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Introduction

Mathematical Statisztics and Stochastic Processes became extremaly important
in modern engineering and computer technology. The present book is for engineers
and IT experts, so it focuses on applications, illustrations and mainly on computing
formulas, serving as few mathematics as neccessary. For basic Probability Theory
we refer to our short and illustrative summary [SzI1]. (Letters and numbers in
square brackets [...] refer to further reading in the section "References".) Not only
for curiosity we mention the Hungarian terms as well in brackets and in quotation
marks ("...").
We highly acknowledge the funding of the grant EFOP-3.4.3.-A.2.3.
This book contains of 125 pages, 17 Figures and 5 Tables.
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Preliminaries: di¤erent basic notations

Since many di¤erent notations are in use in Probability Theory, let us collect
and identify them �rst. Through this book we also give the Hungarian terms as
well in brackets and in quotation marks ("...").

� = end of a de�nition / theorem / proof / remark,

[...] = literature reference (see last section),

A [� B = disjoint union of sets, that is A \B = ; ,
R;N = set of real and natural numbers,

R+;0; R�0 = set of nonnegative numbers,

a; �!a ; a = vectors,

exp (x) = ex, expa (x) = a
x are the exponential functions (a > 0),

lg (x), ln (x), log (x) and loga (x) are the logarithm functions of di¤erent bases
(see the Remark below),


 ; T;H = sample set (in Hungarian: "eseménytér"),

P (A) ; Pr (A) = the probability of A j 
 ,
� ; � ;X; Y : 
 ! R = random variables (1-dimensional or real valued or

scalar, "valós vagy skalár érték½u valószín½uségi változó")

r.v. = random variable (v.v.)

�; �;
�!
� ;X; Y : 
 ! Rn = random variables (n-dimensional or vector valued,

"többdimenziós vagy vektor érték½u valószín½uségi változó")

r.v.v. = random vector variable (v.v.v.)

F� ; F ;G;H : R! R = distribution functions ("eloszlásfüggvények"),

f� ; f ; g; h : R! R = density functions ("s½ur½uségfüggvények"),

f 0 ;
df

dx
;
d

dx
f = derivatives of f ,

M (�) ; E (�) ; E f�g ; m�; m; � (�) = mean of � = expected value ("átlag,
várható érték"),

D (�) ; � (�) ; �� = dispersion of � ("� szórása"),

D2 (�) ; �2 (�) ; �2� , var (�) = variance of � ("� szórásnégyzete").

�� :=
� �M (�)

D (�)
is the standardized version of � .
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Remark .1 ln (x), log (x) usually denote the natural logarithm (base e) and lg (x)
the log10 (x), but di¤erent books, programs and users can use other choiches, please
check it in each situation. However, in most applications there is no substant
di¤erence among di¤erent bases, since logb (x) = logb (a) � loga (x) where logb (a) is
a constant multiplier, i.e. the Reader may choose his/her favourite.
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Vector valued random variables
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We usually make two or more measurings at an experiment, so it is better to
consider the r.v. vector of data

�!
� = (�1; :::; �n) instead of a set or separate r.v.

f�1; :::; �ng .
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Chapter 1

Two - dimensional random
variables and independence

De�nition I.1
�!
� : 
! R2 is a 2 dimensional r.v. or a vector-r.v. �

Explanations:
�!
� = (�; �) =

�
�
�

�
, i.e.

�!
� (!) = ( � (!) ; � (!) ) for ! 2 
 ,

so � and � are the coordinate (function)s of
�!
� .

In fact, � and � are any two r.v. as you like: �; � : 
! R .

Sometimes � or simply � is written instead of
�!
� , moreover the (worst) notation

� = (�1; �2) is often used.

1.1 General de�nitions

De�nition I.2 The distribution function of
�!
� = (�; �) , or the common /

joint distr. func. of � and � (" együttes eloszlásfüggvény") is

F~� : R
2 ! R , F~� (x; y) := P (� < x; � < y) . (1.1)

�

In what follows, we simply write � and F� instead of
�!
� and F~� .

Theorem I.3 F� (x) = lim
y!1

F� (x; y) and F� (y) = lim
x!1

F� (x; y) for any x; y 2 R .
�

De�nition I.4 By the theorem above � and � are called the marginal (or border)
distributions of

�!
� , ("határeloszlás" or "peremeloszlás").

5



6CHAPTER 1. TWO - DIMENSIONALRANDOMVARIABLES AND INDEPENDENCE

De�nition I.5 � and � are independent (of each-other) if

8x; y 2 R F� (x; y) = F� (x) � F� (y) . (1.2)

�

(See also [Sz1], (1.10) and (1.15)-(1.17).)
For the following notions � and � do not need to have a common distribution

function.

De�nition I.6 The covariance (in Hungarian: "kovariencia") of � and � is:

cov (�; �) :=M ( (� �m�) � (� �m�) ) (1.3)

where m� =M (�) and m� =M (�), or, without abbreviations

cov (�; �) :=M ( (� �M (�)) � (� �M (�)) ) .

cov (�; �) is also denoted by ��;� . �

Remark I.7 "co-variance" literaly means varying together ("együtt változás").
cov (�; �) really detects the changing measure of � and � . Look: � �M (�) and
� �M (�) are the di¤erences of � and � from their means (movements "up" or
"down") in the same time, and (1.3) measures (in some way) the relation of these
movements to a single real number.
Especially positive cov (�; �) means that � > M (�) or � < M (�) occur "exactly

when" � > M (�) or � < M (�) , in one word "� and � move in the same direction"
(concerning to their means), i.e. � and � help and strenghten each other. Similarly,
negative cov (�; �) means that � > M (�) or � < M (�) occur "exactly when not"
� > M (�) or � < M (�) , in one word "� and � move in other directions", i.e. �
and � impede or weaken each other.
Let us highlight again that the above implications are "not sure" (as in math-

ematics usually), only "with some probability" (as in mathematical statistics, as
usual), or less: concerning the mean (average) of the formulae!
(See also the below theorems and remarks.)

Theorem I.8 For any r.v. �; � and a; b; c; d 2 R real numbers (constant r.v.) we
have

(o) cov (�; �) =M (� � �)�M (�) �M (�) ,

(i) if M (�) = 0 then cov (�; �) =M (� � �) ,
(ii) if � and � are independent, then cov (�; �) = 0 ,
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(iii) but the reverse implication is not true in general,
however it is true for normal distributions,

(iv) D2 (� + �) = D2 (�) +D2 (�) + 2 � cov (�; �) for any two r.v. � and � ,

(v) cov (�; �) = D2 (�) (auto/self covarience, "saját/ön- kovariencia"),

(vi) cov (�; �) = cov (�; �) (symmetry, "szimmetrikusság"),

(vii) cov (a� + b; c� + d) = ac � cov (�; �) ,
(viii) cov (�; �) = cov (� �M (�) ; � �M (�)) ,

(ix) cov (a� + b; a� + b) = a2D2 (�) ,

(x) cov (a; �) = 0 ,

(xi) cov (a1�1 + a2�2 ; b1�1 + b2�2) =

= a1b1cov (�1; �1) + a1b2cov (�1; �2) + a2b1cov (�2; �1) + a2b2cov (�2; �2) .

Proof. (o) by de�nition cov (�; �) =

=M ((� �m�) � (� �m�)) =M (��)�M (�m�)�M (�m�) +M (m�m�)

=M (��)�m� �M (�)�m� �M (�) +m�m�

=M (��)�m� �m� �m� �m� +m�m�

=M (��)�m�m� =M (� � �)�M (�) �M (�) .

(i) follows from (o).

(ii) if � and � are independent then M (� � �) =M (�) �M (�) (see [SzI1]).

(iii) we do not prove it here.

(iv) D2 (� + �) =M
�
[� + � �m� �m�]

2� =
=M

�
[� �m�]

2�+M �
[� �m�]

2�+ 2 �M ((� �m�) � (� �m�))

= D2 (�) +D2 (�) + 2 � cov (�; �) .
(v) by de�nition cov (�; �) :=M

�
(� �m�)

2� = D2 (�) .

(vi) obvious.

(vii) since

a� + b�M (a� + b) = a (� �M (�))

and

c� + d�M (c� + d) = c (� �M (�)) ,

we have
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cov (a� + b; c� + d) =M (ac (� �m�) (� �m�))

= ac �M ((� �m�) (� �m�)) = ac � cov (�; �) .
(viii) take a = c = 1 , b = �M (�) and d = �M (�) in (vii).

(ix) use (vii), with a = c and b = d, and (v).

(x) by (o) cov (a; �) =M (a � �)�M (a) �M (�) = a �M (�)� a �M (�) = 0 .

Remark I.9 (o) Clearly (� � �) (!) = � (!) � � (!) for ! 2 
 .
(ii) and (iii) say that calculating cov (�; �) can not decide the independence of

� and � , in the case cov (�; �) = 0 we can only say that � and � are uncorrelated
("korrelálatlanok"). See Example I.10 below for details and examples.
(iv) is the generalization of the "Pithagorean Theorem"

D2 (� + �) = D2 (�) +D2 (�)

for independent r.v. �; � , since (iv) is valid for any r.v. � and � (see also [SzI1]).
(vii) Clearly cov (�; �) changes when we change measure units (cm or km),

since such a change zooms (in or out) the �uctuations of � and �. For this reason
cov (�; �) di¤ers from cov (��; ��) where �� = ��M(�)

D(�)
and �� = ��M(�)

D(�)
are the stan-

dard versions of � and � . This phenomenom is called "cov (�; �) is not normed"
or "depends upon the scales" ("skálafügg½o"). The normed version of cov (�; �) is
the correlation coe¢cient (see below).
(viii) must be clear by everyday thinking: the covarience ("varying together")

must not depend on "where is the zero on our scale" (e.g. measuring temperature
in centigrade or Kelvin). See also Remark II.7 at the beginning of Part Statistics.
(x) is also clear: neither a constant a "varies together" with � , nor � with a .

Example I.10 Here we give some examples for r.v. which are uncorrelated but
not independent.

First example: Let � be a uniform (continuous) r.v. on the interval [-1,1] and
let � = �2, clearly � and � are not independent (please check). However, by (o)

cov (�; �) =M
�
� � �2

�
�M (�) �M

�
�2
�
=M

�
�3
�
�M (�) �M

�
�2
�
= 0� 0 = 0

since M
�
�3
�
=M (�) = 0 . Similarly cov

�
�; �2

�
= 0 for any r.v. symmetric to the

origin (i.e. M (�) = 0).

Second example: let X and Y be discrete �nite r.v. such that Im (X) =
f0; 2g, Im (Y ) = f0; 1; 2g, P (X = 0; Y = 1) = 1

2
, P (X = 2; Y = 0) = P (X =

2; Y = 2) = 1
4
and the other possibilities are zero:
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XnY 0 1 2 �

0 0 1
2
0 1

2

2 1
4
0 1

4
1
2

� 1
4

1
2

1
4

1

So P (X = 0) = P (X = 2) = 1
2
, P (Y = 0) = P (Y = 2) = 1

4
and P (Y = 1) = 1

2
.

FurtherM (X) =M (Y ) = 1 andM (X � Y ) = 0+0+2�2� 1
4
= 1 so cov (X; Y ) = 0 ,

i.e. X and Y are uncorrelated. On the other hand X and Y are not independent,
since

P (X = 0; Y = 1) =
1

2
6= P (X = 0) � P (Y = 1) = 1

2
� 1
2
=
1

4
.

(There are many similar examples, e.g. if (X; Y ) has the values (�1; 0), (0; 1),
(1; 0), (0;�1) with probabilities 1=4.)
Third example: Let � = X + Y and � = X � Y where X and Y are

independent Bernoulli (discrete) r.v. with the same parameter p .
� and � are uncorrelated since

cov (�; �) = cov (X + Y;X � Y ) = cov (X;X)�cov (X;Y )+cov (Y;X)�cov (Y; Y )

= D2 (X)�D2 (Y ) = 0 .

However � and � are not independent since, for e.g.

P (� = 0; � = 1) = P (X + Y = 0 ; X � Y = 1) = 0
(the only solution X = 1

2
and Y = �1

2
are impossible), while

P (� = 0) � P (� = 1) = P (X + Y = 0) � P (X � Y = 1) = p � (1� p)3 . �

See also: https://en.wikipedia.org/wiki/Covariance Subsection 3.4 = ,
https://en.wikipedia.org/wiki/Covariance#Uncorrelatedness_and_independence ,
https://en.wikipedia.org/wiki/Correlation_and_dependence ,
https://hu.wikipedia.org/wiki/Kovariancia (in Hungarian),
https://de.wikipedia.org/wiki/Kovarianz_(Stochastik) (in German).

