
J. Di�erential and Integral Equations, 8:7 (1995) 1867{1872.On the Asymptoti
 Behavior of the Solutions of aState-Dependent Delay EquationF. Hartung and J. TuriPrograms in Mathemati
al S
ien
esUniversity of Texas at DallasRi
hardson, TX 75083Absta
t: In this paper we establish an asymptoti
 formula for \small" solutions ofthe delay equation _x(t) = ax(t� bjx(t)j), where a and b are positive 
onstants.1 Introdu
tionIn a re
ent paper ([3℄) we have studied the theoreti
al 
onvergen
e properties of an approxi-mation te
hnique (using equations with pie
ewise 
onstant arguments) for state-dependentdelay equations and in a follow-up paper ([4℄) we have done extensive numeri
al testingon the performan
e of our method. In parti
ular, we have 
onsidered in [4℄ numeri
alsolutions of the following initial value problem (IVP)_y(t) = y(t� jy(t)j) + sin 2t� sin2(t� sin2 t); t � 0; (1.1)y(t) = �(t); t � 0: (1.2)It is easy to 
he
k that the fun
tion y(t) = sin2 t; t � 0 solves (1.1)-(1.2) with initialfun
tion �(t) = sin2 t. As a matter of fa
t, from the initial fun
tion we only use theinformation that y(0) = 0. On Figure 1 we display the numeri
al solutions of (1.1)-(1.2)using various values for the dis
retization 
onstant, h. The graph indi
ates 
onvergen
e on�nite intervals (in agreement with the theoreti
al predi
tions of [3℄), but after some time(whi
h of 
ourse depends on h) we 
an observe a \very regular divergen
e" (i.e., more orless linearly growing error) of the numeri
al solutions.AMS Math. Subje
t Classi�
ation (1991 revision): 34K05, 34K25, 34K99
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Figure 1. solid line: sin2 t, o: h = 0:01, x: h = 0:001, +: h = 0:0001We have studied numeri
al solutions of IVP (1.1)-(1.2) with perturbed initial fun
tions(see Figure 2), then we have 
onsidered the homogeneous equation 
orresponding to (1.1)with various initial fun
tions (see Figure 3) and in all 
ases have observed the same typeof asymptoti
s.
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Figure 2. Numeri
al solutions of (1.1)-(1.2) with h = 0:001 using initial fun
tion+: sin2 t, o: sin2 t+ 0:05, x: sin2 t+ 0:1 
os 5t,solid line: sin2 t
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Figure 3. Numeri
al solutions of (1.3)-(1.4) with h = 0:001 using initial fun
tiono: t+ 0:2, x: 0:2 sin5t+ 0:01, +: 0:4 
os 2tMotivated by these numeri
al �ndings, in this paper we 
onsider \small" solutions,
orresponding to small (in sup norm) initial fun
tions, of the IVP_x(t) = x(t� jx(t)j); t � 0; (1.3)x(t) = �(t); t � 0; (1.4)where the delay equation (1.3) is the homogeneous 
ounterpart of equation (1.1).The investigation of \small" solutions is justi�ed by the fa
t that the approximationerror initially 
an be 
ontrolled by the proper sele
tion of the dis
retization 
onstant.The asymptoti
 analysis, presented in the next se
tion establishes the following relationon the unique solution, x(t), of IVP (1.3)-(1.4)x(t) = t+ �+ �(t); (1.5)where � is a 
onstant, �(t) has the properties that limt!1�(t) = 0 and limt!1 _�(t) = 0.In Se
tion 3 we present examples to illustrate appli
ations and limitations of (1.5) andto indi
ate how the results 
ould possibly be extended to the more general equation_x(t) = ax�t� r(x(t))�; a > 0; (1.6)where r(t) is a given Lips
hitz-
ontinuous fun
tion.We 
on
lude this se
tion by noting that a 
omplete asymptoti
 theory for Equation(1.6), with a < 0 
an be found in [1℄.
