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On the Asymptotic Behavior of the Solutions of a
State-Dependent Delay Equation

F. Hartung and J. Turi
Programs in Mathematical Sciences
University of Texas at Dallas
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Abstact: In this paper we establish an asymptotic formula for “small” solutions of
the delay equation #(t) = ax(t — b|x(t)|), where a and b are positive constants.

1 Introduction

In a recent paper ([3]) we have studied the theoretical convergence properties of an approxi-
mation technique (using equations with piecewise constant arguments) for state-dependent
delay equations and in a follow-up paper ([4]) we have done extensive numerical testing
on the performance of our method. In particular, we have considered in [4] numerical
solutions of the following initial value problem (IVP)

y(t) = y(t—|y(t)]) +sin2t —sin®(t —sin®t),  t>0, (1.1)
y(t) = @), t<0. (1.2)

It is easy to check that the function y(t) = sin?¢, ¢t > 0 solves (1.1)-(1.2) with initial
function ®(t) = sin®t. As a matter of fact, from the initial function we only use the
information that y(0) = 0. On Figure 1 we display the numerical solutions of (1.1)-(1.2)
using various values for the discretization constant, h. The graph indicates convergence on
finite intervals (in agreement with the theoretical predictions of [3]), but after some time
(which of course depends on h) we can observe a “very regular divergence” (i.e., more or
less linearly growing error) of the numerical solutions.
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Figure 1. solid line: sin®¢, o: h = 0.01, x: h = 0.001, +: h = 0.0001

We have studied numerical solutions of IVP (1.1)-(1.2) with perturbed initial functions
(see Figure 2), then we have considered the homogeneous equation corresponding to (1.1)
with various initial functions (see Figure 3) and in all cases have observed the same type
of asymptotics.
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Figure 2. Numerical solutions of (1.1)-(1.2) with A = 0.001 using initial function
+: sin®t, o: sin®t + 0.05, x: sin® ¢ + 0.1 cos 5t,
solid line: sin®¢



45+

5 p
40 5
35

5 X
301 F X
25+ ©
6 X
201 5 %
. o

15 3 X

10 5 %

Figure 3. Numerical solutions of (1.3)-(1.4) with A = 0.001 using initial function
o: t+ 0.2, x: 0.2sin5¢ 4+ 0.01, +: 0.4cos 2t

Motivated by these numerical findings, in this paper we consider “small” solutions,
corresponding to small (in sup norm) initial functions, of the IVP

i) = at-la@)l), >0, (1.3)
wt) = D), <,

where the delay equation (1.3) is the homogeneous counterpart of equation (1.1).
The investigation of “small” solutions is justified by the fact that the approximation
error initially can be controlled by the proper selection of the discretization constant.
The asymptotic analysis, presented in the next section establishes the following relation
on the unique solution, z(¢), of IVP (1.3)-(1.4)

z(t) =t+ a+ B(t), (1.5)

where « is a constant, 8(¢) has the properties that lim_,c3(t) = 0 and limy_,»3(t) = 0.
In Section 3 we present examples to illustrate applications and limitations of (1.5) and
to indicate how the results could possibly be extended to the more general equation

() = ax(t - r(x(t))), a>0, (1.6)

where r(t) is a given Lipschitz-continuous function.
We conclude this section by noting that a complete asymptotic theory for Equation
(1.6), with @ < 0 can be found in [1].



2 Main Results

Consider initial value problem

i) = azx(t-Dbz@)]), t>0, (2.1)

where ¢ > 0, b > 0.

We assume throughout the paper that the initial function, ®(¢), is continuous, which
implies that IVP (2.1)-(2.2) has a solution, i.e., there exists a continuously differentiable
function which satisfies (2.1) and (2.2). Moreover we also assume that the solution is
unique, which is satisfied if the initial function is Lipschitz-continuous. (See [2], [3] or [5]
for existence, uniqueness theorems.)

We introduce the simplifying notations zo = ®(0) and w(t) = ¢t — b|z(¢)|, which are
used throughout the paper.

It is easy to check the following two statements.

Proposition 2.1

(1) If z(t) is the solution of (2.1)-(2.2) corresponding to the initial function ®(t), then
—x(t) is the solution of (2.1)-(2.2) corresponding to the initial function —®(t).

(1) If o = 0, then the solution of (2.1)-(2.2), x(t), is identically zero for t > 0.

By Proposition 2.1 it is enough to study the qualitative behavior of IVP (2.1)-(2.2)
with initial function ®(-) satisfying ®(0) = z¢ > 0.

Proposition 2.2 If zy > 0, then the solution of IVP (2.1)-(2.2) satisfies z(t) > 0 for
t> 0.

