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a b s t r a c t

In this paper we formulate and solve extremal problems in the Euclidean space Rd and
further in hypergraphs, originating from problems in stoichiometry and elementary linear
algebra. The notion of affine simplex is the bridge between the original problems and the
presented extremal theoremon set systems. As a sample corollary, it follows that if no triple
is collinear in a set S of n points in R3, then S contains at least

 n
4


− cn3 affine simplices for

some constant c . A function related to Sperner’s Theorem and its well-known extension
to reciprocal sums is also considered and its relation to Turán’s hypergraph problems is
discussed.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The roots of the present study date back to the mid-1980s, to the paper by S. Kumar and Á. Pethő [7], concerning an
application of linear algebra in stoichiometry. From the algebraic point of view, their very natural question asks about the
number of those subsets of a set of vectors which are linearly dependent but each of whose proper subsets is independent.
Here we give an asymptotically tight solution for theminimum in terms of dimension and the number of vectors when low-
dimensional dependencies are excluded. Our method is to prove a more general result in extremal set theory (Theorem 6
below), hence without assuming anything about the structure of algebraic dependencies.

1.1. Motivation in chemistry

Restricting attention to a ‘‘universe’’ of D kinds of atoms (or atomic parts), each molecule (species) can be represented
with a vector inRD whose ith coordinatemeans the number of atoms of ith type in themolecule in question.1 Then a chemical
reaction naturally corresponds to a zero-sum linear combination of these vectors (using the law of mass balance).

The reaction is called minimal if none of the molecules, taking role in it, can be omitted so that the remaining ones
could form still a(nother) reaction. In the language of linear algebra this assumption is equivalent to the property that the
corresponding set of vectors is linearly dependent but each proper subset of it is independent, that is the defining condition
of linear algebraic simplex. Both from practical and theoretical purposes the following problem was raised:
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1 The types of atoms are supposed to be in a fixed order. E.g., if D = 3 and the universe is [C, H, O], then we have the vector (0, 2, 1) for H2O and (2, 4, 2)
for CH3COOH.
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Problem 1. What is the minimum and maximum number of linear algebraic simplices S j V in a set V of vectors in RD if
only the size |V| is given and V spans RD? What are the structures of sets V which contain extremal number of simplices?

The answer was given in [8]. Moreover, Problem 1 was generalized for matroids in [4]; actually its authors solved it a
decade earlier than published, see [3].

Concerning theminimum, the results in [8] show that almost all vectorsmust be parallel, i.e. almost allmolecules (species)
are isomer molecules or multiple doses. The problem where parallel vectors are excluded is still unsolved in general:

Problem 2. What is theminimumnumber of linear algebraic simplices S j V if only the size |V| is given,V does not contain
parallel vectors and V spans RD? What are the structures of sets V which contain the minimum number of simplices?

A conjecture on both the minimum number and the structure attaining it is stated in [9]. The cases D = 3 and D = 4
were solved in [9,17], respectively.

1.2. Geometric formulation

In the framework of linear algebra the problem is somewhat non-symmetric because the zero vector plays a special role.
This asymmetry can be eliminated if we translate the problem to the language of geometry. Moreover, restricting attention
to sets V ⊂ RD containing neither the zero vector nor a pair of parallel vectors, the dimension can be reduced from D to
d = D − 1: first associate each element v ∈ V with its direction λ · v (λ ∈ R), and then intersect this system ΛV with a
(D − 1)-dimensional hyperplane P which does not contain the origin and is not parallel to any element of V .

Themapping fromV to the setVP
:= ΛV ∩P is a bijection under which linear algebraic simplices S ⊂ V correspond to

affine simplices SP
⊂ RD−1, where a set S of k ≥ 3 points in the Euclidean d-space is called an affine simplex if S is contained

in some (k− 2)-dimensional hyperplane but no proper subset S ′ $ S is contained in a hyperplane of dimension |S ′
| − 2. For

instance, in R3 the following three types of affine simplices occur:
• three collinear points;
• four coplanar points, no three of which are collinear;
• five points, no four of which are coplanar.