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2 Main ResultsConsider initial value problem_x(t) = ax(t� bjx(t)j); t � 0; (2.1)x(t) = �(t); t � 0; (2.2)where a > 0, b > 0.We assume throughout the paper that the initial fun
tion, �(t), is 
ontinuous, whi
himplies that IVP (2.1)-(2.2) has a solution, i.e., there exists a 
ontinuously di�erentiablefun
tion whi
h satis�es (2.1) and (2.2). Moreover we also assume that the solution isunique, whi
h is satis�ed if the initial fun
tion is Lips
hitz-
ontinuous. (See [2℄, [3℄ or [5℄for existen
e, uniqueness theorems.)We introdu
e the simplifying notations x0 � �(0) and !(t) � t � bjx(t)j, whi
h areused throughout the paper.It is easy to 
he
k the following two statements.Proposition 2.1(i) If x(t) is the solution of (2.1)-(2.2) 
orresponding to the initial fun
tion �(t), then�x(t) is the solution of (2.1)-(2.2) 
orresponding to the initial fun
tion ��(t).(ii) If x0 = 0, then the solution of (2.1)-(2.2), x(t), is identi
ally zero for t � 0.By Proposition 2.1 it is enough to study the qualitative behavior of IVP (2.1)-(2.2)with initial fun
tion �(�) satisfying �(0) = x0 > 0.Proposition 2.2 If x0 > 0, then the solution of IVP (2.1)-(2.2) satis�es x(t) > 0 fort � 0.Proof: The 
ontinuity of �(t) implies that there exists ~t > 0 su
h that �(t) > 0 fort 2 (�~t; 0℄. Suppose that there exists t� > 0 su
h that the solution x(t) of (2.1)-(2.2)satis�es x(t�) = 0 and x(t) > 0 for t 2 (0; t�). Then the mean value theorem implies thatfor any 0 < Æ < t� there exists �t 2 (t� � Æ; t�) su
h that _x(�t) < 0. But _x(�t) = ax(�t� bx(�t))implies that �t� bx(�t) < �~t for su
h �t, whi
h yields �t+~t < bx(�t). If Æ ! 0 we get t�+~t � 0whi
h is a 
ontradi
tion. Therefore x(t) > 0 for all t � 0.In the next proposition we reveal an interesting asymptoti
 property of the solutionsof IVP (2.1)-(2.2).Proposition 2.3 If there exists a T � 0 su
h that the solution of (2.1)-(2.2) satis�es_x(T ) = 1b , then the solution has the form x(t) = 1b (t� T ) + x(T ) for t � T .Proof: Equation (2.1) and the 
ondition _x(T ) = 1b yield the relation1b = _x(T ) = ax(T � bx(T )) = ax�t� b�1b (t� T ) + x(T )�� ;4



whi
h means that the fun
tion 1b (t� T ) + x(T ) satis�es (2.1) for t � T .This result immediately implies that !(�) is a monotone fun
tion, be
ause if there isa T � 0 su
h _!(T ) = 0, i.e., _x(T ) = 1b , then !(t) = !(T ) for t � T . But if _!(t) 6= 0 forall t � 0, then !(�) is a stri
tly monotone in
reasing or de
reasing fun
tion. Therefore wehave obtained the following proposition.Proposition 2.4 The time lag fun
tion, !(t), is monotone for t � 0.Simple 
al
ulations and substitution into (2.1)-(2.2) show that for the 
ase !(t) � 0,the time lag fun
tion, !(�), satis�es the following ordinary di�erential equation_!(t) = 1� ab�(!(t)); for t � 0; !(t) � 0; (2.3)with initial 
ondition !(0) = �bx0: (2.4)Assuming that the initial interval is �nite, i.e., there exists K > 0 su
h that !(t) � t�bjx(t)j � �K for all t � 0, we 
an prove that solutions of IVP (2.1)-(2.2) are asymptoti
allyapproa
hing a line with slope 1b . In parti
ular, we haveTheorem 2.5 Assume that x0 > 0. Then the following two statements are equivalent(i) There exists a K > 0 su
