ON DIFFERENTIABILITY OF SOLUTIONS WITH RESPECT TO PARAMETERS IN A CLASS OF FUNCTIONAL DIFFERENTIAL EQUATIONS

FERENC HARTUNG∗

Abstract. In this paper we study differentiability of solutions with respect to parameters in state-dependent delay equations. In particular, we give sufficient conditions for differentiability of solutions in the $W^{1,\infty}$ norm.

1. Introduction. We consider the state-dependent delay system

(1) \[\dot{x}(t) = f\left(t, x(t), x(t - \tau(t, x(t, \sigma))), \theta \right), \quad t \in [0, T], \]

with initial condition

(2) \[x(t) = \varphi(t), \quad t \in [-r, 0]. \]

Here $\theta \in \Theta$ and $\sigma \in \Sigma$ represent parameters in the function f and in the delay function, τ, where Θ and Σ are normed linear spaces with norms $\| \cdot \|_{\Theta}$ and $\| \cdot \|_{\Sigma}$, respectively. The notation x_t denotes the solution segment function, i.e., $x_t : [-r, 0] \rightarrow \mathbb{R}^n$, $x_t(s) \equiv x(t + s)$. (See Section 2 below for the detailed assumptions on the initial value problem (IVP) (1)-(2).)

In this paper we study differentiability of solutions of IVP (1)-(2) with respect to (wrt) the parameters φ, σ and θ. Differentiability wrt parameters in delay equations has been investigated, e.g., in [1], [5] and [6]. It has also been studied in state-dependent delay equations in [8], where sufficient conditions were given guaranteeing differentiability of the parameter map $\Gamma \rightarrow W^{1,p}$, $\gamma \mapsto x(\cdot; \gamma)$ (where $\gamma \in \Gamma$ is some parameter of the equation, and $1 \leq p < \infty$). In establishing this result a version of the Uniform Contraction Principle for quasi-Banach spaces was used. In many applications (e.g., in parameter identification problems, see, e.g., [2] and [3]) this sort of differentiability (i.e., differentiability in a $W^{1,p}$ norm) is too weak. In this paper we establish sufficient conditions implying “pointwise” differentiability of the parameter map, i.e., differentiability of $\Gamma \rightarrow \mathbb{R}^n$, $\gamma \mapsto x(t; \gamma)$, and the stronger property, differentiability of the map $\Gamma \rightarrow W^{1,\infty}$, $\gamma \mapsto x(\cdot; \gamma)$.

Our main results are contained in Section 3. In Section 2 we list our assumptions on IVP (1)-(2), introduce our notations, and give some necessary preliminary results.

2. Notations, assumptions and preliminaries. Throughout this paper a norm on \mathbb{R}^n and the corresponding matrix norm on $\mathbb{R}^{n \times n}$ are denoted by $\| \cdot \|$ and $\| \cdot \|_1$, respectively.

∗ Department of Mathematics and Computing, University of Veszprém, P.O. Box 158, H-8201 Veszprém, Hungary

Keywords: delay equations, state-dependent delays, differentiability wrt parameters

AMS Subject Classification: 34K05

1
The notation \(f : (A \subset X) \to Y \) will be used to denote that the function maps the subset \(A \) of the normed linear space \(X \) to \(Y \). This notation emphasizes that the topology on \(A \) is defined by the norm of \(X \).

We denote the open ball around a point \(x_0 \) with radius \(R \) in a normed linear space \((X, |\cdot|_X)\) by \(B(x_0; R) \), i.e., \(B(x_0; R) = \{ x \in X : |x - x_0|_X < R \} \), and the corresponding closed ball by \(\overline{B}(x_0; R) \). Similarly, a neighborhood of a set \(M \subset X \) with radius \(R \) is denoted by \(G_M(M; R) \), i.e., \(G_M(M; R) = \{ x \in X : |x - y|_X < R \} \). The closure of this neighborhood is denoted by \(\overline{G}_M(M; R) \).

The space of continuous functions from \([-r, 0]\) to \(\mathbb{R}^n \) and the usual supremum norm on it are denoted by \(C \) and \(|\cdot|_C \), respectively. The space of absolutely continuous functions from \([-r, 0]\) to \(\mathbb{R}^n \) with essentially bounded derivatives is denoted by \(W^{1,\infty} \). The corresponding norm on \(W^{1,\infty} \) is \(|\cdot|_{W^{1,\infty}} \equiv \max\{|\psi|_C, \text{ess sup}\{\int_t^s |\dot{\psi}(s)| : s \in [-r, 0]\} \} \).

The partial derivatives of a function \(g(t, x_2, \ldots, x_n) \) w.r.t its second, third, etc. arguments are denoted by \(D_2g, D_3g, \) etc, and the derivative w.r.t \(t \) is denoted by \(\dot{g} \). Note that all derivatives we use in this paper are Fréchet-derivatives.

Next we consider a set of technical conditions, guaranteeing well-posedness and differentiability of solutions w.r.t parameters, for the state-dependent delay differential equation (1) with initial condition (2).

Let \(\Omega_1 \subset \mathbb{R}^n, \Omega_2 \subset \mathbb{R}^n, \Omega_3 \subset \Theta, \Omega_4 \subset C, \) and \(\Omega_5 \subset \Sigma \) be open subsets of the respective spaces. \(T > 0 \) is finite or \(T = \infty \), in which case \([0, T] \) denotes the interval \([0, \infty)\).

(A1) (i) \(f : [0, T] \times \Omega_1 \times \Omega_2 \times \Omega_3 \to \mathbb{R}^n \) is continuous,

(ii) \(f(t, v, w; \theta) \) is locally Lipschitz-continuous in \(v, w \) and \(\theta \) in the following sense: for every \(\alpha > 0 \), \(M_1 \subset \Omega_1, M_2 \subset \Omega_2, M_3 \subset \Omega_3 \), where \(M_1 \) and \(M_2 \) are compact subsets of \(\mathbb{R}^n \) and \(M_3 \) is a closed, bounded subset of \(\Theta \), there exists a constant \(L_1 = L_1(\alpha, M_1, M_2, M_3) \) such that

\[
|f(t, v, w; \theta) - f(t, \bar{v}, \bar{w}, \bar{\theta})| \leq L_1 \left(|v - \bar{v}| + |w - \bar{w}| + |\theta - \bar{\theta}|_\alpha \right),
\]

for \(t \in [0, \alpha] \), \(v, \bar{v} \in M_1, w, \bar{w} \in M_2, \) and \(\theta, \bar{\theta} \in M_3 \),

(iii) \(f : \left([0, T] \times \Omega_1 \times \Omega_2 \times \Omega_3 \subset \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^n \times \Theta \right) \to \mathbb{R}^n \) is continuously differentiable w.r.t its second, third and fourth arguments,

(A2) (i) \(\tau : [0, T] \times \Omega_4 \times \Omega_5 \to \mathbb{R}, \infty \) is continuous, and

\[
t - \tau(t, \psi, \sigma) \geq -r, \quad \text{for } t \in [0, T], \psi \in \Omega_4, \text{ and } \sigma \in \Omega_5,
\]

(ii) \(\tau(t, \psi, \sigma) \) is locally Lipschitz-continuous in \(\psi \) and \(\sigma \) in the following sense: for every \(\alpha > 0 \), \(M_4 \subset \Omega_4 \) and \(M_5 \subset \Omega_5 \), where \(M_4 \) is a compact subset of \(C \), and \(M_5 \) is a closed, bounded subset of \(\Sigma \), there exists a constant \(L_2 = L_2(\alpha, M_4, M_5) \) such that

\[
|\tau(t, \psi, \sigma) - \tau(t, \bar{\psi}, \bar{\sigma})| \leq L_2 \left(|\psi - \bar{\psi}|_C + |\sigma - \bar{\sigma}|_\Sigma \right)
\]

for \(t \in [0, \alpha], \psi, \bar{\psi} \in M_4, \) and \(\sigma, \bar{\sigma} \in M_5, \)
(iii) $\tau : \left[0, T \right] \times \Omega_4 \times \Omega_5 \subset [0, \alpha] \times C \times \Sigma \rightarrow \mathbb{R}$ is continuously differentiable wrt its second and third arguments.