Affine simplices can alternatively be defined by requiring that the vectors s2−s1, s3−s1, . . . , sk−s1 be linearly dependent
but their proper subsets should not (for every choice of a point to be labeled s1).

In cases of low dimension, as solved in [9,17], almost all points of the extremal configurations for Problem 2 attaining
the minimum number of affine simplices lie on one or two lines, i.e. mostly contain affine simplices of three points. In this
way the natural question arises to determine the minimum in the other extreme, where no three points are collinear. For
this reason our goal is to study point sets which contain no affine simplices smaller than a given size. The first interesting
case is R3.

Let S ⊂ Rd be a set of n points, no d of which lie on a (d − 2)-dimensional hyperplane. Then two kinds of subsets of S
form an affine simplex:
• d + 1 points on a hyperplane of dimension d − 1, or
• d + 2 points, no d + 1 of which lie on a common hyperplane of dimension d − 1.

Theorem 3. For every d ≥ 3 there is a constant c = c(d) with the following property. If S ⊂ Rd is a set of n points, no d of them
lying on a hyperplane of dimension d − 2, then S determines at least

 n
d+1


− cnd affine simplices.

Corollary 4. For any n points in the 3-space, no three being collinear, the number of coplanar quadruples plus the 5-tuples
containing no coplanar quadruples is at least

 n
4


− O(n3) as n → ∞.

These results are asymptotically tight, as shown by the obvious example of n coplanar points in R3 (no three of them
being on a line) and also for any d ≥ 3 by n points of Rd−1 in general position when embedded isometrically into Rd. Such
a set of points has exactly

 n
d+1


affine simplices. In fact, configurations with even fewer affine simplices exist, which in

addition span the d-space. For instance, n−1 points of Rd−1 in general position embedded in a hyperplane of Rd plus an nth
point outside that hyperplane generate just


n−1
d+1


affine simplices (as no affine simplex contains the nth point).

In R3, the two arrangements of points just mentioned yield 1
24n

4
−

1
4n

3
+ O(n2) and 1

24n
4
−

5
12n

3
+ O(n2), respectively.

Currently we do not knowwhether or not the latter error term 5
12n

3 is asymptotically tight. We do know, however, that the
construction above is not extremal; an improvement of the order O(n2) will be proved in Proposition 7.

1.3. Combinatorial formulation

Here we put the problems and results above in a more general setting. Let H = (X, E) be a hypergraph, where X is
the finite vertex set and E is the edge set consisting of subsets of X . We extend the notion of linear hypergraph (also called
‘‘simple’’ or ‘‘almost disjoint’’ in some parts of the literature) as follows.
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Definition 5. We say that a hypergraph H = (X, E) is q-linear (for some integer q ≥ 1) if |E ∩ E ′
| < q holds for all

E, E ′
∈ E, E ≠ E ′.

Hence, in a 1-linear hypergraph any two edges are disjoint, and 2-linear coincides with linear hypergraphs in the usual
sense, in analogy with Euclidean spaces where any two points uniquely determine a line.

We also introduce some notation. As usual,


S
k


will stand for the collection of all k-element subsets of set S. For any

hypergraph H = (X, E), let

• Ek :=


E∈E


E
k


—usually (X, Ek) is called the k-section hypergraph of H ;

• E0
k+1 := {F ∈


X

k+1


|


F
k


∩ Ek = ∅}.

Corresponding to k = d + 1, in analogy with the geometric interpretation, we call the members of Ek ∪ E0
k+1 the (k − 1)-

dimensional semi-simplices2 in H .

Theorem 6. For every k ≥ 3 there is a constant c = c(k) such that

|Ek| + |E0
k+1| ≥

n
k


− cnk−1

holds for all (k − 1)-linear hypergraphs H = (X, E) on n vertices.

This result implies Theorem 3, by considering the hypergraph whose edges are the sets of points lying on a common
hyperplane of dimension d − 1.

