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The phases of multicomponent systems (mixtures, states, etc.) containing the compounds
A1, . . . ,An are x1A1 + · · ·+ xnAn, where 0 6 xi 6 1 and x1 + · · ·+ xn = 1. For n > 4
(quaternary or higher dimensional systems), the displaying methods and visual investigations
in the n-dimensional Euclidean space Rn are tangentially or not at all described in the liter-
ature. In this paper we first develop the theoretical (both mathematical and computational)
background in any dimension in Rn. We focus not only on the important points, lines,
surfaces of these systems, and computing method of the states of some processes in such
systems, but also on the approximating methods of the above mentioned lines and surfaces,
and, finally, on the question “which is the region where a state (a point) falls into”. Using
the above results a computer program for PC’s was created for evaluating and displaying the
approximated surfaces. This program is described in I. Szalkai, SALT3DIM.exe – A pro-
gram for handling 4 component mixtures, Preprint No. 047, University of Veszprém (1996),
and the computing results are planned to be published in a forthcoming paper (I. Szalkai,
Handling multicomponent systems in Rn. II: Computational results, J. Chem. Inf. Comput.
Sci., submitted).

0. Introduction

The starting point of our research was motivated by inorganic chemistry: how
to handle and display several component mixtures, their exact compounds, marking
and investigating the important lines and surfaces which separate the distinct phases
of the system. Since similar problems arise (at least from an abstract mathematical
point of view) in several other disciplines, not only in the theory of mixtures, we
focus mainly on the common general mathematical tools of these problems and not on
their applications (which could include residue curves, distillation boundaries, liquid
composition profiles, eutectic surfaces, etc.).

Our second (but not lesser) goal was to develop general methods which work
also in higher dimensions, for systems/mixtures formed from many compounds. Even
quaternary systems are shortly described and investigated in the literature because of
the geometrical difficulties in higher dimensions. We overcome this difficulty by using
co-ordinate geometry in any dimension in Rn and by using computer calculations. For
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human 3D and 2D pictures we may want to make pictures using intersections with 2D
or 3D hyperplanes, these problems are also discussed in section 1.3.

Since the sum of the percentage of the compounds must be equal to 1, the so-
called barycentric co-ordinates are preferable, requiring higher dimensional simplexes,
but calculations and diagrams are made in the usual rectangular Cartesian co-ordinate
system. These problems (from the beginning of building higher dimensional simplexes)
with transformation methods among the different co-ordinate systems are discussed in
sections 1.1 and 1.2. Though isothermical diagrams are drawn not in simplexes but in
prisms instead, converting methods are also introduced at the end of section 1.2.

Further, when approximating (e.g., eutectic) surfaces/lines/points from a dataset,
first the problem of approximating many-variable functions in the case of scattered data
points arises. This is not only because we have to transform data from barycentric to
Cartesian co-ordinates, but from the nature of these surfaces and lines. In the present
paper (in section 1.3), we use the simplest method (Shepard’s method); this applied
method will be discussed in more detail in our forthcoming paper [10].

We also highlight in our research the question “which is the region where a point
(representing a state of the system) falls into”. We discuss this problem in section 1.4.
Other questions with solutions are mentioned in sections 1.5 and 1.6.

Our theoretical investigations have been also applied in a practical computer
software which is introduced with some output pictures in [8].

1. Mathematical tools

1.0. Introduction

Though our method was originally developed for mixtures of several chemical
compounds, which we are talking about throughout the whole paper, the method is
also applicable for describing any system, in which the sum of the co-ordinates of any
state (phase) is equal to 1.

