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ABSTRACT
Traditional models of regenerative machine tool chatter use

constant time delays assuming that the period between two sub-
sequent cuts is a constant determined definitely by the spindle
speed. These models result in delay-differential equations with
constant time delay.

If the vibrations of the tool relative to the workpiece are also
included in the surface regeneration model, then the resulted time
delay is not constant, but it depends on the actual and a de-
layed position of the tool. In this case, the governing equation
is a delay-differential equation with state dependent time delay.
Equations with state dependent delays can not be linearized in
the traditional sense, but there exists linear equations that can
be associated to them. This way, the local behavior of the system
with state dependent delays can be investigated.

In this study, a two degree of freedom model is presented
for milling process. A thorough modeling of the regeneration ef-
fect results in the governing delay-differential equation with state
dependent time delay. It is shown through the linearization of
the nonlinear equation that an additional term arises in the lin-
earized equation of motion due to the state-dependency of the
time delay.
�Address all correspondence to this author.
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1 INTRODUCTION

The rapid development of machining technology during the
past decade and the commercialization of reliable high-speed
machining systems has driven the need for thorough dynami-
cal investigation of high-speed cutting processes. One impor-
tant phenomena that limits the productivity of machining is the
development of self-excited vibrations, also known as machine
tool chatter. The work of Tlusty [1] and Tobias [2] led to the de-
velopment of the regenerative machine tool chatter theory. The
basis of regenerative cutting model is that either the tool, or the
workpiece or both are flexible and the chip thickness varies due
to the relative vibrations of the tool and the workpiece. The tool
cuts the surface that was formed in the precious cut, and the chip
thickness is determined by the current and a previous position of
the tool/workpiece. In standard models, the time delay between
two succeeding cuts is considered to be constant, it is equal to
the period of the workpiece rotation in turning, or to the tooth
passing period in milling. Due to the regenerative effect, cutting
models are described by delayed differential equations (DDEs).
DDEs have infinite dimensional state spaces, therefore their sta-
bility analysis is not trivial and closed form stability criteria often
can not be given.

In milling processes, regenerative delay is determined by the
Copyright c� 2005 by ASME



rotation of the tool. For a tool with equally spaced teeth rotating
with constant spindle speed, the time delay can be approximated
by the rotation period of the tool over the number of teeth. The
corresponding mathematical model is a DDE with periodic co-
efficients and with a single, constant time delay, where both the
period of the coefficients and the time delay are equal to the tooth
passing period. Stability analysis of these systems is usually per-
formed by numerical simulations [3], [4], and by different an-
alytical techniques [5]– [12]. Models with constant time delay
provide good capture of the regenerative dynamics, and can be
used to obtain linear stability properties.

More realistic models include the feed motion and the con-
sequent trochoidal path of the cutter tooth. In this case, the time
delay between the succeeding cuts is not constant, it changes pe-
riodically in time. As one of the first efforts in this direction,
Balachandran and Zhao [3], [13] used two different time delays
in their models, one along the feed direction, the other along the
perpendicular direction. Due to the feed, the delay along the feed
direction is a bit smaller than the delay along the perpendicular
direction. This model resulted in a periodic DDE with two con-
stant time delay.

In their recent paper, Long and Balachandran [14] analyzed
the feed rate effect on the regenerative delay. They pointed out
that the delay is time dependent, since the cutting teeth are not
exactly at the same angular position at the present and at the
preceding cut. The resulted model is a periodic DDE with time
periodic time delay. Long and Balachandran approximated this
system by a DDE with constant time delay, and derived stability
charts using the semi-discretization method [15], [16].

Time periodic delays also arise in models of varying spindle
speed machining [17]– [19]. Stability analysis of systems with
periodic delay is more complicated than that of systems with con-
stant time delay, still there are numerical algorithms that can be
used to perform these computations. An efficient technique to
analyze DDEs with time periodic delay is the semi-discretization
method, as it was shown in [19] for varying spindle speed turn-
ing.

If the regeneration process is modeled more accurately, then
the vibration of the tool is also included in the regeneration
model. The vibration of the tool superimposes on the trochoidal
path of the teeth, and affects the time delay in the regeneration
process. This results in a DDE with state-dependent delay (SD-
DDE), i.e., the delay itself depends on the present and on the de-
layed states. The analysis of SD-DDEs is a special and recently
developing research area in mathematics [20]– [24]. However,
in engineering practice, SD-DDEs are rarely used since the ap-
propriate mathematical tools, like linearization techniques, have
just been developed recently by mathematicians, and these new
results were not adopted by engineering yet.