1.4. Sperner families and Turán numbers

For any hypergraph H = (X, E) (not necessarily q-linear for a prescribed value of q) and for any k, the set system
Sk(H) := Ek ∪ E0

k+1 is a Sperner family, which means that none of its members contains any other.
The well known YBLM inequality3 states that

S∈S


n
|S|

−1

≤ 1 (1)

holds for every Sperner family S (where n is the number of vertices). In particular, (1) is valid for the family S = Sk(H) of
any H , too. In connection with the main problem studied here, one may also consider the values

s(n, k) := min
H is (k−1)-linear, |X |=n


S∈Sk(H)


n
|S|

−1

and analogously, without assuming (k − 1)-linearity,

s′(n, k) := min
H=(X,E), |X |=n


S∈Sk(H)


n
|S|

−1

.

Since there exist only finitelymany hypergraphs on any given number n of vertices, both s(n, k) and s′(n, k) arewell-defined
and are at most 1 by the YBLM inequality, for all n and k. In Theorem 8 we prove that for every fixed k, the values of s(n, k)
and s′(n, k) tend to constants larger than 0 and smaller than 1 as n gets large. We also consider their relation to the Turán
problem on graphs and uniform hypergraphs.

2. Proof of the general lower bound

Here we prove Theorem 6. By the free choice of c = c(k), we may restrict ourselves to n sufficiently large, say n > k3.
Moreover, due to the nature of the problem, we may also assume without loss of generality that |E| ≥ k holds for all E ∈ E .
Let H ∈


X
k


be any k-tuple. If it is contained in some E ∈ E , then H is counted in Ek precisely once. Wewill prove that, with

2 The definition of affine simplices requires that no subset of a simplex can be another simplex (see e.g. [17, Definition 10]), whereas for the members of
Ek ∪ E0

k+1 we require non-containment only for subsets smaller by one element.
3 For several decades, it was called LYM inequality, stated and proved in exactly that form independently by Yamamoto [20], Meshalkin [11] and

Lubell [10] (in this order of chronology). Bollobás [1] proved a more general result, however, from which the inequality follows immediately. Inequalities
of this kind have lots of applications in extremal problems in various areas of mathematics; cf. the two-part survey [18,19]. The current acronym
YBLM coincides (apart from punctuation) with the abbreviated name of famous Hungarian architect Miklós Ybl (1814–1891) [21].
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possibly few exceptions, also the other k-tuples H generate at least one member of E0
k+1 on the average. More explicitly, it

will turn out that most of those sets H can be completed to a member of E0
k+1 in more than k different ways.

From now on we assume that H ∈


X
k


\ Ek. Let x ∈ H be any vertex. If the subset H \ {x} is contained in an edge of

H , we denote that edge by Ex; and otherwise we define Ex := H \ {x}. A more precise and unambiguous notation would be
Ex(H), but for simplicity we write Ex as long as just one H is considered. Note that Ex is unique for each x ∈ H (once H is
understood), since H is (k − 1)-linear. It also follows for any two distinct x, x′

∈ H that Ex and Ex′ share no vertex outside
H . We set

H∗
:=


x∈H

Ex.

Then we have the implication

H ∈


X
k


\ Ek ∧ z ∈ X \ H∗

H⇒ H ∪ {z} ∈ E0
k+1 (2)

because |(H ∪ {z}) ∩ E ′
| = k for an E ′

∈ E with z ∈ E ′ would imply Ex = E ′ for some x ∈ H , thus z ∈ H∗ would hold.
We say that the k-tuple H is a near-cover of H if |H∗

| ≥ |X |− k. The proof now splits into two situations, whether H has,
or does not have, a near-cover.

Suppose first that noH ∈


X
k


\Ek is a near-cover ofH . Then by (2) we obtain that eachH can be extended to amember F

of E0
k+1 in at least k+1 differentways. On the other hand, each F ∈ E0

k+1 can be obtained from exactly k+1 setsH ∈


X
k


\Ek,

namely from its k-element subsets. Thus, in this case we haveE0
k+1

 ≥

X
k


\ Ek


and the inequality stated in the theorem holds even without the error term O(nk−1).