In general, n-ary systems contain the components A1,A2, . . . ,An and X (H2O
in general). A state P denotes a mixture, having the proportion αi of the component
Ai for i = 1, 2, . . . ,n. Of course, we must have

0 6 αi 6 1 for i 6 n (1)

and

α1 + α2 + · · ·+ αn + δ = 1, (2)

where δ denotes the remainder, i.e., the proportion of X. Clearly also,

0 6 δ 6 1. (3)

In other words, the state (mixture) P corresponds to the vector

p = [α1,α2, . . . ,αn, δ]
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Figure 1. A typical 2-dimensional diagram with an application. Reproduced from [11].

satisfying (1)–(3). Turning to geometry, if A1,A2, . . . ,An,X are represented by any
vectors (points) a1, a2, . . . , an, x in the n-dimensional Euclidean space Rn, and we take

p := α1 · a1 + α2 · a2 + · · · + αn · an + δ · x, (4)

then p runs all the internal and marginal points of the convex hull of the points
a1, a2, . . . , an, x as the coefficients α1,α2, . . . ,αn, δ take all their possible values sat-
isfying (1)–(3).1

It is advisable to choose the base vectors a1, a2, . . . , an, x as the vertices of a
full-dimension regular simplex (i.e., an n-dimensional tetrahedron). The vertices and
the geometry of these simplexes in any dimension n ∈ N will be discussed in detail
in the next section.

The above sketched method is widely used for ternary systems in dimension two
(n = 2), where the base vectors (points) a1, a2, x are (0; 0), (0; 1) and (1/2;

√
3/2),

in the usual rectangular Cartesian co-ordinate system. This special 2-dimensional
method can be found in detail in any stoichiometry book, and we can also refer to the
exhaustive introductory paper of Tamás [11]. A typical diagram with an application is
shown in figure 1. Hartman and Haase explained a slightly different approach in [3].

1 [α1,α2, . . . ,αn, δ] are called the barycentric co-ordinates of the point P with respect to the base
{a1, a2, . . . , an, x}. Converting barycentric and Cartesian co-ordinates is discussed at the end of sec-
tion 1.1
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Figure 2. The usual 3-dimensional diagram for determining co-ordinates. Reproduced from [6].

Unfortunately, the geometry of quaternary systems A–B–C–X requires the 3-
dimensional unit simplex in the space R3. Standard (manual) computations by rulers
and pencil are no longer valid as was in the case in 2 dimensions, so this 3-dimensional
case is only tangentially discussed in the literature. The difficulties of diagram-drawing
can be seen in figure 2.

Our theoretical method and computational ideas can be used in any dimen-
sion!

1.1. Simplexes in Rn

The following theorem helps us to determine the (usual) rectangular Cartesian
co-ordinates of the vertices of a regular simplex (all edges are of unit length) in Rn
with the property:

(L): The first n vertices of this simplex form a “similar” regular, but lower dimensional
simplex in Rn−1 also with property (L).

(Some low-dimensional examples are given in tables 1 and 2.)
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Table 1
The vertices of the 3-, 4- and 5-dimensional simplexes.

S3: a3
1 =

0

0

0

 , a3
2 =

1

0

0

 , a3
3 =

 1/2√
3/2

0

 , a3
4 =

 1/2√
3/2 · 1/3√

3/2 ·
√

8/3



S4: a4
1 =


0

0

0

0

 , a4
2 =


1

0

0

0

 , a4
3 =


1/2√
3/2

0

0

 , a4
4 =


1/2√

3/2 · 1/3√
3/2 ·

√
8/3

0

,

a4
5 =


1/2√

3/2 · 1/3√
3/2 ·

√
8/3 · 1/4√

3/2 ·
√

8/3 ·
√

15/4



S5: a5
1 =


0

0

0

0

0

 , a5
2 =


1

0

0

0

0

 , a5
3 =


1/2√
3/2

0

0

0

 , a5
4 =


1/2√

3/2 · 1/3√
3/2 ·

√
8/3

0

0

,

a5
5 =


1/2√

3/2 · 1/3√
3/2 ·

√
8/3 · 1/4√

3/2 ·
√

8/3 ·
√

15/4

0

 , a5
6 =


1/2√

3/2 · 1/3√
3/2 ·

√
8/3 · 1/4√

3/2 ·
√

8/3 ·
√

15/4 · 1/5√
3/2 ·

√
8/3 ·

√
15/4 ·

√
24/5


Table 2

The matrix A10.