Remark I.11 The main disadvantage of cov is property (vii): depends on the
scales (measure units) a and c of � and � . The modi�cation (1.4) below handles
this problem: R (a� + b; c� + d) = R (�; �) .

De�nition I.12 The (Pearson) correlation coe¢cient or normed covari-
ance ("korrelációs együttható, normált kovariancia") is

R (�; �) :=
cov (�; �)

D (�) �D (�) . (1.4)

Other notations are r (�; �) and � f�; �g. �
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Remark I.13 (i) "co-relation" literary means (common) relation between two ob-
jects ("összefüggés").
(ii) This version of the correlation coe¢cient is named after Pearson1).

Theorem I.14 (i) �1 � R (�; �) � +1 ,
(ii) if � and � are independent (or uncorrelated) then R (�; �) = 0 ,

(iii) but the reverse implication is not true (see Theorem I.8),

(iv) for Gaussian distributions:

� and � are independent () R (�; �) = 0 ,

(v) jR (�; �)j = 1 if and only if � and � are "the same":

� = a � � + b for some a; b 2 R , a 6= 0 . (1.5)

for some a; b 2 R , a 6= 0 .

Proof. (i) can be deduced from the Cauchy-Schwarz-Bunyakovszkij (CSB)
inequality2).
(ii)-(iv) follow from the corresponding parts of Theorem I.8.

(v) For the backward direction let � = a� + b . Now, by

m� =M (�) =M (a� + b) = aM (�) + b = am� + b

and the de�nition the enumerator is

cov (�; �) =M ((� �m�) (� �m�)) =M ((� �m�) (a� + b� (am� + b)))

=M ((� �m�) (a (� �m�))) =M
�
a (� �m�)

2� = a �D2 (�) ,

and using

D (�) = D (a� + b) = jaj �D (�)
1 ) Karl Pearson (1857-1936) an English mathematician and bio-statistician.
2 ) The Cauchy - Schwarz - Bunyakovszkij (CSB) inequality has (at least) three di¤erent

forms:

(C)
�

nP
i=1

xiyi

�2
�
�

nP
i=1

x2i

�
�
�

nP
i=1

y2i

�
for any x1; y1; :::; xn; yn 2 R real numbers and n 2 N ,

(C)
� 1P
i=1

xiyi

�2
�
� 1P
i=1

x2i

�
�
� 1P
i=1

y2i

�
for any x1; y1; :::; xn; yn; ::: 2 R sequences,

if the sums are �nite,

(BS)

 
bR
a

f (x) g (x) dx

!2
�
 
bR
a

f2 (x) dx

!
�
 
bR
a

g2 (x) dx

!
for any functions f; g : R ! R , if

the integrals are �nite.
In general: hx;yi2 � hx;xi � hy;yi for any scalar product h:; :i . �
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we have R (�; �) = a �D2 (�) = jaj �D (�) = �1 .
The other direction is more di¢cult.

Remark I.15 The main signi�cancy of (i) are the limits (bounds) of R, we can
estimate and compare the magnitude of R to the absolute limits. Though the
conclusions like "R = 0:5 means 50% connection between � and � " has no
mathematical background or meaning, we feel and say similar sentences.

Remark I.16 However, the cases R (�; �) = �1 really mean strict connections:
using connection (1.5) we can compute exactly the values of � from � (and back, of
� from �) since a; b 2 R are (�xed) real numbers! We can think that the measuring
quantities (devices) are really joined �rmly, only the scales are changed (linear
transformation), like Celsius and Fahrenheit: Y [oF ] = 1:8 � X[oC] + 32 and
X[oC] = 1

1:8
Y [oF ]� 32

1:8
t 0:5556 � Y [oF ]� 17:7778 .

The quantities cov (�; �) and R (�; �) have many applications in Regression the-
ory in Statistics. More detailed investigation can be found in Section 6.4 "Regres-
sion and covariance".
See also Remark II.103 after Theorem II.102.

1.2 The discrete case

De�nition I.17 If Im (�) = fx1; x2; :::; xn; :::g and Im (�) = fy1; y2; :::; ym; :::g
then the distribution of

�!
� = (�; �) (or: the common/joint distribution of �

and �) is the set of probabilities: fpi;j : 1 � i; j � 1g where

pi;j := P (� = xi ; � = yj) . � (1.6)

Clearly

0 � pi;j � 1 and
1X
i=1

1X
j=1

pi;j = 1 . (1.7)

(Any set of real numbers, satisfying (1.7) can be a joint discrete distribution.)

De�nition I.18

q
(�)
i :=

1X
j=1

pi;j = P (� = xi) and q
(�)
j :=

1X
i=1

pi;j = P (� = yj) (1.8)

are the marginal (or border) distributions ("peremeloszlások") of
�!
� . �
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Theorem I.19 In fact, the sets of probabilitiesn
q
(�)
i : 1 � i � 1

o
and

n
q
(�)
j : 1 � j � 1

o
(1.9)

are the distributions of � and � . �
Theorem I.20 The discrete r.v. � and � are independent if and only if for every
i; j 2 N we have

P (� = xi ; � = yj) = P (� = xi) � P (� = yj) (1.10)

i.e. pi;j = q
(�)
i � q(�)j . �

(See also [SzI1], (1.2) and (1.15)-(1.17).)

Remark I.21 In other words: (1.2) and (1.10) are equivalent. �

Theorem I.22 F� (x; y) =
P
xi<x

P
yj<y

pi;j for any x; y 2 R ,

F� (x) =
P
xi<x

q
(�)
i and F� (y) =

P
yj<y

q
(�)
j . �

Theorem I.23 M (� � �) =
1P
i=1

1P
j=1

pi;j � xi � yj ,

M (�) =
1P
i=1

q
(�)
i � xi and M (�) =

1P
j=1

q
(�)
j � yj . �

1.3 Summary and an example

In case Im (�) and Im (�) are �nite, then we can arrange all the data in a table
as seen below.

�n� y1 y2 ... yj ... ym �marg

x1 p1;1 p1;2 ... p1;j ... p1;m q
(�)
1

x2 p2;1 p2;2 ... p2;j ... p2;m q
(�)
2

... ... ... ... ... ... ... ...
xi pi;1 pi;2 ... pi;j ... pi;m q

(�)
i

... ... ... ... ... ... ... ...
xn pn;1 pn;2 ... pn;j ... pn;m q

(�)
n

�marg q
(�)
1 q

(�)
2 ... q

(�)
j ... q

(�)
n 1

Table 1: Two-dimensional �nite discrete distribution
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As in the previous section, fx1; x2; :::; xng and fy1; y2; :::; ymg are the values of �
and �. The joint distribution of � and � can be seen in the middle of the table: pi;j
was de�ned in (1.6). The marginal distributions are in the margins of the table:
q
(�)
i is the sum of the i -th row, and q(�)j is the sum of the i -th column of the table,
according to (1.8). Only the middle of the table (the set fpi;jg) is usually given,
we ourselves have to compute q(�)i and q(�)j by summarizing the rows and columns.
For checking, the sums of both marginal distributions (the last row and the last
column) must give 1 , see the right bottom entry.
Independence can be checked by (1.10): each pi;j must be equal to the product

of (the corresponding) q(�)i and q(�)j (in the same row and column). Observe, that
if (at least) one pi;j does not ful�ll this equality, � and � are not independent.
Independence requires (1.10) for each i and j (each row and each column).
Considering only the �rst and last column/row, we can �nd the distributions

of the (one variable) r.v. �=� respectively, i.e. not considering the other, so M (�),
M (�), D (�) and D (�) can be computed easily from these columns/rows, as in
ordinary (one dimensional) probability theory, or see the second line of Theorem
I.23.
The mean M (� � �) can be computed also by Theorem I.23: the picked pi;j

must be multiplied by xi and yj (in the same row and column) and summed for
all pi;j . Finally use the formulae cov (�; �) = M (� � �) � M (�) � M (�) and
R (�; �) = cov(�;�)

D(�)�D(�) .

Example I.24 The price (X) and quality (Y ) were investigated for a certain
product, the numbers in the table show how many products were found for each
category in a shop3). Calculate cov (X;Y ), R (X;Y ) and estimate the measure of
dependence of X and Y .

X n Y 1 2 3 4

10 2 6 6 4
20 41 53 72 33
30 12 10 11 18

Solution I.25 The given dataset contains the number of products in each cate-
gory, not probabilities. So, we have to calculate relative frequencies for approxi-
mating the probabilities. The sum is 2+6+6+4+41+...+12+10+11+18=268, so
the common- and the marginal distributions are the following:

3 ) � and � were replaced to X and Y for technical reasons only.
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X n Y 1 2 3 4 q
(X)
j

10 2/268 6/268 6/268 4/268 18/268
20 41/268 53/268 72/268 33/268 199/268
30 12/268 10/268 11/268 18/268 51/268

q
(Y )
i 55/268 69/268 89/268 55/268 268/268

Independence checking, e.g. 2. row 4. column: 199/268 * 55/268 6= 33/268
so X and Y are not independent.

Means (expexted values):

M(X*Y) = 10*1*(2/268) +10*2*(6/268) +10*3*(6/268) +10*4*(4/268) +
+20*1*(41/268) +20*2*(53/268) +20*3*(72/268) +20*4*(33/268) +
+30*1*(12/268) +30*2*(10/268) +30*3*(11/268) +30*4*(18/268) =
= 14490/268 t54.0672,

M(Y) = 1*(55/268)+2*(69/268)+3*(89/268)+4*(55/268) = 680/268 t2.5373,

M(X) = 10*(18/268)+20*( 199/268)+30*(51/268) = 5690/268 t21.2313,

cov(X,Y) = M(XY)-M(X)*M(Y) = 14120/2682 t0.1966.

Since cov(X,Y)>0 , X and Y strenghten each other, the move "in the same"
direction.

Dispersions and R(X,Y):

M(Y2) = (12)*(55/268)+(22)*(69/268)+(32)*(89/268)+(42)*(55/268) = 2012/268
t 7.5075,

M(X2) = (102)*(18/268)+(202)*( 199/268)+(302)*(51/268) t 475.0000,

D(Y) =
p
M(Y 2)�M2(Y ) =

p
7:5075� 2:53732 t 1:0342,

D(X) =
p
M(X2)�M2(X) =

p
475:0000� 21:23132 t 4:9224 ,

R(X;Y) =
cov (X; Y )

D(Y )D(X)
=

0:1966

1:0342 � 4:9224 t 0:0386 .

Since R(X; Y ) is small (t4%), the connections between X and Y is weak.

End of the solution.
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1.4 The continuous case

It is very similar to the discrete case.

De�nition I.26 The density function of
�!
� is the common/joint density func-

tion of (�; �) , i.e. the function h : R2 ! R+;0 such that for any a; b; c; d 2
R[f�1;+1g , a � b and c � d we have

P (a � � � b ; c � � � d) =
bR
a

dR
c

h (x; y) dy dx . (1.11)

�

Figure 1: A typical 2-dimensional continuous density function
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Remark I.27 Any function h : R2 ! R is suitable if 0 � h (x; y) and
+1Z
�1

+1Z
�1

h (x; y) dydx = 1 . (1.12)

Clearly
+1Z
�1

h (x; y) dy = f� (x) and

+1Z
�1

h (x; y) dx = f� (y) (1.13)

are the marginal density functions = of � and � . Further (by (1.11))

F� (b; d) =

bZ
�1

dZ
�1

h (x; y) dy dx . (1.14)

Theorem I.28 The continuous r.v. � and � are independent if and only if for
every x; y 2 R we have

h (x; y) = f� (x) � f� (y) , (1.15)

and, if and only if for any a; b; c; d 2 R[f�1;+1g, a � b and c � d we have

P (a � � � b ; c � � � d) = P (a � � � b) � P (c � � � d) (1.16)

i.e.

bZ
a

dZ
c

h (x; y) dy dx =

0@ bZ
a

f� (x) dx

1A �
0@ dZ
c

f� (y) dy

1A . � (1.17)

(See also [SzI1], (1.2) and (1.10).)

Theorem I.29 M (� � �) =
1R
�1

1R
�1

x � y � h (x; y) dy dx ,

M (�) =
1R
�1

x � f� (x) dx and M (�) =
1R
�1

y � f� (y) dy . �
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1.5 Conditional probability

Considering two (dimensional) r.v. questions like P (� = x j � = y), P (� < x j � < y)
naturally occur. By elementary probability theory we clearly have

P (� = x j � = y) =
P (� = x & � = y)

P (� = y)
, (1.18)

P (� = y j � = x) =
P (� = x & � = y)

P (� = x)
(1.19)

and

P (� < x j � < y) = P (� < x \ � < y)
P (� < y)

. (1.20)

Using the notations of the previous sections we can write for discrete r.v.

