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Models of population growth Exponential growing model (Malthusian equation)

Let N(t) be the size of the total population at time t and let
Ṅ(t) = dN/dt be its rate of growth.
The per capita rate of growth of the population at time t is

Ṅ(t)

N(t)
.

(It is the rate of growth devided by the total population size.)
The simplest model leads to the equation

Ṅ(t)

N(t)
= r , or Ṅ(t) = rN, (1)

where r > 0 is a constant.
The initial condition:

N(0) = N0 (N0 > 0). (2)

This is the model for exponential growth since the solution of (1)-(2) is

N(t) = N0e
rt , t ≥ 0.
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Models of population growth Self regulation model with instantaneous regulation

(i) One would expect pure exponential growth when there is unlimited
space and resources.

(ii) The per capita rate of growth should depend on the population size.

So the model should be of the form

Ṅ(t)

N(t)
= f (N(t)) or Ṅ = Nf (N)

where the task is to select a plausible function f for the investigated
problem.

A possible set of principles which might guide the selection of f (x) are:

(1) When the population size is small, its growth is locally exponential.
So f (x) > 0 for all x ≥ 0 small enough.

(2) Too large population inhibits the rate of growth and hence f (x)
should be negative for all x large enough.

(3) The per capita rate should decrease as the population increases and
the size is large enough. So f (x1) < f (x2), A ≤ x2 < x1, where
A ≥ 0 is fixed.
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Models of population growth Self regulation model with instantaneous regulation

The most frequently used forms of f and the related equations:

(a) The simplest function satisfying condition (1)-(3) is a linear one:

f (x) = r − mx , x ≥ 0; r ,m > 0 are given.

Then
1. f (x) > 0 for x < r

m
.

2. f (x) < 0 for x > r
m

.
3. f ′(x) = −m < 0.
The related differential equation:

Ṅ = N(r − mN), N(0) = N0; r ,m,N0 > 0.

Letting K = r
m

, we get

Ṅ = rN

(

1 −
N

K

)

, N(0) = N0; r ,m,N0 > 0. (3)

K is called the carrying capacity (or optimal size) of the population.
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Eq. (3) is called logistic equation. Its solution is the so-called logistic curve

N(t) =
KN0

N0 + (K − N0)e−rt
, t ≥ 0.
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Models of population growth Self regulation model with instantaneous regulation

The logistic equation has been used successfully to modell the growth of
yeast cells, fruit flies, the population of Sweden and USA, the Pacific
Halibut fishery and so on.
Two models for the harvesting of a population with logistic growth:

Ṅ = rN

(

1 −
N

K

)

− H,

where H > 0 is the constant harvesting rate (hunting, fishing, or a
disease). Then

g(N) =











− r
K

(N − N1)(N − N2), H < rK
4 ,

− r
K

(

N − K
2

)2
, H = rK

4 ,

− r
K

[

(

N − K
2

)2
+ K

(

H
r
− K

4

)

]

, H > rK
4

where

K > N1 :=
K +

√

K (K − 4H/r)

2
> N2 :=

K −
√

K (K − 4H/r)

2
> 0.
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Ṅ = rN

(

1 −
N

K

)

− hN,

where h > 0 hN is the harvesting rate, and

g(N) = −
r

K
N

(

N −

(

1 −
h

r

)

K

)

.
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Models of population growth Self regulation model with instantaneous regulation

(b) Gompertz equation

Ṅ = rN ln

(

K

N

)

; r ,K > 0 constants.

Here f (x) = r ln
(

K
x

)

, x > 0.
Letting x(t) = lnN(t), t > 0. Then

ẋ(t) = r lnK − rx(t), t ≥ 0.

Applied to the study of animal tumors.
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Models of population growth Self regulation model with instantaneous regulation

(c) Ṅ = rN(K−N)
K+εN

, where ε > 0 is small.

(d) Ṅ = rN
(

1 −
(

N
K

)α
)

, where α > 0 is constant.