1 1/
√

4 1/
√

4 1/
√

4 1/
√

4 1/
√

4 1/
√

4 1/
√

4 1/
√

4 1/
√

4

0
√

3/4 1/
√

12 1/
√

12 1/
√

12 1/
√

12 1/
√

12 1/
√

12 1/
√

12 1/
√

12

0 0
√

4/6 1/
√

24 1/
√

24 1/
√

24 1/
√

24 1/
√

24 1/
√

24 1/
√

24

0 0 0
√

5/8 1/
√

40 1/
√

40 1/
√

40 1/
√

40 1/
√

40 1/
√

40

0 0 0 0
√

6/10 1/
√

60 1/
√

60 1/
√

60 1/
√

60 1/
√

60

0 0 0 0 0
√

7/12 1/
√

84 1/
√

84 1/
√

84 1/
√

84

0 0 0 0 0 0
√

8/14 1/
√

112 1/
√

112 1/
√

112

0 0 0 0 0 0 0
√

9/16 1/
√

144 1/
√

144

0 0 0 0 0 0 0 0
√

10/18 1/
√

180

0 0 0 0 0 0 0 0 0
√

11/20


The rows of the left upper submatrix of size n× n give the vectors an2 , . . . , ann+1.
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The two vertices of the 1-dimensional simplex (interval) [0; 1] with property (L)
in R1 = R are clearly (0) and (1). Further, for the sake of unique notation, from
now on we will denote the last vector of our simplex by an+1 instead of x, as in the
previous section.

Theorem 1. If {an1 , an2 , . . . , ann+1} ⊂ Rn are the vertices of the (unique) simplex with
property (L), where ani = [an,i

1 , an,i
2 , . . . , an,i

n ] ∈ Rn (i 6 n+1), then the vertices of the
unique simplex in Rn+1 with property (L) are {an+1

1 , an+1
2 , . . . , an+1

n+1, an+1
n+2} ⊂ Rn+1,

where

an+1
i =

[
an,i

1 , an,i
2 , . . . , an,i

n , 0
]
∈ Rn+1 (i 6 n+ 1)

and

an+1
n+2 =

[
an,n+1

1 , an,n+1
2 , . . . , an,n+1

n · αn+1, an,n+1
n · βn+1

]
∈ Rn+1,

where

αn+1 =
1

n+ 1
and α2

n+1 + β2
n+1 = 1.

Let us highlight that an,i
j denotes the jth co-ordinate of the vector ani ∈ Rn (1 6

j 6 n, 1 6 i 6 n+ 1).
In other words, we have (only!) to split the last co-ordinate of ann+1 to get the

last two co-ordinates of an+1
n+2 according to αn+1 and βn+1. It is interesting that we

do not need any value of the functions sine and cosine, as one might think at the first
glance of the co-ordinates of the last vertex of the 2-dimensional triangle: (1/2;

√
3/2).

However, we still have the equality α2
n+1 + β2

n+1 = 1. For illustration, the vertices of
our 3-, 4- and 5-dimensional simplexes are listed in table 1 and, in a simplified form,
in table 2.

Proof of theorem 1. Property (L) is clear by induction. So, the only thing left for us
to confirm is that an+1

n+2 is at unit distance from the other vertices an+1
i for i 6 n+ 1.

We prove it by induction on n; the case n = 1 is clear. Now, using the formulas in
the theorem, we have

d2(an+1
n+2, an+1

i

)
=

n−1∑
t=1

(
an,n+1
t −an,i

t

)2
+
(
an,n+1
n ·αn+1−an,i

n

)2
+
(
an,n+1
n ·βn+1−0

)2
.