P (� = xi j � = yj) =
pi;j

q
(�)
j

, P (� = yj j � = xi) =
pi;j

q
(�)
i

(1.21)

P (� = xi j � � yj) =

jP̀
=1

pi;`

jP̀
=1

q
(�)
`

and P (� � xi j � � yj) =

iP
s=1

jP̀
=1

ps;`

jP̀
=1

q
(�)
`

, (1.22)

for continuous r.v.

P (� < b j � < d) =

bR
�1

dR
�1

h (x; y) dy dx

+1R
�1

dR
�1

h (x; y) dy dx

. (1.23)

De�nition I.30 The conditional distribution functions (clearly) are

F� (xjy) = P (� < x j � = y) and F� (yjx) = P (� < y j � = x) . (1.24)

For continuous r.v. the conditional density functions are

f� (xjy) =
h (x; y)

f� (y)
and f� (yjx) =

h (x; y)

f� (x)
(1.25)

for the conditions "� = y" and "� = x", respectively. �



18CHAPTER 1. TWO - DIMENSIONALRANDOMVARIABLES AND INDEPENDENCE

Theorem I.31 For continuous r.v.

f� (xjy) =
@F� (xjy)
@x

and f� (yjx) =
@F� (yjx)
@y

, (1.26)

further

F� (xjy) =
1

f� (y)
� @H (x; y)

@y
and F� (yjx) =

1

f� (x)
� @H (x; y)

@x
. � (1.27)

De�nition I.32 The conditional means (of � , assuming � = y, and of �
assuming � = x) are, for discrete r.v.:

M (� j � = yj) =
1X
i=1

xi � P (� = xi j � = yj) =
1

q
(�)
j

1X
i=1

xi � pi;j (1.28)

and

M (� j � = xi) =
1X
j=1

yj � P (� = yj j � = xi) =
1

q
(�)
i

1X
j=1

yj � pi;j , (1.29)

for continuous r.v.:

M (� j � = y) =

Z +1

�1
x � f (xjy) dx ,

M (� j � = x) =

Z +1

�1
y � g (yjx) dy , (1.30)

which can also be written as

M (� j � = y) = 1

f� (y)
�
Z +1

�1
x � h (x; y) dx (1.31)

and

M (� j � = x) = 1

f� (x)
�
Z +1

�1
y � h (x; y) dy . (1.32)

�



Chapter 2

Higher dimensional random
variables

In practice, a random variable is a physical (or other) quantity we measure during
our experiment. However, in most cases, more than one quantity are measured
for one experiment. Further, the connection among these quantities, in general, is
not known (complicated, or even, the connection itself we want to reveal), so we
must consider these quantities to be distinct random variables, and investigate the
connection among them later.

2.1 Covarience and independence

De�nition I.33
�!
� : 
! Rn is an n- dimensional r.v. or a vector-r.v. �

Explanations:
�!
� = (�1; �2; :::; �n) =

0@ �1
:::
�n

1A, i.e. �!
� (!) = ( �1 (!) ; :::; �n (!) )

for ! 2 
 , so �1; :::; �n are the coordinate (function)s of
�!
� .

In fact, �1; :::; �n are any n r.v. as you like.

Sometimes � or simply � is written instead of
�!
� , moreover the (worst) notation

� = (�1; :::; �n) is often used.
The dimension n can also be denoted by � and by any other letter.

De�nition I.34 M
��!
�
�
:= ( M (�1) ; :::;M (�n) ) 2 Rn is an n -dimensional

vector. �

19
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De�nition I.35 For
�!
� : 
 ! Rn and �!� : 
 ! Rm the covariance matrix

("kovariencia mátrix") is

cov
��!
� ;�!�

�
:=
�
cov
�
�i; �j

� �
2 Rn�m . (2.1)

In case
�!
� = �!� the matrix C = cov

��!
� ;
�!
�
�
is called auto/self covariance

matrix ("auto/saját- kovariencia mátrix"). �

Theorem I.36 If the elements of C (auto cov.matrix) are denoted by ci;j , then

(i) ci;j = cj;i , that is C is symmetric,

(ii) ci;i = D
2 (�i) (the diagonal of C),

(iii) C is positive semide�nite1),

(iv) if �!� = A � �!� +m for some real A 2 Rm�n and m 2 Rm,

then cov (�!� ;�!� ) = A � cov
��!
� ;
�!
�
�
�AT . �

In the next Sections we brie�y introduce the most important higher dimensional
distributions.

2.2 The normal (Gauss-) distributions

2.2.1 2-dimensional

De�nition I.37 The 2 -dimensional normal (Gauss-) r.v.-s are determined
by the distribution functions

f (x1; x2) =
1

2��1�2
p
1� r2

� e
�1

2(1�r2)
�
�
(x1�m1)

2

�21
�2r (x1�m1)�(x2�m2)

�1�2
+
(x2�m2)

2

�22

�
(2.2)

or, in modern notation

1 ) De�nition: The real quadratic matrix A = [ai;j ] 2 Rn�n is positive de�nite if xTAx >

0 for each x 2 Rn where xTAx =
nP
i=1

nP
j=1

ai;jxixj . �

Theorem: A symmetric matrix is positive-de�nite if and only if all its eigenvalues are positive,
that is, the matrix is positive-semide�nite and it is invertible.�
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f (x1; x2) =

=
1

2��1�2
p
1� r2

�

� exp
 

�1
2 (1� r2) �

 
(x1 �m1)

2

�21
� 2r (x1 �m1) � (x2 �m2)

�1�2
+
(x2 �m2)

2

�21

!!

where m1;m2 2 R , �1; �2; r 2 R+;0, �1 < r < 1 are any real numbers. �

Theorem I.38 The marginal distributions � and � are also normal, and
M (�) = m1 , M (�) = m2 , D (�) = �1 , D (�) = �2 and R (�; �) = r . �

2.2.2 n-dimemsional

De�nition I.39 For any k -dimensional r.v.
�!
� = (�1; :::; �k) where �1; :::; �k are

standard normal r.v. (i.e. M (�i) = 0 and D (�i) = 1 for i = 1; :::; k) and real
matrix A 2 Rn�k and m 2 Rn the following n -dimensional r.v. �!� := A ��!� +m
is called n-dimensional normal r.v. �
Remark I.40 Be careful with the dimensions n and k !

An alternative de�nition is the following:

De�nition I.41 Let A = [ai;j] 2 Rn�n a symmetric2), positive de�nite quadratic
matrix and let B = [bi;j] := A�1 the inverse matrix and let dB := det (B) the
determinant of B . Let further m1; :::;mn 2 R be any real numbers. Then

�!
� =

(�1; :::; �n) is an n -dimensional normal (Gaussian) r.v. if the joint density
function is

f�!
�
(x1; :::; xn) =

p
dB

(2�)n=2
� exp

0BB@
�

nP
i=1

nP
j=1

(xi �mi) bi;j (xj �mj)

2

1CCA (2.3)

�

2 ) De�nition: The real quadratic matrix A = [ai;j ] 2 Rn�n is symmetric if AT = A, i.e.
[ai;j ] = [aj;i] for each i; j = 1; :::; n . The symmetric matrix A is positive de�nite if xTAx > 0

for each x 2 Rn where xTAx =
nP
i=1

nP
j=1

ai;jxixj . �

Theorem: A symmetric matrix is positive-de�nite if and only if all its eigenvalues are positive,
that is, the matrix is positive-semide�nite and it is invertible.�
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2.3 The binomial/multinomial (Bernoulli-) dis-
tributions

2.3.1 1-dim = 2-dim

Recall the well known (1-dimensional) Bernoulli- or binomial distribution: given
A � 
 , p = P (A), �x an m 2 N , repeat the experiment m -many times
(independently and with the same conditions) and let

� := the number of occurences of A .

Then we have, taking q = 1� p

P (� = k) =

�
m

k

�
pkqm�k for 0 � k � m . (2.4)

Observe now �rst, that in fact, we have a partition of 
 to
�
A;A

	
since A[A = 


and A \ A = ; . Second, together with � we also know the number of occurences
of A , i.e. we can let

�2 := the number of occurences of A

and have

P (�2 = `) =

�
m

`

�
pm�`q` for 0 � ` � m (2.5)

and, of course p+ q = 1 and k + ` = m .

This observation will be generalized for larger partitions in the next section.

2.3.2 n-dim (2 � n)

De�nition I.42 Let A1[�A2[� :::[�An = 
 , P (Ai) = pi ,
nP
i=1

pi = 1 , repeat

the experiment m -many times, independently and with the same conditions, m 2 N
is �xed, and let

�i := Xi := number of Ai occuring for i = 1; :::; n .

Then
�!
� = (�1; :::; �n) is called n -dimensional binomial / multinomial /

Bernoulli r.v. �
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Remark: If your experiment is choosing (sampling) m many elements from
a set H , which contains n -kind of objects, then the above term "independently
and with the same conditions" means, that you must put back ("visszatenni") the
chosen element before the next choosing. This method is called sampling with
repetitions / putting back ("visszatevéses mintavétel").

Theorem I.43 The distribution is: for any nonnegative integers k1; :::; kn 2 N

P (�1 = k1; :::; �n = kn) =

8>><>>:
m!

k1! � ::: � kn!
� pk11 � ::: � pknn if k1 + :::+ kn = m

0 otherwise

where pi = P (Ai) for i = 1; :::; n . �

Warning: n 2 N is the size of the partition of 
 and m 2 N is the number of
experiments (repetitions).

Remark I.44 The fraction m!
k1!�:::�kn! above is called polinomial or multinomial

coe¢cient and usually is denoted as�
m

k1; :::; kn

�
=

m!

k1! � ::: � kn!
. (2.6)

2.4 The poli-hypergeometric distributions

It is the same as the binomial distribution, but without repetitions/putting
back ("visszatevés / ismétlés / ismétl½odés nélkül").

2.4.1 1-dim = 2-dim

The well known Hypergeometric distribution is the following. Let A1[�A2 = H ,
jHj = N , jA1j =M1 , jA2j =M2 = N �M1 , repeat the drawings from the
set H for m -many times (m 2 N is �xed) without repetitions/putting back, and
let

� := the number of occurences of A = A1 .
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Then we have

P (� = k) =

�
M1

k

��
N�M1

m�k
��

N
m

� for 0 � k � m . (2.7)

As in the Bernoulli distribution, we have a 2 -element partition ofH = A1[�A2 ,
so the above is, in fact, 2-dimensional. The generalization is easy, go to next
subsection.

2.4.2 n-dim (2 � n)

De�nition I.45 Let A1 [� A2 [� ::: [� An = H , jAij = Mi ,
nP
i=1

Mi = N =

jHj and choose without repetitions/putting back ("visszatevés / ismétlés /
ismétl½odés nélkül") from the set H for m -many times (m 2 N is �xed), and let
�i := Xi := number of Ai occuring, without repetitions/putting back

for i = 1; :::; n . Then
�!
� = (�1; :::; �n) is called n -dimensional binomial

/ multinomial / Bernoulli r.v. �

Theorem I.46 The distribution is: for any nonnegative integers k1; :::; kn 2 N

P (�1 = k1; :::; �n = kn) =

8>>><>>>:
�
M1

k1

�
� ::: �

�
Mn

kn

��
N
m

� if k1 + :::+ kn = m

0 otherwise

�

Warning: N = jHj 2 N is the size of the set H, n 2 N is the size of the partition
of H and m 2 N is the number of experiments (drawings) from the set H.
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Chapter 3

Elementary notions

De�nition II.1 i) The result of ameasuring is n many real numbers x1; :::; xn .
ii) A statistical sample ("minta") is n many r.v. (�1; :::; �n) OR (X1; :::; Xn) .
iii) The degree of freedom ("szabadsági fok") is s = n� 1 in the above case.
In other cases it often has another formula, where we always describe them. �

De�nition II.2 i)

�̂ = �� :=
�1 + :::+ �n

n
(3.1)

is the empirical (greek)/ practical ("tapasztalati") average/ mean/ expected
value.

ii) d��2� = ��2� := �21 + :::+ �
2
n

n
is the empirical squared mean.

iii) The empirical variance and dispersion are

�2 :=
1

n

nX
i=1

�
�i � �

�2
=

�
�1 � �

�2
+ :::+

�
�n � �

�2
n

(3.2)

and

� =

vuut 1

n

nX
i=1

�
�i � �

�2
, (3.3)

iv) The corrected ("korrigált, javított") empirical variance and dispersion
are

(��)2 :=
n

n� 1 � �
2 =

�
�1 � �

�2
+ :::+

�
�n � �

�2
n� 1 (3.4)
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and

�� =

vuut 1

n� 1

nX
i=1

�
�i � �

�2
=

r
n

n� 1 � � . (3.5)

�

Remark II.3 The empirical and the corrected dispersions are often denoted by s
and s� to distinguish from the theoretical dispersion � .