h that the solution x(t) of IVP (2.1)-(2.2) satis�es t�bjx(t)j ��K for t � 0.(ii) There exist a 
onstant � and a fun
tion �(t) su
h that the solution of IVP (2.1)-(2.2)has the form x(t) = 1b (t+ �+ �(t)); t � 0; (2.5)where limt!1 �(t) = 0 and limt!1 _�(t) = 0.Proof: Trivially (ii) implies (i).Assume that 
ondition (i) holds.By assumption !(0) < 0. If there exists a t > 0 su
h that !(t) > 0, then !(�) is amonotone in
reasing fun
tion. Otherwise !(t) � 0 for t � 0. We want to show that thefun
tion !(�) is bounded from above.The only interesting 
ase is when there exists a T > 0 su
h that !(T ) = 0, !(t) < 0for t 2 [0; T ) and !(t) > 0 for t > T . Using Proposition 2.2 and the de�nition of T wehave that _x(t) = ax(!(t)) > 0 for t > T , hen
e the solution, x(�), is monotone in
reasingfor t > T , therefore we have_x(t) � mint2[0;T ℄ ax(t) > 0 for t > T;whi
h implies that x(t)!1 as t!1. 5



Suppose that limt!1 !(t) = 1. Using the monotoni
ity of !(�), Equation (2.1) andthe fa
t that x(t)!1 as t!1 we obtain0 � _!(t) = 1� b _x(t) = 1� abx(t� bx(t)) = 1� abx(!(t))! �1; (2.6)whi
h is a 
ontradi
tion. This means that there exists a 
onstant L > 0 su
h that 0 <!(t) � L for t > T . Therefore in every 
ase we have that !(�) is a bounded fun
tion fromabove, and by assumption (i) it is also bounded from below. It is a monotone fun
tion,therefore its limit at 1 exists, so we 
an de�ne � � � limt!1 !(t) and �(t) � �!(t)��.With these de�nitions relation (2.5) and limt!1 �(t) = 0 are satis�ed. Monotoni
ity andboundedness of !(�) imply that limt!1 _�(t) = � limt!1 _!(t) = 0.The proof of the theorem is 
omplete.The following proposition gives 
onditions, whi
h guarantee that IVP (2.1)-(2.2) has�nite initial interval, i.e., 
ondition (i) holds in Theorem 2.5.Proposition 2.6(i) If �(�bx0) � 1ab , then !(t) � �bx0 for t � 0.(ii) If �(�bx0) > 1ab and there exists a 
onstant L > bx0 su
h that �(�L) = 1ab , then�L < !(t) for t � 0.(iii) If �(t) > 1ab for t � �bx0, then limt!1 !(t) = �1.Proof:(i) If �(�bx0) = 1ab , then �bx0 is an equilibrium of (2.3), therefore !(t) = �bx0 for allt � 0. Consider the 
ase when �(�bx0) < 1ab . This implies that _!(0) = 1�ab�(�bx0) > 0,therefore using Proposition 2.4 the fun
tion !(�) is monotone in
reasing, hen
e !(t) ��bx0 for all t � 0.(ii) By assumption �L is an equilibrium of the autonomous equation (2.3), !(0) = �bx0 >�L, therefore we have that !(t) > �L for all t � 0.(iii) The assumption, �(t) > 1ab , t � �bx0, implies that _!(t) < 0 for all t � 0, hen
e !(�)is de�ned by (2.3)-(2.4) for all t � 0, and is a monotone de
reasing fun
tion. Suppose that!(t) ! �L > �1 as t! 1. Then �L has to be an equilibrium point of (2.3), whi
h isequivalent to that �(�L) = 1ab , whi
h 
ontradi
ts to our assumption.Summarizing our results we formulate the following 
orollary to Theorem 2.5.Theorem 2.7 The solution of IVP (2.1)-(2.2) is asymptoti
ally a straight line with slope1b , i.e., there exist a 
onstant � and a fun
tion �(t) su
h that the solution of IVP (2.1)-(2.2)has the form x(t) = 1b (t+ �+ �(t)); t � 0; (2.7)where limt!1 �(t) = 0 and limt!1 _�(t) = 0 if and only if either(i) �(�bx0) � 1ab . In this 
ase t� bjx(t)j � �bx0 for t � 0.or(ii) �(�bx0) > 1ab and there exists a 