(5)
In case 1 � n+ 1, the sum of the last two terms is equal to

(
an,n+1
n ·αn+1− 0

)2
+
(
an,n+1
n · βn+1− 0

)2
=
(
an,n+1
n

)2 ·
(
α2
n+1 +β2

n+1

)
=
(
an,n+1
n

)
,
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using the fact that the last two co-ordinates of an+1
i are equal to 0: an,i

n = 0 for i � n.2

So the distance d(an+1
n+2, an+1

i ) becomes

n−1∑
t=1

(
an,n+1
t − an,i

t

)2
+
(
an,n+1
n

)2
= d2(ann+1, ani

)
= 1

by the induction hypothesis.
In case i = n+ 1, we have to compute d(an+1

n+2, an+1
n+1), so all the terms in the

∑
in (5) become 0. This means that we have

d2(an+1
n+2, an+1

n+1

)
=
(
an,n+1
n · αn+1 − an,n+1

n

)2
+
(
an,n+1
n · βn+1 − 0

)2

=
(
an,n+1
n

)2 ·
(
(αn+1 − 1)2 + β2

n+1

)
=
(
an,n+1
n

)2 ·
(
(1− αn+1)2 +

(
1− α2

n+1

))
=
(
an,n+1
n

)2 · 2 · (1− αn+1) = 1.

For the last equality it can be seen, by a trivial induction on n, that

an,n+1
n = β2β3 · · · βn

and that

β2
2β

2
3 · · · β2

n · 2 · (1− αn+1) = 1. �

P. Fekete [1], our student, gave recursive and explicite formulas for the co-
ordinates of the vertices of the above simplexes.

Theorem 2 ([1]). For any fixed dimension n ∈ N, we have an1 = 0, and

an,i
j =


1√

2j(j+1)
if j < i− 1,√

j+1
2j if j = i− 1,

0 if j > i− 1,

for 2 6 i 6 n and 1 6 j 6 n. (6)

The proof runs by an easy induction, using the results of the statement and the
proof of theorem 1. �

These co-ordinates are shown in table 2, in dimensions at most 10.
The above result shows that the last but one co-ordinate of an+1

n+2 (the crucial
new vector) is the arithmetic average of the same co-ordinates of the previous vectors
an+1

1 , an+1
2 , . . . an+1

n+1, which quantity is identical to the average of the corresponding

2 At least two last co-ordinates of an+1
i are 0, we had to say. To be much more precise, exactly the last

(n− i− 1) co-ordinates of ani are equal to 0 for all 1 6 i 6 n + 1. This is because of the inductive
definition of the vectors ani .
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(last) co-ordinates of the vectors an1 , an2 , . . . , ann+1.3 Similarly, the jth co-ordinates of
the vectors ani for j + 2 6 i 6 n+ 1 are the same. In formulae this reads as

an+1,n+2
n =

1
n+ 1

n+1∑
i=1

an+1,i
n =

1
n+ 1

n+1∑
i=1

an,i
n =

1
n+ 1

an,n+1
n

and

an,i
j = an,k

j for j + 2 6 i 6 k 6 n+ 1, 1 6 j 6 n.

Fekete in [1] described also other geometric properties of the above simplexes;
for example, he determined the number of their (lower dimensional) hyper-faces, areas
and volumes, the in- and outer radii of them.

1.2. Co-ordinate transformations

1.2.1. Barycentric and Cartesian co-ordinates
We start this subsection with the problem of converting barycentric and (rectan-

gular) Cartesian co-ordinates in both directions. The base of these calculations is (4),
so let us repeate that equality here again:4

p := α1 · a1 + α2 · a2 + · · · + αn · an + αn+1 · an+1. (7)

(Recall that α1 + α2 + · · · + αn + αn+1 = 1.)
This equality shows that p is a linear combination of the vectors a1, a2, . . . , an+1,

where the coefficients are the barycentric co-ordinates themselves. So the Cartesian co-
ordinates of p are easy to determine, since theorem 1 above gives all the co-ordinates
of a1, a2, . . . , an+1. In other words, we have to multiply the vector of the barycentric
co-ordinates with the matrix An to obtain the Cartesian co-ordinates:

p = An · [α2, . . . ,αn+1]T. (8)

Here we made use of that a1 = 0 always. Of course, α1 is determined by the remaining
co-ordinates α2, . . . ,αn+1. (Recall that n refers to the dimension of Rn.)