The empirical and corrected variances and dispersions can be calculated easier:

Theorem II.4

�2 =
�
�2
�
�
�
�
�2
=
�21 + :::+ �

2
n

n
�
�
�
�2
, (3.6)

� =

q �
�2
�
�
�
�
�2

and so �� =

r
n

n� 1

��
�2
�
�
�
�
�2�

. (3.7)

�

Example II.5 Let f�1; :::; �ng =
= f20:0; 20:2; 20:4; 20:7; 20:7; 21:0; 21:1; 21:3; 21:4; 21:4; 21:4; 21:5g ,
so n = 12 and s = n� 1 .
The empirical mean is:

� =

20:0 + 20:2 + 20:4 + 20:7 + 20:7 + 21:0 + 21:1 + 21:3 + 21:4 + 21:4 + 21:4 + 21:5

12
= 20:925 ,

the empirical quadratic mean:�
�2
�
=
20:02 + 20:22 + 20:42 + 20:72 + 20:72 + 21:02

12
+

+
21:12 + 21:32 + 21:42 + 21:42 + 21:42 + 21:52

12
� 438:100 833 ,

the empirical variance and dispersion:

�2 =
�
�2
�
�
�
�
�2 � 438:101� 20:9252 � 0:2454 ,

� =

q�
�2
�
�
�
�
�2 � p0:245 4 � 0:4954 ,

the corrected empirical variance and dispersion:
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(��)2 =
n

n� 1 �
��
�2
�
�
�
�
�2� � 12

11
� (438:101� 20:9252) � 0:2677 ,

�� =

r
n

n� 1 �
��
�2
�
�
�
�
�2� � p0:2677 = 0:5174 .

De�nition II.6 Any function g (�1; :::; �n) of the sample (�1; :::; �n) is called sta-
tistical function, or shortly statistic. �

Remark II.7 Many formulas use the advantage of datasets which are "symmetric
to the origin", more precisely having mean �� = 0. This can be achieved by a
little trick, which is worth learning. Let the original dataset (real numbers) be
� = f�i : i = 1; :::; ng and denote �� its mean (a �xed real number). Now, prepare
the modi�ed dataset �0 :=

�
�i � �� : i = 1; :::; n

	
, i.e. substract �� from each data.

Then clearly �0 = 0. Most of the further calculations allow this transformation.

Recall the similar transformation standardizing a r.v. � as �st =
��M(�)
D(�)

resulting M (�st) = 0 and D (�st) = 1. Similarly, a dataset � can also be stan-
dardized as

�st :=

�
�i � ��
��

: i = 1; :::; n

�
(3.8)

resulting similarly �st = 0 and ��st = 1.
However, not each further calculations allow this transformation.
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Chapter 4

Con�dence intervals

Shortly: interval estimations (reliability intervals, "kon�dencia =megbízhatósági
intervallumok").

The general problem is :

Problem II.8 Give an interval [a; b] of real numbers such that

P (a <  < b) � 1� " (4.1)

where  is the parameter we are interested in and 0 < " < 1 is given . �

De�nition II.9 The interval [a; b] is the con�dence (secure, "kon�dencia, meg-
bízhatósági") interval and 1� " is the con�dence level. �

Remark II.10 Increasing n (the size of the sample) decreases [a; b], but if de-
creasing " then [a; b] increases.

4.1 Interval for the probability

Problem II.11 Find the interval for p = P (A) for the event A :

P (a < p < b) � 1� " (4.2)

31
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Theorem II.12 If n independent experiments resulted k outcomes of A and n is
large enough1), then

[a; b] =

�
k

n
� � ;

k

n
+ �

�
(4.3)

where

� =
u"p
n
�

s
k

n
�
�
1� k

n

�
(4.4)

and
� (u") = 1�

"

2
(4.5)

(use table �). �

Example II.13 Out of 30 pieces 10 is broken. Give an interval for p = P (broken)
with con�dence level 95% .

Solution II.14 " = 0:05 and � (u") = 1�
"

2
= 0:975 imply u" = 1:96 .

Further:

� =
1:96p
30
�
s
10

30
�
�
1� 10

30

�
� 0:168 690 ,

a � 10

30
� 0:168 690 � 0:164 643 ,

b � 10

30
+ 0:168 690 = 0:502 023 ,

so, by 95% we have

P (0:164 < p < 0:502) � 0:95 . � (4.6)

Remark II.15 i) The interval [a; b] = [0:164 ; 0:502] is fairly large since n is
small and " is small, too.
ii) Theorem II.12 is based on Moivre-Laplace�s theorem (see [SzI1]). �

1 ) n must be above 30, but n > 200 is preferable.
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4.2 Interval for the mean when � is known

Problem II.16 Give an interval for m = M (�) if � is normal (Gaussian) and
� = D (�) and " both are given:

P (a � m � b) � 1� " . (4.7)

Theorem II.17

[a; b] =

�
� � u" �

�p
n

; � + u" �
�p
n

�
(4.8)

where u" satis�es (4.5). �

Example II.18 � is normal with � = 3 and the sample is: f�1; :::; �ng =

= f20:0; 20:2; 20:4; 20:7; 20:7; 21:0; 21:1; 21:3; 21:4; 21:4; 21:4; 21:5g .

Give an interval for 95% con�dence.

Solution II.19 So n = 12 , D (�) = � = 3 , m = M (�) =? , " = 5% = 0:05 ,
� (u0:05) = 0:975 and u0:05 = 1:96 . Using (3.1) and (4.8) we have

� =

20:0 + 20:2 + 20:4 + 20:7 + 20:7 + 21:0 + 21:1 + 21:3 + 21:4 + 21:4 + 21:4 + 21:5

12

= 20:925 ,

�p
n
=

3p
12
� 0:866 025 ,

a � 20:925� 1:96 � 0:866 025 � 19:227 591 ,

b � 20:925 + 1:96 � 0:866 025 = 22:622 409 .

So

P (19:228 < m < 22:622) > 1� " = 0:95 . (4.9)
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4.3 Interval for the mean when � is unknown

Problem II.20 Give an interval for m = M (�) if � is normal (Gaussian) and "
is given but � = D (�) is unknown.

Theorem II.21 After �nding t" in the table of the Student- (or t-) distribution
with degree of freedom s = n� 1 we have

[a; b] =

�
� � t" �

��p
n

; � + t" �
��p
n

�
(4.10)

i.e.
P (a < M (�) < b) > 1� " . � (4.11)

Example II.22 Let the sample be:
X1; :::; Xn = 20:0, 20:2, 20:4, 20:7, 20:7, 21:0, 21:1, 21:3, 21:4, 21:4, 21:4, 21:5
and let 1� " = 95% .

Solution II.23 n = 12 , s = n � 1 = 11 , m = M (�) =?, " = 5% = 0:05 , so
t0:05 = 2:201 (fom the table). We calculated � ,

�
�2
�
and �� in example II.5, so:

��p
n
� 0:5174p

12
� 0:1494 ,

a � 20:925� 2:201 � 0:1494 � 20:5962 ,
b � 20:925 + 2:201 � 0:1494 � 21:2538 ,
and �nally

P (20:596 < M (�) < 21:254) > 1� " = 0:95 . (4.12)
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4.4 Interval for the dispersion

Problem II.24 Give an interval for � = D (�) if � is normal (Gaussian) and "
is given.

Theorem II.25 For the variance we have�
a2; b2

�
=

"
n � (��)2

�2"=2
;

n � (��)2

�21�"=2

#
(4.13)

i.e.
P
�
a2 < D2 (�) < b2

�
> 1� " (4.14)

and for the dispersion

[a; b] =

"p
n � ��
�"=2

;

p
n � ��
�1�"=2

#
(4.15)

i.e.
P (a < D (�) < b) > 1� " (4.16)

where �2"=2 and �
2
1�"=2 are from the table of the �

2 or chi-square distribution with
degree of freedom s = n� 1 . �
Example II.26 The con�dence level is 95% and the sample is: X1; :::; Xn =
= 20:0, 20:2, 20:4, 20:7, 20:7, 21:0, 21:1, 21:3, 21:4, 21:4, 21:4, 21:5 .

Solution II.27 n = 12 , the degree of freedom is s = n�1 = 11 , " = 5% = 0:05 .
Using table �2 we �nd ("=2 = 0:025, 1� "=2 = 0:975, s = 11):

�2"=2 = �
2
0:025 � 21:920 and �21�"=2 = �

2
0:975 � 3:816 , (4.17)

so
�0:025 �

p
21:920 � 4:6819 és �0:975 �

p
3:816 � 1:953 5 . (4.18)

We calculated � ,
�
�2
�
and �� in Example II.5, so

a2 =
n � (��)2

�2"=2
� 12 � 0:2677

21:920
� 0:1466 => a �

p
0:1466 � 0:3829,

b2 =
n � (��)2

�21�"=2
� 12 � 0:2677

3:816
� 0:8418 => b �

p
0:8418 � 0:9175,

so
P
�
0:1466 < D2 (�) < 0:8418

�
> 1� " = 0:95 (4.19)

and
P (0:3829 < D (�) < 0:9175) > 1� " = 0:95 . (4.20)
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Chapter 5

Point estimations and hypothesis
testing

5.1 General notions

De�nition II.28 i) Any statistical function g (�1; :::; �n) is an estimation ("becs-
lés") of the parameter a (of a r.v. �), and it is often denoted by â (�1; :::; �n), or
shortly by â .

ii) The estimation â = g (�1; :::; �n) is unbiased (un-distorted, not-deformed,
"torzítatlan") if its mean equals to a = a (�), i.e.

M (â) = a . (5.1)

iii) The estimation â is consistent ("konzisztens", "következetes") if

(8"; � > 0) (9n0) (8n > n0)

P ( jâ (�1; :::; �n)� aj � ") < � . (5.2)

iv) The estimation â1 is more e¢cient/ e¤ective ("hatásos") than â2 for
the same parameter a if D (â1) < D (â2) . �

Remark II.29 The exact value of a is unknown in general.

Example II.30 By the Laws (Theorems) of Large Numbers we know, that

i) p̂ :=
k

n
( relative frequency) is an unbiased estimation of the probability p ,

37
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ii) �̂ = �� :=
�1 + :::+ �n

n
( average) is an unbiased estimation of the meanM (�) .

iii) (��n)
2 :=

nP
i=1
(����i)

2

n�1 ( corrected empirical variance)

is an unbiased estimation of the variance D2 (�) . �

Remark II.31 Be careful: the denominator of (��n)
2 is n� 1 , instead of n .

De�nition II.32 i) Any statement or assumption on � (and �), a hypothesis
("hipotézis, feltételezés"). The hypothesis we inverstigate is denoted by H0 and
called base- or null-hypothesis ("nullhipotézis"), its negation is denoted by H
and called alternative hypothesis ("ellenhipotézis").
ii) The algorithm for deciding the hypothesis is called a test ("próba"),

iii) After our calculations either H0 is accepted ("elfogadjuk") or H0 is rejected
("elvetjük"), i.e. H is accepted. �

We may have two types of errors after our calculations:

De�nition II.33 Type I error ("els½ofajú hiba") occurs when H0 is true but we
reject it,
Type II error ("másodfajú hiba") occurs when H0 is not true but we accept it:

H0 is true H0 is false
H0 is accepted OK Type II error
H0 is rejected Type I error OK

�

Remark II.34 The probability of type I error is usually denoted by " .
The probability of type II error is hard to determine, but it usually tends to 0 if
n!1 .

Remark II.35 Our main goal is to decrease type I errors: we want to avoid
rejecting H0 when H0 is true (e.g. not kicking out any student who had prepared
for the exam)!
Of couse, this could be ful�lled by accepting H0 in all cases, i.e. setting " := 0 ,

but it would be a nonsense! So we have to balance " in somehow - read further.