PROOF: The continuity of ®(t) implies that there exists # > 0 such that ®(t) > 0 for
t € (—t,0]. Suppose that there exists t* > 0 such that the solution x(t) of (2.1)-(2.2)
satisfies z(¢*) = 0 and z(¢) > 0 for ¢ € (0,¢*). Then the mean value theorem implies that
for any 0 < § < t* there exists ¢ € (t* — §,¢*) such that £(¢) < 0. But ©(t) = ax(t — bz(t))
implies that £ — bz (t) < —t for such £, which yields £ +¢ < bx(f). If § — 0 we get t* +£ < 0
which is a contradiction. Therefore z(t) > 0 for all £ > 0.

In the next proposition we reveal an interesting asymptotic property of the solutions
of IVP (2.1)-(2.2).

Proposition 2.3 If there exists a T > 0 such that the solution of (2.1)-(2.2) satisfies
©(T) = ¢, then the solution has the form z(t) = (¢t — T) + z(T) for t > T.

PRrOOF: Equation (2.1) and the condition #(7) = 7 yield the relation

% = #(T) = az(T — bz(T)) = az (t —b (%(t —-T)+ x(T)>> :
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which means that the function §(t — T') + z(T) satisfies (2.1) for t > 7.

This result immediately implies that w(-) is a monotone function, because if there is
aT > 0such &(T) =0, ie., &(T) = }, then w(t) = w(T) for t > T. But if w(t) # 0 for
all £ > 0, then w(-) is a strictly monotone increasing or decreasing function. Therefore we
have obtained the following proposition.

Proposition 2.4 The time lag function, w(t), is monotone for t > 0.

Simple calculations and substitution into (2.1)-(2.2) show that for the case w(t) <0,
the time lag function, w(-), satisfies the following ordinary differential equation

w(t) =1—ab®(w(t)), fort >0, w(t) <0, (2.3)

with initial condition

w(0) = —bzxyg. (2.4)

Assuming that the initial interval is finite, i.e., there exists K > 0 such that w(t) =t —
blz(t)| > — K for all t > 0, we can prove that solutions of IVP (2.1)-(2.2) are asymptotically
approaching a line with slope % In particular, we have

Theorem 2.5 Assume that g > 0. Then the following two statements are equivalent

(1) There exists a K > 0 such that the solution x(t) of IVP (2.1)-(2.2) satisfies t—b|z(t)| >
—K fort>0.

(11) There ezist a constant o and a function B(t) such that the solution of IVP (2.1)-(2.2)
has the form

o(t) = S+t ), 120, (25)
where limy_,o B(t) = 0 and lim;_, ,B(t) =0.

PROOF: Trivially (ii) implies (i).

Assume that condition (i) holds.

By assumption w(0) < 0. If there exists a ¢ > 0 such that w(¢) > 0, then w(:) is a
monotone increasing function. Otherwise w(t) <0 for ¢ > 0. We want to show that the
function w(-) is bounded from above.

The only interesting case is when there exists a 7' > 0 such that w(T) =0, w(t) < 0
for t € [0,T) and w(t) > 0 for ¢ > T. Using Proposition 2.2 and the definition of T' we
have that () = ax(w(t)) > 0 for ¢ > T', hence the solution, z(-), is monotone increasing
for t > T, therefore we have

Z(t) > min_axz(t) >0 for t > T,
t€[0,T]

which implies that z(t) — oo as t — oc.



Suppose that lim;_, w(t) = co. Using the monotonicity of w(-), Equation (2.1) and
the fact that z(¢) — oc as t — oo we obtain

0<w()=1=0bi(t) =1—abx(t —bz(t)) =1 — abz(w(t)) = —oc, (2.6)

which is a contradiction. This means that there exists a constant L > 0 such that 0 <
w(t) < L for t > T. Therefore in every case we have that w(-) is a bounded function from
above, and by assumption (i) it is also bounded from below. It is a monotone function,
therefore its limit at co exists, so we can define a« = — limy_, o w(t) and S(t) = —w(t) — a.
With these definitions relation (2.5) and limy;_,o (t) = 0 are satisfied. Monotonicity and
boundedness of w(-) imply that lim;_, B(t) = —limy_, w(t) = 0.

The proof of the theorem is complete.

The following proposition gives conditions, which guarantee that IVP (2.1)-(2.2) has
finite initial interval, i.e., condition (i) holds in Theorem 2.5.

Proposition 2.6
(i) If ®(—bxzg) < &, then w(t) > —bzg for t > 0.

(ii) If ®(—bzo) > L and there exists a constant L > bzg such that ®(—L) = %, then
—L < w(t) fort > 0.