Conversely, if the Cartesian co-ordinates of p are given, the barycentric co-
ordinates are the solutions of the system of linear equalities in (7) or, equivalently,
in (8). The columns of the system matrix An contain the co-ordinates of the vectors
a2, . . . , an+1, which implies that An is an upper-triangle matrix. Moreover, the inverse
of An (which is a lower-triangle matrix) can be determined from (6) as the following
result shows:
3 This can also be directly seen from theorem 1 and the value of αn+1.
4 In the remaining part of the present section we fix n (the dimension we are in), so mainly we omit the

superscript referring to n.
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Theorem 3 ([1]). For any fixed dimension n ∈ N, if Bn = [bi,j] denotes the inverse
of An, we have

bi,j =



√
2

j(j+1) if i < j,√
2j
j+1 if i = j,

0 if i > j,

for 1 6 i, j 6 n. (9)

In other words, the desired co-ordinates can be obtained again by a single mul-
tiplication with matrix Bn as

[α2, . . . ,αn+1]T = Bn · p (10)

and α1 = 1− (α2 + · · ·+ αn+1).

1.2.2. Prisms and simplexes
We conclude this subsection with the discussion of another type of diagrams

about mixtures. In many cases one (or several) quantitative properties of mixtures are
exhibited, depending on a measured physical quantity, say, temperature. (A typical
diagram for a ternary system and temperature is shown in figure 3(a).5) Though the
approximation methods described in the next section can be used directly for these
full-dimension diagrams, it would be useful (e.g., for using directly the computer
software developed by us) to develop the transformation method between the inner
points of these higher dimension prisms (with a base of a lower dimension simplex)
and a simplex with this higher dimension.

We displayed n-ary mixtures in the previous section using an (n−1)-dimensional
simplex of vertices {a1, a2, . . . , an} ⊂ Rn−1. Adding the temperature axis, we form
an n-dimensional prism Π with the base of the previous simplex. Denote the vertices
of this prism in Rn by

{a1, a2, . . . , an, b1, b2, . . . , bn}.

(The last co-ordinates of a1, a2, . . . , an are 0, while the last co-ordinates of b1,
b2, . . . , bn are Tmax, the maximum temperature, which we set to 1 now.)

First, the transformation ξ (from Rn to Rn),

ξ : [x1,x2, . . . ,xn] 7→
[
µ(xn) · x1,µ(xn) · x2, . . . ,µ(xn) · xn−1,xn/(Tmax + ε)

]
,

maps Π into the simplex S of vertices {a1, a2, . . . , an, zH}, where zH = [0, 0, . . . , 0, 1]
and µ(z) = 1−z/(Tmax +ε) for real numbers z ∈ R and ε is any nonnegative number.
(We must set ε to be positive if we want to develop the inverse of ξ.) Second, the
transformation ζ (from Rn to Rn again),

ζ : [x1,x2, . . . ,xn] 7→ [x1,x2, . . . ,xn] + xn · [c1, c2, . . . , cn−1, 0],

5 The 2-dimensional level sections for fixed temperatures can also be useful for explanations, but for
approximating the surfaces, we need full-dimension pictures, at least in our mind.
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(a)

(b)

Figure 3. (a) A typical diagram of a ternary system with equitemperature curves. Reproduced from [5].
(b) The transformations ξ and ζ in dimension n = 3.

maps S into the simplex Σn (with property (L)), discussed in the previous section, of
vertices {a1, a2, . . . , an, an+1} ⊂ Rn. Here cj denotes the jth co-ordinate of

an+1 = ann+1 =
[
xn,n+1

1 ,xn,n+1
2 , . . . ,xn,n+1

n

]
= [c1, c2, . . . , cn] ∈ Rn

calculated in theorem 1. This means, that the required transformation is the com-
position ζ ◦ ξ : Π 7→ Σn. (ζ ◦ ξ(x) := ζ(ξ(x)) we mean.) The effect of the above
transformations for n = 3 is illustrated in figure 3(b).
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Figure 4. Typical eutectic surfaces in ternary systems. Reproduced from [6].