De�nition II.36 The signi�cance level of a test ("megbízhatósági szint")
is 1� " (where " is the probability of type I error). �
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Remark II.37 i) The word "signi�cance level" means "important, essential, re-
liable, ..." (in Hungarian: "szigni�kancia- vagy megbízhatósági szint, szigni�káns,
jelent½os").
ii) Most of the tests (see below) start with giving the signi�cance level or "

(probability of type I error).
iii) Decreasing " makes type I error smaller and the test more reliable, how-

ever type II error increases at the same time when the sample size (n) is �xed.
Increasing n type II error tends to 0 .
iv) In general, choosing the signi�cance level to be 95% is a suitable choice.

De�nition II.38 i) If the hypothesis is quantitative (usually on some characteris-
tics of � , e.g. "M (�) = m0"), then the estimation and the test are called paramet-
ric ("paraméteres"), otherwise they are nonparametric ("nemparaméteres").
ii) If the hypothesis is an equality, its test must be a two-sided test ("kétoldali

próba").
If the hypothesis is an inequality, its test must be a one-sided test ("egyoldali

próba"). �

Example II.39 Some hypoteses (for details see the subsections below):
i) H0 : M (�) = m0 (m0 2 R is a given number), so H : M (�) 6= m0 . This

hypothesis needs a parametric and two-sided test.
ii) H0 : M (�) � m0 (m0 2 R is a given number), so H : M (�) > m0 . This

hypothesis needs a parametric and one-sided test.
iii) H0 : " � is a normal distibution". This hypothesis needs a nonparamteric

test. �

Remark II.40 In practice H0 must contain the equality sign (= or � or �) and
H (the negation of H0) may contain only the signs 6= , < and > .

5.2 Parametric tests

5.2.1 u- test for the mean of one sample when � is known

("Egymintás u-próba")
� is normal, � is known, m0 and " are given (m0 2 R), (�1; :::; �n) is the

sample.
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Algorithm II.41 For the two-sided test H0 : M (�) = m0

i) calculate usz :=
p
n �
�� �m0

�
,

ii) �nd u" 2 R+ such that � (u") = 1�
"

2
,

iii) accept H0 in the case juszj � u" with signi�cance 1� "
or reject H0 in the case juszj > u" with signi�cance 1� " . �
Algorithm II.42 For one-sided tests: H0 : M (�) � = � m0

i) calculate usz :=
p
n �
�� �m0

�
,

ii) �nd u" 2 R+ such that � (u") = 1� " ,
iii) accept H0 :M (�) � m0 in the case usz � u" with signi�cance 1� "
or reject H0 in the case usz > u" with signi�cance 1� " .
iv) accept H0 :M (�) � m0 in the case �u" � usz with signi�cance 1� "
or reject H0 in the case �u" > usz with signi�cance 1� " . �
Remark II.43 If the dispersion � is unknown, theoretically the t-test (see below)
is applicable, but for large samples (n > 30) the u -test can also be used, but use
�� instead of � .

Example II.44 Let m0 = 1200 , � = 3 and
�!
� = f1193; 1198; 1203; 1191; 1195;

1196; 1199; 1191; 1201; 1196; 1193; 1198; 1204; 1196; 1198; 1200g.
Decide the hypothesis H0 :M (�) = m0 with sigini�cance level 99:9% .

Solution II.45 Two sided test. So " = 0:001 , � (u") = 1 � "

2
= 0:9995 and

u" = 3:29 . Further n = 16 , �� = (1193 + 1198 + 1203 + 1191 + 1195 + 1196 +
1199+1191+1201+1196+1193+1198+1204+1196+1198+1200)= 16 = 1197,

so usz =
p
16 � 1197� 1200

3
= �4 .

Since juszj = 4 > u" = 3:29 we must reject H0 with signi�cance 99:9% .

Example II.46 Let m0 = 70 , � is unknown, n = 36 , �� = 68:5 and �� = 6 .
Decide the hypothesis H0 :M (�) � m0 with sigini�cance level 95% .

Solution II.47 One sided test. Though the dispersion (�) is unknown, but the
sample is large enough (n > 30), so the u -test can also be used. So " = 0:05 ,
� (u") = 1� 0:05 = 0:95 and u" = 1:65 .

usz =
p
n �
�� �m0

��
=
p
36 � 68:5� 70

6
= �1:5 .

Since �u" = �1:65 � usz = �1:5 we have to accept the hypothesis H0 :M (�) � m0

with sigini�cance level 95% .
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5.2.2 t- test for the mean of one sample when � is unknown

("Egymintás t-próba")
� is normal, � is unknown, m0 and " are given (m0 2 R), (�1; :::; �n) is the

sample.

Algorithm II.48 For the two-sided test H0 : M (�) = m0 :

i) calculate tsz :=
p
n �
�� �m0

��

ii) �nd t" 2 R+ in the table of the Student-distribution for � = p = 1 � "

2
and

degree of freedom s = n� 1 ,
iii) accept H0 in the case jtszj � t" with signi�cance 1� " ,
or reject H0 in the case jtszj > t" with signi�cance 1� " . �
Algorithm II.49 For one-sided tests H0 : M (�) � = � m0

i) calculate tsz :=
p
n �
�� �m0

��
,

ii) �nd t" 2 R+ in the table of the Student-distribution for � = p = 1 � " and
degree of freedom s = n� 1 ,
iii) accept H0 :M (�) � m0 in the case tsz � t" with signi�cance 1� "
or reject H0 in the case tsz > t" with signi�cance 1� " .
iv) accept H0 :M (�) � m0 in the case �t" � tsz with signi�cance 1� "
or reject H0 in the case �t" > tsz with signi�cance 1� " . �
Remark II.50 For large samples (n > 30) the u -test can also be applied but we
use �� instead of � .

Example II.51 Let the sample be
�!
� = f1:51; 1:49; 1:54; 1:52; 1:54g. Decide the

hypothesis H0 :M (�) = 1:50 with sigini�cance level 95% .

Solution II.52 Two sided test. n = 5, s = 4 ,

�� =
1:51 + 1:49 + 1:54 + 1:52 + 1:54

5
= 1:52,

�2 =
1:512 + 1:492 + 1:542 + 1:522 + 1:542

5
= 2:31076 ,

�� =

r
5

5� 1 � (2:31076� 1:52
2) = 0:02121 ,

tsz =
p
n �
�� �m0

��
=
p
5 � 1:52� 1:50

0:02121
= 2:1085 ,

" = 0:05 , � = p = 1� "
2
= 0:975 , t" = 2:78 .

Since jtszj = 2:1085 < t" = 2:78 we must accept H0 with signi�cance 95% .



42 CHAPTER 5. POINT ESTIMATIONS AND HYPOTHESIS TESTING

Example II.53 Let the sample be
�!
� = f3:1; 2:8; 1:5; 1:7; 2:4; 2:0; 3:3; 1:6g.

Decide the hypothesis H0 :M (�) � 3:1 with sigini�cance level 98% .

Solution II.54 One sided test. n = 8 , s = 7 ,

�� =
3:1 + 2:8 + 1:5 + 1:7 + 2:4 + 2:0 + 3:3 + 1:6

8
= 2:3 ,

�2 =
3:12 + 2:82 + 1:52 + 1:72 + 2:42 + 2:02 + 3:32 + 1:62

8
= 5:725 ,

�� =

r
8

8� 1 � (5:725� 2:3
2) t 0:7051 ,

tsz =
p
n �
�� �m0

��
=
p
8 � 2:3� 3:1

0:7051
t �3:2091 ,

" = 0:02 , p = 1� " = 0:98 , t" = 2:52 .

Since tsz t �3:2091 < �t" = �2:52 we must reject H0 with signi�cance 98% .

5.2.3 k- test for the dispersion of one sample

("Egymintás szórás-próba")
� is normal, � is unknown, " and �0 are given (�0 2 R+), (�1; :::; �n) is the

sample.

i) For all the cases below the calculated test function is:

ksz :=
(n� 1) � (��)2

�20
, (5.3)

the degree of freedom is s = n� 1 . Then

Algorithm II.55 For the two-sided test H0 : D (�) = �0

ii) �nd k"=2 = �
2
n�1;"=2 2 R+ and k1�"=2 = �

2
n�1;1�"=2 2 R+ in the table of

the �2 -distribution for � =
"

2
and � = 1� "

2
,

iii) accept H0 in the case k1�"=2 � ksz � k"=2 with signi�cance 1� " ,
or reject H0 in the case either ksz < k1�"=2 or k"=2 < ksz with signi�cance
1� " . �



5.2. PARAMETRIC TESTS 43

Algorithm II.56 For the one-sided test H0 : D (�) � �0
ii) �nd k1�" = �2n�1;1�" 2 R+ in the table of the �2 -distribution for � =
1� " ,
iii) accept H0 in the case k1�" � ksz with signi�cance 1� " ,
or reject H0 in the case ksz < k1�" with signi�cance 1� " .

Algorithm II.57 For the one-sided test H0 : D (�) � �0
ii) �nd k" = �

2
n�1;" 2 R+ in the table of the �2 -distribution for � = " ,

iii) accept H0 in the case ksz � k" with signi�cance 1� " ,
or reject H0 in the case k" < ksz with signi�cance 1� " .

Example II.58 Decide H0 : D (�) = 1:1 when , �� = 1:3 , n = 10 and " = 0:1.

Solution II.59 Two sided test: �0 = 1:1 , � =
"

2
= 0:05 , k" = 16:919 , 1�

"

2
=

0:975 , k1�" = 2:7 , ksz =
9 � 1:32
1:12

t 12:57 , k1�" < ksz < k" , so H0 is accepted.

Example II.60 Decide H0 : D (�) � 1:1 when , �� = 1:3 , n = 10 and " = 0:1.

Solution II.61 One sided test: �0 = 1:1 , � = " = 0:1 , k" = 14:684 ,

ksz =
9 � 1:32
1:12

t 12:57 < k" so H0 is accepted.

5.2.4 u- test for the means of two samples

("Kétmintás u-próba")
� and � are normal, " and m0 are given (m0 2 R), (�1; :::; �n) and (�1; :::; �m)

are large and independent samples, further let denote �� := D (�) and �� := D (�) .
Here we will deal with hypothesis M (�) �M (�)rm0 where r can be any of
� ; � or = .

Algorithm II.62 i1) When �� and �� are known (for any-sided test) calculate

usz :=
�� � �� �m0r
�2�
n
+
�2�
m

, (5.4)
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i2) when �� and �� are not known (for any-sided test), calculate

usz :=
�� � �� �m0s

��2� � (n� 1) + ��2� � (m� 1)
n+m� 2 �

r
1

n
+
1

m

(5.5)

ii1) For the two-sided test H0 : M (�) �M (�) = m0 �nd u" 2 R+ such that
� (u") = 1�

"

2
,

ii2) for one-sided tests H0 : M (�) �M (�) � = � m0 �nd u" 2 R+ such that
� (u") = 1� " .

iii1) For the two-sided test H0 :M (�)�M (�) = m0

accept H0 in the case juszj � u" or reject H0 in the case juszj > u" with signi�cance
1� " . �
iii2) For the one-sided test H0 :M (�)�M (�) � m0

accept H0 in the case �u" � usz or reject H0 in the case �u" > usz with signi�-
cance 1� " . �

iii3) For the one-sided test H0 :M (�)�M (�) � m0

accept H0 in the case usz � u" or reject H0 in the case usz > u" with signi�cance
1� " . �

Example II.63 Let n = 10 , �� = 40:1 , �� = 5:48 , m = 8 , �� = 38:3 , �� = 6:32.
Decide M (�) =M (�) with signi�cance level 95% .

Solution II.64 Two-sided test and �� , �� are known. H0 : M (�)�M (�) = 0 ,

m0 = 0 , " = 0:05 , � (u") = 1�
"

2
= 0:975 , so u" = 1:96 .

Now usz =
40:1� 38:3� 0q

5:482

10
+ 6:322

8

t 0:6366 < u" ,

and H0 is accepted with signi�cance level 95% .

Example II.65 Let n = 225 , �� = 57 , �� = 12 , m = 250 , �� = 60 , �� = 15 .
Decide M (�) �M (�) with signi�cance level 98% .

Solution II.66 One-sided test and �� , �� are known. H0 : M (�)�M (�) � 0 ,
m0 = 0 , " = 0:02 , � (u") = 1� " = 0:98 , so u" = 2:05.

Now usz =
57� 60� 0q

122

225
+ 152

250

t �2:417 < �u" ,

so we reject H0 with signi�cance level 98% .
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Example II.67 Let n = 40 , �� = 102 , �� = 5:648 , m = 35 , �� = 95 , �� = �� =
5:648. Decide M (�) �M (�) + 4 with signi�cance level 99% .

Solution II.68 One-sided test and �� = �� are known. H0 : M (�)�M (�) � 4,
m0 = 4 , " = 0:01 , � (u") = 1� " = 0:99 , so u" = 2:33.