Note that (A1) (i), (ii) and (A2) (i), (ii) together with $\varphi \in W^{1,\infty}$ are standard assumptions in state-dependent delay equations guaranteeing the existence and uniqueness of the solution (see, e.g., [4] or [8]). If the parameter spaces Θ and Σ are finite dimensional, then (A1) (ii) and (A2) (ii) follow from (A1) (iii) and (A2) (iii), respectively. We refer to [8] for further comments on the particular definition of local Lipschitz-continuity we use in (A1) (ii) and (A2) (ii).

We will use the following function to simplify the notation:

(3) $\Lambda : \left[0, T \right] \times \Omega_4 \times \Omega_5 \subset \mathbb{R} \times W^{1,\infty} \times \Sigma \rightarrow \mathbb{R}^n$, $\Lambda(t, \psi, \sigma) \equiv \psi(-\tau(t, \psi, \sigma))$.

With this notation we can rewrite (1) simply as:

$$\dot{x}(t) = f(t, x(t), \Lambda(t, x_1, \sigma, \theta)), \quad t \in [0, T].$$

It follows from the definition of Λ, (A2) (ii) and the Mean Value Theorem that

(4) $|\Lambda(t, \psi, \sigma) - \Lambda(t, \tilde{\psi}, \tilde{\sigma})|$

$$\leq |\tilde{\psi}(-\tau(t, \psi, \sigma)) - \tilde{\psi}(-\tau(t, \tilde{\psi}, \tilde{\sigma}))| + |\psi(-\tau(t, \psi, \sigma)) - \psi(-\tau(t, \tilde{\psi}, \tilde{\sigma}))|$

$$\leq L_t|\tilde{\psi}|_{W^{1,\infty}} |\psi - \tilde{\psi}|_C + |\sigma - \tilde{\sigma}|_C + |\psi - \tilde{\psi}|_C$

for $t \in [0, \alpha]$, $\psi, \tilde{\psi} \in M_4$, $\tilde{\psi} \in W^{1,\infty}$, and $\sigma, \tilde{\sigma} \in M_5$.

Lemma 1. Assume (A2), and let Λ be defined by (3). Then $D_2\Lambda(t, \psi, \sigma)$ and $D_3\Lambda(t, \psi, \sigma)$ exist for $t \in [0, T]$, $\psi \in \Omega_4 \cap C^1$, $\sigma \in \Omega_5$, and

(5) $D_2\Lambda(t, \psi, \sigma)\psi = -\dot{\psi}(-\tau(t, \psi, \sigma))D_2\tau(t, \psi, \sigma)\psi + h(-\tau(t, \psi, \sigma))$, $h \in W^{1,\infty},$

(6) $D_3\Lambda(t, \psi, \sigma) = -\dot{\psi}(-\tau(t, \psi, \sigma))D_3\tau(t, \psi, \sigma)$.

Moreover, $D_2\Lambda(t, \cdot, \cdot)$ and $D_3\Lambda(t, \cdot, \cdot)$ are continuous on $(\Omega_4 \cap C^1) \times \Omega_5$ for $t \in [0, T]$.

Proof. Let $\psi \in \Omega_4 \cap C^1$, and introduce $\omega^0(\tilde{\sigma}; s) \equiv \psi(s) - \psi(\tilde{\sigma}) - \tilde{\psi}(s - \tilde{\sigma})$ for $\tilde{\sigma}, s \in [-\tau, 0]$, and $\omega^0(t, \psi, \sigma; \psi + h) \equiv \tau(t, \psi + h, \sigma) - \tau(t, \psi, \sigma) - D_2\sigma(t, \psi, \sigma)\psi + h \in W^{1,\infty}$, and $\sigma \in \Omega_5$. Let $t \in [0, T]$, $\psi + h \in \Omega_4$, and $\sigma \in \Omega_5$, and consider

$$\Lambda(t, \psi + h, \sigma) - \Lambda(t, \psi, \sigma)$$

$$= \psi(-\tau(t, \psi + h, \sigma)) - \psi(-\tau(t, \psi, \sigma)) + h(-\tau(t, \psi, \sigma))$$

$$= -\psi(-\tau(t, \psi, \sigma))(\tau(t, \psi + h, \sigma) - \tau(t, \psi, \sigma)) + h(-\tau(t, \psi, \sigma))$$

$$+ \omega^0(-\tau(t, \psi, \sigma) - \tau(t, \psi + h, \sigma)) + h(-\tau(t, \psi + h, \sigma)) - h(-\tau(t, \psi, \sigma))$$

$$= -\psi(-\tau(t, \psi, \sigma))D_2\tau(t, \psi, \sigma)h + h(-\tau(t, \psi, \sigma))$$

$$- \dot{\psi}(-\tau(t, \psi, \sigma))\omega^0(t, \psi, \sigma; \psi + h)$$

$$+ \omega^0(-\tau(t, \psi, \sigma) - \tau(t, \psi + h, \sigma)) + h(-\tau(t, \psi + h, \sigma)) - h(-\tau(t, \psi, \sigma))$$

Relation (5) follows from the last equation, using the continuity of τ, the inequality

$$|h(-\tau(t, \psi + h, \sigma)) - h(-\tau(t, \psi, \sigma))| \leq |h|_{W^{1,\infty}}|\tau(t, \psi + h, \sigma) - \tau(t, \psi, \sigma)|$$
guaranteed by the Mean Value Theorem, $|\omega^h(\tilde{s}, s) - \tilde{s}| \leq h |\tilde{s} - s|$. Note that the last relation follows from $|\omega^h(t, \psi, \sigma; \psi + h) - h| = |h|$. Relation (6) is an immediate consequence of the Chain rule. The continuity of $D_2\lambda(t, \cdot, \cdot)$ and $D_3\lambda(t, \cdot, \cdot)$ follows readily from (5) and (6) and from the assumed continuity of $\tau, D_2\tau$ and $D_3\tau$. \]

We introduce the function

$$\omega^h(t, \tilde{\psi}, \tilde{\sigma}; \psi, \sigma) \equiv \Lambda(t, \psi, \sigma) - \Lambda(t, \tilde{\psi}, \tilde{\sigma}) - D_2\lambda(t, \tilde{\psi}, \tilde{\sigma})(\psi - \tilde{\psi}) - D_3\lambda(t, \tilde{\psi}, \tilde{\sigma})(\sigma - \tilde{\sigma})$$

for $t \in [0, T]$, $\tilde{\psi}, \psi \in \Omega_4$, $\tilde{\sigma}, \sigma \in \Omega_5$.

Let $\alpha > 0$, $M_4 \subset \Omega_4$ be a compact subset of C, $M_5 \subset \Omega_5$ be a closed and bounded subset of Σ. It is easy to prove, using the definition of ω^h, (A2) (ii), (iii), (4), (5), and (6), that there exists a constant $K = K(\alpha, M_1, M_2)$ such that

$$\|D_2\lambda(t, \tilde{\psi}, \tilde{\sigma})\|_{C(\Theta^2, \mathbb{R}^n)} \leq K \quad \text{and} \quad \|D_3\lambda(t, \tilde{\psi}, \tilde{\sigma})\|_{C(\Sigma, \mathbb{R}^n)} \leq K,$$

and

$$\|\omega^h(t, \tilde{\psi}, \tilde{\sigma}, \psi, \sigma)\| \leq 2K(\|\psi - \tilde{\psi}\|_C + \|\sigma - \tilde{\sigma}\|_\infty)$$

for $t \in [0, \alpha]$, $\tilde{\psi}, \psi \in M_4$, $\tilde{\sigma}, \sigma \in M_5$.