The above equations give the models of population growth in self
regulated case when f is not constant. The regulation is instantaneous
since the per capita rate at time t depends on the size of the population
at the same time t.
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Models of population growth Self regulation model with delayed regulation

The per capita rate at time t is equal to a function of the population size
not only at time t but also at some earlier time.
Let us consider only the basic logistic equation. In that case the simplest
model leads to the equation

Ṅ(t)

N(t)
= r − mN(t − τ), t ≥ 0,

where r ,m > 0 and τ > 0 are given constants. The constant τ is
called delay or time lag. (In fact, it might be considered as the reaction
time of the system.) So the simplest delayed logistic equation is as follows

Ṅ(t) = N(t) (r − mN(t − τ)) , t ≥ 0, (4)

or equivalently

Ṅ(t) = rN(t)

(

1 −
N(t − τ)

K

)

, t ≥ 0; K =
r

m
. (5)

The derivation of of (4) was given by Hutchinson (1948) and an other way
by Cunningham (1954).
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Models of population growth Self regulation model with delayed regulation

The initial condition is

N(t) = ϕ(t), −τ ≤ t ≤ 0, (6)

where ϕ ∈ C ([−τ, 0] , [0,∞)) .
Solution of problem (4)-(6) can be given by using the so-called ”step by
step” method. Namely if τ > 0 and t ∈ [0, τ ], then t − τ ∈ [−τ, 0] and
hence

N(t − τ) = ϕ(t − τ)

φ

τ−τ 2τ 3τ 4τ

Method of steps
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Thus

Ṅ(t) = rN(t)

(

1 −
ϕ(t − τ)

K

)

, t ≥ 0,

and hence
N(t) = N1(t), 0 ≤ t ≤ τ,

where

N1(t) = ϕ(0) exp





t
∫

0

r

(

1 −
ϕ(s − τ)

K

)



 ds, 0 ≤ t ≤ τ.

In general

N(t) = Nn(t), (n − 1)τ ≤ t ≤ nτ, n ≧ 1,

where

Nn(t) = Nn−1((n − 1)τ) exp







t
∫

(n−1)τ

r

(

1 −
Nn−1(s − τ)

K

)






ds,
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Models of population growth Self regulation model with delayed regulation

for (n − 1) τ ≤ t ≤ nτ, n ≧ 1.
The sequence of functions Nn : [(n − 1) τ, nτ ] −→ R is well-defined, and
the function N : [0,∞) −→ R defined by

N(t) = Nn(t), (n − 1)τ ≤ t ≤ nτ, n ≧ 1,

is the unique solution of the delayed logistic equation (4) with initial
condition (6).
Now consider a special case of (4) with the parameter values:

r = 1, m = 1 and ϕ(t) = 0.5, −τ ≤ t ≤ 0,

where τ ≥ 0 is an arbitrarily fixed parameter.
Let us consider the cases:
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Models of population growth Self regulation model with delayed regulation

Ṅ(t) = N(t) (r − mN(t − τ)) , t ≥ 0, (4)

Transformations of Eq. (4):

(1) Change the time scale (Kakutian and Markus (1958).
Let y : [−1,∞) → R+ be defined by

y(t) = N(τ t), t ≥ −1,

where N : [−τ,∞) → R+ is the solution of (4). Then

ẏ(t) = τ Ṅ(τ t) = rτN(τ t)

(

1 −
N(τ t − τ)

K

)

,

and hence

ẏ(t) = rτy(t)

(

1 −
y(t − 1)

K

)

, t ≥ 0.
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Models of population growth Self regulation model with delayed regulation

Ṅ(t) = N(t) (r − mN(t − τ)) , t ≥ 0, (4)

(2) Wright’s transformation (1955).
Let

y(t) =
N(τ t)

K
− 1, t ≥ −1.