Now usz =
102� 95� 4q
5:6482

40
+ 5:6482

35

t 2:2949 < u" ,

so we accept H0 with signi�cance level 98% .

5.2.5 t- test for the means of two samples when �1 = �2
("Kétmintás t-próba")
� and � are normal, only the equality �1 = �2 is known (but we do not know

either �1 or �2), " is given, (�1; :::; �n) and (�1; :::; �m) are not large samples. (For
large samples the u-test can also be used.)

Algorithm II.69 For the two-sided test H0 :M (�) =M (�)

i) calculate

tsz :=
�� � ��q

(n� 1) ��2� + (m� 1) ��2�
�
r
nm (n+m� 2)

n+m
(5.6)

ii) �nd t" 2 R+ in the table of the Student-distribution for p = 1 �
"

2
and degree

of freedom s = n+m� 2 ,
iii) accept H0 in the case jtszj � t" with signi�cance 1� " .
or reject H0 in the case jtszj > t" with signi�cance 1� " . �

Algorithm II.70 For the two-sided test H0 : M (�) � M (�) = m0 (where
m0 2 R any number)
i) calculate

tsz :=
�� � �� �m0s

��2� � (n� 1) + ��2� � (m� 1)
n+m� 2 �

r
1

n
+
1

m

(5.7)
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ii) �nd t" 2 R+ in the table of the Student-distribution for p = 1 �
"

2
and degree

of freedom s = n+m� 2 ,
iii) accept H0 in the case jtszj � t" with signi�cance 1� " .
or reject H0 in the case jtszj > t" with signi�cance 1� " . �

Example II.71 Let
�!
� = f300; 301; 303; 288; 294; 296g

and �!� = f305; 317; 308; 300; 314; 316g .
Decide the hypothesis H0 :M (�) =M (�) with sigini�cance level 99% .

Solution II.72 �� =
300 + 301 + 303 + 288 + 294 + 296

6
= 297 ,

�2 =
3002 + 3012 + 3032 + 2882 + 2942 + 2962

6
t 88234: _3 ,

��2� =
6

6� 1 �
�
88234: _3� 2972

�
t 30:3_9 ,

�� =
305 + 317 + 308 + 300 + 314 + 316

6
= 310 ,

�2 =
3052 + 3172 + 3082 + 3002 + 3142 + 3162

6
= 96138: _3 ,

��2� =
6

6� 1 �
�
96138: _3� 3102

�
t 45: _9 ,

tsz =
297� 310p

5 � 30:40 + 5 � 46
�
r
36 � 10
6 + 6

t �3:643 ,

n = m = 6 , s = 6 + 6� 2 = 10 , " = 0:01 , � = p = 1� "
2
= 0:995 , t" = 3:17 .

Since jtszj t 3:643 > t" = 3:17 we must reject H0 with signi�cance 99% .

5.2.6 F- test for the dispersions of two samples
whether �1 = �2

("Kétmintás F-próba")
� and � are normal, H0 : D (�) = D (�) , " is given, (�1; :::; �n) and (�1; :::; �m)

are the samples.

Algorithm II.73 i) if ��2� > ��2� then let Fsz :=
��2�
��2�

, otherwise let Fsz :=
��2�
��2�

(i.e. Fsz > 1 always holds),
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ii) �nd F" 2 R+ in the table of the F-distribution for the given " in the row
m� 1 in the column n� 1 ,
iii) accept H0 in the case jFszj � F" with signi�cance 1� " .

or reject H0 in the case jFszj > F" with signi�cance 1� " . �

Example II.74 Let
�!
� = f11:9; 12:1; 12:8; 12:2; 12:5; 11:9; 12:5; 11:8; 12:4; 12:9g ,

�!� = f12:1; 12:0; 12:9; 12:2; 12:7; 12:6; 12:6; 12:8; 12:0; 13:1g .
Decide the hypothesis H0 : D (�) = D (�) with sigini�cance level 95% .

Solution II.75 n = m = 10 , � = 12:3 , ��2� t 0:1467 , � = 12:5 , ��2� t 0:1578 ,

Fsz =
0:1578

0:1467
t 1:0756 . The 9 �th row and 9 �th column of the F table shows

F" = 3:18 . Since jFszj t 1:0756 � F" = 3:18 we accept the hypothesis H0 .

5.3 Nonparametric tests

Remark II.76 The most widely used nonparametric test is Pearson�s chi-squared
tests, i.e. shortly the �2 ("khí-négyzet") test. It is important to know, that while
the previous tests can be used for small and medium size samples as well, the �2

test works only for large samples.

As in hypothesis tests, the signi�cance level 1� " is always given.

5.3.1 Goodness of �t

("illeszkedésvizsgálat"), GFI = goodness of �t index ("az illeszkedés jósága
mutató"). See also the section "Normality test".

H0 : The sample
�!
� �ts the discrete distribution (p1; :::; pk) .

In detail: Does the sample (�1; :::; �n) �ts into k mutually exclusive classes
with probabilities pi (i = 1; :::; k), i.e. is fA1; :::; Akg a complete system of events
with P (Ai) = pi ?

Algorithm II.77 i) count the occurences in Ai (i.e. how many �j is in Ai) and
denote these numbers by ai ,
ii) calculate

�2sz :=
kX
i=1

(ai � npi)2

npi
= n �

kX
i=1

�
ai
n
� pi

�2
pi

, (5.8)
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iii) �nd �2" in the "Chi-squared" table (the degree of freedom is k � 1),

iv) accept H0 in the case j�2szj � �2" with signi�cance 1� " ,
or reject H0 in the case j�2szj > �2" with signi�cance 1� " . �

Example II.78 We tossed 4 coins (together) 160 times and get the distribution

of the heads as:
nu. of heads (i) 0 1 2 3 4 total
frequency (ai) 5 35 67 41 12 160

.

Are the coins fair with signi�cance 95% ?

Solution II.79 The coins are fair () � :="the number of heads" is a bino-
mial distribution with p = 1

2
.

p0 =

�
4

0

�
�
�
1

2

�0
�
�
1

2

�4�0
=

�
4

0

�
�
�
1

2

�4
=
1

16
= 0:0625 ,

p1 =

�
4

1

�
�
�
1

2

�1
�
�
1

2

�4�1
=

�
4

1

�
�
�
1

2

�4
=
4

16
= 0:25 ,

p2 =

�
4

2

�
�
�
1

2

�2
�
�
1

2

�4�2
=

�
4

2

�
�
�
1

2

�4
=
6

16
= 0:375 ,

p3 =

�
4

3

�
�
�
1

2

�3
�
�
1

2

�4�3
=

�
4

3

�
�
�
1

2

�4
=
4

16
= 0:25 ,

p4 =

�
4

4

�
�
�
1

2

�4
�
�
1

2

�4�4
=

�
4

4

�
�
�
1

2

�4
=
1

16
= 0:0625 .

i 0 1 2 3 4
ai 5 35 67 41 12
n � pi 10 40 60 40 10

(ai � n � pi)2 52 52 72 12 22

�2sz =
kX
i=1

(ai � npi)2

npi
=

52

10
+
52

40
+
72

60
+
12

40
+
22

10
t 4:3667 ,

s = 5� 1 = 4, " = 0:05, �2" = 9:488, H0 is accepted since �2sz < �
2
" . �
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5.3.2 Homogenity

("homogenitás, azonosság")

H0 : The complete systems of events fA1; :::; Akg and fB1; :::; Bkg determined
by � and � are the same.

In detail: The sample is the union of (�1; :::; �n) and (�1; :::; �m), i.e. and the
equality of � and � is the question.

Algorithm II.80 One sided test.
i) count the occurences of

�!
� in Ai and of

�!� in Bi and denote these numbers by
ai and bi (i = 1; :::; k),

ii) calculate

�2sz :=
1

mn

kX
i=1

(mai � nbi)2

ai + bi
, (5.9)

iii) �nd �2" in the "Chi-squared" table (the degree of freedom now is (k � 1), � = "),
iv) accept H0 in the case j�2szj � �2" with signi�cance 1� " ,
or reject H0 in the case j�2szj > �2" with signi�cance 1� " . �

Example II.81 Decide homogenity with signi�cance 95% for the below samples:

.

A1 A2 A3 A4 A5 n
�!
� 51 64 26 18 21 180

B1 B2 B3 B4 B5 m
�!� 72 51 33 23 21 200

Solution II.82 n = 51+64+26+18+21 = 180, m = 72+51+33+23+21 = 200 ,
s = 5� 1 = 4 , " = 0:05 , �2s;" = �24;0:05 = 9:488 ,
further

�2sz =
1

180 � 200

 
(200 � 51� 180 � 72)2

51 + 72
+
(200 � 64� 180 � 51)2

64 + 51
+

+
(200 � 26� 180 � 33)2

26 + 33
+
(200 � 18� 180 � 23)2

18 + 23
+
(200 � 21� 180 � 21)2

21 + 21

!
t 5:458 < �2s;" ,
so H0 is accepted.
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5.3.3 Independence

("függetlenség")

H0 : The complete systems of events fA1; :::; Akg and fB1; :::; B`g determined
by � and � are independent.

In detail: The sample is
�!
� = ((�1; �1) ; :::; (�n; �n)), i.e. n many double

measurements are, and the dependence between � and � is the question.

Algorithm II.83 i) make the table of the occurences in Ai vs. Bj and denote
these by cij ,
ii) calculate the marginal distributions (a1; :::; ak) and (b1; :::; b`),

iii) calculate

�2sz :=
1

n

kX
i=1

kX
j=1

(ncij � aibj)2

aibj
, (5.10)

(use the vertices of the rectangles in the table for the enumerator),

iv) �nd �2" in the "Chi-squared" table (the degree of freedom now is (k � 1) (`� 1)),
v) accept H0 in the case j�2szj � �2" with signi�cance 1� " ,
or reject H0 in the case j�2szj > �2" with signi�cance 1� " . �

Example II.84 Is there a connection with signi�cance 95% between gender and
success on the basis of the table?

.
� n � success unsuccess
man 28 12

woman 34 26

Solution II.85 So n = 28+12+34+26 = 100, k = ` = 2, s = (k � 1) (`� 1) = 1,
" = 0:05,

.

� n � success unsuccess bj
man 28 12 40

woman 34 26 60

ai 62 38 100

�2sz =
1

100
�

2X
i=1

2X
i=1

(n � ci;j � ai � bj)2

ai � bj

= 1
100

�
(100�28�40�62)2

40�62 + (100�12�40�38)2
40�38 + (100�34�60�62)2

60�62 + (100�26�60�38)2
60�38

�
t 1:811 0 ,

�2sz < �
2
" = 3:84, so H0 is accepted: no connection between gender and success

with signi�cance 95% .
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5.3.4 Test for correlation

A frequent and important question is: "is there any connection between the
normal r.v. � and � ?"
The base hypothesis usually is: "H0 : no correlation between � and �."

In other words, H0 says that r�;� = 0 .

Algorithm II.86 Calculate r from the dataset as described in section 6.3 "Esti-
mating the correlation coe¢cient", using (6.20) or (6.21), and calculate

tsz = r �
r

s

1� r2 (5.11)

where s = n� 2 is the degree of freedom.
Pick the critical value t" from the Student t-table, using s and ".
If jtszj � t" then accept H0 , otherwise reject it. �

Example II.87 Suppose that n = 14 and r = 0:818505. Then s = 12 and
tsz = 0:818505 �

q
12

1�0:8185052 t 4:9354. For "1 = 5% and "2 = 1% we have
t0:05 = 2:179 and t0:01 = 3:055. Since tsz > t0:05 and tsz > t0:01 we have to reject
H0 for both ".

Remark II.88 See also the formulae (6.20) and (6.21) and their role in Section
6.3 "Estimating the correlation coe¢cient".

5.3.5 Normality testing

Now the base hypothesis is: "H0 : � is normal".