SD-DDEs are nonlinear systems, since the delay in the ar-
gument of the state depends on the state itself. Linearization of
SD-DDEs corresponds to a kind of perturbation technique: we
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re looking for a linear DDE for that the original system can be
onsidered as a perturbation. The linearized system is a DDE
ith constant (or time dependent) delay. For example, consider
e autonomous SD-DDE

ẋ�t� � x�t� �τ0 � x�t���� (1)

his is a nonlinear equation due to the state-dependent time delay
�x�t�� � τ0 � x�t�. The DDE

ẏ�t� � y�t� τ0� (2)

ith constant time delay is a linear system that can be considered
s a variational system of Eq. (1) around the equilibrium x � 0.

this sense, linearization means that if the y � 0 solution of
q. 2 is stable, then it follows that the x � 0 solution of Eq. 1 is
table too. Linearization technique for general autonomous SD-
DEs was given by Hartung and Turi [21] and for time periodic
D-DDEs by Hartung [24].

Recently, Insperger et al. [25] showed that the accurate
odel of turning process results in an autonomous SD-DDE.
hey used the linearization technique of autonomous SD-DDEs
ccording to Hartung and Turi [21]. They showed that the
ssociated linear equation is not identical to the linear DDE
ith constant time delay used in standard turning models, but

n additional term (with a relatively small multiplier) arises in
e equation. This means that the incorporation of the state-

ependency of the regenerative delay in the autonomous turning
odel slightly affects the linear stability properties.

In this paper, it is shown that an accurate modeling of the
generative effect in milling results in a time periodic and state-
ependent delay in the model equation. The corresponding time
eriodic SD-DDE is linearized according to Hartung [24]. It
shown, that an additional term arises in the linearized equa-

on due to the state-dependency of the delay, that is, the state-
ependent time delay affects linear stability properties.

MECHANICAL MODEL
The 2 DOF model of milling process is considered according

Figure 1. The tool is assumed to be flexible that experiences
ending oscillations in directions x and y, while the workpiece is
ssumed to be stiff. The 2 DOF oscillator is excited by the cutting
rce F�t�. For the sake of simplicity, we assume a symmetric
ol, that is, the mass m, damping c and stiffness k parameters

re equal for both x and y directions. Note, however, that the
rthcoming analysis is the same for the general, non-symmetric

ase. The governing equation reads

mẍ�t�� cẋ�t�� kx�t� � Fx�t�� (3)

mÿ�t�� cẏ�t�� ky�t� � Fy�t�� (4)
2 Copyright c� 2005 by ASME



Figure 1. Mechanical model.

According to the standard 2 DOF model of milling, the force
components Fx�t� and Fy�t� can be given as

Fx�t� �
N

∑
j�1

�
wg�ϕ j�t��h

q
j

�
�

Kt cos�ϕ j�t���Kn sin�ϕ j�t��
��

� (5)

Fy�t� �
N

∑
j�1

�
wg�ϕ j�t��h

q
j

�
�
�Kt sin�ϕ j�t���Kn cos�ϕ j�t��

��
� (6)

where, N is the number of the teeth, w is the depth of cut,

ϕ j�t� ��Ωt �� j�1�ϑ (7)

is the angular position of the j th tooth at time t, Ω is the spindle
speed of the tool in [rad/s], ϑ � 2π�N is the pitch angle of the
tool, Kt and Kn are the tangential and the normal cutting coeffi-
cients, h j is the chip thickness cut by the j th tooth and exponent
q is a constant (q � 0�8 is a typical value for this parameter). The
function g is a screen function, it is equal to 1, if the j th tooth is
active, and it is 0 if not:

g�ϕ j�t�� �

�
1 if ϕenter � ϕ j�t�� ϕexit

0 otherwise
� (8)

where ϕenter and ϕexit are the angles where the teeth enter and
exit the cut, respectively (see Figure 2).

In this model, it is assumed that the contact between the cut-
ting teeth and the workpiece is determined solely by the rotation
Figure 2. Exit and enter angles in milling

of the tool. Only the local non-linearity of the cutting force and
the nonlinearity due to the state-dependent delay is included into
the model, and the so-called fly-over effect [26] is not modeled.