The inverse of the above transformation is clearly ξ−1 ◦ ζ−1 : Σn 7→ Π (i.e.,
ξ−1(ζ−1(x)) for x ∈ Σn), where clearly

ζ−1 : [x1,x2, . . . ,xn] 7→ [x1,x2, . . . ,xn]− xn · [c1, c2, . . . , cn−1, 0]

and

ξ−1 : [x1,x2, . . . ,xn] 7→
[
x1/ν(xn),x2/ν(xn), . . . ,xn−1/ν(xn),xn · (Tmax + ε)

]
defined for the points [x1,x2, . . . ,xn] ∈ S such that xn 6 Tmax/(Tmax + ε), where
ν(z) = µ(z · (Tmax + ε)) = 1− z for real numbers z ∈ R.

The above easy transformations can be used to use directly the features of the
software developed in [8].

1.3. Surfaces and approximation

It is fairly well known that the important special points, which separate points
of Rn representing different phases of the mixtures of the components, form smooth
surfaces in our diagram. (A typical diagram of crystallization and “eutectic surfaces”
for ternary systems is shown in figure 4.)

Moreover, if we investigate these surfaces (placed into the simplexes of sec-
tion 1.1) in the usual rectangular Cartesian co-ordinate system in Rn, it could be
assumed that the last co-ordinate is a function of the other ones:

xn = f (x1,x2, . . . ,xn−1).
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On top of all, this function f could be assumed to be continuous. This empirical
observation is widely used (see, e.g., [3], [7], or [11]).

The main difficulty while approximating this more variable function is that any
dataset may not be regular, because of the transformation of the barycentric co-ordinates
into rectangular Cartesian ones. The only possibility that remains is the scattered data
interpolation! We suggest, e.g., the relevant chapter of [4] to the reader for an excellent
introduction to the theory of this kind of approximation.

In our computer software we used the fairly widely known method of D. Shepard,
which is explained in detail, e.g., in [2], [4], and [8]. Below we give only a short
introduction to this method.

Shepard’s method
Let the dataset P1,P2, . . . ,PN ∈ Rm be given with the measured values

F1,F2, . . . ,FN ∈ R also given. We give a continuous function U :Rm → R which
gives an exact approximation for the dataset above (that is, U (Pi) = Fi for i 6 N ) by
the expression

U (P ) =

∑N
i=1 Fi · σ(d(P ,Pi))∑N
i=1 σ(d(P ,Pi))

, (11)

where d(P ,Q) denotes the (usual) Euclid distance of the points P ,Q ∈ Rm, and

σ(x) = e−x
β · x−α (12)

for nonnegative real numbers x > 0 and for any exponents α > 0, β > 0.
Though U (P ) is continuous on the whole Rm for any possible α and β, it has

definite limit U = limP→∞U (P ) and approximates the dataset Fi exactly: U (Pi) = Fi
for i 6 N ; on the other hand, it has some inconvenient properties for some α and
β (e.g., U strongly tends to its limit U inside the convex hull of the dataset). These
inconvenient and other properties of Shepard’s original and modified function will be
discussed in more detail in [10], even for various decreasing functions σ. However, for
the values α = 1 and β = 2 we found this simple method good enough for computer
runs, as in [9] can easily be checked.