(iii) If ®(t) > L for t < —bzg, then limy_,o w(t) = —o0.

PROOF:

(i) If ®(—bzo) = %, then —bxy is an equilibrium of (2.3), therefore w(t) = —bz, for all
¢ > 0. Consider the case when ®(—bz) < . This implies that w(0) = 1—ab®(—bzg) > 0,
therefore using Proposition 2.4 the function w(-) is monotone increasing, hence w(t) >
—bxg for all ¢ > 0.

(ii) By assumption —L is an equilibrium of the autonomous equation (2.3), w(0) = —bxg >
— L, therefore we have that w(t) > —L for all ¢ > 0.

(iii) The assumption, ®(t) > X, t < —bxg, implies that w(t) < 0 for all ¢ > 0, hence w(-)
is defined by (2.3)-(2.4) for all ¢ > 0, and is a monotone decreasing function. Suppose that
w(t) - —L > —oc as t = co. Then —L has to be an equilibrium point of (2.3), which is
equivalent to that ®(—L) = ﬁ, which contradicts to our assumption.

Summarizing our results we formulate the following corollary to Theorem 2.5.

Theorem 2.7 The solution of IVP (2.1)-(2.2) is asymptotically a straight line with slope
¥, i.e., there exist a constant o and a function B(t) such that the solution of IVP (2.1)-(2.2)
has the form

o) = S+t fO), 120, (2.7)

where limy_, o B(t) = 0 and limy_, ,B(t) = 0 if and only if either
(i) ®(—bzg) < L. In this case t — bz(t)| > —bzg for t > 0.
or

(ii) ®(—bzg) > X and there exists a constant L > bxg such that ®(—L) = L. In this
case —L <t —blz(t)| < —bzy fort > 0.



3 Examples, and a more general IVP
Consider the special case of (2.1)-(2.2)

i) = a(t-|z@)), 20, (3.1)
z(t) = ®(), t<0,

with various initial functions.

Example 3.1 Let the initial function ®(¢) = 1+ ¢. Then the solution of (3.1)-(3.2) is
z(t) =t + et for t > 0. In this example we have that —1 < w(t) < 0 for ¢ > 0.

Example 3.2 If the initial function

3+t —2<t<-—1
Cb(t)_{ 1—t, —1<t<0,

then the solution of (3.1)-(3.2) is z(t) =t +2 — e~t. We have —2 < w(t) < —1.

Example 3.3 Let the initial function ®(¢) = 1 — ¢2. Then the solution of (3.1)-(3.2) is
z(t) =t + 77

Example 3.4 If ®(¢) = 0.5, then Theorem 2.7 yields, that the solution of (3.1)-(3.2) has
form (2.7), where @ < 0, because the right hand side of (2.3) is positive for all ¢, therefore
—a = limy_, o w(t) > 0.

These examples indicate that in (2.7) « and S() can have any sign, and the order of
convergence of 3(-) to zero can be for example exponential or polynomial. The time lag
function, w(-) can be both increasing and decreasing.

The next two examples show cases when the assumptions of Theorem 2.7 are not
satisfied.

Example 3.5 Consider the initial function ®(¢) = p, where p > 1. Then the solution of
(3.1)-(3.2) is z(t) = pt + p, for ¢ > 0. For this example w(t) = (1 — p)t — p, so w(t) - —o0
as t — oo, and we do not have asymptotic formula (2.5).

Example 3.6 If the initial function ®(¢) = 1 — ¢, then the solution of (3.1)-(3.2) is
z(t) = t+ e, for t > 0. In this example also w(t) — —oo as t — oo, and the solution
grows exponentially.

To conclude we consider the IVP

it) = az(t-r(=®)), >0, (3.3)
z(t) = ®(¢), t<0, (3.4)
where 7(+) is monotone increasing, 7(0) = 0, and a > 0.

Numerical studies indicate that solutions corresponding to “small” initial functions
have similar asymptotic properties. For example on Figure 4 we show numerical solutions



of (3.3)-(3.4) for the delay function r(z) = z? with parameter a = 1, corresponding to
initial functions

®i(t) = 0.2sin5t+0.01,
®y(t) = 0.4cos2t,
®3(t) = 0.05.

This and other numerical runings suggest the conjecture, that for “small” initial func-
tion, the solution of (3.3)-(3.4) is asymptotically a shift of the inverse of r(-), i.e., 7! (t+a).
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Figure 4. Numerical solutions of IVP (3.3)-(3.4) with r(z) = 2?, @ = 1 and with initial functions
0: By (t), x: Pa(t), +: P3(t)
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