinear equation is exponentially
stable, as well. As an application of the main result, explicit stability conditions are
given.
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1 Introduction and Formulation of the Main Results

In this paper we consider the autonomous neutral differential system

d

dt

(

x(t) − g(x(t− σ(xt)))
)

= f
(

xt, x(t− τ(xt))
)

, t ≥ 0 (1.1)

and the associated initial condition

x(t) = ϕ(t), t ∈ [−r, 0], ϕ ∈ C. (1.2)

Here we assume that r > 0 is fixed, g : R
n → R

n, f : R
n × R

n → R
n and σ, τ : C → [0, r].

A fixed norm on R
n and its induced matrix norm on R

n×n are both denoted by | · |. C

is the Banach space of continuous functions ψ : [−r, 0] → R
n equipped with the norm

‖ψ‖ = sup{|ψ(s)| : s ∈ [−r, 0]}. The solution segment function xt : [−r, 0] → R
n is defined

by xt(s) = x(t+ s).
We assume that x = 0 is a constant equilibrium of (1.1), and we study the exponential

stability of the trivial solution by means of linearization technique.

This research was partially supported by Hungarian National Foundation for Scientific Research Grant

No. T046929.
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For retarded delay differential equations with state-dependent delays (SD-DDEs), i.e.,
the case when g ≡ 0 in (1.1), a linearized stability theorem was first proved in [5]. Later,
similar results were proved for different classes of SD-DDEs in [12, 16, 20, 21, 27]. The
main technical difficulty to prove a linearized stability theorem in SD-DDEs is that the map
C ∋ ψ 7→ f(ψ,ψ(−τ(ψ))) ∈ R

n is not Fréchet-differentiable. See [22, 27] for more details and
discussions on this topic. We refer the interested reader also to [22] for a survey on general
theory and applications of SD-DDEs. The study of SD-DDEs is an active research area (see,
e.g., [1, 9, 16, 22, 24, 25] and the refences therein). Much less work is devoted to neutral
functional differential equations with state-dependent delays [2, 3, 4, 6, 11, 17, 18, 19, 23, 28,
29].

We compare the exponential stability of the trivial solution of (1.1) to that of the associ-
ated linear system

d

dt

(

y(t) − g′(0)y(t− σ(0))
)

= D1f(0, 0)yt +D2f(0, 0)y(t− τ(0)), t ≥ 0, (1.3)

where 0 is the constant 0 function in C, and we associate initial condition (1.2) to (1.3).
We assume throughout the paper

(H1) (i) the function g : U1 → R
n is continuously differentiable, where U1 ⊂ R

n is open,
and 0 ∈ U1;

(ii) g(0) = 0;

(iii) |g′(0)| < 1;

(H2) (i) the function f : U2 × U3 → R
n is continuously differentiable, where U2 ⊂ C and

U3 ⊂ R
n are open subsets, 0 ∈ U2 and 0 ∈ U3;

(ii) f(0, 0) = 0;

(H3) (i) the delay functions σ, τ : U4 → [0, r] are continuous, where U4 ⊂ C is open, and
0 ∈ U4;

(ii) σ(0) 6= 0;

(H4) ϕ ∈ C.

Note that (H1) (ii) is not a restriction on the problem, since we can always add a constant
to the function g.

Assumptions (H1)–(H4) yield only the existence but not the uniqueness of solutions of
the IVP (1.1)-(1.2) (see corresponding results for retarded SD-DDEs, e.g., in [7, 20, 22]).

We say that the trivial (zero) solution of the linear equation (1.3) is exponentially stable,
if there exists K1 ≥ 0 and α > 0 such that

|y(t)| ≤ K1e
−αt‖ϕ‖, t ≥ 0. (1.4)

In this case we say that the order of exponential stability is α.
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Similarly, we say the trivial solution of the nonlinear equation (1.1) is exponentially stable,
if there exist K ≥ 0, θ > 0 and δ > 0 such that

|x(t)| ≤ Ke−θt‖ϕ‖, t ≥ 0, ‖ϕ‖ ≤ δ.

We formulate the main result of the paper in the next theorem.

Theorem 1.1 Assume (H1)–(H4). If the trivial solution of (1.3) is exponentially stable,
then the trivial solution of (1.1) is exponentially stable, as well.

The proof will be given in two steps. In Section 3 we show that the trivial solution of (1.1)
is stable, and in Section 4 we give the proof for its exponential stability. Section 2 contains
some preliminary results and introduces notations will be used in the sequel.

We comment that the results are presented for the case of the zero equilibrium, but they
are easy to generalize for the case of any constant equilibrium. Also, the proofs are easy to
extend to the case when they are multiple state-dependent delay terms on the right-hand-side
of (1.1), but the method we use (especially Proposition 2.3 below) relies on the fact that there
is only a single delay term in the neutral part of the equation, i.e., on the left-hand-side of
(1.1).

Theorem 1.1 immediately has the following corollary. Let I be the n×n identity matrix.

Corollary 1.2 Assume (H1)–(H4). If there exists c0 > 0 such that all roots of

λI − g′(0)λe−λσ(0) = D1f(0, 0)
(

eλ·I
)

+D2f(0, 0)e−λτ(0)

satisfiy Reλ ≤ −c0, then trivial solution of (1.1) is exponentially stable.