Similarly to ω^h, we define

$$\omega^h(t, \tilde{x}, \tilde{y}, \tilde{\theta}; x, y, \theta) \equiv f(t, x, y, \theta) - f(t, \tilde{x}, \tilde{y}, \tilde{\theta}) - D_2 f(t, \tilde{x}, \tilde{y}, \tilde{\theta})(x - \tilde{x}) - D_3 f(t, \tilde{x}, \tilde{y}, \tilde{\theta})(y - \tilde{y})$$

for $t \in [0, T]$, $\tilde{x}, x \in \Omega_1$, $\tilde{y}, y \in \Omega_2$, and $\tilde{\theta}, \theta \in \Omega_3$. Assumption (A1) (iii) implies that

$$\frac{|\omega^h(t, \tilde{x}, \tilde{y}, \tilde{\theta}; x, y, \theta)|}{|x - \tilde{x}| + |y - \tilde{y}| + |\theta - \tilde{\theta}|_\Theta} \to 0, \quad \text{as } |x - \tilde{x}| + |y - \tilde{y}| + |\theta - \tilde{\theta}|_\Theta \to 0.$$

Let $\alpha > 0$ be fixed, $M_i \subset \Omega_i$ ($i = 1, 2, 3$) be such that M_1 and M_2 be compact subsets of \mathbb{R}^n and M_3 be a closed and bounded subset of Θ, and let $L_1 = L_1(\alpha, M_1, M_2, M_3)$ be the constant from (A1) (ii). Then assumptions (A1) (ii) and (iii) yield that

$$\|D_2 f(t, \tilde{x}, \tilde{y}, \tilde{\theta})\| \leq L_1, \quad \|D_3 f(t, \tilde{x}, \tilde{y}, \tilde{\theta})\| \leq L_1, \quad \|D_4 f(t, \tilde{x}, \tilde{y}, \tilde{\theta})\|_{C(\Theta, \mathbb{R}^n)} \leq L_1$$

and

$$|\omega^h(t, \tilde{x}, \tilde{y}, \tilde{\theta}; x, y, \theta)| \leq 2L_1(\|x - \tilde{x}\| + |y - \tilde{y}| + |\theta - \tilde{\theta}|_\Theta)$$

for $t \in [0, \alpha]$, $x, \tilde{x} \in M_1$, $y, \tilde{y} \in M_2$, and $\theta, \tilde{\theta} \in M_3$.

We define the parameter space $\Gamma = W^{1, \infty} \times \Sigma \times \Theta$, and use the notation $\gamma = (\varphi, \sigma, \theta)$ (or $\gamma = (\gamma^\varphi, \gamma^\sigma, \gamma^\theta)$) for the components of $\gamma \in \Gamma$, and $|\gamma|_\Gamma \equiv |\varphi|_{W^{1, \infty}} + |\sigma|_\Sigma + |\theta|_\Theta$ for the norm on
The solution of IVP (1)-(2) corresponding to a parameter \(\gamma \) and its segment function at \(t \) are denoted by \(x(t; \gamma) \) and \(x(; \gamma)_t \), respectively.

Introduce

\[
\Pi \equiv \left\{ \gamma = (\varphi, \sigma, \theta) \in \Omega_1 \times \Omega_2 \times \Omega_3 : \quad \varphi \in W^{1, \infty}, \quad \varphi(0) \in \Omega_1, \quad \Lambda(0, \varphi, \sigma) \in \Omega_2 \right\}
\]

and

\[
\mathcal{M} \equiv \left\{ \gamma = (\varphi, \sigma, \theta) \in \Pi : \quad \varphi \in C^1, \quad \varphi(0-) = f(0, \varphi(0), \Lambda(0, \varphi, \sigma), \theta) \right\}.
\]

Theorem 1. Assume (A1) (i), (ii), (A2) (i), (ii), and let \(\bar{\gamma} \in \Pi \). Then there exist \(\delta > 0 \) and \(0 < \alpha \leq T \) such that

(i) \(\mathcal{G}_T(\bar{\gamma}; \delta) \subset \Pi \),

(ii) IVP (1)-(2) has a unique solution, \(x(t; \gamma) \), on \([0, \alpha]\) for all \(\gamma \in \mathcal{G}_T(\bar{\gamma}; \delta) \).

(iii) there exist \(M_1 \subset \Omega_1, M_2 \subset \Omega_2 \) and \(M_3 \subset \Omega_3 \) compact subsets of \(\mathbb{R}^n \) and \(C \), respectively, such that

\[
\text{for } t \in [0, \alpha], \quad \gamma \in \mathcal{G}_T(\bar{\gamma}; \delta), \quad x(; \gamma)_t \in W^{1, \infty} \text{ for } t \in [0, \alpha], \quad \gamma \in \mathcal{G}_T(\bar{\gamma}; \delta), \quad \text{and there exists } L = L(\alpha, \delta), \text{ such that}
\]

\[
|x(; \gamma)_t - x(; \bar{\gamma})_t|_{W^{1, \infty}} \leq L(\gamma - \bar{\gamma})_t \quad \text{for } t \in [0, \alpha], \quad \gamma \in \mathcal{G}_T(\bar{\gamma}; \delta).
\]

(v) the function \(x(; \gamma) : [-\tau, \alpha] \to \mathbb{R}^n \) is continuously differentiable for \(\gamma \in \mathcal{M} \cap \mathcal{G}_T(\bar{\gamma}; \delta) \).

Proof. Part (i) and (v) are obvious (see also [7]). For the proof of (ii) we refer to [8], [9] or [4]. Part (iii) and (iv) will be essential in our proofs in the next section, therefore we prove them here. Let \(\delta^i > 0 \) and \(\alpha > 0 \) be such that they satisfy (i) and (ii). We will show that \(0 < \delta \leq \delta^i \) can be selected so that (iii) and (iv) are also satisfied.

Let \(\bar{\gamma} = (\bar{\varphi}, \bar{\sigma}, \bar{\theta}) \in \Pi \), and define \(M_1^* \equiv \{ x(t; \gamma) : t \in [0, \alpha] \} \), \(M_2^* \equiv \{ \Lambda(t, x(; \gamma)_t, \bar{\sigma}) : t \in [0, \alpha] \} \), and \(M_3^* \equiv \{ x(; \gamma)_t : t \in [0, \alpha] \} \). From part (ii) of the theorem that \(M_i^* \subset \Omega_i \) \((i = 1, 2, 4) \). Moreover, \(M_1^* \) and \(M_2^* \) are compact subsets of \(\mathbb{R}^n \) since \(t \to x(t; \gamma) \) is continuous on \([0, \alpha] \). Therefore there exist \(\varepsilon > 0 \) \((i = 1, 2, 4) \) such that \(M_1 \equiv \overline{\mathcal{G}_R}^+(M_1^*; \varepsilon) \subset \Omega_1 \), \(M_2 \equiv \overline{\mathcal{G}_R}^+(M_2^*; \varepsilon) \subset \Omega_2 \), and \(\mathcal{G}_C(M_3^*; \varepsilon) \subset \Omega_3 \) since \(\Omega_4 \) \((i = 1, 2, 4) \) are open sets in \(\mathbb{R}^n \) and \(C \), respectively. Let \(M_4 \equiv \overline{\mathcal{G}}_{W^{1, \infty}}(M_4^*; \varepsilon) \). Clearly, \(M_1 \) and \(M_2 \) are compact subsets of \(\mathbb{R}^n \). We have \(M_4 \subset \Omega_4 \), and it is compact in \(C \) by Arzela-Ascoli’s Theorem, since it is a bounded subset of \(W^{1, \infty} \).