Introduce the time period τ̃ � 2π��NΩ� � ϑ�Ω. Note, that
τ̃ is equal to the constant tooth passing period used in standard
milling models. It can easily be seen by substitution into Eq. (7)
that ϕ j�t� satisfies

ϕ j�t � τ̃� � ϕ j�1�t�� (9)

2.1 Delay model
The chip thickness h j cut by the jth tooth is determined by

the current position of the j th and by an earlier position of the
previous, � j� 1�th tooth. In standard milling models, the time
delay between two succeeding cuts are considered to be constant
determined by the tool rotation and the number of the teeth: τ̃ �
2π��NΩ�. In this section, an accurate model of the regeneration
of the succeeding cuts is presented in order to show that the time
delay is actually time- and state-dependent.

Figure 3 shows the milling tool in the position of two suc-
ceeding cuts. The center point of the tool (denoted by point O)
is given by vector o, the cutting edge of the j th tooth (denoted by
point Pj) is given by vector p j.

Figure 3. Accurate model of chip removal in milling
3 Copyright c� 2005 by ASME



The bending vibration of the tool is described by the x and y
coordinates. The position of the tool’s center point relative to the
workpiece can be given as a combination of the feed motion and
the bending vibrations of the tool:

o�t� �
�
�vt � x�t�

y�t�

�
� (10)

where, v is the feed speed. Here, the coordinate system is fixed
to the workpiece, therefore the feed motion is negative. The po-
sition of the jth tooth can be given as

p j�t� �

�
�Rsin�ϕ j�t��� vt � x�t�

Rcos�ϕ j�t��� y�t�

�
� (11)

where R is the radius of the tool. The chip thickness is de-
termined by the positions of two succeeding teeth p j�t� and
p j�1�t� τ j�, where τ j is the delay between the � j�1�th and the
jth teeth.

In most mechanical models in the literature, the time delay
is considered to be constant for all the teeth using the assump-
tion that the vibration amplitude and the feed rate are relatively
small compared to the diameter of the tool. However, an accurate
model of the cutting process results in a time and state dependent
delay. The exact condition for the delay is that point P j�1�t�τ j�
is located in the section determined by points Pj�t� and O�t�:

p j�t��1� s j��o�t�s j � p j�1�t� τ j� � (12)

where s j � �0�1� is a running parameter characterizing the chip
thickness h j � s jR cut by the jth tooth.

Substitution of Eqs. (10) and (11) into Eq. (12) results in the
system of equations

�R�1� s j�sinϕ j�t� ��Rsinϕ j�1�t� τ j�

� vτ j � x�t� τ j�� x�t�� (13)

�R�1� s j�cosϕ j�t� ��Rcosϕ j�1�t� τ j�

� y�t� τ j�� y�t� (14)

for the two unknowns, s j and τ j.
The difference of Eq. (13) multiplied by cosϕ j�t� and

Eq. (14) multiplied by sinϕ j�t� and substitution of Eq. (7) gives
the following implicit equation for the time delay:

�
vτ j � x�t� τ j�� x�t�

�
cos

�
�Ωt �� j�1�ϑ

�
�
�
y�t� τ j�� y�t�

�
sin

�
�Ωt �� j�1�ϑ

�
� Rsin

�
Ωτ j�ϑ

�
� (15)
This equation shows that the time delay τ j depends on time t, on
current position x�t� and y�t� and on the delayed position x�t �
τ j� and y�t � τ j� of the tool, that is, the time delay is time and
state dependent: τ j � τ j�t�xt �yt�, where xt�s� � x�t � s�, yt�s� �
y�t�s�, s� ��r�0�, r � �� . It can also be seen that in this model,
the time delays associated to different cutting teeth are different
as opposed to the models using an overall constant time delay.

Note, that the only explicit time dependent functions in
Eq. (15) are

cos
�
�Ωt �� j�1�ϑ

�
� cosϕ j�t��

sin
�
�Ωt �� j�1�ϑ

�
� sinϕ j�t��

These are periodic functions of period T � 2π�Ω. Here, T is
the rotation period of the tool. Consequently, the explicit time
dependence of τ j is also T -periodic:

τ j�t�xt �yt� � τ j�t �T�xt �yt�� (16)

Consider the constant time period τ̃ � T�N � 2π��NΩ� �
ϑ�Ω used in standard milling models. Due to Eq. (9), the time
periodic terms in Eq. (15) satisfy

cos
�
�Ω�t � τ̃��� j�1�ϑ

�
� cosϕ j�t � τ̃� � cosϕ j�1�t��

sin
�
�Ω�t � τ̃��� j�1�ϑ

�
� sinϕ j�t � τ̃� � sinϕ j�1�t��

Consequently, τ j�t�xt �yt� satisfies

τ j�t � τ̃�xt �yt� � τ j�1�t�xt �yt�� (17)

This gives the connection between time delays associated to two
succeeding cuts.