Combining Theorem 1.1 and known stability conditions for linear neutral equations we
can formulate explicit stability conditions for equation (1.1). As an illustration, we formulate
the next three theorems based on stability conditions of [8], [26] and [10], respectively. Note
that for retarded SD-DDEs similar explicit conditions were given in [12] and [14].

Consider the scalar equation

d

dt

(

x(t) − g(x(t − σ(xt)))
)

= h
(

x(t), x(t− τ(xt))
)

, t ≥ 0. (1.5)

Then equation (1.5) has the form (1.1) with f(ψ, u) = h(ψ(0), u). We assume

(H2*) (i) the function h : U2 × U3 → R is continuously differentiable, where U2 and U3 are
open subsets of R containing 0;

(ii) h(0, 0) = 0.
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Theorem 1.3 Suppose (H1), (H2*), (H3), (H4), n = 1, and

(i) D1h(0, 0) < −|D2h(0, 0)|,

(ii) σ(0) = τ(0) > 0.

Then the trivial solution of (1.5) is exponentially stable.

Theorem 1.4 Suppose (H1), (H2*), (H3), (H4), n = 1, and

(i) D1h(0, 0) = D2h(0, 0) < 0,

(ii) σ(0) = 2τ(0) > 0,

(iii) and either

−
1

3
≤ g′(0) < 1, g′(0) 6= 0

or

−1 < g′(0) < −
1

3
, 0 < τ(0) <

1 + g′(0)

|D1h(0, 0)|

√

1 − g′(0)

−3g′(0) − 1
arccos

1 + g′(0)

−2g′(0)

hold. Then the trivial solution of (1.5) is exponentially stable.

Theorem 1.5 Suppose (H1), (H2*), (H3), (H4), n = 1, and

(i) D1h(0, 0) +D2h(0, 0) > 0,

(ii) |g′(0)| + |D2h(0, 0)|τ(0) < 1.

Then the trivial solution of (1.5) is exponentially stable.

2 Preliminaries

We introduce some constants will be used throughout the paper. Let |g′(0)| < c < 1 be fixed,
and let ̺ > 0 be such that

u ∈ U1 ∩ U3 for u ∈ R
n, |u| ≤ ̺ and ψ ∈ U2 for ψ ∈ C, ‖ψ‖ ≤ ̺,

and
|g′(u)| ≤ c, |u| ≤ ̺, u ∈ R

n.

Define
M = max

i=1,2

{

max{|Dif(ψ, u)| : (ψ, u) ∈ C × R
n, ‖ψ‖ ≤ ̺, |u| ≤ ̺}

}

.
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It follows from the Mean Value Theorem and the definition of c that

|g(u) − g(ũ)| ≤ c|u− ũ|, u, ũ ∈ R
n, |u|, |ũ| ≤ ̺, (2.1)

and

|f(ψ, u)−f(ψ̃, ũ)| ≤M(‖ψ−ψ̃‖+|u−ũ|), (ψ, u), (ψ̃, ũ) ∈ C×R
n, ‖ψ‖, ‖ψ̃‖ ≤ ̺, |u|, |ũ| ≤ ̺.

(2.2)

We introduce the following functions:

ω1(s) = sup{|g′(u) − g′(0)| : |u| ≤ s, u ∈ U1}

ω2(s) = sup{|D1f(ψ, u) −D1f(0, 0)| : max{‖ψ‖, |u|} ≤ s, ψ ∈ U2, u ∈ U3}

ω3(s) = sup{|D2f(ψ, u) −D2f(0, 0)| : max{‖ψ‖, |u|} ≤ s, ψ ∈ U2, u ∈ U3}

ω4(s) = sup{|σ(ψ) − σ(0)| : ‖ψ‖ ≤ s, ψ ∈ U4}

ω5(s) = sup{|τ(ψ) − τ(0)| : ‖ψ‖ ≤ s, ψ ∈ U4}

The assumed continuity of the respective functions yields ωi(s) → 0 as s → 0+ for i =
1, 2, 3, 4, 5. To simplify formulas later we define

ω(s) = max{ω1(s), ω2(s), ω3(s), ω4(s), ω5(s)}.

Then ω is a monotone nondecreasing function and ω(s) → 0 as s→ 0+.

Proposition 2.1 Suppose x is a solution of the IVP (1.1)-(1.2) satisfying

|x(t)| ≤ ̺, for t ∈ [−r, T ] (2.3)

for some T > 0. Then there exist constants N1 > 1 and γ > 0 such that

|x(t)| ≤ N1e
γt‖ϕ‖, t ∈ [0, T ].

Proof Integration of (1.1) from 0 to t yields

x(t) = g(x(t− σ(xt))) + ϕ(0) − g(ϕ(−σ(ϕ))) +

∫ t

0
f(xs, x(s − τ(xs))) ds,

hence, using (2.1) and (2.2) we get

|x(t)| ≤ |g(x(t− σ(xt))) − g(0)| + |ϕ(0)| + |g(ϕ(−σ(ϕ))) − g(0)|

+

∫ t

0
|f(xs, x(s − τ(xs))) − f(0, 0)| ds

≤ c|x(t− σ(xt))| + ‖ϕ‖ + c|ϕ(−σ(ϕ))| +M

∫ t

0
(‖xs‖ + |x(s− τ(xs))|) ds

≤ c max
−r≤u≤t

|x(u)| + (1 + c)‖ϕ‖ + 2M

∫ t

0
max

−r≤u≤s
|x(u)| ds, t ∈ [0, T ].
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Since the right-hand-side is monotone increasing in t, it implies (see, e.g., Lemma 2.1 in [17])

max
−r≤u≤t

|x(u)| ≤ c max
−r≤u≤t

|x(u)| + (1 + c)‖ϕ‖ + 2M

∫ t

0
max

−r≤u≤s
|x(u)| ds,

and so

|x(t)| ≤ max
−r≤u≤t

|x(u)| ≤
1 + c

1 − c
‖ϕ‖ +

2M

1 − c

∫ t

0
max

−r≤u≤s
|x(u)| ds, t ∈ [0, T ].