onstant L � bx0 su
h that �(�L) = 1ab . In this
ase �L < t� bjx(t)j � �bx0 for t � 0.6



3 Examples, and a more general IVPConsider the spe
ial 
ase of (2.1){(2.2)_x(t) = x(t� jx(t)j); t � 0; (3.1)x(t) = �(t); t � 0; (3.2)with various initial fun
tions.Example 3.1 Let the initial fun
tion �(t) = 1 + t. Then the solution of (3.1)-(3.2) isx(t) = t+ e�t, for t � 0. In this example we have that �1 � !(t) < 0 for t � 0.Example 3.2 If the initial fun
tion�(t) = ( 3 + t; �2 � t � �11� t; �1 � t � 0;then the solution of (3.1)-(3.2) is x(t) = t+ 2� e�t. We have �2 < !(t) � �1.Example 3.3 Let the initial fun
tion �(t) = 1 � t2. Then the solution of (3.1)-(3.2) isx(t) = t+ 1t+1 .Example 3.4 If �(t) = 0:5, then Theorem 2.7 yields, that the solution of (3.1)-(3.2) hasform (2.7), where � < 0, be
ause the right hand side of (2.3) is positive for all t, therefore�� = limt!1 !(t) > 0.These examples indi
ate that in (2.7) � and �(t) 
an have any sign, and the order of
onvergen
e of �(�) to zero 
an be for example exponential or polynomial. The time lagfun
tion, !(�) 
an be both in
reasing and de
reasing.The next two examples show 
ases when the assumptions of Theorem 2.7 are notsatis�ed.Example 3.5 Consider the initial fun
tion �(t) = p, where p > 1. Then the solution of(3.1)-(3.2) is x(t) = pt+ p, for t � 0. For this example !(t) = (1� p)t� p, so !(t)! �1as t!1, and we do not have asymptoti
 formula (2.5).Example 3.6 If the initial fun
tion �(t) = 1 � t, then the solution of (3.1)-(3.2) isx(t) = t + et, for t � 0. In this example also !(t) ! �1 as t ! 1, and the solutiongrows exponentially.To 
on
lude we 
onsider the IVP_x(t) = ax�t� r(x(t))�; t � 0; (3.3)x(t) = �(t); t � 0; (3.4)where r(�) is monotone in
reasing, r(0) = 0, and a > 0.Numeri
al studies indi
ate that solutions 
orresponding to \small" initial fun
tionshave similar asymptoti
 properties. For example on Figure 4 we show numeri
al solutions7



of (3.3)-(3.4) for the delay fun
tion r(x) = x2 with parameter a = 1, 
orresponding toinitial fun
tions �1(t) = 0:2 sin 5t+ 0:01;�2(t) = 0:4 
os 2t;�3(t) = 0:05:This and other numeri
al runings suggest the 
onje
ture, that for \small" initial fun
-tion, the solution of (3.3)-(3.4) is asymptoti
ally a shift of the inverse of r(�), i.e., r�1(t+�).
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Figure 4. Numeri
al solutions of IVP (3.3)-(3.4) with r(x) = x2, a = 1 and with initial fun
tionso: �1(t), x: �2(t), +: �3(t)Referen
es[1℄ K. L. Cooke, Asymptoti
 theory for the delay-di�erential equation u0(t) = �au(t �r(u(t))), J. Math. Anal. Appl., 19 (1967), 160{173.[2℄ R. D. Driver, Existen
e theory for a delay-di�erential system, Contributions to Di�er-ential Equations, 1 (1961), 317{336.[3℄ I. Gy}ori, F. Hartung, J. Turi, Approximation of Fun
tional Di�erential Equations withTime- and State-Dependent Delays by Equations with Pie
ewise Constant Arguments,preprint.[4℄ I. Gy}ori, F. Hartung, J. Turi, On Numeri
al Solutions for a Class of Nonlinear DelayEquations with Time- and State-Dependent Delays, to appear in the Pro
eedings ofWorld Congress of Nonlinear Analysts, 1992.[5℄ J. K. Hale, \Theory of Fun
tional Di�erential Equations", Spingler-Verlag, New York,1977. 8