After having approximated these surfaces, their intersection points and lines with
each other and with the sides of the simplex can also be determined. The simplest way
is to pass along all the points of a suitably fine grid of the domain of the functions
describing the surfaces. During this walk on grid points, we simply must check which
surface (or the function approximating it) goes above the other surface or the side of
the simplex we want to intersect. We report an intersection point if the order of these
surfaces changes: the lower becomes higher, in passing from the previous grid point
to the next one. Of course, we have to walk on all the grid points in suitable order,
and to store the information which surface is lower than the other at the grid points,
some of which neighbours will be investigated later. A picture made by our computer
software using these ideas in 3 dimensions is shown in [9]. (Let us emphasize that
our method works in any dimension, only the computer program is for R3 only.)
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The functions describing the sides of the simplex can be obtained from the well
known equality of the (n − 1)-dimensional hyperplane incident to a given set of n
points in Rn, briefly recalled in the theorem below:

Theorem 4. The (n−1)-dimensional hyperplane S ⊆ Rn, which meets the (arbitrary)
given points P1,P2, . . . ,Pn ∈ Rn (Pi = [p(i)

1 , p(i)
2 , . . . , p(i)

n ] for i 6 n), has the equality

A1 ·
(
x1 − p(1)

1

)
+A2 ·

(
x2 − p(1)

2

)
+ · · ·+An ·

(
xn − p(1)

n

)
= 0,

where the coefficients Ai are determined as the (1, i)th subdeterminant of the matrix
below: ∣∣∣∣∣∣∣∣∣

. . . . . . . . . . . .

q(2)
1 q(2)

2 . . . q(2)
n

...
...

...
...

q(n)
1 q(n)

2 . . . q(n)
n

∣∣∣∣∣∣∣∣∣
(i.e., delete the 1st row and the ith column of the matrix, and take Ai to be the
determinant of this smaller matrix), where

q(i)
j = p(1)

j − p
(i)
j for 2 6 i 6 n, 1 6 j 6 n (i.e.,Qi =

−−→
P1Pi). �

The vector n := [A1,A2, . . . ,An] is called the normal vector of the hyperplane S,
which is clearly orthogonal to all vectors lying in S.

Lower dimensional hyperplanes in Rn can be expressed by a vector-equality (i.e.,
a system of equalities) only, the well-known result is included below for the reader’s
convenience.

Theorem 5. For any k 6 n − 1, the k-dimensional subspace R ⊆ Rn which meets
the (arbitrary) given points P1,P2, . . . ,Pk+1 ∈ Rn has the vector-equality

x = P1 +
k+1∑
i=2

λi ·
−−→
P1Pi,

where each λi ∈ R runs through all the real numbers independently of each other. �

In the special cases k = 1 and k = n− 1, we get the well-known equalities of
lines and 2-dimensional hyperplanes.

When we want to make intersections or projections with/to lower dimensional
(say 2D or 3D) subspaces in Rn, for the necessary grid (see section 1.6) we simply have
to give all λi some discrete values, depending on the fine resolution we want to achieve.

1.4. In which region is P located?

The surfaces described in the previous subsection divide the space Rn into regions
corresponding to different states of the chemical system. In figure 4, these regions are
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HaE1bE2cE3, AaE1EE3, BbE2EE1, CcE3EE2, ABCE, AE1EB, BE2EC and CE3EA
for quaternary systems in the 3-dimensional space. These intersection points can be
calculated by the method described in the previous section, even in any dimension. In
higher dimensions, however, the number and border points of the regions the simplex is
divided into may be determined by the knowledge of the concrete dataset of intersection
points of the surfaces and can be done in a similar way!

Now our (theoretical and computational) task is to determine which is the region
of the above mentioned ones, in which any given point P = [p1, p2, . . . , pn] ∈ Rn
falls into. Our method is as follows:

(1) Determine whether P is under or above each surface, using their approximations.
This sets P inside or outside the region HaE1bE2cE3.