Consequently the statement of the lemma follows with N1 = 1+c
1−c

and γ = 2M
1−c

from Gronwall’s
inequality. �

We can rewrite equation (1.1) as

d

dt

(

x(t) − g′(0)x(t− σ(0)) −G(t)
)

= D1f(0, 0)xt +D2f(0, 0)x(t − τ(0)) + F (t), t ≥ 0,

where
G(t) = g

(

x(t− σ(xt))
)

− g′(0)x(t− σ(0))

and
F (t) = f

(

xt, x(t− τ(xt))
)

−D1f(0, 0)xt −D2f(0, 0)x(t− τ(0)).

We define the fundamental solution of (1.3) as the n × n matrix solution of the initial
value problem

d

dt

(

V (t) − g′(0)V (t− σ(0))
)

= D1f(0, 0)Vt +D2f(0, 0)V (t− τ(0)), t ≥ 0, (2.4)

V (t) =

{

I, t = 0,
0 t < 0.

(2.5)

Here I and 0 denote the n×n identity and the zero matrices, respectively. We comment that
D1f(0, 0) is a bounded linear functional on the space C, but using Hahn–Banach-Theorem,
we can extend it to the space of bounded functions defined on [−r, 0]. In (2.4) this extension
is used, which is denoted by D1f(0, 0), as well.

The variation-of-constants formula (see, e.g., [15]) yields

x(t) = y(t) +G(t)− V (t)G(0) −

∫ t

0
ds[V (t− s)]G(s) +

∫ t

0
V (t− s)F (s) ds, t ≥ 0, (2.6)

where y is the solution of (1.3) corresponding to initial condition (1.2). It is easy to check that
V is continuously differentiable on the intervals (kσ(0), (k + 1)σ(0)), it is right-continuous
at the points kσ(0), has left-sided limits at the points kσ(0), and V (kσ(0)) − V (kσ(0)−) =
(g′(0))k for k = 0, 1, . . .. Consequently (2.6) can be rewritten as

x(t) = y(t) − V (t)G(0) +

h

t
σ(0)

i

∑

k=0

(g′(0))kG(t− kσ(0)) +

∫ t

0
V ′(t− s)G(s) ds

+

∫ t

0
V (t− s)F (s) ds, t ≥ 0, (2.7)
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where [·] is the greatest integer part function.

If the trivial solution of (1.3) is exponentially stable with order α, i.e., (1.4) holds, then
it is known (see, e.g., [15]), that there exists K2 ≥ 1 such that

|V (t)| ≤ K2e
−αt, t ≥ 0. (2.8)

The next result shows that in this case the derivative of V is also exponentially bounded.

Proposition 2.2 Suppose the trivial solution of (1.3) is exponentially stable with order α,
i.e., V satisfies (2.8). Then for any 0 < β ≤ α satisfying

ceβσ(0) < 1 (2.9)

there exists K3 ≥ 1 such that

|V ′(t)| ≤ K3e
−βt, a.e. t ≥ 0. (2.10)

Proof Rewritting (2.4) we get

V ′(t) = g′(0)V ′(t−σ(0))+D1f(0, 0)Vt +D2f(0, 0)V (t− τ(0)), t 6= kσ(0), (k = 0, 1, . . .),

and hence, the definition of c and M and relation (2.8) imply

|V ′(t)| ≤ c|V ′(t− σ(0))| +M(‖Vt‖ + |V (t− τ(0))|)

≤ c|V ′(t− σ(0))| + 2MK2e
−α(t−r), t 6= kσ(0), (k = 0, 1, . . .).

Consider a 0 < β < α satisfying (2.9). Multiplying both sides of the inequality by eβt we get

|V ′(t)|eβt ≤ c|V ′(t− σ(0))|eβt + 2MK2e
−α(t−r)eβt,

and therefore the function w(t) = |V ′(t)|eβt satisfies

w(t) ≤ c̃w(t− σ(0)) + K̃, t ≥ 0, t 6= kσ(0), (k = 0, 1, . . .) (2.11)

with K̃ = 2MK2e
αr and c̃ = ceβσ(0). It follows from (2.9) that 0 < c̃ < 1. Since w(t) = 0 for

t ∈ (0, σ(0)), (2.11) implies
w(t) ≤ K̃, t ∈ (0, σ(0)).

But then (2.11) yields

w(t) ≤ (c̃+ 1)K̃, t ∈ (σ(0), 2σ(0)),

and by induction

w(t) ≤ (c̃k + · · · + c̃+ 1)K̃, t ∈ (kσ(0), (k + 1)σ(0)).