Suppose now that some H ∈


X
k


\ Ek is a near-cover of H . Then the cardinality of the set

X ′∗
\ H

is at least n − 2k, and X ′ is partitioned into sets of type E ′
x := Ex \ H (x ∈ H). Say, X ′

= E ′
x1 ∪ · · · ∪ E ′

xℓ where ℓ ≤ k.
A case that can directly be settled is when some ℓ − 1 sets from {E ′

x1 , . . . , E
′
xℓ} cover together at most k3 − 4k2 + 5k

vertices. There are at most 2k vertices outside X ′, hence some E ′
xi contains at least n − k3 + 4k2 − 7k elements. Then we

obtain that |Ek| ≥


n−k3+4k2−7k

k


=

 n
k


− O(nk−1) is valid.4 Therefore, we may suppose for the rest of the proof that the

union of any ℓ − 1 sets from {E ′
x1 , . . . , E

′
xℓ} has cardinality greater than k3 − 4k2 + 5k.

Consider any H ′
∈


X ′

k


\ (Ek ∪ {H}). A coincidence Ey0(H

′) = E ′
xi can happen with only one vertex y0 ∈ H and only one

index i (1 ≤ i ≤ ℓ), namely when |H ′
∩ E ′

xi | = k − 1. If this situation occurs, assume that Ey0(H
′) = E ′

x1 . Then, since H is
(k − 1)-linear, for any y ∈ H ′

\ {y0} and for any i′ ≠ i with i′ > 1 we have |Ey(H ′) ∩ E ′
xi′

| ≤ k − 2, and so Ey(H ′) meets
E ′
x2 ∪ · · · ∪ E ′

xℓ in at most (ℓ − 1)(k − 2) ≤ (k − 1)(k − 2) vertices, one of which is y0. Therefore the k − 1 choices of y ≠ y0
cover at most (k3 − 3k2 + k) − (k2 − 3k + 1) + 1 = k3 − 4k2 + 4k vertices of E ′

x2 ∪ · · · ∪ E ′
xℓ . Hence, the inequalityE ′

x2 ∪ · · · ∪ E ′

xℓ


\


y∈H ′

Ey(H ′)

 ≥ k + 1

follows by |X ′
| ≥ n − 2k and by the assumed lower bound on |E ′

x2 ∪ · · · ∪ E ′
xℓ |. Thus, in this case, H ′ can be completed to a

member of E0
k+1 in at least k+1 different ways. The situation is even better if we have |Ey(H ′)∩E ′

xi | ≤ k−2 for all 1 ≤ i ≤ ℓ.
Then summing over all y ∈ H ′ and all 1 ≤ i ≤ ℓ, we obtain the upper bound

|(H ′∗
\ H ′∗

\ H)| ≤ k2(k − 2),
so that there are at least |X ′

\ H ′∗
| ≥ n − (k3 − 2k2 + 3k) ≥ k + 1 ways to extend H ′ to a member of E0

k+1 whenever n > k3
(and k ≥ 2). Consequently,E0

k+1

 ≥

X ′

k


\ Ek


holds, and therefore |Ek| + |E0

k+1| ≥
 n
k


− O(nk−1) is valid as n gets large, because |X ′

| ≥ n − 2k. �

4 We may actually write the somewhat larger value


n−k3+4k2−7k+k−1
k


, by considering Exi instead of E ′

xi ; but this is irrelevant concerning the current
proof.



I. Szalkai, Z. Tuza / Discrete Applied Mathematics 180 (2015) 141–149 145

3. Geometric upper bound

As we mentioned in the introduction, n points in Rd may generate as few as


n−1
d+1


affine simplices, each of which has

more than d points. Focusing on the case r = 3, here we show that the number of affine simplices can be even smaller in R3.

Proposition 7. There is an arrangement of n points in R3 which determines the following number of affine simplices:

•


n−1
4


−

(n−2)(n−5)
2 if n is even,

•


n−1
4


−

(n−3)(n−5)
2 if n is odd;

that is, 1
24n

4
−

5
12n

3
+ O(n2).