Let \(\delta^2 \equiv \min\{\delta^1, \varepsilon^1, \varepsilon^2 / (L_2\|\bar{\varphi}\|_{W^{1, \infty}} + 1), \varepsilon^4 \} \). Let \(\gamma = (\varphi, \sigma, \theta) \in \mathcal{G}_T(\bar{\gamma}; \delta^2) \). We have from (4) and the definition of \(\| _ \|_T \) that \(|x(0) - x(0)| < \varepsilon^1 \), \(|\Lambda(0, \varphi, \sigma) - \Lambda(0, \bar{\varphi}, \bar{\sigma})| \leq L_2\|\bar{\varphi}\|_{W^{1, \infty}} |\varphi - \bar{\varphi}| + |\sigma - \bar{\sigma}| + |\varphi - \bar{\varphi}| < \varepsilon^3 \), and \(|\varphi - \bar{\varphi}| < \varepsilon^4 \). Therefore there exists \(0 < \alpha^* \leq \alpha \) such that

\[
|x(t; \gamma) - x(t; \bar{\gamma})| < \varepsilon^1, \quad |\Lambda(t, x(; \gamma)_t, \sigma) - \Lambda(t, x(; \bar{\gamma})_t, \bar{\sigma})| < \varepsilon^3,
\]

and

\[
|x(; \gamma)_t - x(; \bar{\gamma})_t| < \varepsilon^4
\]
for \(t \in [0, \alpha^\gamma] \).

Let \(L_1 = L_1(\alpha, M_1, M_2, M_3) \) and \(L_2 = L_2(\alpha, M_4, M_5) \) be the constants from (A1) (ii) and (A2) (ii), respectively. We have for \(t \in [0, \alpha^\gamma] \):

\[
\begin{align*}
|x(t; \gamma) - x(t; \bar{\gamma})| &
\leq |\varphi(0) - \bar{\varphi}(0)| + \int_0^t \left| f(s, x(s; \gamma), \Lambda(s, x(s; \gamma), , \sigma), \theta) - f(s, x(s; \bar{\gamma}), \Lambda(s, x(s; \bar{\gamma}), , \bar{\sigma}), \bar{\theta}) \right| \, ds \\
&\leq |\gamma - \bar{\gamma}| r + L_1 \int_0^t \left(|x(s; \gamma) - x(s; \bar{\gamma})| + |\Lambda(s, x(s; \gamma), , \sigma) - \Lambda(s, x(s; \bar{\gamma}), , \bar{\sigma})| + |\theta - \bar{\theta}| r \right) \, ds.
\end{align*}
\]

Let \(N \equiv \max\{\max\{|x(t; \gamma)| : t \in [-r, \alpha]\}, \text{ess sup}\{|x(t; \bar{\gamma})| : t \in [-r, \alpha]\}\}. \) Then (4) yields

\[
|x(t; \gamma) - x(t; \bar{\gamma})| \leq |\gamma - \bar{\gamma}| r + L_1 \int_0^t \left(|x(s; \gamma) - x(s; \bar{\gamma})| + L_2 N |x(s; \gamma) - x(s; \bar{\gamma})| c + |\sigma - \bar{\sigma}| r + |\theta - \bar{\theta}| r \right) \, ds.
\]

Introduce \(\eta(t; \gamma) \equiv \text{sup}\{|x(s; \gamma) - x(s; \bar{\gamma})| : s \in [-r, t]\}. \) With this notation we get

\[
|x(t; \gamma) - x(t; \bar{\gamma})| \leq (1 + L_1 + L_2 N) |\gamma - \bar{\gamma}| r + L_1 (2 + L_2 N) \int_0^t |\eta(s; \gamma, \bar{\gamma})| \, ds,
\]

for \(t \in [0, \alpha^\gamma]. \) The monotonicity of the right-hand side in \(t \) and \(\eta(t; \gamma, \bar{\gamma}) \leq |\gamma - \bar{\gamma}| r \) for \(t \in [-r, 0] \) yield

\[
\eta(t; \gamma, \bar{\gamma}) \leq (1 + L_1 + L_2 N) |\gamma - \bar{\gamma}| r + L_1 (2 + L_2 N) \int_0^t \eta(s; \gamma, \bar{\gamma}) \, ds, \quad t \in [0, \alpha^\gamma].
\]

Applying the Gronwall-Bellmann inequality we get

(16) \[|x(t; \gamma) - x(t; \bar{\gamma})| \leq \eta(t; \gamma, \bar{\gamma}) \leq L^* |\gamma - \bar{\gamma}| r, \quad t \in [-r, \alpha^\gamma], \]

where \(L^* \equiv (1 + L_1 + L_1 N) e^{L^* (1 + L_2 N)^{\gamma}} \). Let \(\delta \equiv \min\{\delta^2, \varepsilon^2 / L^*, \varepsilon^2 / (L_2 N (L^* + 1) + L^*) \}. \) Then it is easy to show, using (16), that \(\alpha^\gamma = \alpha \) can be used in (14) and (15) for \(\gamma \in \mathcal{G}; \delta \).

This proves (12) as well.

It follows from (1), (16), (A1) (ii) and (A2) (ii) that

(17) \[
\begin{align*}
|\dot{x}(t; \gamma) - \dot{x}(t; \bar{\gamma})| &
\leq |f(t, x(t; \gamma), \Lambda(t, x(s; \gamma), , \sigma), \theta) - f(t, x(t; \bar{\gamma}), \Lambda(t, x(s; \bar{\gamma}), , \bar{\sigma}), \bar{\theta})| \\
&\leq L_1 \left(|\dot{x}(t; \gamma) - \dot{x}(t; \bar{\gamma})| + L_2 N |x(s; \gamma) - x(s; \bar{\gamma})| c + |\sigma - \bar{\sigma}| r + |\theta - \bar{\theta}| r \right) \\
&\leq L^* |\gamma - \bar{\gamma}| r, \quad t \in [0, \alpha^\gamma],
\end{align*}
\]

where \(L^* \equiv L_1 (2 + L_2 N) L^* + L_1 (L_2 N + 1). \) Therefore (13) follows from (16), (17) and from

\[
|\dot{x}(t) - \dot{x}(t)| \leq |\gamma - \bar{\gamma}| r \quad \text{for almost every } t \in [-r, 0] \quad \text{with } \max\{L^*, L^{**}\}. \]

3. Differentiability wrt parameters. In this section we study differentiability of solutions of IVP (1)-(2) wrt the initial function, φ, the parameter σ of the delay function τ, and the parameter θ of the function f.