7



Consequently

w(t) ≤
K̃

1 − c̃
, t ≥ 0, t 6= kσ(0), k = 0, 1, . . . ,

which implies the statement with K3 = K̃
1−c̃

. �

For simplicity of the presentation we extend ϕ(t) to (−∞,−r) by ϕ(t) = ϕ(−r). For a
fixed solution x of the IVP (1.1)-(1.2) we introduce the following sequence of functions

α0(t) ≡ t, α1(t) ≡ t− σ(xt), αj+1(t) ≡ α1(αj(t)) for j = 1, 2, . . . . (2.12)

For the sake of simplicity the dependence of αj on x is omitted in the notation, but it should
always be kept in mind. It is easy to see that

αj(t) = t−

j−1
∑

k=0

σ(xαk(t)), j = 1, 2, . . . . (2.13)

Assumption (H3) (i) yields that 0 ≤ σ(xt) ≤ r for all t, therefore

t− jr ≤ αj(t) ≤ t for t ≥ 0 and j = 0, 1, . . . . (2.14)

It follows from (2.13) that

αj(t) = t− jσ(0) −

j−1
∑

k=0

(

σ(xαk(t)) − σ(0)
)

, j = 1, 2, . . . .

Suppose 0 ≤ t1 ≤ t2. Then the definition of ω4 implies

|αj(t2) − αj(t1)| ≤ t2 − t1 +

j−1
∑

k=0

∣

∣

∣
σ(xαk(t2)) − σ(0)

∣

∣

∣
+

j−1
∑

k=0

∣

∣

∣
σ(xαk(t1)) − σ(0)

∣

∣

∣

≤ t2 − t1 +

j−1
∑

k=0

(

ω4(‖xαk(t2)‖) + ω4(‖xαk(t1)‖)
)

≤ t2 − t1 + 2jω4

(

max
−r≤u≤t2

|x(u)|
)

, j = 0, 1, . . . . (2.15)

For a fixed x we introduce the simplifying notation

η(t) = max
−r≤u≤t

|x(u)|.

The proof of our main result will be based on the following proposition, which follows the
idea of Proposition 2 in [13].
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Proposition 2.3 Assume (H1)–(H4). Let x be a solution of the IVP (1.1)-(1.2) satisfying
(2.3) for some T > 0, and 0 ≤ t1 ≤ t2 ≤ T . Then

|x(t2) − x(t1)| ≤

(

2c
t1
r +

2M

1 − c
(t2 − t1) +

4cM

(1 − c)2
ω4(η(t2))

)

η(t2). (2.16)

Proof Integrating (1.1) from t1 to t2 we get

x(t2) − x(t1) = g(x(α1(t2))) − g(x(α1(t1))) +

∫ t2

t1

(f(xs, x(s − τ(0))) − f(0, 0)) ds,

consequently (2.1) and (2.2) yield

|x(t2) − x(t1)| ≤ c|x(α1(t2)) − x(α1(t1))| +M

∫ t2

t1

(‖xs‖ + |x(s− τ(0))|) ds. (2.17)

Let n be defined by

n = n(t1) =

[

t1

r

]

, (2.18)

where [·] is the greatest integer part function, then (2.14) yields

0 ≤ t1 − nr ≤ t1 − jr ≤ t2 − jr ≤ αj(t2) ≤ t2, j = 0, 1, . . . , n,

and so

0 ≤ αj(ti) ≤ t2, (j = 0, 1, . . . , n, i = 1, 2), −r ≤ αn+1(ti) ≤ t2, i = 1, 2. (2.19)

Applying inequality (2.17) n times gives relation

|x(t2) − x(t1)| ≤ cn+1
∣

∣

∣
x(αn+1(t2)) − x(αn+1(t1))

∣

∣

∣

+M

n
∑

j=0

cj

∣

∣

∣

∣

∣

∫ αj(t2)

αj(t1)

(

‖xs‖ + |x(s− τ(0))|
)

ds

∣

∣

∣

∣

∣

. (2.20)

Therefore relations (2.19) and the definition of η imply

|x(t2) − x(t1)| ≤
(

2cn+1 + 2M

n
∑

j=0

cj |αj(t2) − αj(t1)|
)

η(t2).

Then (2.15),
∑∞

j=0 c
j = 1

1−c
and

∑∞
j=1 jc

j = c
(1−c)2

yield

|x(t2) − x(t1)| ≤
(

2cn+1 + 2M

n
∑

j=0

cj
(

(t2 − t1) + j2ω4(η(t2))
))

η(t2)

≤

(

2cn+1 +
2M

1 − c
(t2 − t1) +

4cMω4(η(t2))

(1 − c)2

)

η(t2).