Let us mention �rst the old but illustrative method, called the "Ruler Method"
("vonalzós módszer", see section 6.5.1), which will be explained in more detail in
section 6.5 "Nonlinear regressions - linearizing methods" and in [SzI2].
If we are given the dataset � = f(xi; yi) : i = 1; :::; ng where xi are arbitrary

real numbers and yi are the measured (or: approximated) value of the probability
P (� < xi) then the points must (almost) �t the graph of the distribution function
Fm;� (x). Have in mind that not onlym and � are unknown but even the normality
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of � is in question! Though we can plot the dataset � to the (usual) coordinate
system, how to decide whether they are on (or close to) such a curve?
Since Fm;� is a strictly monotone increasing function, we can suitably transform

the coordinate system (rarely speaking: we "expand" the y axis in a suitable
manner) such that the graphs of all the normal density functions Fm;� became
(straight) lines, as you can see on the next Figure! This coordinate system is
called Gaussian or normal. Placing your ruler on the �gure you can justify
whether the dataset � �ts a line or not, and equivalently, whether the r.v. �
(measured by �) is normal. Moreover, from the "usual" formula �y = a�x+ b of this
line the parameters m and � can be calculated.
Sorry, Excel and many other applications can not handle normal coordinate

systems but the webpage [HM] can, please try it! You can �nd a normal coordinate
grid on my webpage as well:
https://math.uni-pannon.hu/~szalkai/koordinata/Gauss-papir-L140-szines.gif

Figure 2: Gaussian coordinate system
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Idea of the "modern" algorithm: For any continuous density function f0
(or cumulative distribution function F0) we may ask "is � having the distribution
function f� = f0 , i.e. F� = F0 ".
For deciding this, divide Im (�) into intervals [xi�1; xi) with the points x0; x1; :::; xr

for i = 1; :::; r. Now use the method of Section "Goodness of �t" for the virtual
events Ai as: P (Ai) = F (xi)� F (xi�1) = pi .

Example II.89 We tossed 5 dices many times.The number of occurences of dif-
ferent sums of the dots is shown in the table. Decide with signi�cance level 95%
whether this distribution is normal.

sum <10 10 11 12 13 14 15 16 17 18 19 20 21 22 23
freq. 15 20 30 40 55 70 90 95 99 98 96 85 75 58 35
sum 24 25 25<
freq. 33 19 22

Solution II.90 n = 15+20+30+40+55+70+90+95+99+98+96+85+75
+ 58 + 35 + 33 + 19 + 22 = 1035 . By symmetry the sum of the dots on 5 dices
has mean M (�) = 5 � 3:5 = 17:5 = m , the range is [a; b] = [5; 30] , so we assume
� = 2:5 since by the " 3� -rule" we have1) P (j� �M (�)j < 3�) > 0:997.
For simpli�ng our calculations use the intervals
[x0; x1) = [5; 10) , [x1; x2) = [10; 15) , [x2; x3) = [15; 20) , [x3; x4) = [20; 25) ,
[x4; x5) = [25; 31),
so we have the following empirical frequency table:

nu. of interval (i) 1 2 3 4 5 total (n)
frequency (ai) 15 215 478 286 41 1035

relative freq. (ai
n
) 0:0145 0:2077 0:4618 0:2763 0:0396 1

The theoretical probabilities are pi = Fm;� (xi)� Fm;� (xi�1) , so
p1 = Fm;� (10)� Fm;� (5) = �

�
10�17:5
2:5

�
� �

�
5�17:5
2:5

�
= � (�3)� � (�5)

= (1� 0:9987)� (1� 0:9999) = 0:0012
p2 = Fm;� (15)� Fm;� (10) = �

�
15�17:5
2:5

�
� �

�
10�17:5
2:5

�
= � (�1)� � (�3)

= (1� 0:8413)� (1� 0:9987) = 0:1574
p3 = Fm;� (20)� Fm;� (15) = �

�
20�17:5
2:5

�
� �

�
15�17:5
2:5

�
= � (1)� � (�1)

= 0:8413� (1� 0:8413) = 0:6826
1 ) m� 3� = 17:5� 3 � 2:5 = 10, m+3� = 17:5+ 3 � 2:5 = 25. On the other hand: �1 dice =q
91
6 �

�
7
2

�2 t 1:708 and �5 dice =
p
5 � �1 dice t 3:819 .
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p4 = Fm;� (25)� Fm;� (20) = �
�
25�17:5
2:5

�
� �

�
20�17:5
2:5

�
= � (3)� � (1)

= 0:9987� 0:8413 = 0:1574
p5 = Fm;� (31)� Fm;� (25) = �

�
31�17:5
2:5

�
� �

�
25�17:5
2:5

�
= � (5:4)� � (3)

= 0:9999� 0:9987 = 0:0012
The following table compares empirical and theoretical probabilities :

i 1 2 3 4 5 total
ai=n 0:0145 0:2077 0:4618 0:2763 0:0396 1
pi 0:0012 0:1574 0:6826 0:1574 0:0012 0:9998

�2sz =
kX
i=1

(ai � npi)2

npi
= n�

kX
i=1

�
ai
n
� pi

�2
pi

= 1035 �
�
(0:0145�0:0012)2

0:0012
+ (0:2077�0:1574)2

0:1574
+

+ (0:4618�0:6826)2
0:6826

+ (0:2763�0:1574)2
0:1574

+ (0:0396�0:0012)2
0:0012

�
t 1:5535 .

Further: " = 0:05 , s = 5� 1 = 4 , �2" = 9:488 ,
so H0 is accepted since �2sz < �

2
" .

End of the solution. �
The "real" probabilities of sums of 5 dices are shown in the Figure below.

Figure 3: Probabilities of sums of 5 dices



Chapter 6

Regression and the least square
method

Literary the word "regression" ("regresszió"), or "regression toward the mean"
means "turning back", "back looking, -hitting" ("visszatérés, -ütés, -tekintés").
The term was �rst used by Galton1) when investigating human and biological
data. He observed, for example, that the height of children tend to back to the
average of the population: if the parents are higher/shorter than the average, then
their children are (in average) shorter/higher than their parents, i.e. closer to the
average. Of course, this phenomenon is true only in statistical meaning: it is true
only for most of the parents and children, i.e. with probability close (but not
equal) to 1 .
In mathematical statistics we are interested in the type of the connection of

two random variables � and � ("new" and "old", "input" and "output", etc.).
The covariency cov (�; �) and correlation R (�; �) measure only the magnitude of
the dependency, now we are interested in the type of the dependency (see the
forthcoming sections).
See also: https://en.wikipedia.org/wiki/Francis_Galton ,
https://en.wikipedia.org/wiki/Regression_toward_the_mean ,
https://en.wikipedia.org/wiki/Bean_machine ,
https://hu.wikipedia.org/wiki/Galton-deszka ,
https://upload.wikimedia.org/wikipedia/commons/d/dc/Galton_box.webm .

Remark II.91 If the common/joint distribution function F (x; y) for � and � is
known, the theoretical answer to the above question is easy:
the best answer is to approximate � with � is

� = m2 (�) (6.1)

1 ) Sir Francis Eugene Galton (1822-1911) English mathematician.

55
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where the function m2 : R! R is the conditional mean

m2 (x) =M (� j � = x) (6.2)

which was de�ned in Section 1.5 "Conditional probability".
The function m2 is called regression function of �rst kind (els½ofajú re-

gressziós függvény).
In the case � and � have a normal joint distribution, m2 is a linear function:

m2 (x) = ax + b, i.e. � = a� + b for some real numbers a; b 2 R (which can be
computed from the mean and variance of � and �).
However, in practice we have to �nd much easier methods for calculating the

connection between � and � . In what follows, � and � are any r.v. on a (common)
sample space 
 . �

Theoretically we deal with random variables � and � , but in practice we have
only a set of (measured) corresponding data �i and �i as f(�i; �i) : i = 1; :::; ng. As
in the Introduction of Statistics we learned, �i and �i are, in fact, real numbers (in
our notepad), we could write xi and yi instread. Since after repeated measurings
they often vary, they are called r.v. in theory. This is the reason that most of the
theorems have two versions (see e.g. Theorem II.95): one for r.v. and the other
for the dataset f(�i; �i) : i = 1; :::; ng. If you like, you can (adviced to) think of �i
and �i as real numbers, or even xi and yi .
In mathematics we use(d) variables x and y as y = f (x) , but in the context

of � and � we have to write them like g (�), � t g (�), (a�i + b)� �i , etc. In this
chapter we mix these two notations, you can also turn � and � to x and y if you
like.

6.1 The general case

First we de�ne the general problem we want to solve in this chapter. The
general problem and solution methods will be explained in the special cases.

De�nition II.92 We are given the r.v. � and � , or the dataset

f(�i; �i) : i = 1; :::; ng . (6.3)

We are looking for the function g : R ! R such that the r.v. g (�) is the closest
one to � . The di¤erence is measured by

M
�
[g (�)� �]2

�
(6.4)
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and by X
i

[g (�i)� �i]
2 (6.5)

respectively, i.e. we want to minimize the quantities in (6.4) and in (6.5).
More precisely, we have to choose g from a given type of functions with parameters,
i.e. in fact

g (�) = g (�; a1; :::; am) (6.6)

and we have to �nd the parameter values which minimize (6.4) and (6.5). �

Remark II.93 (i) The quantities (6.4) and (6.5) are similar to the de�nition
of the variance. Again, the square eliminates + and � values, and corrects the
magnitude of small and large numbers.
(ii) The problem and the solution are called Least Squares Method ("legkisebb

négyzetek módszere"), since we want to minimize the mean (sum) of squares of
the di¤erences of g (�i) and �i . There is a slight similarity between (6.4) and the
de�nition of the variance.

6.2 Linear regression

("Lineáris regreszió")
The easiest formula is g (x) = ax+ b (a; b 2 R). The approximation question

"� t a� + b" can be raised for any r.v. � and � , the error is investigated in the
next section "Regression and covariance" in Theorem II.102, graphical illustration
is detailed in the section "The ruler method".
Other approximations, like

� t a0 + a1� + a2�2 + :::+ an�n (6.7)

(polinomial regression) can also be applied in various applications. Let us
emphasize, that enlarging the number of the unknown parameters a0; :::an (not
only in polinomial but also in other types of regression), in general does not increase
the accuracy of the approximation of � , since a0; :::an are all not real numbers but
random variables.

Problem II.94 Determine a; b 2 R such that
i) M

�
[a� + b� �]2

�
or ii)

nP
i=1

(a�i + b� �i)
2

is minimal:
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Figure 4: Linear regression line

Theorem II.95 i) For M
�
[a� + b� �]2

�
minimal we have

a =
M (��)�M (�)M (�)

M
�
�2
�
�M2 (�)

(6.8)

and
b =M (�)� a �M (�) , (6.9)

or, in another forms:

a =
cov (�; �)

D2 (�)
= R (�; �) � D (�)

D (�)
(6.10)

and

b =M (�)�M (�) � M (��)�M (�)M (�)

M
�
�2
�
�M2 (�)

. (6.11)

ii) For
nP
i=1

(a�i + b� �i)
2 minimal we have

a =

n �
nP
i=1

�i�i �
�

nP
i=1

�i

��
nP
i=1

�i

�
n �

nP
i=1

�2i �
�

nP
i=1

�i

�2 (6.12)
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and

b =
1

n

 
nX
i=1

�i � a �
nX
i=1

�i

!
, (6.13)

or, in another forms:

a =
�� � �� � ��
�2�

=

nP
i=1

�
�i � ��

�
(�i � ��)

nP
i=1

�
�i � ��

�2 (6.14)

and
b = �� � a � �� . (6.15)

�

Remark II.96 (i)We listed all possible formulae for a and b , please choose your
favourite one! Or, you might use any computer program, like Excel, to calculate a
and b.
(ii) In the case M (�) = 0 or

nP
i=1

�i = 0 , i.e. when the dataset f�i : i = 1; :::; ng is
symmetric to the origin, the above formulas have much simpler form

a =

nP
i=1

�i � �i
nP
i=1

�2i

and b =
1

n
�

nX
i=1

�i . (6.16)

The symmetric property can be easily achieved by using �0 := ��m� and �
0
i := �i���

instead of � and �i where m� =M (�) and �� = 1
n

Pn
i=1 �i .

(iii) The function
� = R � ��

��
� (x�m�) +m� (6.17)

is called regression function of second kind (másodfajú regressziós függvény),
which corresponds to (6.10) and (6.9), of course R = R (�; �).
In the special case, when the regression function of �rst kind is a linear func-

tion, then these two kinds of regression functions (6.1) and (6.17) coincide.

Proof. of Theorem II.95:

i) We have to �nd the minimum value of the two-variable function
F (a; b) := M

�
[a� + b� �]2

�
. It is wellknown, that in this case the partial deriv-

atives must be zero:
@F

@a
= 0 and

@F

@b
= 0 , this system of equalities (see (6.18)
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below) has the solution shown in (6.8) and (6.9). In detail:

F (a; b) =M
�
a2�2 + b2 + �2 + 2ab� � 2a�� � 2b�

�
=

= a2M
�
�2
�
+ b2 +M (�2) + 2abM (�)� 2aM (��)� 2bM (�) ,

@F

@a
= 2aM

�
�2
�
+ 2bM (�)� 2M (��) ,

@F

@b
= 2b+ 2aM (�)� 2M (�) ,

so the system of equalities we have to solve is:

aM
�
�2
�
+ bM (�) =M (��)
aM (�) + b =M (�)

�
(6.18)

The solution is

a =

det

�
M (��) M (�)
M (�) 1

�
det

�
M
�
�2
�
M (�)

M (�) 1

� = M (��)�M (�)M (�)

M
�
�2
�
�M2 (�)

=
cov (�; �)

D2 (�)
,

b =M (�)� a �M (�) ,

justifying (6.8) and (6.9).