Let $\bar{\gamma} = (\bar{\varphi}, \bar{\sigma}, \bar{\theta}) \in \mathcal{M}$, and $x(\cdot; \bar{\gamma})$ be the corresponding solution of IVP (1)-(2) on $[0, \alpha]$. Fix $h = (h^x, h^\sigma, h^\theta) \in \Gamma$ and consider the variational equation

\begin{align}
(18) \quad z(t; \bar{\gamma}, h) &= D_2 f(t, x(t; \bar{\gamma}), \Lambda(t, x(t; \bar{\gamma}), \bar{\sigma}), \bar{\theta}) z(t; \bar{\gamma}, h) \\
&\quad + D_2 f(t, x(t; \bar{\gamma}), \Lambda(t, x(t; \bar{\gamma}), \bar{\sigma}), \bar{\theta}) \left(D_3 \Lambda(t, x(t; \bar{\gamma}), \bar{\sigma}) z(t; \bar{\gamma}, h) + D_4 f(t, x(t; \bar{\gamma}), \Lambda(t, x(t; \bar{\gamma}), \bar{\sigma}), \bar{\theta}) h^\sigma, \right) \\
&\quad + D_3 \Lambda(t, x(t; \bar{\gamma}), \bar{\sigma}) h^\sigma, \right) + D_4 f(t, x(t; \bar{\gamma}), \Lambda(t, x(t; \bar{\gamma}), \bar{\sigma}), \bar{\theta}) h^\theta, \right), \\
&\quad t \in [0, \alpha],
\end{align}

\begin{align}
(19) \quad z(t; \bar{\gamma}, h) = h^\theta(t), \quad t \in [-r, 0],
\end{align}

This is a linear state-independent delay equation for $z(\cdot; \bar{\gamma}, h)$, and the right-hand side of (18) depends continuously on t and $z(\cdot; \bar{\gamma}, h)_t$ since $x(\cdot; \bar{\gamma})_t \in C^1$ by Theorem 1 (v). Therefore this IVP has a unique solution, $z(\cdot; \bar{\gamma}, h)$, which depends linearly on h.

First we study differentiability of the function $x(t; \gamma) = x(t; (\varphi, \sigma, \theta))$ wrt φ and θ only. We denote this differentiation by $D_{(\varphi, \theta)}x$. Let

\begin{align}
(20) \quad G^{\sigma, \theta}(\delta, \bar{\theta}) \equiv \{ (\varphi, \bar{\sigma}, \bar{\theta}) \in W^{1,\infty} \times \Theta : (\varphi, \bar{\sigma}, \bar{\theta}) \in \mathcal{G}(\bar{\gamma}; \delta) \}.
\end{align}

Theorem 2. Assume (A1), (A2), and let $\bar{\gamma} \in \mathcal{M}$ be fixed. Let $\delta > 0$ and $\alpha > 0$ be defined by Theorem 1, and $x(t; \gamma)$ be the solution of IVP (1)-(2) on $[0, \alpha]$ for $\gamma \in \mathcal{G}(\bar{\gamma}; \delta)$, and $G^{\sigma, \theta}(\delta, \bar{\theta})$ be defined by (20). Then the function $x(t; (\cdot, \bar{\sigma}, \bar{\theta})): G^{\sigma, \theta}(\delta, \bar{\theta}) \to \mathbb{R}^n$ is differentiable at $(\bar{\varphi}, \bar{\theta})$ for $t \in [0, \alpha]$, and

\begin{align}
D_{(\sigma, \theta)}x(t; (\cdot, \bar{\sigma}, \bar{\theta}))(h^\sigma, h^\theta) = z(t; \bar{\gamma}, (h^\sigma, 0, h^\theta)),
\end{align}

where z is the solution of IVP (18)-(19), and $(h^\sigma, h^\theta) \in W^{1,\infty} \times \Theta$.

Proof. Let $\bar{\gamma} \in \mathcal{M}$, $\delta > 0$, α, and $G^{\sigma, \theta}(\delta, \bar{\theta})$ be as in the assumption of the theorem. We can and do assume that δ is such that $M_3 \equiv \mathcal{G}_3(\bar{\sigma}; \bar{\theta}) \subset \Omega_3$ and $M_5 \equiv \mathcal{G}_5(\bar{\sigma}; \bar{\theta}) \subset \Omega_5$. Let $h = (h^\sigma, h^\theta) \in \Gamma$ such that $|h|_{TV} < \delta$. (Here, for our future purposes, we do not assume yet that $h^\theta = 0$.) Note that $z(t; \bar{\gamma}, h)$ is well-defined since, by our assumptions, $x(\cdot; \bar{\gamma})_t \in C^1$. Integrating (1) and (18), and using the definition of ω^J and ω^Λ we get

\begin{align}
x(t; \bar{\gamma} + h) - x(t; \bar{\gamma}) &= \int_0^t \left(f(s, x(s; \bar{\gamma} + h), \Lambda(s, x(s; \bar{\gamma} + h), \bar{\sigma} + h^\sigma, \bar{\theta} + h^\theta) \\
&\quad - f(s, x(s; \bar{\gamma}), \Lambda(s, x(s; \bar{\gamma}), \bar{\sigma}), \bar{\theta}) - D_2 f(s, x(s; \bar{\gamma}), \Lambda(s, x(s; \bar{\gamma}), \bar{\sigma}), \bar{\theta}) z(s; \bar{\gamma}, h) \\
&\quad - D_3 f(s, x(s; \bar{\gamma}), \Lambda(s, x(s; \bar{\gamma}), \bar{\sigma}), \bar{\theta}) \left(D_3 \Lambda(s, x(s; \bar{\gamma}), \bar{\sigma}) z(s; \bar{\gamma}, h) \\
&\quad + D_4 f(s, x(s; \bar{\gamma}), \Lambda(s, x(s; \bar{\gamma}), \bar{\sigma}), \bar{\theta}) h^\sigma, \right) ds + D_3 \Lambda(s, x(s; \bar{\gamma}), \bar{\sigma} + h^\sigma, \bar{\theta} + h^\theta) h^\theta\right) ds
\end{align}

\begin{align}
&\quad = \int_0^t \left(\omega^J(s, x(s; \bar{\gamma}), \Lambda(s, x(s; \bar{\gamma}), \bar{\sigma}), \bar{\theta}; x(s; \bar{\gamma} + h), \Lambda(s, x(s; \bar{\gamma} + h), \bar{\sigma} + h^\sigma, \bar{\theta} + h^\theta) + h^\theta\right)
\end{align}
+ D_2 f(s, x(s; \bar{\gamma}), \Lambda(s, x(s; \bar{\gamma}), \bar{\sigma}), \bar{\delta}) \left(x(s; \bar{\gamma} + h) - x(s; \bar{\gamma}) - z(s; \bar{\gamma}, h) \right)
+ D_3 f(s, x(s; \bar{\gamma}), \Lambda(s, x(s; \bar{\gamma}), \bar{\sigma}), \bar{\delta}) \left(\omega^\Lambda(s, x(s; \bar{\gamma}), \bar{\sigma}, x(s; \bar{\gamma} + h)_s, \bar{\sigma} + h^n \right)
+ D_2 \Lambda(s, x(s; \bar{\gamma}), \bar{\sigma}) (x(s; \bar{\gamma} + h)_s - x(s; \bar{\gamma}) - z(s; \bar{\gamma}, h)_s) \right) ds.

Let \(M_i \ (i = 1, 2, 4) \) be defined by Theorem 1. Let \(L_1 = L_1(\alpha, M_1, M_2, M_3) \) and \(L_2 = L_2(\alpha, M_4, M_5) \) be the constants from (A1) (ii) and (A2) (ii), respectively, and \(K = K(\alpha, M_4, M_5) \) be the constant from (7)-(8). Then (10) yields

\[
| x(t; \bar{\gamma} + h) - x(t; \bar{\gamma}) - z(t; \bar{\gamma}, h) |
\leq \int_0^t \left(G^f(s; \bar{\gamma}, h) + L_1 \left| x(s; \bar{\gamma} + h) - x(s; \bar{\gamma}) - z(s; \bar{\gamma}, h) \right| + L_1 G^\Lambda(s; \bar{\gamma}, h) + L_1 K | x(s; \bar{\gamma} + h)_s - x(s; \bar{\gamma}) - z(s; \bar{\gamma}, h)_s | \right) ds, \quad t \in [0, \alpha].
\]

where \(G^f(s; \bar{\gamma}, h) \equiv | f(s, x(s; \bar{\gamma}), \Lambda(s, x(s; \bar{\gamma}), \bar{\sigma}), \bar{\delta}, x(s; \bar{\gamma} + h), \Lambda(s, x(s; \bar{\gamma} + h)_s, \bar{\sigma} + h^n), \bar{\delta} + h^n) | \) and \(G^\Lambda(s; \bar{\gamma}, h) \equiv | \omega^\Lambda(s, x(s; \bar{\gamma}), \bar{\sigma}, x(s; \bar{\gamma} + h)_s, \bar{\sigma} + h^n) | \). Introduce \(\eta(t; \bar{\gamma}, h) \equiv \sup_{s \geq s_0} \sup_{r \leq t} | x(s; \bar{\gamma} + h) - x(s; \bar{\gamma}) - z(s; \bar{\gamma}, h) | \). Inequality (21) implies

\[
| x(t; \bar{\gamma} + h) - x(t; \bar{\gamma}) - z(t; \bar{\gamma}, h) |
\leq \int_0^t \left(G^f(s; \bar{\gamma}, h) + L_1 G^\Lambda(s; \bar{\gamma}, h) \right) ds + L_1 (1 + K) \int_0^t \eta(s; \bar{\gamma}, h) ds.
\]

