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Introduction

Chemical reactions, like
2H2 +O2 = 2H2O (1)

occur not single steps, in the reality, rather complicated sequences of sev-
eral reactionsteps (elementary reactions) in which many intermediate
species (atomic groups, "rudimentary molecules", as H, H2, O, O2, O3,
H2O, H2O2, HO, HO2) take part. So, (1) is called a composite reaction1).

Important tasks to solve, both for theory and practice, are the following:
I) Find and list all (possible) elementary reactions among a given set of

species �rst, and after, �nd all the composite reactions which can be built
from the elementary ones.
II) Decompose any given overall reaction like (1) to elementary ones (the

reverse of I.)
The problem of �nding the �nal reaction generated by sequences of reac-

tions (mechanisms) is similar to I. Of course we are interested in minimal
reactions and mechanisms. Similar problems arise in physics, matroids and
hypergraphs.
The huge (exponential) number of elementary reactions and mechanisms

makes these problems not so easy even in modern computers.
We take care of mass balance only. Further physical and chemical prop-

erties (we call them evaluating operators) are discussed in the last Section.
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1. Mathematical de�nitions, main problems

Fix n atoms, then each species (group of atoms) is represented by a vector
from Rn. Reactions are linear combinations of these vectors. Mechanisms are
also linear combinations of reactions. We are interested in minimal reactions
(mechanisms), so these vectors must form a minimal dependent set.

De�nition 1 (PhD 1.7.D.) Any S � Rn is a (linear algebraic) simplex
if it is minimal dependent, i.e. S is (linearly) dependent but all of its proper
subsets are independent. �

Geometric and a¢ ne simplexes are de�ned in PhD 1.9.D.-1.11.D. (below
40.D), relations among di¤erent kinds of simplexes are discussed in PhD
4.18.D., 4.19.Á. (below 38.D, 39.S) and in [2012b]. The main properties of
linear algebraic simplexes are discussed in PhD Subsection 1.5.
We omit the adjective linear algebraic in what follows.

Notation 2 Any dependent set S = fb1; :::;bkg � Rn corresponds to a
homogeneous system of linear equations

kX
j=1

xj � bj = 0 (2)

which has a nontrivial solution x = [x1; :::; xk] 2 Rk. �

In the dissertation we deal with the following problems (Subsection 1.6):

Problem 3 (PhD 1.22.P.) Reveal the structure of the solutions of (2) in
details for S simplexes.

Problem 4 (PhD 1.23.P.) Fix any vectors a1; :::; am 2 Rn. Construct all
solutions of the homogeneous system

Pm
j=1 xj � aj = 0 if the solutions of the

systems
P

aj2S xj � aj = 0 for S j fa1; :::; amg simplexes are known.

Problem 5 (PhD 1.24.P.) Construct a fast algorithm which �nds all sim-
plexes S � H for any given H = fa1; a2; : : : ; amg � Rn.

The number of simplexes in H is a critical point for any algorithm:

Problem 6 (PhD 1.25.P.) Give lower and upper bounds for the number
of simplexes, contained in m-element sets H � Rn for H spanning Rn.
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Parallel vectors (isomers, multiple doses) play a negative role in lower
bounds (see Theorem 34), so we deal separately with the case when no parallel
vectors are in H :

Problem 7 (PhD 1.26.P.) The same as Problem 6 but H must not contain
parallel vectors.

The methods of treating to Problems 6 and 7 suggest to look for more
general structures:

Problem 8 (PhD 1.27.P.) Give the equivalent notion of simplexes in ma-
troids and give lower and upper bounds for the number of simplexes, con-
tained in an m -element set H in a matroid.

Problem 9 (PhD 1.28.P.) Give the equivalent notion of simplexes in hy-
pergraphs and give lower and upper bounds for the number of simplexes,
contained in an m -element set H in a hypergraph.

Atoms-species-mechanisms ... form a kind of hierarchy since the inputs
of the higher level are exactly the outputs of the lower one.

Problem 10 (PhD 1.29.P.) Give a mathematical de�nition of stoichio-
metric hierarchy, study its properties and relations to physics and chem-
istry.

Problem 11 Study the properties of species and reactions other than linear
combinations.

2. The algorithm and its variations

Problem 5 and its applications are studied in this Section ([1991], [2000a]).

The algorithm

Each simplex in Rn has size at most n + 1 and a set H of m vectors may
have at most

Pn+1
i=1

�
m
i

�
=
�
m+1
n+2

�
� 1 = O (mn+2) (m!1) such subsets.