Then

ẏ(t) = −rτ(1 + y(t))y(t − 1) Wright equation
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Models of population growth Self regulation model with delayed regulation

Ṅ(t) = N(t) (r − mN(t − τ)) , t ≥ 0, (4)

(3) Logarithmic transformation
Since the solution N(t) is positive whenever ϕ(t) > 0, −τ ≤ t ≤ 0, the
function

x(t) = ln
N(t)

K
t ≥ −τ,

is well defined, where K = r
m

. Clearly, N(t) = Kex(t), t ≥ −τ.
Then

ẋ(t) =
Ṅ(t)

N(t)
= r − mN(t − τ) = r − rex(t−τ), t ≥ −τ.

So problem (4)-(6) is equivalent to the problem

ẋ(t) = r(1 − ex(t−τ)), t ≥ 0, (7)

and
x(t) = lnϕ(t), −τ ≤ t ≤ 0. (8)
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Models of population growth Self regulation model with delayed regulation

Eq. (7) is a delay differential equation, where the initial function lnϕ(t)
is continuous on [−τ, 0], but it is not necessarily positive (in general it is
not positive).
Clearly

x(t) > 0 ⇐⇒ N(t) > K

x(t) = 0 ⇐⇒ N(t) = K

and

x(t) < 0 ⇐⇒ N(t) < K .

So N is oscillatory (nonoscillatory) about K if and only if x is
oscillatory (nonoscillatory) about zero. The solution N tends to K as
t → +∞ if and only if x tends to 0 as t → +∞.
This means that the optimal size K atracts the solutions of Eq. (4) if the
zero atracts the solutions of Eq. (7) at infinity.
It is clear that N(t) = K , t ≥ −τ, is a solution of Eq. (4) since

K̇ = 0 = K (r − mK ).
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Models of population growth Self regulation model with delayed regulation

K is a steady state solution of Eq. (4). The other steady state solution of
Eq. (4) is N = 0 (zero solution). Eq. (7) has only one steady state
solution, namely the zero solution. Since

f (x) = r(1 − ex) = −rx + r(1 − ex + x) = −rx + rx
1 + x − ex

x
,

where
1 + x − ex

x
→ 0, as x → 0,

the linearized version of Eq. (7) is as follows:

ẏ(t) = −ry(t − τ), t ≥ 0. (9)

As for ODEs, we seek a solution of the form y(t) = eλt where λ is a
real or complex parameter. In that case

ẏ(t) = λeλt = −reλ(t−τ) = −re−λτeλt , t ∈ R.

This results in the so called characteristic equation for λ :

λ = −re−λτ , (10)
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or equivalently

λτ = −rτe−λτ .

−2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

rτ = 1/2e

asymptotically stable, non-oscillatory

−2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

rτ = 1/e

asymptotically stable, non-oscillatory
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Models of population growth Self regulation model with delayed regulation

ẏ(t) = −ry(t − τ) (9)

λ = −re−λτ (10)

From the general theory of the linear delay differential equations we get
the following stability type results.

Theorem 1.

Let r > 0 and τ ≥ 0 be fixed. The following statements are equivalent:

(i) For any solution y : [−τ,∞) → R of (9), y(t) → 0, t → +∞.

(ii) For any solution λ ∈ C of (10), Reλ < 0.

(iii) rτ < π
2 .
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ẏ(t) = −ry(t − τ) (9)

λ = −re−λτ (10)

Theorem 2.

Let r > 0 and τ ≥ 0 be fixed. The following statements are equivalent:

(i) Any solution y : [−τ,∞) → R of (9), is bounded on [0,∞) .

(ii) For any solution λ ∈ C of (10), Reλ ≤ 0.

(iii) rτ ≤ π
2 .
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Models of population growth Self regulation model with delayed regulation

λ = −re−λτ (10)

If rτ = π
2 , then λ = π

2τ
i is a solution of the characteristic equation (10),

and so the complex valued function

y(t) = e
π

2τ
it = cos

π

2τ
t + i sin

π

2τ
t

is a solution of Eq. (9).
This yields the next corollary.

Corollary 3.