Using that \(\eta(0; \bar{\gamma}, h) = 0 \), and the right-hand side of (22) is monotone in \(t \), we get from (22)

\[
\eta(t; \bar{\gamma}, h) \leq \int_0^t \left(G^f(s; \bar{\gamma}, h) + L_1 G^\Lambda(s; \bar{\gamma}, h) \right) ds + L_1 (1 + K) \int_0^t \eta(s; \bar{\gamma}, h) ds,
\]

which, by the Gronwall-Bellman inequality, implies

\[
\eta(t; \bar{\gamma}, h) \leq \int_0^t \left(G^f(s; \bar{\gamma}, h) + L_1 G^\Lambda(s; \bar{\gamma}, h) \right) ds e^{L_1 (1 + K) \alpha}, \quad t \in [0, \alpha].
\]

Applying (23) we get

\[
| x(t; \bar{\gamma} + h) - x(t; \bar{\gamma}) - z(t; \bar{\gamma}, h) | / | h | \rho
\leq \eta(t; \bar{\gamma}, h) / | h | \rho
\leq \int_0^t \left(G^f(s; \bar{\gamma}, h) / | h | \rho + L_1 G^\Lambda(s; \bar{\gamma}, h) / | h | \rho \right) ds e^{L_1 (1 + K) \alpha}, \quad t \in [-r, \alpha].
\]

Here we used that \(x(t; \bar{\gamma} + h) - x(t; \bar{\gamma}) - z(t; \bar{\gamma}, h) = 0 \) for \(t \in [-r, 0] \). We will show that \(\int_0^t G^f(s; \bar{\gamma}, h) / | h | \rho ds \to 0 \) and \(\int_0^t G^\Lambda(s; \bar{\gamma}, h) / | h | \rho ds \to 0 \) as \(| h | \rho \to 0 \).

Using (4) and (13), we get that there exists \(K^* = K^*(\alpha, M_4, M_5) \) such that

\[
| \Lambda(s, x(s; \bar{\gamma} + h)_s, \bar{\sigma} + h^n) - \Lambda(s, x(s; \bar{\gamma})_s, \bar{\sigma}) | \leq K^* | h | \rho, \quad | h | \rho < \delta, \quad s \in [0, \alpha].
\]
Using the obvious relation
\[
\frac{G^f(s; \gamma, h)}{|h|^r} = \frac{\omega''(s, x(s; \gamma), \lambda(s, x(s; \gamma), \sigma), \tilde{\sigma}; x(s; \gamma + h), \lambda(s, x(s; \gamma + h), \tilde{\sigma} + h^\sigma), \tilde{\sigma} + h^\sigma)}{|x(s; \gamma + h) - x(s; \gamma)|^r} = \frac{\omega''(s, x(s; \gamma), \lambda(s, x(s; \gamma), \sigma), \tilde{\sigma}; x(s; \gamma + h), \lambda(s, x(s; \gamma + h), \tilde{\sigma} + h^\sigma), \tilde{\sigma} + h^\sigma)}{|x(s; \gamma + h) - x(s; \gamma)|^r} \leq \frac{1}{2L1 (L + K^* + 1)} \frac{\omega''(s, x(s; \gamma), \lambda(s, x(s; \gamma), \sigma), \tilde{\sigma}; x(s; \gamma + h), \lambda(s, x(s; \gamma + h), \tilde{\sigma} + h^\sigma), \tilde{\sigma} + h^\sigma)}{|x(s; \gamma + h) - x(s; \gamma)|^r}.
\]

(11), (12), (13), (24) and (25) yield \(G^f(s; \gamma, h)/|h|^r \leq 2L1 (L + K^* + 1) \). On the other hand, (9) and (25) imply \(G^f(s; \gamma, h)/|h|^r \to 0 \) as \(|h|^r \to 0 \) for \(s \in [0, \alpha] \). Therefore \(\int_0^\alpha G^f(s; \gamma, h)/|h|^r \, ds \to 0 \) as \(|h|^r \to 0 \) by the Lebesgue’s Dominated Convergence Theorem.

Similarly, inequalities (8) and (13) imply \(G^\lambda(s; \gamma, h)/|h|^r \leq 2K (L + 1) \). To show that \(G^\lambda(s; \gamma, h)/|h|^r \to 0 \) we now assume that \(h^\sigma = 0 \). Lemma 1 implies \(G^\lambda(s; \gamma, h)/|h|^r \to 0 \) as \(|h|^r \to 0 \) for \(s \in [0, \alpha] \), since, by (13), \(|x(s; \gamma + h) - x(s; \gamma)|^r \to 0 \) as \(|h|^r \to 0 \). Therefore \(\int_0^\alpha G^\lambda(s; \gamma, h)/|h|^r \, ds \to 0 \) as \(|h|^r \to 0 \).

We conclude that \(|x(t; \gamma + h) - x(t; \gamma)|/|h|^r \to 0 \) as \(|h|^r \to 0 \), which proves the theorem.

The proof of the previous theorem implies immediately:

Corollary 1. Assume the conditions of Theorem 2. Then the function \(G^{\phi, \theta}(s; \gamma, \delta) \to \mathbb{C} \), \((\varphi, \theta) \to x(\varphi; \gamma, \delta) \), is differentiable at \((\frac{\varphi}{\theta}, \theta) \) for \(t \in [0, \alpha] \), and its derivative is given by \(D_t(x(\varphi; \gamma, \delta))(\phi^\sigma, h^\sigma) = \frac{\partial}{\partial \phi^\sigma} x(\varphi; \gamma, \delta), (\phi^\sigma, h^\sigma) \in \mathbb{W}^{1, \infty} \times \Theta \).

Next we study differentiability wrt \(\sigma \) as well. We will need the following definition.

Definition 1. Let \(X \) and \(Y \) be normal linear spaces, \(M \subset X \), and \(x_0 \in M \) be an accumulation point of \(M \). We say that \(f : \overline{M} \subset X \to Y \) is differentiable at the point \(x_0 \) with respect to the set \(M \) if there exists \(L \in \mathcal{L}(X, Y) \) such that
\[
\lim_{x \to x_0 \in M} \frac{|f(x) - f(x_0) - L(x - x_0)|}{|x - x_0|} = 0.
\]

We have the following result.