However we do not have to check these mn+2 subsets, since

Proposition 12 All subsets of independent sets are independent, too. �
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Our algorithm, introduced in the dissertation Section 2.1 decreases the num-
ber of subsets of H to be investigated (Procedure Modify) to mn+1. The
subsets of H are checked in the lexicographic order, combined with a �back
and forth�direction. Details can be founf in subsections 2.1 and 2.5.
The algorithm is applicable in any hypergraph which posseses a property

similar to Proposition 12:

De�nition 13 (PhD 2.4.D.) (i) A hypergraph H = (V; E) is descending
if E;F j V , E 2 E and F � E implies F 2 E ,
(ii) H is not deformed if fvg 2 E for each v 2 V ,
(iii) assumed (i) and (ii), the elements of E are called independent,
(iv) S j V is a simplex if S =2 E but for each T $ S we have T 2 E . �

Theorem 14 (PhD 2.2.T.) (i) The algorithm does not miss any simplex
and does not check any subset twice.
(ii) The running time of the algorithm is the best possible for any dataset,
that is it checks the neccessary ones only. �

Theorem 15 (PhD 2.3.T.) For any H � Rn, jHj = m the algorithm
checks at most mn+1 subsets of H , so the time elapsed is O (mn+1), the
algorithm is polynomial in time. �

Computer examples are shown in the last Section of the dissertation: for
some dozens of vectors in dimension 10� 20 we have result in some seconds.
The time O (mn+1) can not be decreased in general, by Theorem 32 and

Corollary 33.

Extensions and applications

By minor modi�cations of the input and careful investigations of the output
many other problems can be resolved, too (PhD subsection 2.2, [2000a]).

Reducing the dimension

(a) Drop the vectors independent from the other. This is a O (m2) time
check before running but can save O (mn) time.
(b) If a vector has exactly two nonzero coordinates, then we can delete
this vector and we can decrease the dimension by 1 for all the remaining
vectors. In chemical language: in the presence of a reaction A = �B we
may "substitue" the species A by �B for calculations and, after running the
algorithm, use again the species A . Of course we have to �nd all mechanisms
M of the original problem. The details can be found in subsection 2.2.0, the
running time in Example 7.7 falled from 93 sec to 0:01 sec.
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Searching direct reactions

Let us given the reactions X1; :::; Xk 2 RN which contain both terminal
species (reactants) and nonterminal (intermediate) ones. Find the mech-
anisms Y =

Pk
i=1 �iXi such that the overall reaction Y = R(�) contain

terminas species only, where Y is unknown. In Subsection 2.2.1 two equiva-
lent solutions are given to this problem.

Searching direct mechanisms

We are given one (or more) reaction R and we have to �nd the minimal
mechanismsM resulting R . To solve this we add Xk+1 := R to the given
set H := fX1; :::;Xkg and search only the simplexes which contain R . From
the equality

Pk+1
j=1 �j �Xj = 0 we getM := �1

�k+1

Pk
j=1 �j �Xj since all each

�j 6= 0 . See subsection 2.2.2 for details.

Neither terminal species nor reactions are known

We do not know the terminal species but we have to �nd all overall reactions.
Simply running the original algorithm we can extract all overall reactions
from the output, as described in subsection 2.2.3.

In Section 7 we show several computer experiments with explanations.
Detailed comparison of our algorithm and methods to other author�s ones

can be found in subsection 2.4.

Thesis I

i) A polinomial time algorithm was developed for listing all simplexes
contained in any given set H � Rn (moreover, in any H j V where H =
(V; E) is a descending, not deformed hypergraph) in lexicographical order
(Subsection 2.1, [1991]).
ii) It was proved, that the algorithm �nds the simplexes in the fewest

steps for any dataset H j Rn (PhD 2.2.T. and 2.3.T).
iii) It was revealed, that reducing the dimension of the data in H can

save up to 90% of running time in certain cases (Subsection 2.2.0).
iv) Extensions of the algorithm for �nding direct reactions and mecha-

nisms were given, even in the case when both terminal species and reactions
are unknown (Subsections 2.2.1, 2.2.2 and 2.2.3, [2000a]).
v) An implementation of the algorithm in Pascal was contructed and

several runs were made for problems we found in the literature, our outputs
were compared to other authors�results (Subsections 2.4 and 7). �
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3. Systems of linear equalities

Now we deal Problems 3 and 4 ([2012a],[2012b]). We have far di¤erent an-
swers to homogeneous and inhomogeneous systems.