(2) If P is under all of them, determine whether P is a convex linear combination of
the vector set {

−→
AE,
−→
AB,
−→
AC}. This requires to solve a system of linear equations

and settles the region ABCE.

(3) If under one of the surfaces (say aE1EE3), determine whether P is a positive linear
combination of the corresponding vector set ({

−−→
AE1,

−→
AE,
−−→
AE3,

−→
Aa} in our case).

These rules are general ones for any higher dimension, modifying the list of the
vectors according to the actual set of intersection points and the vertices of the simplex.

1.5. Modifying the system

In this general overwiew we consider only one of the methods for modifying the
content of the mixture – gradually adding one of the compounds. Well, starting from
the state in Rn,

P0 = α1a1 + α2a2 + · · ·+ αn+1an+1,

and adding ∆αk many quantity of the compound ak (k 6 n is fixed), we get the system

P ′ = α′1a1 + α′2a2 + · · ·+ α′n+1an+1,

where

α′i =
αi

1 + ∆αk
for i 6= k

and

α′k =
αi + ∆αk
1 + ∆αk

.

(Here we made of use of the facts that
∑n+1

i=1 αi = 1 and
∑n+1

i=1 α
′
i = 1 must hold.)

Using the method of the previous section, we can describe the new phase of the
system where P ′ must fall into. However, an easy computation helps us to draw the
geometrical orbit of the points P ′ in Rn whenever ∆αk ∈ R+ runs through all the
positive real numbers.
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Theorem 6. Adding gradually (infinitely many) the kth compound to the mixture,
the points P ′ ∈ Rn move through the straight line segment connecting P0 and ak
(= the vertex of the simplex representing the pure mixture containing 100% of the kth
compound and nothing else).

Proof. Clearly, we may deal with the case k = 1 and may shorten ∆αk as ε. Now
we calculate the vector

−−→
PP ′ (where P0 = [α1a1 + α2a2 + · · ·+ αn+1an+1]) as

−−→
PP ′=P ′ − P =

[
α1 + ε

1 + ε
− α1,

α2

1 + ε
− α2, . . . ,

αn+1

1 + ε
− αn+1

]
=

ε

1 + ε
· [1− α1,−α2, . . . ,−αn+1] =

ε

1 + ε
· −−→Pa1,

that is, the vector
−−→
PP ′ is a scalar-multiple of the vector

−−→
Pa1. Finally, ε/(1+ε) goes to

1 as ε tends to positive infinity, so the points P ′ represent all the points of the straight
line segment Pa1. �

Let us mention that the above computation is OK, though it is made in barycentric
co-ordinates, since P0 = [α1,α2, . . . ,αn+1] means P0 = α1a1+α2a2+· · ·+αn+1an+1.

1.6. Other questions

Here we list only some other problems which might be useful in chemistry and
can be easily computed in any dimension. We do not think, however, that the simplest
methods for these problems must be described here in full mathematical detail.

Making intersections of the full diagram with any lower dimensional hyperplanes
in any dimension could be resolved as the problem of finding intersections of surfaces
with the sides of the simplex, described in the previous section.

Orthogonal and central projecting of the full diagram can be calculated using the
well-known equality systems of lines incident to a given point P0(p1, p2, . . . , pn) with
direction vector v(v1, v2, . . . , vn) as

x1 = p1 + v1 · t,
...

xn = pn + vn · t,
t ∈ R,

or, if two points P0 and Q0 of the line are given, clearly v =
−−−→
P0Q0 = Q0 − P0. The

equality and the normal (orthogonal) vector of hyperplanes are given in theorem 4.
The process clearly must proceed along a sufficiently fine grid on the hyperplane.
Perhaps intersections with hyperplanes parallel to the sides of the simplex are most
interesting: they represent mixtures when one chosen fixed compound has a fixed
prescribed percentage. The easiest projections are the ones to the hyperplanes spanned
by the co-ordinate axes: we simply have to forget the appropriate co-ordinate!
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