If rτ = π
2 then all solutions of Eq. (10) are bounded on R+, moreover

the periodic functions

y1(t) = cos
π

2τ
t and y2(t) = sin

π

2τ
t, t ≥ 0,

are solutions of Eq. (9) on R+.
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ẏ(t) = −ry(t − τ) (9)

λ = −re−λτ (10)

The next result is complementary to Theorems 1 and 2.

Theorem 4.

Let r > 0 and τ ≥ 0 be fixed. The following statements are equivalent:

(i) Eq. (9) has an unbounded solutin on R+.

(ii) Eq. (10) has a root λ ∈ C with Re λ > 0.

(iii) rτ > π
2 .
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Models of population growth Self regulation model with delayed regulation

Oscillation results

Definition 5.

We say that a function y : R+ → R is oscillatory on R+ if there exist
two sequences (t ′n)n≥1 and (t ′′n )n≥1 such that t ′n, t

′′
n → ∞, → +∞,

and y (t ′n) < 0 < y (t ′′n ) , n ≥ 1.

It is clear that y : R+ → R is not oscillatory on R+ if and only if there is
a T > 0, such that |y(t)| > 0, t ≥ T , or equivalently either y is
eventualy positive or eventualy negative.
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Models of population growth Self regulation model with delayed regulation

ẏ(t) = −ry(t − τ) (9)

λ = −re−λτ (10)

Theorem 6.

Let r > 0 and τ ≥ 0 be fixed. The following statements are equivalent.

(i) Every solution of Eq.(9) is oscillatory on R+.

(ii) The characteristic equation (10) does not have real root.

(iii) rτ > 1
e
.

We say for the linear equation (9):

It is stable if any solution of it is bounded on R+.

It is asymptotically stable if any solution of it tends to zero as t → +∞.

It is oscillatory if any solution of it oscillates on R+.
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Models of population growth Self regulation model with delayed regulation

ẏ(t) = −ry(t − τ) (9)

Summary of the qualitative properties of the solutions of (9):

0 ≤ rτ ≤ 1
e

not oscillatory aymptotically stable

1/e < rτ < π
2 oscillatory aymptotically stable

rτ = π
2 oscillatory stable, has periodic solutions

rτ > π
2 oscillatory not stable, has unbounded solution
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Models of population growth Age dependent population models

Let N(t) be the size of the population at time t, and let A be the
maximal possible age in the population. From theoretical point of view we
assume that 0 < A ≤ ∞, and let I = [0,A] if A < ∞ and I = [0,∞)
if A = ∞.
Let u(t, ·) : I → R+ be the density of the distribution of individuals in
the popultion of age a at time t.
In that case the size of the population at time t is given by

N(t) =

A
∫

0

u(t, a) da.

Let h > 0 be the time increase, and consider the difference

u(t + h, a + h) − u(t, a).

Assuming that this difference is approximatly linear in h we have

u(t + h, a + h) − u(t, a) = β(t, a)u(t, a)h + o(h)h
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where β : R+ × I → R+ is a given rate function and o(h) → 0, h → 0.
Thus the directional derivative

Dt,au(t, a) := lim
h→0+

u(t + h, a + h) − u(t, a)

h

exists and

Dt,au(t, a) = β(t, a)u(t, a), (t, a) ∈ R+ × I . (11)

The model equation (11) is not sufficient to determine the density
function in a unique way. We need to know the initial population
distribution u0 : I → R+ and the number of newborns (births) in the
population u(t, 0).
Thus the complete model is the following:

Dt,au(t, a) = β(t, a)u(t, a), t ≥ 0, 0 ≤ a < A,
u(t, 0) = g(t, u((t, ·)), t ≥ 0,
u(0, a) = u0(a), 0 ≤ a < A,







(12)

where g(t, ·) : R+ × C (I ,R+) → R+ and u0 : I → R+.
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If u is partially differentiable in both variables t and a, then

Dt,au(t, a) =
∂

∂t
u(t, a) +

∂

∂a
u(t, a)

and hence problem (12) is equivalent to

∂
∂t

u(t, a) + ∂
∂a

u(t, a) = β(t, a)u(t, a), t ≥ 0, 0 ≤ a < A,
u(t, 0) = g(t, u((t, ·)), t ≥ 0,
u(0, a) = u0(a), 0 ≤ a < A.