Notation 16 MA;b and MA;0 denote the sets of solutions of the systems of
linear equations A�x = b and A�x = 0 (A 2 Rn�m, b 2 Rn), resp. The column
vectors of A are denoted by a1; a2; : : : ; am 2 Rn, i.e. A = [a1; a2; : : : ; am]. �

Condition 17 (PhD 3.2.F.) o) MA;0 6= f0g and jMA;bj > 1 ,
i) A has no parallel columns, especially
ii) A has no column 0 ,
iii) A has no column parallel to b . �

De�nition 18 (PhD 3.3.D.) (i) For any x 2 Rm let

supp (x) := fi � m : xi 6= 0g (3)

the support of x , especially supp (0) = ; .
(ii) For any M � Rm the vector z 2M , z 6= 0 has a minimal support

with respect toM if there is no y 2M , y 6= 0 such that supp
�
y
�
$ supp (z) .

In this case we say z 2M is minimal (to M).
(iii) For any M � Rm

Mmin := fz 2M : z is minimal to M g . (4)

(iv)Mmin
A;b andM

min
A;0 are de�ned forMA;b andMA;0, the elements ofMmin

A;b

and Mmin
A;0 are called minimal solutions of A � x = b and A � x = 0. �

The connection and di¤erences of minimal and base solutions are dis-
cussed in Remark 30 (PhD 3.18.M.).

Proposition 19 (PhD 3.17.Á.) For any z 2 Mmin
A;0 the relevant set of

column vectors of A in the equality A � z = 0 ,

Sz := fai : i 2 supp (z)g � Rn (5)

is a minimal dependent set, i.e. a simplex. �

De�nition 20 (PhD 3.7.D.) For x 2 Rm, A 2 Rn�m andH � f1; : : : ;mg,
jHj = h the resctrictions of x and A to the set H is

x jH : = [xi : i 2 H] 2 Rh (6)

A jH : = [ai : i 2 H] 2 Rn�h . �
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Homogeneous systems

Theorem 21 (PhD 3.10.T.) For any z 2Mmin
A;0 , z 6= 0 the equality�

A jsupp(z)
�
� y = 0 (7)

has a unique (up to a constant multiplier) solution y 2 Rh (h = jsupp (z)j),
namely

y = � � z jsupp(z) (� 2 R) � (8)

See also PhD 1.17.T., 3.19.K., 3.21.K. and 3.22.Á.

Theorem 22 (PhD 3.20.T.) For any A 2 Rn�m with column vectors
a1; a2; : : : ; am and for any simplex S j fa1; a2; : : : ; amg there is a (unique)
solution x of the homogeneous equation Ax = 0 which uses exactly the ele-
ments of S , i.e.

S = fai : i 2 supp (x)g . � (9)

Now the solution of Problem 4 is:

Theorem 23 (PhD 3.13.T.) Mmin
A;0 j Rm generates MA;0 j Rm for any

A 2 Rn�m. �

Corollary 24 (PhD 3.15.K.) For any x 2MA;0

supp (x) j
[�

supp (z) : z 2Mmin
A;0

	
. � (10)

Remark 25 Mmin
A;0 may contain dependent but not parallel elements. To

reveal a base of Mmin
A;0 would be interesting. �

Inhomogeneous systems

Theorem 26 (PhD 3.23.T.) For any z 2Mmin
A;b and H := supp (z)

(A jH) � y = b (11)

has the only solution y = z jH . �

A generalization and solution of Problem 4 is:

Problem 27 (PhD 3.24.P.) Can all solutions of A � x = b be generated
from the minimal solutions, i.e. from the elements of Mmin

A;b ?
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Theorem 28 (PhD 3.25.T.) Each solution x 2 MA;b is an a¢ ne linear
combination of the elements Mmin

A;b plus one solution of A � x = 0 , i.e.

x =
IX
i=1

�izi + y ahol
IX
i=1

�i = 1 (12)

where zi 2Mmin
A;b and y 2MA;0 [ f0g . �

Corollary 29 (PhD 3.26.K.) Mmin
A;b [Mmin

A;0 generates MA;b �

This is a generalization of the wellknown relation MA;b = z +MA;0 .