Theorem 3. Assume (A1), (A2), and let \(\gamma \in M \) be an accumulation point of \(M \). Let \(\delta > 0 \) and \(\alpha > 0 \) be defined by Theorem 1, and \(x(t; \gamma) \) be the solution of IVP (1)-(2) on \([0, \alpha]\) for \(\gamma \in G_T(\gamma; \delta) \). Then the function \(x(t; \gamma) : \{G_T(\gamma; \delta) \cap M\} \to \mathbb{R}^n \) is differentiable at \(\gamma \) wrt \(G_T(\gamma; \delta) \cap M \) for \(t \in [0, \alpha] \), and its derivative is \(D_t x(t; \gamma)^h = z(t; \gamma, h) \), where \(z \) is the solution of IVP (18)-(19), \(h \in \Gamma \) is such that \(\gamma + h \in M \).

Proof. We proceed as in the proof of Theorem 2. The only step needs a different argument here is the last one, to show that \(G^\lambda(s; \gamma, h)/|h|^r \to 0 \) as \(|h|^r \to 0 \). We have \(G^\lambda(s; \gamma, h) = |\lambda(s, x(s; \gamma + h), \tilde{\sigma} + h^\sigma) - \lambda(s, x(s; \gamma), \tilde{\sigma}) - D_t \lambda(s, x(s; \gamma), \tilde{\sigma})(x(s; \gamma + h) - x(s; \gamma), -x(s; \gamma), -D_t \lambda(s, x(s; \gamma), \tilde{\sigma})h^\sigma)|/|h|^r \).

Let \(h \) be such that \(\gamma + h \in M \). Then, using that \(\Lambda(t, \cdot, \cdot) \) is continuously differentiable on
\[\Omega_1 \cap C^1 \times \Omega_2, \text{and } x(\cdot; \bar{\gamma} + h)_s \in C^1 \text{ for } s \in [0, \alpha], \text{ we get} \]

\[G^h(s; \bar{\gamma}, h) \]
\[\leq \sup_{0 < c < 1} \left\| D_2 \Lambda(s, (1 - \nu)x(\cdot; \bar{\gamma})_s + \nu x(\cdot; \bar{\gamma} + h)_s, \bar{\sigma} + \nu h^\delta) \right\|_{\mathcal{L}(W^{1,\infty}, \mathbb{R}^n)} - D_2 \Lambda(s, x(\cdot; \bar{\gamma})_s, \bar{\sigma}) \left\|_{\mathcal{L}(W^{1,\infty}, \mathbb{R}^n)} \right\|
\]
\[+ \sup_{0 < c < 1} \left\| D_2 \Lambda(s, (1 - \nu)x(\cdot; \bar{\gamma})_s + \nu x(\cdot; \bar{\gamma} + h)_s, \bar{\sigma} + \nu h^\delta) \right\|_{\mathcal{L}(W^{1,\infty}, \mathbb{R}^n)} - D_2 \Lambda(s, x(\cdot; \bar{\gamma})_s, \bar{\sigma}) \left\|_{\mathcal{L}(W^{1,\infty}, \mathbb{R}^n)} \right\|
\]

Therefore the continuity of \(D_2 \Lambda(s, \cdot; \cdot) \) and \(D_3 \Lambda(s, \cdot; \cdot) \) (see Lemma 1), and (13) imply \(G^h(s; \bar{\gamma}, h)/|h|_r \to 0 \) as \(|h|_r \to 0 \). \(\square \)

Next we show that, under the assumptions of the previous theorem, \(x(\cdot; \gamma)_t \) is differentiable wrt \(\gamma \) (in the sense of Definition 1) if we use \(W^{1,\infty} \) as the space-state of the solutions.

Theorem 4. Assume (A1), (A2), and let \(\bar{\gamma} \in \mathcal{M} \) be an accumulation point of \(\mathcal{M} \). Let \(\delta > 0 \) and \(\alpha > 0 \) be defined by Theorem 1, and \(z(\cdot; \gamma) \) be the solution of IVP (1)-(2) on \([0, \alpha] \) for \(\gamma \in G_T(\bar{\gamma}; \bar{\theta}) \). Then the function \(\left(G_T(\bar{\gamma}; \bar{\delta}) \cap \mathcal{M} \right) \to W^{1,\infty}, \gamma \mapsto x(\cdot; \gamma)_t \) is differentiable at \(\bar{\gamma} \) wrt \(G_T(\bar{\gamma}; \bar{\delta}) \cap \mathcal{M} \) for \(t \in [0, \alpha] \), and \(D_x x(\cdot; \bar{\gamma})_t h = z(\cdot; \bar{\gamma}, h)_t \), where \(z \) is the solution of IVP (18)-(19), and \(h \in \Gamma \) is such that \(\bar{\gamma} + h \in \mathcal{M} \).

Proof. We use all the notations introduced in the proof of Theorem 2. It follows from the proofs of Theorems 2 and 3 that \(|x(\cdot; \bar{\gamma} + h)_t - x(\cdot; \bar{\gamma})_t|/|h|_r \to 0 \) as \(\bar{\gamma} + h \in \mathcal{M} \) and \(|h|_r \to 0 \). Similarly to (22) we get

\[|\dot{x}(t; \bar{\gamma} + h)_t - \dot{x}(t; \bar{\gamma})_t - \dot{z}(t; \bar{\gamma}, h)| \]
\[\leq G^h(t; \bar{\gamma}, h) + L_1 G^h(t; \bar{\gamma}, h) + L_1(1 + K)|\eta(t; \bar{\gamma}, h)|, \quad t \in [0, \alpha]. \]

Clearly, \(\dot{x}(t; \bar{\gamma} + h)_t - \dot{x}(t; \bar{\gamma})_t - \dot{z}(t; \bar{\gamma}, h) = 0 \) for \(t \in [-r, 0] \). Therefore, in view of (23), it suffices to show that \(G^h(t; \bar{\gamma}, h)/|h|_r \to 0 \) and \(G^h(t; \bar{\gamma}, h)/|h|_r \to 0 \) as \(\bar{\gamma} + h \in \mathcal{M} \) and \(|h|_r \to 0 \) uniformly in \(t \in [0, \alpha] \). Consider a sequence \(h^k = (h^{k,\gamma}, h^{k,\delta}, h^{k,\theta}) \in \Gamma \) such that \(\bar{\gamma} + h^k \in \mathcal{M} \) for \(k \in \mathbb{N} \) and \(|h^k|_r \to 0 \) as \(k \to \infty \). We have

\[G^h(t; \bar{\gamma}, h^k) \]
\[\leq \sup_{0 < c < 1} \left\| D_3 f(t, (1 - \nu)x(t; \bar{\gamma}) + \nu x(t; \bar{\gamma} + h^k), \left(1 - \nu\right)\Lambda(t, x(\cdot; \bar{\gamma})_t, \bar{\sigma}) + \nu \Lambda(t, x(\cdot; \bar{\gamma} + h^k)_t, \bar{\sigma} + h^k, \bar{\delta}), \bar{\theta} + \nu h^k, \bar{\delta} \right\|_{\mathcal{L}(W^{1,\infty}, \mathbb{R}^n)} - D_3 f(t, x(t; \bar{\gamma})_t, \Lambda(t, x(\cdot; \bar{\gamma})_t, \bar{\sigma}), \bar{\theta}) \left\|_{\mathcal{L}(W^{1,\infty}, \mathbb{R}^n)} \right\|
\]
\[+ \sup_{0 < c < 1} \left\| D_3 f(t, (1 - \nu)x(t; \bar{\gamma}) + \nu x(t; \bar{\gamma} + h^k), \left(1 - \nu\right)\Lambda(t, x(\cdot; \bar{\gamma})_t, \bar{\sigma}) + \nu \Lambda(t, x(\cdot; \bar{\gamma} + h^k)_t, \bar{\sigma} + h^k, \bar{\delta}), \bar{\theta} + \nu h^k, \bar{\delta} \right\|_{\mathcal{L}(W^{1,\infty}, \mathbb{R}^n)} - D_3 f(t, x(t; \bar{\gamma})_t, \Lambda(t, x(\cdot; \bar{\gamma})_t, \bar{\sigma}), \bar{\theta}) \left\|_{\mathcal{L}(W^{1,\infty}, \mathbb{R}^n)} \right\|
\]
\[- \Lambda(t, x(\cdot; \bar{\gamma} + h^k)_t, \bar{\sigma} + h^k, \bar{\delta}) - \Lambda(t, x(\cdot; \bar{\gamma})_t, \bar{\sigma}) \right\|_{\mathcal{L}(W^{1,\infty}, \mathbb{R}^n)} \]
ON DIFFERENTIABILITY OF SOLUTIONS WRT PARAMETERS