It should also be mentioned that the time delay variation is
not strong, since the terms

�
vτ j � x�t � τ j�� x�t�

�
and

�
y�t �

τ j��y�t�
�

in Eq. (15) are usually much smaller than the radius R
of the tool. Practically, the time delay slightly varies around the
mean value τ̃� 2π��NΩ�.

If the vibrations of the tool is not included into the delay
model, i.e., x�t�� 0 and y�t�� 0, then the implicit equation (15)
of the time delay is simplified to

vτ j cos
�
�Ωt �� j�1�ϑ

�
� Rsin

�
Ωτ j�ϑ

�
� (18)

Here, the time delay depends only on time. This is the case of
time periodic delay that was investigated by Long and Balachan-
dran [14].
4 Copyright c� 2005 by ASME



If the feed is negligible relative to the tool diameter (i.e.
vτ j �� R), and vτ j � 0 is substituted into Eq. (18), then the re-
sulted equation reads

sin
�
Ωτ j�ϑ

�
� 0� (19)

This gives the constant delay τ j � τ̃ � ϑ�Ω � 2π��NΩ� that is
usually used in standard milling models.

2.2 Chip thickness
As it was shown at Eq. (12) the chip thickness can be written

as h j � s jR. The sum of Eq. (13) multiplied by sinϕ j�t� and
Eq. (14) multiplied by cosϕ j�t� and the substitution of Eq. (7)
gives

h j � s jR � R
�

1� cos�Ωτ j�t�xt �yt��ϑ�
�

�
�

vτ j�t�xt �yt�� x�t� τ j�t�xt �yt��� x�t�
�

sinϕ j�t�

�
�
y�t� τ j�t�xt �yt��� y�t�

�
cosϕ j�t�� (20)

As it can be seen, the chip thickness depends on time t, on
current position x�t� and y�t� and on the delayed position
x�t� τ j�t�xt �yt�� and y�t � τ j�t�xt �yt�� of the tool and on the
state-dependent delay τ j�t�xt �yt� itself, too.

If the constant time delay τ j�t�xt �yt� � τ̃ � ϑ�Ω is substi-
tuted into Eq. (20), then we get

h j �
�

vτ̃� x�t� τ̃�� x�t�
�

sinϕ j�t�

�
�

y�t� τ̃�� y�t�
�

cosϕ j�t�� (21)

This expression for the chip thickness is used by the standard
models of the milling process with constant delay (see, e.g., [5],
[12]).

2.3 The system with state dependent delay
Equations (3), (4), (5), (6) and (20) defines the system of

SD-DDEs

mẍ�t�� cẋ�t�� kx�t�

�
N

∑
j�1

αx� j�t�

�
R�1� cos�Ωτ j�t�xt �yt��ϑ��

��vτ j�t�xt �yt�� x�t� τ j�t�xt �yt��� x�t��sinϕ j�t�

��y�t� τ j�t�xt �yt��� y�t��cosϕ j�t�

�q

� (22)
mÿ�t�� cẏ�t�� ky�t�

�
N

∑
j�1

αy� j�t�

�
R�1� cos�Ωτ j�t�xt �yt��ϑ��

��vτ j�t�xt �yt�� x�t� τ j�t�xt �yt��� x�t��sinϕ j�t�

��y�t� τ j�t�xt �yt��� y�t��cosϕ j�t�

�q

� (23)

where

αx� j�t� � wg�ϕ j�t��
�

Kt cos�ϕ j�t���Kn sin�ϕ j�t��
�

(24)

and

αy� j�t� � wg�ϕ j�t��
�

Kn cos�ϕ j�t���Kt sin�ϕ j�t��
�
� (25)

and the time delay is given by the implicit equation (15). Note,
that αx� j�t� and αy� j�t� satisfy:

αl � j�t� � αl � j�t �T �� (26)

and, due to Eq. (9),

αl � j�t � τ̃� � αl � j�1�t�� (27)

where l � x�y, and T � 2π�Ω, τ̃� 2π��NΩ�.
It follows from Eqs. (16), (17) and (26), (27) that system

(22)–(23) are τ̃-periodic in time.