Remark 30 (PhD 3.18.M.) Connection of minimal- and base solutions:
Inhomogeneous systems: a base solution x corresponds to a base of A but
some components of x may be 0 . So x is minimal i¤ it is nondegenerate.
Homogeneous systems: each base solution refers to a base of A and a
further columns of A , this is an r + 1 -element dependent vectorset where
r is the rank of A . Such set need not be a simplex (PhD 1.8.M.). On the
other hand: minimal solutions x correspond to simplexes, and they are base
solutions exactly when supp (x) has the size r + 1 . �

Thesis II

i) A thoroughful investigation of the structure of sets of minimal solu-
tions both of homogeneous and inhomogeneous sets of linear equalities was
done. We also revealed the connection of these solutions to the simplexes
and the uncostrained solutions (Section 3, [2012b]).
ii) Namely, in the homogeneous case the minimal solutions (elements of

Mmin
A;0 ) generate all the solutions (PhD 3.13.T.). In the inhomogeneous case

all solution can be written as the sum of an a¢ ne combination of some
elements of Mmin

A;b plus one element of MA;0 (PhD 3.25.T.).
iii) The relations between minimal- and base solutions is explained in

PhD 3.18.R. �

4. The number of simplexes in Rn

Here we deal with Problems 6 and 7 ([1995], [1998], [2011]).

Notation 31 (PhD 4.2.J.) simp (H) denotes the number of simplexes
in H � Rn. �
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The maximum

A set of simplexes form a Sperner-family, so Sperner�s well known theo-
rem gives an upper bound for simp (H). However we are interested in the
structure of the extremal sets H.

Theorem 32 (PhD 4.5.T.,[1995]) For any H � Rn of �xed size and span-
ning Rn, simp(H) is maximal if and only if any n elements of H are inde-
pendent. �

Corollary 33 (PhD 4.6.K.) For any H � Rn, spanning Rn and having m
element

simp(H) �
�
m

n+ 1

�
, (13)

and the bound is sharp. �

So the atoms must form species "randomly" (or like a Vandermonde-determinant)
in order to be able to form the most possible number of reactions.

The minimum, allowing parallel vectors

Theorem 34 (PhD 4.7.T.,[1995]) For any H � Rn of �xed size and span-
ning Rn, simp(H) is minimal if and only if H consists of n collections of
parallel vectors of sizes di¤ering by at most one from each other.
In case jHj � 2n this is the unique con�guration for containing minimum

simplexes. �

Corollary 35 (PhD 4.12.K.) For any H � Rn spanning Rn and jHj =
m = an+ b (0 � b < n) we have

b �
�
a+ 1

2

�
+ (n� b) �

�
a

2

�
� simp(H) , (14)

and this bound is sharp. If m is divisible by n we have

n �
�
m
n

2

�
� simp(H) . � (15)

For n+ 1 � m < 2n� 1 we have many other minimal con�gurations:

Example 36 (PhD 4.14.P.) Let n + 1 � m < 2n � 1 , �x a base K =�
e1; :::; en

	
� Rn and let � = fI1; :::; I`g be any partition of K , jIjj � 2 and
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m = n + ` < 2n � 1 . Let vj :=
P

i2Ij �iei for j � ` be any vector where
�i 6= 0 . The sets

Sj := Ij [
n
vj

o
(j � `)

are all simplexes by PhD 1.15.S., and so the set

H� =
�
e1; :::; en

	
[
�
v1; :::; v`

	
contains ` many simplexes and jH�j = n+ ` = m . �

Thesis III

i) The general sharp upper bound for the number of simplexes contained
in sets H � Rn of given size (jHj = m) was found: simp(H) �

�
m
n+1

�
,

assuming H spans Rn. Moreover, the unique structure of the extremal sets
H is also described (PhD 4.5.T., [1995]).
ii)General sharp lower bound was found: b�

�
a+1
2

�
+(n�b)�

�
a
2

�
� simp(H)

wherem = a�n+b , 0 � b < n . We proved, that the structure of the extremal
sets for m � 2n is unique (PhD 4.7.T., [1995]). �

The minimum without parallel vectors

As we have seen, the lower bound is achieved only whenH contains of parallel
vectors only. What about other sets, satisfying the following condition:

Condition 37 (PhD 4.16.F.) H � Rn does not contain parallel elements
(esp. 0 =2 H). �

Reducing the dimension

Substituting the elements of H with the set of their scalar multipliers and
intersecting these sets with a suitable hyperplane of Rn we can transform our
problem to Rn�1 :

De�nition 38 (PhD 4.18.D.) For any h 2 Rn and H � Rn we let

�h := f� � h : � 2 R; � 6= 0g , �H := f�h : h 2 Hg ,

and for any n � 1 -dimensional hyperplane P � Rn, not parallel to any
element of H we let HP := �H \ P . �

We identify P to Rn�1. For any simplex S � Rn we know that SP � Rn�1 is
an a¢ ne simplex (see PhD 1.10.D. and 1.11.D.).