Hence the statement of the proposition follows from the inequality t1
r
− 1 < n ≤ t1

r
. �

Introduce the positive constant

ν0 = −
log c

r
.
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Proposition 2.4 Assume (H1)–(H4). Let x be a solution of the IVP (1.1)-(1.2) satisfying
(2.3) for some T > 0. Then there exists a constant N2 > 0 independent of T such that

|G(t)| ≤
(

2e−ν0t +N2ω(η(t))
)

η(t), t ∈ [0, T ], (2.21)

and
|G(t)| ≤ 2c max

t−r≤u≤t
|x(u)|, t ≥ 0. (2.22)

Proof Assumption (H1) (i) and the definition of ω1 yield

|g(u) − g(ũ) − g′(ũ)(u− ũ)| ≤ sup
s∈(0,1)

|g′(ũ+ s(u− ũ)) − g′(ũ)||u− ũ|

≤ ω1(|u− ũ|)|u− ũ|, u, ũ ∈ U1. (2.23)

Applying Proposition 2.3 with

t1 = min{t− σ(xt), t− σ(0)}, t2 = max{t− σ(xt), t− σ(0)}

and (2.23) we get

|G(t)|

≤
∣

∣

∣
g(x(t− σ(xt))) − g(0) − g′(0)x(t − σ(xt))

∣

∣

∣
+

∣

∣

∣
g′(0)

(

x(t− σ(xt)) − x(t− σ(0))
)∣

∣

∣
(2.24)

≤ ω1(|x(t− σ(xt))|)|x(t − σ(xt))| + c

(

2c
t1
r +

2M

1 − c
|σ(xt) − σ(0)| +

4cMω4(η(t))

(1 − c)2

)

η(t).

Since t1 ≥ t− r, we get

|G(t)| ≤ ω1(η(t))η(t) + c

(

2c
t−r

r +
2M

1 − c
ω4(‖xt‖) +

4cMω4(η(t))

(1 − c)2

)

η(t)

≤

(

ω1(η(t)) + 2e−ν0t +
c+ c2

(1 − c)2
2Mω4(η(t))

)

η(t),

which yields (2.21).
To prove (2.22) consider the obvious estimates

|G(t)| ≤ |g(x(t − σ(xt))) − g(0)| + c|x(t− σ(0))| ≤ c|x(t− σ(xt))| + c|x(t− σ(0))|,

which yields (2.22). �

We can estimate F analogously to (2.21) and (2.22).

Proposition 2.5 Assume (H1)–(H4). Let x be a solution of the IVP (1.1)-(1.2) satisfying
(2.3) for some T > 0. Then there exist constants N3 > 0 and N4 > 0 independent of T such
that

|F (t)| ≤
(

N3e
−ν0t +N4ω(η(t))

)

η(t), t ∈ [0, T ], (2.25)

and
|F (t)| ≤ 4M max

t−r≤u≤t
|x(u)|, t ≥ 0. (2.26)
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Proof Assumption (H2) (i) and the definition of ω2 and ω3 yield

|f(ψ, u) − f(ψ̃, ũ) −D1f(ψ̃, ũ)(ψ − ψ̃) −D2f(ψ̃, ũ)(u− ũ)|

≤ sup
s∈(0,1)

|D1f(ψ̃ + s(ψ − ψ̃), ũ+ s(u− ũ)) −D1f(ψ̃, ũ)|‖ψ − ψ̃‖

+ sup
s∈(0,1)

|D2f(ψ̃ + s(ψ − ψ̃), ũ+ s(u− ũ)) −D2f(ψ̃, ũ)||u − ũ|

≤ ω2

(

max{‖ψ − ψ̃‖, |u− ũ|}
)

‖ψ − ψ̃‖ + ω3

(

max{‖ψ − ψ̃‖, |u− ũ|}
)

|u− ũ|,

ψ, ψ̃ ∈ C, u, ũ ∈ R
n.

Hence, by Proposition 2.3,

|F (t)| ≤
∣

∣

∣
f
(

xt, x(t− τ(xt))
)

− f(0, 0) −D1f(0, 0)xt −D2f(0, 0)x(t − τ(xt))
∣

∣

∣

+
∣

∣

∣
D2f(0, 0)

(

x(t− τ(xt)) − x(t− τ(0))
)
∣

∣

∣

≤ ω2

(

max{‖xt‖, |x(t− τ(xt))|}
)

‖xt‖ + ω3

(

max{‖xt‖, |x(t − τ(xt))|}
)

|x(t− τ(xt))|

+M

(

2c
t−r

r +
2M

1 − c
ω5(‖xt‖) +

4cMω4(η(t))

(1 − c)2

)

η(t)

≤

(

2ω(η(t)) + 2Mc
t−r

r +
1 + c

(1 − c)2
2M2ω(η(t))

)

η(t), t ∈ [0, T ],

which implies (2.25).
Relation (2.26) follows directly from the definition of F and (2.2). �

3 Proof of stability

In this section we give the first part of the proof of Theorem 1.1, we show the stability of the
trivial solution of (1.1), under the assumption of Theorem 1.1.

Suppose ϕ is such that ‖ϕ‖ < ̺, and let x be any corresponding solution. Let T > 0 be
such that |x(t)| < ̺ for t ∈ [−r, T ).

Let m(t) :=
[

t
σ(0)

]

. Then the variation-of-constant formula (2.7) yields

|x(t)| ≤ |y(t)| + |V (t)||G(0)| +

m(t)
∑

k=0

ck|G(t− kσ(0))| +

∫ t

0
|V ′(t− s)||G(s)| ds

+

∫ t

0
|V (t− s)||F (s)| ds, t ≥ 0. (3.1)

Combining (2.8) and (2.22) we get

|V (t)||G(0)| ≤ K2e
−αt2c‖ϕ‖, t ≥ 0. (3.2)

11



Fix a constant ν∗0 such that
0 < ν∗0 < ν0.

We need the following estimate.