3 THE LINEARIZED EQUATION OF MOTION
For nonlinear systems, a standard way for stability analysis

consists of two steps: (1) linearization and (2) investigation of
the characteristic roots or characteristic multipliers of the linear
system. Linearization of SD-DDEs is not so straightforward as
it is for ordinary differential equations. An SD-DDE is always
nonlinear, since the delay itself depends on the state, while, the
linearized system is a DDE with constant or time dependent de-
lay. Usually, there is no direct method for the construction of the
linearized system.

3.1 Linearization of periodic SD-DDEs
In [24], it was shown that periodic linear systems can be as-

sociated to time periodic SD-DDEs as variational system. Con-
sider the periodic SD-DDE

ż�t� � f �t�z�t��z�t� τ�t�zt���� (28)
5 Copyright c� 2005 by ASME



with

f �t�z�t��z�t� τ�t�zt��� � f �t �T�z�t��z�t� τ�t�zt���� (29)

and

τ�t�zt� � τ�t �T�zt�� (30)

where zt�s� � z�t � s�, s � ��r�0�, r � �� .
If z̄�t� is a T -periodic solution of Eq. (28), then the associ-

ated linear system is

u̇ � D2 f �t� z̄�t�� z̄�t� τ�t� z̄t���u�t�

�D3 f �t� z̄�t�� z̄�t� τ�t� z̄t���u�t� τ�t� z̄t��

�D3 f �t� z̄�t�� z̄�t� τ�t� z̄t��� ˙̄z�t� τ�t� z̄t��D2τ�t� z̄t �ut � (31)

where D2 and D3 denotes the derivatives with respect to the 2nd

and the 3rd argument, respectively. In this linearized system, the
time delay is periodic in time, therefore, it is a periodic DDE with
periodic delay.

According to [24], system (31) is the variational system of
Eq. (28), if it preserves local stability properties. In other words,
if the trivial solution u � 0 of Eq. (31) is stable then it follows
that the T -periodic solution z̄�t� of Eq. (28) is stable too.

3.2 Linearization of the milling model
Assume that x̄�t� and ȳ�t� are periodic solution of system

(22)–(23). It is not trivial if this periodic solutions exists, but we
assume that the stable milling process is associated to a periodic
motion of the tool with time period τ̃ � 2π��NΩ�, similarly to
the milling models with constant time delay (see [27]).

The linear system associated to the periodic solution x̄�t�
and ȳ�t� can be given according to Eq. (31). In order to simplify
notation, we introduce

Xj�t�� x�t� τ j�t�xt �yt��� (32)

X̄ j�t�� x̄�t� τj�t� x̄t � ȳt��� (33)

Yj�t�� y�t� τ j�t�xt �yt��� (34)

Ȳj�t�� ȳ�t� τj�t� x̄t � ȳt�� (35)

τ̄ j�t�� τ j�t� x̄t � ȳt�� (36)

Rewrite Eqs. (22) and (23) in the compact form

mẍ�t�� cẋ�t�� kx�t�

�
N

∑
j�1

fx� j�t�x�t��Xj�t��y�t��Yj�t��τ j�t�xt �yt��� (37)

m

m

m

Her
gum
6

ÿ�t�� cẏ�t�� ky�t�

�
N

∑
j�1

fy� j�t�x�t��Xj�t��y�t��Yj�t��τ j�t�xt �yt��� (38)

The associated linear system can be given as

ξ̈�t�� cξ̇�t�� kξ�t�

�
N

∑
j�1

�
D2 fx� j�t� x̄�t��X̄ j�t�� ȳ�t��Ȳj�t�� τ̄ j�t��ξ�t�

�D3 fx� j�t� x̄�t��X̄ j�t�� ȳ�t��Ȳj�t�� τ̄ j�t��ξ�t� τ̄ j�t��

�D4 fx� j�t� x̄�t��X̄ j�t�� ȳ�t��Ȳj�t�� τ̄ j�t��η�t�
�D5 fx� j�t� x̄�t��X̄ j�t�� ȳ�t��Ȳj�t�� τ̄ j�t��η�t� τ̄ j�t��

�D3 fx� j�t� x̄�t��X̄ j�t�� ȳ�t��Ȳj�t�� τ̄ j�t��

� ˙̄x�t�τ̄ j�t��
�

D2τ j�t� x̄t � ȳt��ξt �D3τ j�t� x̄t � ȳt��ηt

�

�D5 fx� j�t� x̄�t��X̄ j�t�� ȳ�t��Ȳj�t�� τ̄ j�t��

� ˙̄y�t�τ̄ j�t��
�

D2τ j�t� x̄t � ȳt�ξt �D3τ j�t� x̄t � ȳt�ηt

�

�D6 fx� j�t� x̄�t��X̄ j�t�� ȳ�t��Ȳj�t�� τ̄ j�t��

�
�

D2τ j�t� x̄t � ȳt�ξt �D3τ j�t� x̄t � ȳt�ηt

��
� (39)