\[+ \sup_{0 < t < 1} \left\| \frac{D_t f(t, (1 - \nu)x(t; \bar{\gamma}) + \nu x(t; \bar{\gamma} + h^k)}{\nu} \right\| C_{\Theta} \cdot |h|^6 \]

\[- D_t f(t, x(t; \bar{\gamma}), \Lambda(t, x(t; \bar{\gamma} + h^k), \bar{\sigma} + h^k, \bar{\sigma}) + \nu h^k, \bar{\sigma}) \right\| C_{\Theta} \cdot |h|^6 \]

Let \(M_2^k \equiv \{ h, h^k, \bar{\sigma} : k \in \mathbb{N}, \nu \in [0, 1] \} \), and \(A \equiv [0, \alpha] \times M_1 \times M_2 \times M_3 \). The set \(A \) is a compact subset of \(\mathbb{R} \times \mathbb{R}^n \times \mathbb{R} \times \Theta \), since \(M_1 \) and \(M_2 \) are compact subsets of \(\mathbb{R}^n \), and it is easy to see that \(M_3 \) is a compact subset of \(\Theta \). By (A1) (iii) \(D_2 f, D_3 f \) and \(D_4 f \) are continuous, therefore uniformly continuous on \(A \). Therefore (28), together with (13) and (24), yields \(G^2(t; \bar{\gamma}, h^k)/|h|^6 \right| \rightarrow 0 \) as \(k \rightarrow \infty \) uniformly in \(t \in [0, \alpha] \).

Similarly, define \(M_3^k \equiv \{ \bar{\sigma} + h^k, \bar{\sigma} : k \in \mathbb{N}, \nu \in [0, 1] \} \), and \(B \equiv [0, \alpha] \times M_4 \times M_3 \). Then \(B \) is a compact subset of \(\mathbb{R} \times \mathbb{R} \times \Sigma \), therefore (13) and (25) imply that \(G^3(t; \bar{\gamma}, h^k)/|h|^6 \right| \rightarrow 0 \) as \(k \rightarrow \infty \) uniformly in \(t \in [0, \alpha] \). This concludes the proof of the theorem.

The next two examples show cases when the differentiability property of the solution wrt some parameter guaranteed by Theorem 4 equals to the usual Frechét-differentiability of the solution wrt the parameter.

Example 1. Suppose \(f \) satisfies (A1) and has the form

\[f(t, x, y, \theta) = f^1(t, x, y) + f^2(t, x, y, \theta), \]

where \(f^2(0, x, y, \theta) = 0 \) for all \(x \in \Omega, y \in \Omega \) and \(\theta \in \Theta \). Then if \(\bar{\gamma} = (\bar{\gamma}, \bar{\sigma}, \bar{\theta}) \in \Pi \) satisfies \(\bar{\gamma} \in C^1 \) and \(\bar{\gamma}(0) = f^1(0, \bar{\gamma}(0), \Lambda(0, \bar{\gamma}, \bar{\sigma})) \), then the solution of IVP (1)-(2), \(x(\cdot; \bar{\theta}) \), is differentiable wrt \(\theta \) on \(\Omega_3 \) for \(t \in [0, \alpha] \) in the usual Frechét-sense as a function \(\left(\Omega_3 \subset \Theta \right) \rightarrow W^{1, \infty}, \theta \mapsto x(\cdot; \bar{\theta}) \).

Example 2. Suppose the function \(\tau \) satisfies (A2) and \(\tau(t, \psi, \sigma) = \tau^1(t, \psi) + \tau^2(t, \psi, \sigma) \), where \(\tau^2(0, \psi, \sigma) = 0 \) for all \(\psi \in \Omega \) and \(\sigma \in \Sigma \). Then if \(\bar{\gamma} = (\bar{\gamma}, \bar{\sigma}, \bar{\theta}) \in \Pi \) satisfies \(\bar{\gamma} \in C^1 \) and \(\bar{\gamma}(0) = f(0, \bar{\gamma}(0), \bar{\gamma}(0), \bar{\theta}) \), then the solution, \(x(\cdot; \sigma) \), is differentiable wrt \(\sigma \) on \(\Omega_3 \) for \(t \in [0, \alpha] \) (in Frechét-sense) as a function \(\left(\Omega_3 \subset \Sigma \right) \rightarrow W^{1, \infty}, \sigma \mapsto x(\cdot; \sigma) \).

Finally, we consider the state-independent version of IVP (1)-(2), i.e., we assume that \(\tau(t, \psi, \sigma) \) is independent of \(\psi \). Let \(\bar{\psi} \in C^1 \). First we note that (5) yields in this case that \(D_3 \lambda(t, \bar{\psi}, \bar{\sigma}) h = h(\tau(t, \bar{\psi}, \bar{\sigma})) \), therefore a simple calculation and (6) imply

\[|\omega^\lambda(t, \bar{\psi}, \bar{\sigma}; \psi, \sigma)| = |\bar{\psi}(\tau(t, \bar{\psi}, \sigma)) - \bar{\psi}(\tau(t, \bar{\psi}, \bar{\sigma}))| \]

\[+ |\psi(\tau(\psi, \psi)) - \psi(\tau(\bar{\psi}, \bar{\sigma}))| \]

\[\leq |\bar{\psi}(\tau(t, \psi, \sigma) - \tau(t, \bar{\psi}, \bar{\sigma}))| + |\psi(\psi(\bar{\psi}, \bar{\sigma})) - \psi(\tau(t, \bar{\psi}, \bar{\sigma}))| \]

Therefore (A2) (iii), the Chain-rule and the Mean Value Theorem yield

\[\frac{|\omega^\lambda(t, \bar{\psi}, \bar{\sigma}; \psi, \sigma)|}{|\psi - \bar{\psi}|_{W^{1, \infty}} + |\sigma - \bar{\sigma}|_{\Sigma}} \rightarrow 0 \quad \text{as} \quad |\psi - \bar{\psi}|_{W^{1, \infty}} + |\sigma - \bar{\sigma}|_{\Sigma} \rightarrow 0. \]
Consequently, $G^3(t;\bar{\tau},h)/|h|_{\Gamma} \to 0$ as $|h|_{\Gamma} \to 0$. Using this relation, it follows easily from the proof of Theorem 4:

Corollary 2. Assume (A1), (A2), and let $\bar{\gamma} \in \mathcal{M}$ be fixed. Assume moreover that $\tau(t,\psi,\sigma)$ is independent of ψ. Let $\delta > 0$ and $\alpha > 0$ be defined by Theorem 1, and $x(t;\gamma)$ be the solution of IVP (11)-(12) on $[0,\alpha]$ for $\gamma \in G_{\tau}(\bar{\gamma},\delta)$. Then the function $\bar{G}_{\tau}(\bar{\gamma};\delta) \subset \Gamma \to W^{1,\infty}, \gamma \mapsto x(t;\gamma)$ is differentiable at $\bar{\gamma}$ for $t \in [0,\alpha]$, and $D_{t}x(t;\gamma)h = z(t;\bar{\gamma},h)$, where z is the solution of IVP (18)-(19), and $h \in \Gamma$.

REFERENCES