Proposition 3.1 There exist positive constants N5 and N6 such that

m(t)
∑

k=0

ck|G(t− kσ(0))| ≤
(

N5e
−ν∗

0 t +N6ω(η(t))
)

η(t), t ∈ [0, T ]. (3.3)

Proof Using (2.21) and the definition of ν0 we get

m(t)
∑

k=0

ck|G(t− kσ(0))| ≤

m(t)
∑

k=0

ck
(

2e−ν0(t−kσ(0)) +N2ω(η(t− kσ(0)))
)

η(t− kσ(0))

≤
(

2e−ν0t

m(t)
∑

k=0

e−kν0(r−σ(0)) +N6ω(η(t))
)

η(t), t ∈ [0, T ],

where N6 = N2
1−c

. We distinguish two cases. First suppose σ(0) < r. Then

m(t)
∑

k=0

e−kν0(r−σ(0)) <
1

1 − e−ν0(r−σ(0))
.

Now consider the case when σ(0) = r. Then

m(t)
∑

k=0

e−kν0(r−σ(0)) = m(t) + 1 =

[

t

r

]

+ 1 ≤
t

r
+ 1.

Now select N5 ≥ 2
1−e−ν0(r−σ(0)) such that

2

(

t

r
+ 1

)

≤ N5e
(ν0−ν∗

0 )t, t ≥ 0.

Then in both cases

2e−ν0t

m(t)
∑

k=0

e−kν0(r−σ(0)) ≤ N5e
−ν∗

0 t, t ≥ 0,

hence (3.3) holds. �

Fix a constant β such that

0 < β ≤ α and β < ν0. (3.4)

Note that the second inequality of (3.4) implies (2.9), so for such β estimate (2.10) holds.

12



Relations (2.10) and (2.21) yield

∫ t

0
|V ′(t− s)||G(s)| ds ≤

∫ t

0
K3e

−β(t−s)
(

2e−ν0s +N2ω(η(s))
)

η(s) ds, t ∈ [0, T ], (3.5)

and similarly, (2.8) and (2.25) imply

∫ t

0
|V (t− s)||F (s)| ds ≤

∫ t

0
K2e

−α(t−s)
(

N3e
−ν0s +N4ω(η(s))

)

η(s) ds, t ∈ [0, T ]. (3.6)

Combining (3.1) with the above etimates (3.2), (3.3), (3.5) and (3.6), and using that β ≤ α,
we get

|x(t)| ≤ N7e
−αt‖ϕ‖ +

(

N5e
−ν∗

0 t +N6ω(η(t))
)

η(t)

+

∫ t

0
e−β(t−s)

(

N8e
−ν0s +N9ω(η(s))

)

η(s) ds, t ∈ [0, T ], (3.7)

where N7 = K1 + 2K2c, N8 = 2K3 +K2N3 and N9 = K3N2 +K2N4.
Define the constant

ν1 = ν0 − β.

Then it follows from (3.4) that 0 < ν1 < ν0.
Now we are ready to show the stability of the trivial solution of (1.1). Let ε0 > 0 be such

that

ε0 ≤ ̺, N6ω(ε0) <
1

6
and

N9ω(ε0)

β
<

1

6
.

Similarly, fix T0 > 0 such that

N5e
−ν∗

0T0 <
1

6
and

N8

ν1
e−βT0 <

1

6
.

Let 0 < ε ≤ ε0 be arbitrarily fixed, and let δ = δ(ε) be such that

0 < δ < min
(

̺,
ε

N1
e−γT0 ,

ε

6N7

)

.

Fix an initial function satisfying ‖ϕ‖ < δ, and let x be a corresponding solution. Then
Proposition 2.1 yields

|x(t)| ≤ N1e
γT0‖ϕ‖, t ∈ [0, T0],

so |x(t)| < ε holds for t ∈ [0, T0].
Suppose there exists S > 0 such that |x(t)| < ε for t ∈ [0, S), and |x(S)| = ε. Then

T0 < S ≤ T , and (3.7) implies for t = S

ε ≤ N7e
−αSδ +

(

N5e
−ν∗

0S +N6ω(ε)
)

ε+

∫ S

0
e−β(S−s)

(

N8e
−ν0s +N9ω(ε)

)

ε ds

≤ N7δ +
(

N5e
−ν∗

0T0 +N6ω(ε0)
)

ε

13



+N8εe
−βS

∫ S

0
e−ν1s ds+N9ω(ε0)εe

−βS

∫ S

0
eβs ds

≤
ε

6
+
ε

6
+
ε

6
+N8εe

−βS e
−ν1S − 1

−ν1
+N9ω(ε0)εe

−βS e
βS − 1

β

≤
ε

2
+
N8

ν1
e−βSε+

N9ω(ε0)

β
ε

≤
5ε

6
.

This contradiction showes that |x(t)| < ε holds for all t > 0, i.e., the tivial solution of (1.1)
is stable.

4 Proof of exponential stability

Now we give the second part of the proof of Theorem 1.1, we show the exponential stability
of the trivial solution of (1.1), under the assumptions of Theorem 1.1.

From the stability of the trivial solution there exists δ1 > 0 so that if ‖ϕ‖ < δ1, then any
corresponding solution x satisfies |x(t)| < ̺ for t ≥ 0.