η̈�t�� cη̇�t�� kη�t�

�
N

∑
j�1

�
D2 fy� j�t� x̄�t��X̄ j�t�� ȳ�t��Ȳj�t�� τ̄ j�t��ξ�t�

�D3 fy� j�t� x̄�t��X̄ j�t�� ȳ�t��Ȳj�t�� τ̄ j�t��ξ�t� τ̄ j�t��

�D4 fy� j�t� x̄�t��X̄ j�t�� ȳ�t��Ȳj�t�� τ̄ j�t��η�t�
�D5 fy� j�t� x̄�t��X̄ j�t�� ȳ�t��Ȳj�t�� τ̄ j�t��η�t� τ̄ j�t��

�D3 fy� j�t� x̄�t��X̄ j�t�� ȳ�t��Ȳj�t�� τ̄ j�t��

� ˙̄x�t�τ̄ j�t��
�

D2τ j�t� x̄t � ȳt��ξt �D3τ j�t� x̄t � ȳt��ηt

�

�D5 fy� j�t� x̄�t��X̄ j�t�� ȳ�t��Ȳj�t�� τ̄ j�t��

� ˙̄y�t�τ̄ j�t��
�

D2τ j�t� x̄t � ȳt�ξt �D3τ j�t� x̄t � ȳt�ηt

�

�D6 fy� j�t� x̄�t��X̄ j�t�� ȳ�t��Ȳj�t�� τ̄ j�t��

�
�

D2τ j�t� x̄t � ȳt�ξt �D3τ j�t� x̄t � ȳt�ηt

�
� (40)

e, again, Di denotes the derivative with respect to the i th ar-
ent.
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The terms Di fx� j and Di fy� j (i � 2� � � � �6) can be given as

D2 fl� j�t� x̄�t��X̄ j�t�� ȳ�t��Ȳj�t�� τ̄ j�t��

��αl� j�t�qh̄q�1
j �t�sinϕ j�t�� (41)

D3 fl� j�t� x̄�t��X̄ j�t�� ȳ�t��Ȳj�t�� τ̄ j�t��

� αl� j�t�qh̄q�1
j �t�sinϕ j�t�� (42)

D4 fl� j�t� x̄�t��X̄ j�t�� ȳ�t��Ȳj�t�� τ̄ j�t��

��αl� j�t�qh̄q�1
j �t�cosϕ j�t�� (43)

D5 fl� j�t� x̄�t��X̄ j�t�� ȳ�t��Ȳj�t�� τ̄ j�t��

� αl� j�t�qh̄q�1
j �t�cosϕ j�t� (44)

and

D6 fl� j�t� x̄�t��X̄ j�t�� ȳ�t��Ȳj�t�� τ̄ j�t��

� αl� j�t�qh̄q�1
j �t��RΩsin�Ωτ̄ j�t��ϑ�� vsinϕ j�t��� (45)

where l � x�y, and

h̄ j�t� � R�1� cos�Ωτ̄ j�t��ϑ��
��vτ̄ j�t�� x̄�t�τ̄ j�t��� x̄�t��sinϕj�t�

�� ȳ�t�τ̄ j�t��� ȳ�t��cosϕj�t� (46)

is the chip thickness associated to the periodic tool motion de-
scribed by x̄�t� and ȳ�t�.

The terms D2τ j�t� x̄t � ȳt��ξt and D3τ j�t� x̄t � ȳt��ηt can be
given by implicit derivation of Eq. (15). Taking the Frechet
derivative of both sides of Eq. (15) with respect to xt and us-
ing formula (31) for the derivative of the composite function
x�t� τ�t�xt �yt�� with respect to xt we get:

�
vD2τ j�t� x̄t � ȳt�ξt �ξ�t� τ̄ j�t��

� ˙̄x�t�τ̄ j�t��D2τ j�t� x̄t � ȳt�ξt �ξ�t�
�

cosϕ j�t�

� ˙̄y�t�τ̄ j�t��D2τ j�t� x̄t � ȳt�ξt sinϕ j�t�

� RΩcos�Ωτ̄ j�t��ϑ�D2τ j�t� x̄t � ȳt�ξt � (47)