(13)
Problem (13) is called the McKendrick/Von Foerster model.
Let

γ(t, a) =















t
∫

0

β(s, a − t + s)ds, 0 ≤ t < a < A,

a
∫

0

β(t − a + s, s)ds, 0 ≤ a ≤ t.

Then

Dt,aγ(t, a) = β(t, a), t ≥ 0, 0 ≤ a < A,
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and

Dt,a

(

u(t, a)e−γ(t,a)
)

= (Dt,au(t, a)) e−γ(t,a)−u(t, a) (Dt,aγ(t, a)) e−γ(t,a),

and hence

Dt,a

(

u(t, a)e−γ(t,a)
)

= 0, t ≥ 0, 0 6 a < A. (14)

But for any continuous function x : [−A,∞) → R+, the function

v(t, a) = x(t − a), t ≥ 0, 0 ≤ a < A,

satisfies

Dt,av(t, a) = lim
h→0

v(t + h, a + h) − v(t, a)

h

= lim
h→0

x(t + h − (a + h)) − x(t − a)

h
= 0.

Therefore the function

u(t, a) = eγ(t,a)x(t − a), t ≥ 0, 0 ≤ a < A, (15)
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satisfies (14) and equivalently (11) on R+ × [0,A). Here x is an arbitrary
continuous function. But u(t, a) defined in (15) is a solution of problem
(12) if and only if

u(t, 0) = eγ(t,0)x(t) = g(t, eγ(t,·)x(t − ·))

and
u(0, a) = eγ(0,a)x(−a) = u0(a), 0 ≤ a < A.

So the function u(t, a) defined by (15) is a solution of problem (12)
whenever the continuous function x : [−A,∞) −→ R+ satisfies

x(t) = e−γ(t,0)g
(

t, eγ(t,·)x(t − ·)
)

, t ≥ 0, (16)

and
x(s) = e−γ(0,−s)u0(−s), −A < s ≤ 0. (17)
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Special cases:
(I) The number of the newborns are given by using a so-called fertility
function λ : R+ × [0,A) −→ R+. Namely

g(t, u(t, ·)) =

A
∫

0

λ(t, a)u(t, a)da, t ∈ R+.

By using (16) and (17) this gives

x(t) =







A
∫

0

λ(t, a)eγ(t,a)x(t − a) da, t ≥ 0,

e−γ(0,−t)u0(−t), −A < t ≤ 0.

(18)
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(I/1) A = +∞. Then (18) reduces to

x(t) =

t
∫

0

λ(t, a)eγ(t,a)x(t − a) da + h(t), t ≥ 0, (19)

where

h(t) =

∞
∫

t

λ(t, a)eγ(t,a)u0(a − t) da, t ≥ 0.

Eq. (19) is the so called Volterra-type integral equation. If for any
(t, a) ∈ R+ × [0,A) , β(t, a) = 0 and λ(t, a) = λ0(a), then γ(t, a) = 0,
(t, a) ∈ R+ × [0,A) , moreover Eq. (19) can be written in the form

x(t) =

t
∫

0

λ0(a)x(t − a) da + h(t), t ≥ 0.

This latter equation is the well-known Volterra-type renewal integral
equation.
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(I/2) 0 < A < ∞, β(t, a) = 0 and λ(t, a) = λ0 (const.),
(t, a) ∈ R+ × [0,A) . In that case γ(t, a) = 0, (t, a) ∈ R+ × [0,A) and

A
∫

0

λ(t, a)eγ(t,a)x(t − a) da = λ0

A
∫

0

x(t − a) da = λ0

t
∫

t−A

x(s) ds, t ≥ 0.