Proof. First, let n be even. Take n − 2 points x1, . . . , xn−2 on a plane P ⊂ R3, such that no three of them are collinear,
moreover all the n/2 − 1 lines x2i−1x2i are parallel for i = 1, 2, . . . , n/2 − 1. Let xn−1 and xn be two points outside P , such
that the line xn−1xn is parallel to x1x2 (and hence to the other pairs as well). We have the following types of affine simplices:
• quadruples of points in P;
• quadruples of the form {x2i−1, x2i, xn−1, xn} (i = 1, 2, . . . , n/2 − 1);
• quintuples of the form {xa, xb, xc, xn−1, xn} (1 ≤ a < b < c ≤ n − 2), where {2i − 1, 2i} ⊄ {a, b, c} for any i.

The number of sets of those three types is


n−2
4


, 1

2 (n − 2), and 1
6 (n − 2)(n − 4)(n − 6), respectively.

If n is odd,we take (n−3)/2 pairs of points inside P which determine lines x2i−1x2i parallel to xn−1xn, plus one point xn−2 of
P which is not collinear with any two of x1, . . . , xn−3. Then we have


n−2
4


affine simplices inside P , further 1

2 (n−3) ones of

the form {x2i−1, x2i, xn−1, xn},moreover 1
6 (n−3)(n−5)(n−7) of the form {xa, xb, xc, xn−1, xn} (1 ≤ a < b < c ≤ n−3)where

{2i−1, 2i} ⊄ {a, b, c}, and finally 1
2 (n−3)(n−5) of the form {xa, xb, xn−2, xn−1, xn} not containing any pair {x2i−1, x2i}. �

4. The YBLM inequality

Recall from Section 1.4 that s(n, k) and s′(n, k) are defined as the minimum of the sum


S∈Sk(H)


n
|S|

−1
where H runs

over all hypergraphs of order n – with or without assuming (k − 1)-linearity – and Sk(H) = Ek ∪ E0
k+1. Here we study the

asymptotic behavior of these two functions, and point out a relation to Turán numbers.

4.1. The limits of s(n, k) and s′(n, k)

Our goal in this subsection is to prove the following result.

Theorem 8. For every fixed k ≥ 2, the limits

sk := lim
n→∞

s(n, k) and s′k := lim
n→∞

s′(n, k)

exist and satisfy

0 < s′k ≤ sk < 1

with strict inequality at both ends. More explicitly, 1
k+1 ≤ s′k ≤ sk ≤ 1 −

k
2k
.

We state three assertions below which together will immediately imply the validity of the theorem as the middle
inequality holds by definition.

Lemma 9. For every fixed k, the sequences (s(n, k))∞n=k+1 and (s′(n, k))∞n=k+1 are non-decreasing.

Proof. For any hypergraph H = (X, E) on n vertices, let us introduce the notation mk := |Ek| and mk+1 := |E0
k+1|. The

inequality

mk n
k

 +
mk+1 n
k+1

 ≥ b (3)

is equivalent to

mk+1 ≥ b ·


n

k + 1


−

n − k
k + 1

mk (4)

for any b > 0. We are going to prove that if the analogue of (4) is valid for every hypergraph on n − 1 vertices, then it is
valid for H as well. In what follows, assume that it is valid for n − 1.
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Let x ∈ X be any vertex. We derive the hypergraph H−x from H by removing x from all edges and deleting the edges
which become smaller than k after cutting out x. Note that H−x is q-linear whenever H is (no matter what q we choose),
although the inverse implication is not valid in general.

Let us denote by mx
k and mx

k+1 the values corresponding to mk and mk+1 in H−x, and by Ek[−x] and E0
k+1[−x] the

corresponding families of sets, respectively. We then have

mx
k+1 ≥ b ·


n − 1
k + 1


−

n − k − 1
k + 1

mx
k (4x)

by assumption.
A k-element set F occurs in Ek[−x] if and only if it is contained in some edge of H−x; and this happens precisely when

x ∉ F and some E ∈ E contains F as a subset. Thus, each F ∈ Ek gives rise to a member of Ek[−x] for exactly n − k choices of
x, and no more sets occur in


x∈X Ek[−x]. Similarly, each F ∈ E0

k+1 yields a member of E0
k+1[−x] for exactly n − k − 1 choices

of x, and these are all the sets in


x∈X E0
k+1[−x]. As a consequence, the equalities

x∈X

mx
k = (n − k) · mk and


x∈X

mx
k+1 = (n − k − 1) · mk+1 (5)

hold. Thus, summing up (4x) for all x ∈ X we obtain

(n − k − 1) · mk+1 ≥ bn ·


n − 1
k + 1


−

n − k − 1
k + 1

(n − k) · mk

which is equivalent to (4). This completes the proof.
As one of our referees remarked, an alternative way of performing the inductive calculation is to view mk/

 n
k


as the

probability that a randomly chosen k-tuple is contained in some edge ofH . It is left to the reader to verify that the equations
in (5) imply (3) from n − 1 to n. We thank the referee for the useful conceptual comment. �

Lemma 10. For every fixed k, we have s(k + 1, k) = s′(k + 1, k) =
1

k+1 .

Proof. Theminimum for both s(k+1, k) and s′(k+1, k) is attained by the hypergraphwith k+1 vertices andwith precisely
one edge of cardinality k. �

Lemma 11. For every fixed k, we have sk ≤ 1 −
k
2k
.

Proof. To simplify notation, we consider 2n vertices instead of n. Consider the hypergraph whose edge set E consists of just
two disjoint sets of cardinality n each. It is linear, of course. Moreover, we clearly have

|Ek| = 2
n
k


and |E0

k+1| =


2n

k + 1


− 2


n

k + 1


− 2n

n
k


because a (k + 1)-tuple does not belong to E0

k+1 if and only if either it is contained in one of the two edges or it meets one
of the edges in precisely one vertex and the other edge in k vertices. Thus,

s(2n, k) ≤
2

 n
k


2n
k

 + 1 −
1
2n
k+1

 
2


n

k + 1


+ 2n

n
k



= 1 −
2
2n
k

 
k + 1
2n − k


n

n
k


+


n

k + 1


−

n
k



= 1 −

 n
k


2n
k

 · 2 ·


n(k + 1)
2n − k

+
n − k
2n − k

− 1


= 1 −

 n
k


2n
k

 ·
2nk

2n − k
.

The function in the last line clearly tends to 1 −
k
2k

as n → ∞, therefore sk cannot be larger. �

4.2. Turán numbers

For a fixed k-uniform hypergraph F , we use the standard notation ex(n, F ) for its Turán number; that means the
maximum number of edges in a k-uniform hypergraph of order nwhich does not contain any subhypergraph isomorphic to
F . Further, letK(k)

k+1 denote the hypergraphwith k+1 vertices and k+1 edges of k vertices each (i.e., the complete k-uniform
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hypergraph of order k + 1). If k = 2 then K
(2)
3 is just the triangle K3, the complete graph of order 3. In this very simple case

the equality ex(n, K3) =

n2/4


is well known to hold, but for larger k the determination of ex(n, K

(k)
k+1) is a famous open

problem in extremal hypergraph theory. Extensive surveys on Turán-type problems are, e.g., [6,15]. In particular, a recent
summary of results on ex(n, K

(k)
k+1) can be found in the second part of Section 9 in [6].

Remark 12. IfH = (X, E) is a k-uniform hypergraph of order n such that each (k+1)-tuple of vertices contains at least one
edge of H , then E0

k+1 = ∅. In particular, taking H as the complement of a hypergraph extremal for ex(n, K
(k)
k+1), we obtain:

s′(n, k) ≤ 1 −
ex(n, K

(k)
k+1) n

k

 .

As a consequence,

s′k ≤ 1 − lim
n→∞

ex(n, K
(k)
k+1) n

k


where the limit exists for every fixed k, as proved in [5]. Hence, any lower bound on the Turán density of K

(k)
k+1 implies an

upper bound on s′k.

Note that an analogous implication in the opposite direction does not work: upper bounds on ex(n, K
(k)
k+1) do not imply

lower bounds on s′(n, k), or at least no evidence is found so far whether any function of the Turán numbers would yield a
bound on s′(n, k) from below. On the other hand, applying the asymptotic result proved by Sidorenko [16], we obtain the
following inequality.

Corollary 13. As k gets large, we have s′k ≤ (1 + o(1)) log k
2k .