Let 0 < θ < β be fixed, and define

ν2 = ν0 − θ = −
log c

r
− θ. (4.1)

Then 0 < ν1 < ν2 < ν0. Let ξ be defined by

ξ(t) = max
−r≤u≤t

(

eθu|x(u)|
)

. (4.2)

We will need the following variant of Proposition 2.3.

Proposition 4.1 Assume (H1)–(H4). Let x be a solution of the IVP (1.1)-(1.2) correspond-
ing to an initial function ϕ satisfying ‖ϕ‖ < δ1, 0 ≤ t1, let t, t2 ∈ [t1, t1 + r], and let ξ be
defined by (4.2). Then

eθt|x(t2) − x(t1)| ≤ e2θr
(

2e−ν2t1 +
2M

1 − e−ν2r
(t2 − t1) +

4Me−ν2r

(1 − e−ν2r)2
ω4(η(t2))

)

ξ(t2). (4.3)

Proof We use the notation of the proof of Proposition 2.3. Relation (2.20) implies

eθt|x(t2) − x(t1)|

≤ eθtcn+1
(

e−θαn+1(t2)eθαn+1(t2)|x(αn+1(t2))| + e−θαn+1(t1)eθαn+1(t1)|x(αn+1(t1))|
)

+M

n
∑

j=0

cjeθt

∣

∣

∣

∣

∫ αj(t2)

αj(t1)

(

‖e−θ(s+·)eθ(s+·)xs‖ + e−θ(s−τ(0))eθ(s−τ(0))|x(s − τ(0))|
)

ds

∣

∣

∣

∣

.
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Since −r ≤ αn+1(t1) ≤ t1 ≤ t2 and −r ≤ t1 − (n + 1)r ≤ t2 − (n + 1)r ≤ αn+1(t2) ≤ t2, it
follows

eθt|x(t2) − x(t1)| ≤ eθ(t1+r)2c
t1
r eθrξ(t2) + 2Meθrξ(t2)

n
∑

j=0

cj
∣

∣

∣

∣

∫ αj(t2)

αj(t1)
eθ(t−s) ds

∣

∣

∣

∣

.

Relation (2.13) yields

t− αj(ti) = ti −αj(ti) + t− ti ≤

j−1
∑

k=0

σ(xαk(ti)) + |t− ti| ≤ jr+ r, i = 1, 2, j = 0, . . . , n,

and therefore, using (2.15) and (4.1), we get

eθt|x(t2) − x(t1)| ≤ 2e2θre−ν2t1ξ(t2) + 2Meθr
(

n
∑

j=0

cjeθ(j+1)r
)

|αj(t2) − αj(t1)|ξ(t2)

≤ 2e2θre−ν2t1ξ(t2) + 2Me2θr
(

n
∑

j=0

e−jν2r
(

t2 − t1 + j2ω4(η(t2))
))

ξ(t2)

≤ e2θr
(

2e−ν2t1 +
2M

1 − e−ν2r
(t2 − t1) +

4Me−ν2r

(1 − e−ν2r)2
ω4(η(t2))

)

ξ(t2).

�

With an application of (4.3) we generalize Propositions 2.4 and 2.5.

Proposition 4.2 Assume (H1)–(H4). Let x be a solution of the IVP (1.1)-(1.2) correspond-
ing to an initial function ϕ satisfying ‖ϕ‖ < δ1. Then there exist positive constants N10, N11,
N12 and N13 such that

eθt|G(t)| ≤
(

N10e
−ν2t +N11ω(η(t))

)

ξ(t), t ≥ 0, (4.4)

and
eθt|F (t)| ≤

(

N12e
−ν2t +N13ω(η(t))

)

ξ(t), t ≥ 0. (4.5)

Proof We proceed as in the proof of Proposition 2.4, but we use Proposition 4.1 instead of
Proposition 2.3. Consequently we get from (2.24)

eθt|G(t)| ≤ eθtω1(|x(t− σ(xt))|)|x(t − σ(xt))|

+2ce2θr
(

e−ν2(t−r) +
M

1 − e−ν2r
|σ(xt) − σ(0)| +

2Me−ν2r

(1 − e−ν2r)2
ω4(η(t))

)

ξ(t)

≤ ω1(η(t))e
θσ(xt)eθ(t−σ(xt))|x(t− σ(xt))|

+2ce2θr
(

e−ν2(t−r) +
M +Me−ν2r

(1 − e−ν2r)2
ω4(η(t))

)

ξ(t)

≤

(

ω1(η(t))e
θr + 2ce2θr

(

e−ν2(t−r) +
M +Me−ν2r

(1 − e−ν2r)2
ω4(η(t))

)

)

ξ(t),
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which yields (4.4).
Similar to the proof of Propositions 2.5 we get

eθt|F (t)| ≤ ω2(max{‖xt‖, |x(t − τ(xt))|})e
θt‖xt‖

+ω3(max{‖xt‖, |x(t − τ(xt))|})e
θt|x(t− τ(xt))|

+2Me2θr
(

e−ν2(t−r) +
M

1 − e−ν2r
|τ(xt) − τ(0)| +

2Me−ν2r

(1 − e−ν2r)2
ω4(η(t))

)

ξ(t)

≤ ω(η(t))eθt
(

‖e−θ(t+·)eθ(t+·)xt‖ + e−θ(t−τ(xt))eθ(t−τ(xt))|x(t− τ(xt))|
)

+2Me2θr
(

e−ν2(t−r) +
M

1 − e−ν2r
ω5(‖xt‖) +

2Me−ν2r

(1 − e−ν2r)2
ω4(η(t))

)

ξ(t)

≤
(

2eθrω(η(t)) + 2Me2θre−ν2(t−r) + 2
M2 +M2e−ν2r

(1 − e−ν2r)2
ω(η(t))

)

ξ(t),

therefore (4.5) holds. �

Now let ν∗2 be such that
0 < ν∗2 < ν2,

and introduce the constant

ν3 = −
log c

σ(0)
− θ.