Thus (18) can be written in the form

x(t) =







λ0

t
∫

t−A

x(s) ds, t ≥ 0,

u0(−t), −A ≤ t ≤ 0.

By differentiation we get

ẋ(t) = λ0x(t) − λ0x(t − A), t ≥ 0,

x(t) = u0(−t) − A ≤ t ≤ 0.

This means that the solution of the age dependent model is equivalent to
the solution of the above delay differential equation.
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Such type of models were derived by Blythe at. al (1982) from the above
age structured model and also by Cooke and Yorke (1973) based on
different ideas.
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(II) Let us assume that there exists a definite maturation time
τ ∈ (0,∞) in the cell population at which the cells multiply by bipartition.
Such a case was modelled by M.E. Gurtin in his paper ”Some questions
and open problems in continuum mechanics and population dynamics J.
Diff. Eqns. 48 (1983), 353–359”.
The birth rate function is defined by

g(t, u(t, ·)) = g0(t, u(t, τ))

where g0 : R
2
+ −→ R+ is continuous.

In that case (16) and (17) reduce to the delay functional equation

x(t) =

{

g0

(

t, eγ(t,τ)x(t − τ)
)

0 < t,
u0(−t), −A 6 t ≤ 0.
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The Lotka-Volterra equations (frequently named as predator-prey
equations) were proposed independently by Alfred J. Lotka in 1925 and
Vito Volterra in 1926. The equations

ẋ1 = x1(γ1 − ax2)

ẋ2 = −x2(γ2 − bx1)

where
x1 = x1(t) is the number of some prey (e.g., rabbits) at time t;
x2 = x2(t) Is the number of some predator (e.g., foxes) at time t;
γ1, γ2, a, b are positive parameters representing the interaction of the two
species.
Physical meaning of the prey equation:

ẋ1 = γ1x1 − ax1x2.

Prey have unlimited food supply and it is assumed that the size of the prey
population is growing exponentially unless subject to predation. This
exponential growth is represented by the term γ1x1.
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The term ax1x2 represents the rate of predation upon the prey is
proportional to the rate at which the predators and the prey meet.
Physical meaning of the predator equation:

ẋ2 = −γ2x2 + bx2x1.

Here bx2x1 is the growth rate of the predator population and γ2x2

represents the natural death of the predators.
Equilibrium occurs in the model when neither of the population sizes is
changing, i.e. when the right hand sides of the differential equations are
equal to 0:

x1 (γ1 − ax2) = 0

−x2 (γ2 − bx1) = 0.

This holds if either x1 = x2 = 0 or x1 = γ2
b

, x2 = γ1
a

.
Hence there are two equilibria.
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The general case for n-species:

ẋi = xi



γi +

n
∑

j=1

aijxj



 , 1 ≤ i ≤ n

xi (0) = xi0, 1 ≤ i ≤ n.

The most usually used version of the delayed Lotka-Volterra differential
equations for n-species

ẋi (t) = xi (t)



γi +

n
∑

j=1



αijxj(t) + βijxj(t − τij) +

t
∫

0

γij(t − s)xj (s) ds





xi (t) = ϕi (t) , −τ ≤ t ≤ 0,

for any 1 6 i 6 n, where γi , αij , βij ∈ R, τij ∈ R+, γij ∈ C (R+, R) ,
1 6 i , j 6 n, and ϕi ∈ C ([−τ, 0] , R+) , where τ = max

16i ,j6n
τij .
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Mixing problem, feedback control

First we shall study the problem of adjusting the concentration of salt to a
desired level in a brine mixing tank.

concentration: s grams/liter

inflow

inflow rate: r liter/second

outflow

concentration: c grams/liter

ouflow rate: r liter/second

A t = 0 the tank contains V liters of brine with an initial salt
concentraton of c0 grams per liter. The salt concentration in the
incoming brine is s gram per liter.
Our task is to adjust s, the incoming concentration of salt, so that the
concentration of salt in the thank attains (and remains at) a
predetermined concentration k.
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Our basic relation is

d

dt
(cV ) = (Rate in)−(Rate out),

where c = c(t) denotes the homogeneous concentration in the tank at
time t.
But

Rate in=s (grams/liter) × r (liters/second)

Rate out=c (grams/liter) × r (liters/second).