There are several further upper bounds which are more effective when k is small. For an overview of results of this kind
and for their bibliographical data we refer to the survey [6]. De Caen’s conjecture [2], stating that O(1/k) is not a valid upper

bound on 1 − limn→∞

ex(n,K(k)
k+1)

( n
k )

, gives some indication on the possible limitations of this approach.
It cannot be guaranteed in general that the hypergraphs derived from the extremal ones for the Turán problem lead to

constructions of (k − 1)-linear hypergraphs, hence they cannot automatically imply upper bounds on sk. But this can be
done if k = 2, and the following exact formula is valid.

Theorem 14. For every n ≥ 3 we have s(n, 2) = s′(n, 2) = 1 −


n2
4

  n
2


, and therefore s2 = s′2 = 1/2. A hypergraph

H = (X, E) is extremal for s′(n, 2) if and only if E2 is the complementary graph of the complete bipartite graph K⌊n/2⌋,⌈n/2⌉; and
for s(n, 2) the extremal hypergraph is unique up to isomorphism.
Proof. For an upper bound, let H = (X, E) consist of n vertices and two vertex-disjoint edges E1, E2 with |E1| = ⌊n/2⌋ and
|E2| = ⌈n/2⌉. Then |E2| =

 n
2


−


n2
4


and E0

3 = ∅. Since H is 1-linear, the upper bound follows for both s(n, 2) and s′(n, 2).
From the argument below, it will also turn out that this is the unique 1-linear hypergraph attaining equality.

To prove the lower bound, let H = (X, E) be any hypergraph. Note that E2 is just a graph; we denote its complement by
G = (X, E), i.e. an unordered vertex pair xixj belongs to the edge set E of G if and only if {xi, xj} ∉ E2. Then E0

3 is the family

of triangles (K3-subgraphs) in G. As long as G is triangle-free, we have |E2| ≥
 n
2


−


n2
4


and the lower bound follows for

H , with equality if and only if G ≃ K⌊n/2⌋,⌈n/2⌉. Assuming that |E2| is smaller, we have |E| > n2/4.
We write the number |E| of edges in G in the form m =

n2
4 + ℓ; hence ℓ ≥ 1 is an integer if n is even, and ℓ +

1
4 ≥ 1 is

an integer if n is odd. It is well known that G has at least 4m2
−mn2
3n triangles [12,13]. Thus,

|E0
3 | ≥

4m
3n


m −

n2

4


=


n
3

+
4ℓ
3n


ℓ >

nℓ
3

and consequently

|E2| n
2

 +
|E0

3 | n
3

 >

 n
2


−

n2
4 − ℓ n

2

 +

nℓ
3 n
3


=

 n
2


−

n2
4 n

2

 +

nℓ
3 −

(n−2)ℓ
3 n

3


≥

 n
2


−


n2
4


 n
2

 +
2ℓ

3
 n
3

 −
1

4
 n
2

 .



148 I. Szalkai, Z. Tuza / Discrete Applied Mathematics 180 (2015) 141–149

This proves the stated inequality for all ℓ ≥ (n − 2)/8. Moreover, if n is even, the theorem follows for all ℓ > 0 because in
that case we need not subtract 1/4 when moving from n2

4 to


n2
4


.

For the rest of the proof, we assume that n is odd and 0 < ℓ < (n−2)/8. Since ℓ is relatively small, Gmust contain some
vertex x of degree at most n−1

2 , for otherwise the number of edges would be at least n(n+1)
4 , yielding the contradiction ℓ ≥

n
4 .

Let now ℓ′
= ℓ +

1
4 , that means m =


n2
4


+ ℓ′, and consider the graph G′

:= G − x. This G′ has n′
= n − 1 vertices and at

least

m′
:=

n2

4
+ ℓ −

n − 1
2

=
(n − 1)2 + 1

4
+ ℓ =

(n′)2

4
+ ℓ′

edges. Therefore, by the theorem cited above, G′ contains at least

4m′

3n′


m′

−
(n′)2

4


=


n − 1
3

+
4ℓ′

3n′


ℓ′ >

(n − 1)ℓ′

3

triangles, which certainly is a lower bound on |E0
3 |, too. Thus, with a slightmodification of the computation above, we obtain

that

|E2| n
2

 +
|E0

3 | n
3

 >

 n
2


−


n2
4


− ℓ′ n

2

 +

(n−1)ℓ
3

′ n
3


=

 n
2


−


n2
4


 n
2

 +

(n−1)ℓ′

3 −
(n−2)ℓ′

3 n
3


=

 n
2


−


n2
4


 n
2

 +
ℓ′

3
 n
3

 .