From here, we obtain

D2τ j�t� x̄t � ȳt�ξt �

�cosϕ j�t��ξ�t� τ̄ j�t���ξ�t��
�v� ˙̄x�t�τ̄ j�t���cosϕ j�t�� ˙̄y�t�τ̄ j�t��sinϕ j�t��RΩcos�Ωτ̄ j�t��ϑ�

�

(48)

H
ti
a
d
s
a
th
c
z

w

F

�v�

S
a

(4
ere, we assume that the denominator is not zero. This assump-
on is reasonable due to the following facts. As it is explained
fter Eq. (17), in a real milling processes, the time delay slightly
eviates around the mean value: τ̄ j�t� � τ̃ � 2π��NΩ�. Con-
equently, cos�Ωτ̄ j�t��ϑ� � 1 in Eq. (48). Furthermore, if we
ssume that the vibration velocities ˙̄x�t� and ˙̄y�t� of the tool and
e feed speed are relatively small compared to the speed of the

utting edges RΩ, then the denominator in Eq. (48) is really not
ero but a negative number.

Now, take the Frechet derivative of both sides of Eq. (15)
ith respect to yt :

�
vD3τ j�t� x̄t � ȳt�ηt � ˙̄x�t�τ̄ j�t��D3τ j�t� x̄t � ȳt�ηt

�
cosϕ j�t�

�
�
η�t� τ̄ j�t��� ˙̄y�t�τ̄ j�t��D3τ j�t� x̄t � ȳt�ηt �η�t�

�
sinϕ j�t�

� RΩcos�Ωτ̄ j�t��ϑ�D3τ j�t� x̄t � ȳt�ηt � (49)

rom here, we obtain

D3τ j�t� x̄t � ȳt�ηt �

sinϕ j�t��η�t� τ̄ j�t���η�t��
˙̄x�t�τ̄ j�t���cosϕ j�t�� ˙̄y�t�τ̄ j�t��sinϕ j�t��RΩcos�Ωτ̄ j�t��ϑ�

�

(50)

imilarly to Eq. (48) the denominator in Eq. (50) is not zero but
negative number.

Substitution of all the derivative terms into Eqs. (39) and
0), the linearized equations of motion read

mξ̈�t�� cξ̇�t�� kξ�t�

�
N

∑
j�1

�
αx� j�t�qh̄q�1

j �t�sinϕ j�t��ξ�t� τ̄ j�t���ξ�t��

�αx� j�t�qh̄q�1
j �t�cosϕ j�t��η�t� τ̄ j�t���η�t��

�αx� j�t�qh̄q�1
j �t�

�
�
� sinϕ j�t� ˙̄x�t�τ̄ j�t��� cosϕ j�t� ˙̄y�t�τ̄ j�t��

�RΩsin�Ωτ̄ j�t��ϑ�� vsinϕ j�t�
�

�
�

D2τ j�t� x̄t � ȳt�ξt �D3τ j�t� x̄t � ȳt�ηt

��
(51)
7 Copyright c� 2005 by ASME



and

mη̈�t�� cη̇�t�� kη�t�

�
N

∑
j�1

�
αy� j�t�qh̄q�1

j �t�sinϕ j�t��ξ�t� τ̄ j�t���ξ�t��

�αy� j�t�qh̄q�1
j �t�cosϕ j�t��η�t� τ̄ j�t���η�t��

�αy� j�t�qh̄q�1
j �t�

�
�
� sinϕ j�t� ˙̄x�t�τ̄ j�t��� cosϕ j�t� ˙̄y�t�τ̄ j�t��

�RΩsin�Ωτ̄ j�t��ϑ�� vsinϕ j�t�
�

�
�

D2τ j�t� x̄t � ȳt�ξt �D3τ j�t� x̄t � ȳt�ηt

��
� (52)

where the terms D2τ�t� x̄t � ȳt��ξt and D3τ�t� x̄t � ȳt��ηt are given by
Eqs. (48) and (50).

Note, that there are three terms in the right hand sides of
Eqs. (51) and (52). The first two terms are identical to the terms
in the models using constant or time-periodic time delay. The
additional third term arises due to the state-dependent delay.

This means that the state-dependent delay affects the linear
stability of the milling process, similarly to the autonomous turn-
ing model (see [25]). If the state-dependency of the time delay
were neglected, then this third term would completely disappear
from the equation, and we would get back the linear equation of
motion of models without state-dependent delay.