So the governing equation is

d

dt
(cV ) = sr − cr ,

and hence
dc

dt
= ps − pc , p =

r

V
(constant), (20)

with initial condition c(0) = c0.
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The solution is

c(t) = s + (c0 − s) e−pt t ≥ 0.

From the above formula it is clear that our task cannot be accomplished in
finite time, and it can be done at infinity if and only if s = k.
To overcome this difficulty, we must introduce the notion of a feedback
control law wich governs s.

s(c)

feedback
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The concentration c of salt in the tank is measured at any instant, and
the inflow rate is controled by the instant value of c .
With this control law, the differential equation (20) now becomes

dc

dt
= ps(c) − pc , (21)

and the form of the solution depends on the initial concentration
c(0) = c0.
A simple example of a feedback control law is the following one:

s = s(c) =







0 if c > k,
k if c = k,
z if c < k,

where z is some convenient value greater than k.
The possible solutions depending on c0.
Case 1: If c0 > k, then s(c) = 0 and the solution of Eq. (21) is

c(t) = c0e
−pt , t ≥ 0.
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The desired concentration will be attained at t = t∗, where c(t∗) = k.
Hence t∗ = 1

p
ln

(

c0
k

)

.
Case 2: If c0 = k, then s(c) = k, c(t) = k, and t∗ = 0.
Case 3: If c0 < k, then s(c) = z and from Eq. (21) the solution is

c(t) = z + (c0 − z) e−pt ,

where z > k > c0. The desired concentration will be obtained when
c(t∗) = k, and this gives

t∗ =
1

p
ln

(

z − c0

z − k

)

.

So the problem is solved from theoretical point of view. In the practice the
following modified versions are more realistic.
(1) The inflow rate a time t depends on the result of the measurement
at an earlier time t − τ, where τ is a positive time delay.
So the governing equation is a delay differential equation

ċ(t) = ps(c(t − τ)) − pc(t), t ≥ 0, (22)
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with the initial condition

c(t) = c0, −τ ≤ t ≤ 0.

(ii) In the above models the measurement is continuous which can be
technicaly complicated and also expensive.
Assume we take samples at the following discrete moments

0, h, 2h, ..., nh, ...

where h > 0 is the sampling time. The control function is

u(t) = ps
(

c
([ t

h

]

h − kh
))

, t ≥ 0,

where k is a fixed positive integer and [·] denotes the greatest integer part
function.
So the governing equation is

ċ(t) = ps
(

c
([ t

h

]

h − kh
))

− pc(t), t ≥ 0, (23)
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with the initial condition

c(t) = c0, −kh ≤ t ≤ 0.

Eq. (23) is called equation with piecewise constant argument (EPCA).
Eq. (23) is also called ”hybrid” delay differential equation. Its solution
leads to the solution of some related discrete difference equation. Namely,

c(t) = e−p(t−nh)c(nh)+e−pt

∫ t

nh

epups

(

c

(

[u

h

]

h−kh

))

du, nh ≤ t < (n

But n ≤ u
h
≤ t

h
< n + 1, and hence

c(t) = e−p(t−nh)c(nh)+e−pt(ept−epnh)s(c((n−k)h)), nh ≤ t < (n+1)h.

Thus we arrive to the difference equation

c((n + 1)h) = e−phc(nh) + (1 − e−ph)s(c((n − k)h)), n ≥ 0.

The solution of Eq. (23) is given by

c(t) =
c((n + 1)h) − c(nh)

h
(t − nh) + c(nh), 0 ≤ nh ≤ t < (n + 1)h.
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