This completes the proof of the theorem.
One of our referees remarks that the result can also be derived shortly from Razborov’s tight estimates [14] on the

minimum number of triangles in a graph with a given number of vertices and edges. The proof of that result, however,
can by no means be considered short, neither conceptually simple, as it applies the machinery of flag algebras. �

5. Concluding remarks

Motivated by a problem arising in chemistry/stoichiometry, we established asymptotically tight extremal results on
geometric point sets and on finite set systems. Belowwe formulate some further problems and conjectures that remain open.
Geometry vs. hypergraph theory. We proved corresponding asymptotic lower and upper bounds of the form

 n
d+1


− Θ(nd)

on the minimum number of affine simplices, for every set of n points in Rd not containing any affine simplex of fewer than
d+ 1 points. Our method was to put the problem in a more general context and to estimate an extremal function for a class
of hypergraphs (called q-linear, implying the solution for geometric sets when q = d). There remains a gap of order Θ(nd),
however, between the lower and upper bounds.

Problem 15. Given the integers n and d, determine the minimum number of affine simplices generated by n points in Rd,
no d of which lie on a (d − 2)-dimensional hyperplane.

Problem 16. Given the integers n and k, determine the minimum value of

|Ek| + |E0
k+1|

taken over all (k − 1)-linear hypergraphs H = (X, E) on n vertices.

Problem 17. For which values of k = d + 1 is the minimum for hypergraphs in Problem 16 equal to that for point sets in
Rd in Problem 15, for all n > n0(d)?

For the case of d = 2, it was proved in [9] that the minimum number of affine simplices in R2 determined by n ≥ 8
points is attained by placing the points on two lines: one of the lines contains n− 2 of the points and the other line contains
3 points (and so their intersection point is also selected). That is, the minimum for Problem 15 with d = 2 is

n − 2
3


+


n − 3
2


+ 1.

The construction implies the same upper bound for Problem 16 with k = 3, attained by the linear (that is, 2-linear)
hypergraph with n vertices and two edges, one of size n − 2 and the other of size 3. Moreover, the proof of the matching
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lower bound in [9] gets through for linear hypergraphs as well, since it only applies modifications in the incidence structure,
without any particular geometric assumptions. Thus, the minimum is the same for Problem 15 with d = 2 and Problem 16
with k = 3.

It is not clear, however, whether the answer to Problem 17 is positive or negative for d ≥ 3. We note that the extremal
construction of [17] cannot be applied for our problem to derive an upper bound on affine simplices in R3, because in [17]
the points are arranged in two (equal or nearly equal) collinear sets. Nevertheless, the following conjecture looks easier than
the exact determination of minimum.

Conjecture 18. For every k ≥ 3 there exists a hypergraph H of order n which is extremal for Problem 16 and has O(nk−3) edges
as n gets large.

We note further that the upper bound on s′k in Corollary 13 tends to zero as k gets large, and at present we do not have
any geometric constructions with the same property for sk.

Conjecture 19. There exists an integer k0 such that, for every k ≥ k0, we have s′k < sk.

Perhaps the guess k0 = 3 is too brave, but we cannot disprove even that at present.
Stoichiometry. For the original problem originating from [7] in stoichiometry, our Theorem 3 and Corollary 4 imply:

• There are at least
 n
d+1


− O


nd


≈

nd+1

(d+1)! minimal reactions among n species if the species are built up from d kinds of
atoms (atomic particles), and if the number of species (molecules) forming any minimal reaction must be greater than d.

• For the first case previously unsolved, namely d = 3, the asymptotically tight lower bound is
 n
4


− O


n3


≈

n4
24 , if

reactions with three or fewer species are not possible. (Especially parallel species, i.e. multiple doses are also excluded.)
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