Stability analysis of the linear DDE (51)–(52) with time pe-
riodic delay can be performed by numerical or semi-analytical
techniques. The practical evaluation of stability is however quite
problematic due to several reasons. First of all, the time delay
is time periodic, and the computation tools for DDEs with time
periodic delay is not so developed as it is for systems with con-
stant time delay. Another problem is that the derivative of the
periodic solution explicitly appears in the equations in the form
˙̄x�t�τ̄ j�t�� and ˙̄y�t�τ̄ j�t��.

Although it is shown clearly that an additional third term
arises in the linearized equation due to the state dependency of
the time delay, its influence is much smaller than that of the first
and the second terms. If Eqs. (48) and (50) are substituted into

�

si
�v

�

si
�v
8

the third terms in Eq. (51), then we get

∑
l�x�y

�
αl� j�t�qh̄q�1

j �t�cosϕ j�t��ξ�t� τ̄ j�t���ξ�t��

nϕ j�t�� ˙̄x�t�τ̄ j�t��� v�� cosϕ j�t� ˙̄y�t�τ̄ j�t���RΩsin�Ωτ̄ j�t��ϑ�
� ˙̄x�t�τ̄ j�t���cosϕ j�t�� ˙̄y�t�τ̄ j�t��sinϕ j�t��RΩcos�Ωτ̄ j�t��ϑ�

�αl� j�t�qh̄q�1
j �t�sinϕ j�t��η�t� τ̄ j�t���η�t��

nϕ j�t� ˙̄x�t�τ̄ j�t��� cosϕ j�t�� ˙̄y�t�τ̄ j�t��� v��RΩsin�Ωτ̄ j�t��ϑ�
� ˙̄x�t�τ̄ j�t���cosϕ j�t�� ˙̄y�t�τ̄ j�t��sinϕ j�t��RΩcos�Ωτ̄ j�t��ϑ�

�
�

(53)

If a normal milling process is considered, then it can be seen
that this term is significantly smaller than the first and the sec-
ond terms in Eq. (51). As it was mentioned after Eq. (17),
practically, the time delay slightly varies around the mean value
τ̃ � 2π��NΩ�, therefore sin�Ωτ̄ j�t��ϑ� � 0 in the numerator
of the fractions in Eq. (53), and cos�Ωτ̄ j�t��ϑ� � 1 in the de-
nominator. If the vibration velocity ˙̄x�t� and ˙̄y�t� and the feed
speed v are small, then both fractions in Eq. (53) are small. In
other words, the additional third terms in Eqs. (51) and (52) are
small relative to the first and the second terms. This means that
the omission of the state dependency of the time delay in milling
models does not significantly affect the linear properties of the
system. This, however, does not hold for the nonlinear behavior
of the system, the nonlinear properties might strongly be affected
by the state dependency of the delay.

4 CONCLUSIONS
It was shown that if the self excited vibrations of the milling

tool superimpose on the trochoidal path of the cutting edges, then
the surface regeneration results in a time- and state-dependent
time delay in the model equations instead of the constant time
delay that is usually used by standard milling models.

It was shown through the linearization of the nonlinear SD-
DDE that an additional term arises in the linearized equation of
motion due to the state-dependency of the time delay. Although,
the state-dependent time delay affects the linear stability prop-
erties of the system, its influence is not significant for practical
machining parameters, since the arising additional term is rela-
tively slight for practical milling parameters. In this sense, the
standard milling models using constant time delay describe lin-
ear stability properties well. However, nonlinear behavior of the
system might strongly be affected by the state dependency of the
delay.

The effect of state dependent time delay on cutting process
dynamics might not be so significant in the present manufactur-
ing practice, however, it might become more and more important
with the development of the technology similarly to the history
of modeling time periodic cutting forces in milling processes.
In early milling models in the sixties, the time dependency of
Copyright c� 2005 by ASME



the cutting forces was neglected, and an average constant cut-
ting force was used for dynamic analysis [1], [2]. These mod-
els describe the system’s dynamics approximately well for most
cases, however, for highly interrupted cutting, they does not give
reliable result. Continuous development of milling models and
their analysis in the past decade showed that time periodicity of
the cutting forces qualitatively affects the system’s behavior: the
chatter frequencies are multiplied and a new type of instability,
the so-called period doubling or flip bifuraction arise [27]– [29].
Similarly, the incorporation of the state-dependent time delay
into the milling model might become more important in the fu-
ture.
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