Then it is easy to see that 0 < ν1 < ν2 ≤ ν3 holds.

Proposition 4.3 Assume (H1)–(H4). Let x be a solution of the IVP (1.1)-(1.2) correspond-
ing to an initial function ϕ satisfying ‖ϕ‖ < δ1. Then there exist positive constants N14 and
N15 such that

eθt

m(t)
∑

k=0

ck|G(t− kσ(0))| ≤
(

N14e
−ν∗

2 t +N15ω(η(t))
)

η(t), t ≥ 0. (4.6)

Proof Using (4.4) we get

m(t)
∑

k=0

ckeθkσ(0)eθ(t−kσ(0))|G(t− kσ(0))|

≤

m(t)
∑

k=0

ckeθkσ(0)
(

N10e
−ν2(t−kσ(0)) +N11ω(η(t− kσ(0)))

)

ξ(t− kσ(0))

≤

m(t)
∑

k=0

e−kν3σ(0)
(

N10e
−ν2(t−kσ(0)) +N11ω(η(t))

)

ξ(t)

≤
(

N10e
−ν2t

m(t)
∑

k=0

e−k(ν3−ν2)σ(0) +N15ω(η(t))
)

η(t), t ≥ 0,
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whereN15 = N11

1−e−ν3σ(0) . The existence of N14 can be argued as in the proof of Proposition 3.1.

�

We will specify T1 > 0 later. We multiply both sides of (3.1) by eθt and using relations
(2.8), (2.10) and (3.2) we get for t ≥ T1

eθt|x(t)| ≤ N7e
−(α−θ)t‖ϕ‖ +

m(t)
∑

k=0

ckeθt|G(t− kσ(0))|

+eθt

∫ T1

0
K3e

−β(t−s)|G(s)| ds + eθt

∫ T1

0
K2e

−α(t−s)|F (s)| ds

+eθt

∫ t

T1

K3e
−β(t−s)e−θseθs|G(s)| ds + eθt

∫ t

T1

K2e
−α(t−s)e−θseθs|F (s)| ds.

For s ∈ [0, T1] we use estimates (2.22) and (2.26) combined with Proposition 2.1, so we get

|G(s)| ≤ 2cN1e
γT1‖ϕ‖ and |F (s)| ≤ 4MN1e

γT1‖ϕ‖, s ∈ [0, T1].

Then, using the fact that β ≤ α and applying Proposition 4.2, we can find constants N16 =
N16(T1), N17 and N18 such that

eθt|x(t)| ≤ N7‖ϕ‖ +
(

N14e
−ν∗

2 t +N15ω(η(t))
)

ξ(t) + e−(β−θ)t

∫ T1

0
eβsN16‖ϕ‖ ds

+e−(β−θ)t

∫ t

T1

e(β−θ)s
(

N17e
−ν2s +N18ω(η(s))

)

ξ(s) ds, t ≥ T1. (4.7)

Let T1 > 0 be such that

N14e
−ν∗

2T1 <
1

6
and N17e

−ν2T1 <
1

6
(β − θ).

Since the trivial solution of (1.1) is stable, there exists δ2 such that

N15ω(η(t)) <
1

6
, and N18ω(η(t)) <

1

6
(β − θ), t ≥ 0

for ‖ϕ‖ < δ2.
Let δ = min(δ1, δ2). Then, for ‖ϕ‖ < δ and t ≥ T1, (4.7) yields

eθt|x(t)| ≤ N7‖ϕ‖ +
1

3
ξ(t) +

eβT1N16

β
‖ϕ‖ +

β − θ

3
ξ(t)e−(β−θ)t

∫ t

T1

e(β−θ)s ds

≤
(

N7 +
eβT1N16

β

)

‖ϕ‖ +
2

3
ξ(t), t ≥ T1.

For t ∈ [0, T1] we use Proposition 2.1 to get

eθt|x(t)| ≤ eθT1N1e
γT1‖ϕ‖, ‖ϕ‖ < δ.
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Therefore, if we define

K = max

(

3
(

N7 +
eβT1N16

β

)

, 3eθT1N1e
γT1

)

,

then

eθt|x(t)| ≤
1

3
K‖ϕ‖ +

2

3
ξ(t), t ≥ 0

is satisfied. Since N7 > 1, and therefore K > 3, and the right-hand-side is monotone
increasing in t, it follows (see, e.g., Lemma 2.1 in [17])

ξ(t) ≤
1

3
K‖ϕ‖ +

2

3
ξ(t), t ≥ 0,

and so
ξ(t) ≤ K‖ϕ‖, t ≥ 0.

Consequently
|x(t)| ≤ Ke−θt‖ϕ‖, t ≥ 0, ‖ϕ‖ < δ.

This concludes the proof of Theorem 1.1.
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