12

Proposition 39 (PhD 4.19.Á.) There is a bijection between HP and H,
similarly between the a¢ ne simplexes of HP and the linear algebraic sim-
plexes of H , implying��HP�� = jHj and simpa

�
HP� = simp` (H) (16)

where simpa
�
HP� denotes the number of a¢ ne simplexes in H . �

(See subsection 4.3.1.) The cases n = 3 and n = 4 are visible:

De�nition 40 (PhD 1.11.D) (i) A set of points S � R2 is an a¢ ne
B 3 -element simplex i¤ S is three colinear points,
B 4 -element simplex i¤ S is any four points but none three of them are
colinear,
B there are no other a¢ ne simplexes in R2.

Example 41 (ii) A set of points S � R3 is an a¢ ne
B 3 -element simplex i¤ S is three colinear points,
B 4 -element simplex i¤ S is any four coplanar points but none three of
them are colinear,
B 5 -element simplex i¤ S is any �ve points but none four are coplanar
(and thus none three of them are colinear),
B there are no other a¢ ne simplexes in R3. �

The number of simplexes in R3

Theorem 42 (PhD 4.20.T.,[1998]) For any H � R3 of �xed size not equal
to 3, 4 or 7, such that H spans R3 and no parallel vectors are allowed in H ,
simp(H) is minimal if and only if H is contained in two intersecting planes
(their intersection vector belongs to H), one of which is of size 3. In other
words: precisely when H contains 3 linearly independent vectors fu1; u2; u3g,
another vector v colinear with u1 and u2 and the rest H n fu1; u2; u3; vg col-
inear with u2 and u3 . �

Equivalently, talking about points on the plane:

Theorem 43 (PhD 4.20.T.) For any H � R2 of �xed size not equal to 3,
4 or 7, such that H is not contained in a line, simpa(H) is minimal exactly
when H is contained in two intersecting lines and one of this lines contains
exactly three elements of H . �
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Corollary 44 (PhD 4.22.K.) If H � R3, H spans R3, jHj = m � 8 and
no parallel vectors are allowed in H, then we have the sharp bounds�

m� 2
3

�
+ 1 +

�
m� 3
2

�
� simp(H) �

�
m

4

�
. �

See Subsection 4.3.2 for jHj < 8 .

The number of simplexes in R4

Theorem 45 (PhD 4.23.T., [2011]) Assuming H � R4, no parallel vec-
tors are in H but H spans R4 and H has given size at least 24, simp` (H) is
minimal exactly when H is contained in two disjoint 2-dimensional planes,
and the di¤erence of the numbers of vectors of H contained in these planes
is at most 1. �

Equivalently:

Theorem 46 (PhD 4.24.T.) For any H � R3 of �xed size jHj = m � 24,
such that H is not contained in a plane, simpa(H) is minimal exactly when
H is contained in two skew (detour) lines and these lines contain bm=2c and
dm=2e many points of H . �

Corollary 47 (PhD 4.25.K.) Assuming H � R4, no parallel vectors are
in H, H spans R4 and jHj = m � 24, we have the sharp bound�

bm=2c
3

�
+

�
dm=2e
3

�
� simp (H) . �

We plan to check the cases 4 � jHj � 23 by a computer.

Further problems and conjectures

Problem 7 for n � 5 is unsolved. We have the following conjecture:

Conjecture 48 (PhD 4.27.S.,[1998]) In the case of H � Rn, H spans
Rn and no parallel vectors are allowed in H ,the minimum for simp (H) is
attained precisely for the following con�gurations:
(i) if n is even, then H contains n linearly independent vectors fui : i =
1; : : : ; ng and the remaining divided as evenly as possible between the planes
f[ui; ui+1]; i = 1; 3; : : : ; n� 1g ,
(ii) if n is odd, then H again contains n linearly independent vectors fui : i =
1; : : : ; ng, one special vector in the plane [un�1; un] and �nally the remain-
ing vectors divided as evenly as possible between the planes f[ui; ui+1]; i =
1; 3; : : : ; n� 2g with lower indices having precedence. �



14

The following strenghtening of Problem 7 is also interesting in the practice:
consider only the (complicated) reactions involving at least k many species:

Problem 49 (PhD 4.28.P.) version a) For any n;m; k 2 N and H �
Rn, H spans Rn, jHj = m �nd the minimal value of simpk (H) = the number
of k-element simplexes, and what are the extremal sets,
version b) the same as a) but assuming that H does not contain simplexes
of size smaller than k . �

See also Conjectures 69 and 72 below. One modi�cation of our algorithm
(subsection 2.2) asks:

Problem 50 (PhD 4.29.P.) For any given V := fv1; : : : ; vtg � Rn and
m 2 N calculate (minimum and maximum) simpV (H), the number of sim-
plexes S � H satisfying S \ V 6= ; , for H � Rn, jHj = m and H spans Rn.
What are the extremal sets H ? �

Thesis IV

i) Assuming that H does not contain paralel elements, we reduced �rst
the dimension of the elements in H (Subsection 4.3.1).
ii) In the case H � R3, jHj � 8 and H does not contain paralel elements

we gave the sharp lower bound for simp(H) and we also determined the
unique structure of the extremal sets H � R3 which span R3 (PhD 4.20.T.,
[1998]).
iii) In the case H � R4 and H does not contain paralel elements we gave

the sharp lower bound for simp(H) for jHj � 24 , and we also determined the
unique structure of the extreme sets H � R4 of full dimension (PhD 4.23.T,
[2011]). �

5. Matroids and hypergraphs

Problems 8 and 9 are dealt here.

Notation 51 m denotes the size and n the rank of the matroid M =
(X;F), 0 < n < m. �

The maximum in matroids

Using Construction 1 we can prove:
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Theorem 52 (PhD 5.4.T.) In the case m = n + 1 any matroid contains
exactly one circle. When m > n+1, only the uniform matroid Um;n contains
the most circles,

�
n+1
m

�
many. �

Theorem 53 (PhD 5.7.T.) Only Um;n contains maximum number bases:�
m
n

�
many. �

The minimum in matroids

Theorem 54 (PhD 5.8.T.) When allowing loops, for any m;n 2 N there
is a unique matroidM(m;n)

o containing only one base. �

Theorem 55 (PhD 5.9.T.) Any matroidM contains at least n�m many
circles. M has only n �m many circles if and only if all circles of M are
disjoint. �

Remark 56 (PhD 5.10.T.) The circles of M(m;n)
o (de�ned in 54.) are

disjoint, too. �

We use Construction 2 when loops are not allowed.

Theorem 57 (PhD 5.13.T.) Let fa1; a2; : : : ; ang be a �xed base of M
where M contains neither loops nor large circuits. Denote #i the number
of elements parallel to ai (including also ai). Then M contains minimal
number of circles exactly when j#i � #jj � 1 for all i 6= j . �

Corollary 58 (PhD 5.14.K.) Any matroid without loops contains at least
b �
�
a+1
2

�
+ (n� b) �

�
a
2

�
many circuits (m = an+ b , 0 � b < n). �

The structure of the extremal matroids is unique for m � 2n .

Theorem 59 (PhD 5.15.T.) Loopless matroids contain minimum number
of circles if and only if
a) in case m < 2n the circles are pairwise disjoint,
b) in case m � 2n there are 2-element circuits (parallel elements) only and
these parallel-classes di¤er in size by at most 1 . �

Theorem 60 (PhD 5.21.T.) Loopless matroids contain minimum num-
ber of bases if and only if it has a base fa1; a2; : : : ; ang such that all other
elements are parallel to a1 . �

Corollary 61 (PhD 5.23.K.) Loopless matroids contain al least m�n+1
many bases, the extremal structure is unique. �

Subsection 5.5 contains several open questions on matroids.
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Hypergraphs

For hypergraphs �rst we have to de�ne the problem itself. In the dissertation
we present a simple version, a more general case is discussed in [2013a].

De�nition 62 (PhD 5.24.,5.25.D.) For any hypergraph H = (V; E), V 6=
; and k 2 N we de�ne
(i) Ek := fE 2 E : jEj = kg ,
(ii) any k-element subset of V is k-vertex,
(iii) S � V is in general position if

S " E for all E 2 E , (17)

(iv) S is k-pyramid if it is a k-vertex in general position,
(v) 4-vertices are quads, 4-pyramids are tetrahedrons,
(vi) S � V is a 4-element simplex if it is a quad but not a tetrahedron:

S j E for some E 2 E , (18)

S4 is the set of the 4-element simplexes,
(vii) T � V is a 5-element simplex if it is a 5-vertex but no its subset is a
4-element simplex:

F " T for all F 2 S4 , (19)

or in other words: jT \ Ej � 3 for E 2 E , S4 is the set of the 5-element
simplexes. �

Condition 63 (PhD 5.27.,5.29.F.) i) E` = ; for ` � 3 ,
ii) for any E1; E2 2 E , E1 6= E2

jE1 \ E2j � 2 . � (20)

Problem 64 (PhD 5.28.P.) If jV j = m , what is the minimal value of

s (m) := jS4j+ jS5j ? � (21)

Theorem 65 (PhD 5.30.T.) Under Condition 63 and m � 58 we have a
constant C1 � 17 such that

s (m) �
�
m

4

�
� 1
6
C1m

3 �O
�
m2
�
. � (22)
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Further questions in matroids and hypergraphs

Problem 66 (PhD 5.33.P.) Determine the minimal number of bases and
circuits in matroids having neither loops nor parallel elements, and �nd the
structures of the extremal ones.

De�nition 67 (PhD 5.34.D.) The girth of a matroid is the length of his
shortest circle. �
Problem 68 (PhD 5.35.P.) Determine the minimal number of bases and
circuits in matroids having girth at least k . �
Conjecture 69 (Oxley [O97], PhD 5.36.S.) The uniform matroid Um�3;k
has minimal number of circles if the girth is required to be at least k :

1 + 3 �
�
m� 3
k � 1

�
+ 3 �

�
m� 3
k � 2

�
+

�
m� 3
k � 3

�
� simp(M) . � (23)

The generalization of Theorem 65 could be Problem 71 below.

De�nition 70 (PhD 5.37.D.) The edge E 2 Ek+1 is a semi-simplex if
E # F for F 2 Ek (k 2 N). The set of the k + 1-element semi-simplexes is

Eok+1 . � (24)

Problem 71 (PhD 5.38.P.) For any m; k 2 N and m = jV j �nd the
mininal value of

sk (m) := jEkj+
��Eok+1�� . (25)

Conjecture 72 (PhD 5.39.S.) Assuming (20) and k 2 N

sk (m) �
�
m

k

�
�O

�
mk�1� . � (26)

Further results will appear in [2013a].

Thesis V

Sharp upper bound was given for the number of circles and bases in
matroids of given size and rank, moreover the structure of the extremal
matroids was described (PhD 5.4.T. and 5.7.T.).
Sharp lower bound was given for the number of circles and bases in the

case loops are allowed in matroids, the structure of the extremal matroids
was described, too (PhD 5.8.T. and 5.9.T.).
Sharp lower bound was given for the number of circles and bases in the

case paralel elements are allowed but no loops (PhD 5.13.T., 5.15.T., 5.21.T.).
A similar general question was formulated and solved for hypergraphs

(PhD 5.24.T., 5.25.T. and 5.30.T.). �
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6. Hierarchy and valuating operator

Problems 10 and 11 follow. The mathematical de�nitions and theorems
presented here are very simple but they have interesting meaning in chemistry
([2000b]).

Hierarchy

Species are linear combinations of atoms, reactions are linear combinations of
species, go on to mechanisms, the inputs of the higher levels are exactly the
outputs of the lower ones. Isomer molecules make the de�nition somewhat
more complicated. Further details are planned to publish in [2013b].

De�nition 73 (PhD 6.3.D.) Let the sets Ax =
�
Ax1 ; :::; A

x
dx

	
be arbi-

trary for x 2 N and consider the set of (formal) linear combinations Lx :=nPdx
j=1 �j � Axj : �j 2 Z

o
and the free modulus

Lx := (Lx;+; �) . (27)

Any functions ��
x : Ax ! Lx (x 2 N n f0g) can be extended uniquely to

homomorphisms
�x : Lx ! Lx�1 , (28)

we require further for 1 < x

�x�1 ��x = O . (29)

Lx is the x-th stoichiometric level and �x are the the connetctions,
(29) is called the generalized law of mass balance. �

The evaluating operator

De�nition 74 (PhD 6.5.D.) (i) We call the elements of an arbitrary set
fC1; : : : ; Cng components, the linear combination S =

Pn
i=1 si �Ci (si 2 R)

are (chemical) structures, the sets V := f
Pn

i=1 si � Ci : si 2 Rg are sets of
massess.
(ii) Any linear functional L : V ! R is called evaluating operator. �

Theorem 75 (PhD 6.6.T.) All the evaluating operators on V have the
form

L(S) =
nX
i=1

ai � si (30)
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where the coe¢ cient vector a = [a1; : : : ; an]T 2 Rn is uniquely determined by
L : ai = L (Ci). �

Immediately we get the proof of Hess�theorem:

Theorem 76 (PhD 6.7.T.,Hess� law) If the reactions X1; : : : ; Xk result
the zero mechanism O then the sum of the heats H(X1); :::;H(Xk) is 0. �

The fact V � �= V implies

Theorem 77 (PhD 6.8.T.) If V is built up from n components, then there
are at most n linearly independent evaluating operators L1; :::;Ln , so all each
other evaluating operator L can be expressed as L = �1L1 + :::+ �nLn . �

Using Cauchy-Bunyakowsky-Schwarz�s inequality:

Theorem 78 (PhD 6.9.T.) For any V and L : V ! R there is a constant
c 2 R+ such that

j L (S) j� c � kSk for S 2 V , (31)

where kSk =
p
s21 + : : :+ s

2
n , c =

p
a21 + : : :+ a

2
n , si and ai are de�ned in

De�nitions 73 and 75. �

Theorem 79 (PhD 6.10.T.) If V1 and V2 are generated by C = fC1; : : : ; Cng
and D = fD1; : : : ; Dmg resp�C \ D = ; and V = V1� V2 , then V has eval-
uating operators

L = L jV1 �L jV2 (32)

only: L (S) =
Pn

i=1 aisi +
Pm

j=1 bjtj for S =
Pn

i=1 siCi +
Pm

j=1 tjDj . �

Theorem 80 (PhD 6.11.T.) For any two scalar products A;B : V �V !
R there is an continuous automorphism I : V ! V such that A(u; v) =
B(I(u); I(v)) (u; v 2 V ). �

Roughly speaking this means, that all the evaluating operators of a mass-set
di¤er from a scalar multiplier only.

Thesis VI

i)A general de�nition of stoichiometric hierarchy was given (PhD 6.3.D.)
ii) The general notion of valuation operator was stated. We used this

notion to give chemical meanings for several (wellknown) theorems in linear
algebra, so we obtained both short mathematical proof for Hess�law and also
formulated new Statements in chemistry (PhD 6.5.D., 6.6.T.-6.11.T.). �
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7. Examples

"Amundson" ([A66], [P90])

We are given the species:
CO;CO2; O2; H2; CH2O;CH3OH;C2H5OH; (CH3)2CO;CH4; CH3CHO;H2O
The 213 simplexes were found in 0:22 seconds. The output starts as :
�2CO + 2CO2 �O2 = 0 ,
3CO � CO2 + 3H2 � C2H5OH = 0 ,
5CO � 2CO2 + 3H2 � C2H6CO = 0 ,
2CO � CO2 + 2H2 � CH4 = 0 ,
3CO � CO2 + 2H2 � CH3CHO = 0 ,
�1CO + CO2 +H2 �H2O = 0 , ... .

"Methane" ([B99], [HS83])

Synthetizing methane from carbonmonoxide and water. We have to build
the overall reaction SR from S1 � S15 (` is the catalisator)
SR: 2H2+2CO! CH4+CO2 ,
S1 : CO`+ ` = C`+O` ,
S2 : C`+H` = CH`+ ` ,
S3 : CH`+H` = CH2`+ ` ,
S4 : CH2`+H` = CH3`+ ` ,
S5 : CH3`+H` = CH4 + 2` ,
S6 : OH`+H` = H2O + 2` ,
S7 : CO2 + ` = CO2` ,
S8 : CO + ` = CO` ,
S9 : H2 + 2` = 2H` ,
S10 : CO2`+H` = CHOO`+ ` ,
S11 : CHOO`+H` = CHO`+OH` ,
S12 : O`+H` = OH`+ ` ,
S13 : CO`+O` = CO2`+ ` ,
S14 : CHOO`+ ` = OH`+ CO` ,
S15 : CO`+H` = CHO`+ ` .

The minimal mechanisms (output), the latest three are cycles only:
1) S1 + S2 + S3 + S4 + S5 � S7 + 2S8 + 2S9 � S10 � S11 + S12 + S15 = SR
2) S1 + S2 + S3 + S4 + S5 � S7 + 2S8 + 2S9 � S10 + S12 � S14 = SR
3) S1 + S2 + S3 + S4 + S5 � S7 + 2S8 + 2S9 + S13 = SR
4) S10 + S11 � S12 + S13 � S15 = 0
5) S10 � S12 + S13 + S14 = 0
6) S11 � S14 � S15 = 0
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