One can easily check that the (unique) solution of (6.18) is (6.8) and (6.9). How-

ever do not forget, that the equalities
@F

@a
=
@F

@b
= 0 are only neccessary conditions

for the extreme value(s) of F , one should check that the solution ((6.8),(6.9)) really
gives a minimum. However:

@2F

@a2
= 2M

�
�2
�
,

@2F

@b2
= 2 ,

@2F

@ab
= 2M (�) ,

�(a; b) = 4M
�
�2
�
� 4M2 (�) = 4D2 (�) > 0 and

@2F

@a2
= 2M

�
�2
�
> 0 .

ii) Since the real numbers �1; :::; �n; �1; :::; �n are given (�xed), we have to �nd

the minimum value of the two-variable function H (a; b) :=
nP
i=1

(a�i + b� �i)
2 ,

similarly to case i) :

H (a; b) =
nP
i=1

�
a2�2i + 2ab�i � 2a�i�i + b2 � 2b�i + �2i

�
=

= a2
nP
i=1

�2i + 2ab
nP
i=1

�i � 2a
nP
i=1

�i�i + nb
2 � 2b

nP
i=1

�i +
nP
i=1

�2i ,



6.2. LINEAR REGRESSION 61

@H

@a
= 2a

nP
i=1

�2i + 2b
nP
i=1

�i � 2
nP
i=1

�i�i ,

@H

@b
= 2a

nP
i=1

�i + 2nb� 2
nP
i=1

�i ,

so the system of equalities:

a
nP
i=1

�2i + b
nP
i=1

�i =
nP
i=1

�i�i

a
nP
i=1

�i + bn =
nP
i=1

�i

9>>>=>>>; (6.19)

has the solution

a =

det

264
nP
i=1

�i�i
nP
i=1

�i
nP
i=1

�i n

375

det

264
nP
i=1

�2i
nP
i=1

�i
nP
i=1

�i n

375
=

n �
�

nP
i=1

�i�i

�
�
�

nP
i=1

�i

��
nP
i=1

�i

�
n �

nP
i=1

�2i �
�

nP
i=1

�i

�2 ,

b =
1

n

�
nP
i=1

�i � a �
nP
i=1

�i

�
= �� � a � �� ,

which coincide with (6.12) and (6.13). Checking whether ((6.12),(6.13)) solve
(6.19) and really give (absolute) minimum of H is left to the Reader.

Now we show that a is equivalent to (6.14), (6.15) is obvious.
nP
i=1

�
�i � ��

�
(�i � ��)

nP
i=1

�
�i � ��

�2 =

nP
i=1

�
�i�i � �i�� � ���i + ����

�
nP
i=1

�
�2i � 2�i�� +

�
��
�2� =

=

nP
i=1

�i�i � �� �
nP
i=1

�i � �� �
nP
i=1

�i + n � ����
nP
i=1

�2i � 2�� �
nP
i=1

�i + n �
�
��
�2 =

=
n � �� � �� � n � �� � �� � n � �� + n � �� � ��

n � �2 � 2�� � n � �� + n �
�
��
�2 =

n � �� � n � �� � ��
n � �2 � n �

�
��
�2 , (*)
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one hand (*) =
�� � �� � ��
�2 �

�
��
�2 = �� � �� � ��

�2�
,

other hand (*) =
n � 1
n
�
nP
i=1

�i�i � n �
1

n2
�
nP
i=1

�i �
nP
i=1

�i

n � 1
n
�
nP
i=1

�2i � n �
�
1

n
�
nP
i=1

�i

�2

=

nP
i=1

�i�i �
1

n
�
nP
i=1

�i �
nP
i=1

�i

nP
i=1

�2i �
1

n

�
nP
i=1

�i

�2 =

n �
nP
i=1

�i�i �
�

nP
i=1

�i

�
�
�

nP
i=1

�i

�
n �

nP
i=1

�2i �
�

nP
i=1

�i

�2 .

End of Proof.

Remark II.97 Though using the formulae from (6.12) to (6.15) of Theorem II.95
one can compute a and b for the line ax + b . However these computations are
di¢cult for large or many datasets. For approximate values of a and b the "Ruler
Method" was applied a couple of years ago (before the computers). Roughly speak-
ing, plot the data (xi; yi) to a grid on a suitable coordinate system, and �t a
(straight) ruler to your drawing. This method is detailed in subsections 6.5.1 "The
Ruler Method" and after, for various coordinate systems.

6.3 Estimating the correlation coe¢cient

Before investigating the connetcion between regression and covariance, �rst
we have to learn how to approximate R (�; �) from the dataset (6.3). If you are
interested in r.v. � and �, you may skip this section.
R (�; �) was introduced and discussed (theoretically) in De�nition I.12 in Sec-

tion 1.1. Now we have to give an empirical estimation for R (�; �).

By R (�; �) = cov(�;�)
D(�)D(�)

= M [(��M(�))�(��M(�))]
D(�)D(�)

our choice is

r�;� =

1

n

nP
i=1

��
�i � �

�
(�i � �)

�
r
1

n

nP
i=1

�
�i � �

�2 �r 1

n

nP
i=1

(�i � ��)
2

=

1

n

nP
i=1

��
�i � �

�
(�i � �)

�
�� � ��

, (6.20)
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which is equivalent to the easier (for hand-calculations) formula

r�;� =

n �
nP
i=1

�i�i �
�

nP
i=1

�i

��
nP
i=1

�i

�
s
n �

nP
i=1

�2i �
�

nP
i=1

�i

�2
�

s
n �

nP
i=1

�2i �
�

nP
i=1

�i

�2 . (6.21)

The above (6.20) and (6.21) formulae are in strict connection with (5.11) in
Subsection 5.3.4 "Test for correlation" in Section 5.3.

Example II.98 Consider the morning and afternoon values of our activity for 10
days. Does any connection exist between them?

1 2 3 4 5 6 7 8 9 10
Morning (�) 8.2 9.6 7.0 9.4 10.9 7.1 9.0 6.6 8.4 10.5

Afternoon (�) 8.7 9.6 6.9 8.5 11.3 7.6 9.2 6.3 8.4 12.3

Solution II.99 n = 10 ,
P
�i = 86:7 ,

P
�2i = 771:35 ,

P
�i = 88:8 ,P

�2i = 819:34,
P
�i�i = 792:92 , so

r =
10 � 792:92� 86:7 � 88:8q

10 � 771:35� (86:7)2 �
q
10 � 819:34� (88:8)2

t 0:9357 .

This means, that the connection between � and � is strong.

6.4 Regression and covariance

In Section 1.1 "Two dimensional ... General de�nitions" and in subsection
5.3.3 "Independence" we discussed how the value of the correlation coe¢cient
R (�; �) depends on the strength of the connection between � and � . In this
section we investigate this dependency in more detail.

De�nition II.100 Let

! := a� + b� � and !i := a�i + b� �i (6.22)

the error - random variable and the error - data, i.e. the di¤erence between
a� + b and � , and between a�i + bi and � . �
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Recall, that in Theorem II.95 we achieved M (!2) to be minimal, �nding the
suitable a and b. Now we determine this minimal value of error.

Proposition II.101 If a and b are determined as in Theorem II.95, then

M (!) = 0 and �! = 0 , so D2 (!) =M (!2) and �2! = !2 .

Proof. We use only b =M (�)� a �M (�) .
Then

M (!) =M (a� +M (�)� aM (�)� �) = aM (�) +M (�)� aM (�)�M (�) = 0 ,

so D2 (!) =M (!2) follows.

Similarly, using b = �� � a � �� we have

�! = a � �� + b� �� = a � �� +
�
�� � a � ��

�
� �� = 0 .

Theorem II.102 If a and b are determined as in Theorem II.95, then
i)

D2 (!) = D2 (�) �
�
1�R2 (�; �)

�
(6.23)

ii)
�2! = �

2
� �
�
1� r2�;�

�
. (6.24)

Proof. i) Using b =M (�)� a �M (�) we have

D2 (!) =M (!2) =M
�
[a� + b� �]2

�
=M

�
[a� +M (�)� a �M (�)� �]2

�
=M

�
[a � (� �M (�))� (� �M (�))]2

�
=M

�
a2 � (� �M (�))2 + (M (�)� �)2 � 2a � (� �M (�)) � (� �M (�))

�
= a2 �D2 (�) +D2 (�)� 2a � cov (�; �) = (�) .

Now use a =
cov (�; �)

D2 (�)
and continue as

(�) = cov2 (�; �)

D2 (�)
+D2 (�)� 2 � cov

2 (�; �)

D2 (�)
= D2 (�)� cov

2 (�; �)

D2 (�)

= D2 (�) � (1�R2 (�; �)).
ii) Using b = �� � a � �� we have

�2! = !
2 =

1

n

nX
i=1

�
a�i +

�
�� � a � ��

�
� �i

�2
=
1

n

nX
i=1

�
a �
�
�i � ��

�
� (�i � ��)

�2
=
1

n
a2 �

nX
i=1

�
�i � ��

�2 � 2a � 1
n

nX
i=1

(�i � ��)
�
�i � ��

�
+
1

n

nX
i=1

(�i � ��)
2

= a2 � �2� � 2a �
1

n

nX
i=1

(�i � ��)
�
�i � ��

�
+ �2� .
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Now use (6.14) twice and then (6.20) to continue

= a2 � �2� � 2a2 �
1

n

nP
i=1

�
�i � ��

�2
+ �2� = �a2 � �2� + �2�

= �2� � �2� �

0BB@
1
n

nP
i=1

�
�i � ��

�
(�i � ��)

1
n

nP
i=1

�
�i � ��

�2
1CCA
2

= �2� � �2� �
�
�� �

r�;�
��

�2
= �2� �

�
1� r2�;�

�
.

Remark II.103 (o) Figures 5 and 6 show some experimental datasets with r =
R (�; �). Using the fact jR (�; �)j � 1 we can conclude D2 (!) � D2 (�).
(i) First we can justify Theorem I.14 from Section 1.1 "Two dimensional ...

General de�nitions" stating R (�; �) = 1 if and only if � = a�+b for some numbers
a; b 2 R . By (6.23) we can conclude that R (�; �) = 1 exactly when D2 (!) = 0.
We know from elementary probability theory, that D2 (!) = 0 corresponds to ! = c
(c 2 R constant), i.e. ! = a� + b � � = c which is minimal exactly when c = 0
i.e. � = a� + b . So, R (�; �) is "close to 1" just in case when the datapoints are
almost on a (straight) line.
(ii) On the other hand, the case R (�; �) = 0 (i.e. � and � are uncorrelated)

together with (6.10) implies a = 0 , i.e. the (approximating) regression line must
be horizontal, see Figure 4. In this case, e.g. by (6.25) D2 (!) = D2 (�) which
must not be surprinsing, since, by the horizontal line the di¤erences of � and b
(= !) are equal to the di¤erences of � and M (�) (see (6.9)).
(iii) Figure 6 shows di¤erent datasets with the same r = R (�; �), illustrat-

ing, that R (�; �) measures only (approximately) the magnitude of the correlation,
not the exact correspondance between � and � , r = 0:816 (this example by
Anscombe2)).
(iv) The formula (6.23) is equivalent to

jR (�; �)j =

s
1� D

2 (!)

D2 (�)
(6.25)

where, of course ! is the error in (6.22) for the optimal parameters a and b .

The formula
q
1� D2(!)

D2(�)
for any � and � (i.e. for any a and b) is often called

correlation index ("korrelációs index") and denoted by I (�; �). Let us highlight
that I (�; �) and jR (�; �)j corespond only when a and b are optimal.

2 ) Francis John Anscombe (1918-2001) was an English statistician.
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Figure 5: Di¤erent regression values

Figure 6: Same regression values after Anscombe (r = 0:816)
Source: https://en.wikipedia.org/wiki/Correlation_and_dependence
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6.5 Nonlinear regressions - linearizing methods

Some function equalities y = g (x) can be transformed to a linear connection

�y = �a � �x+�b (6.26)

for some transformed values3) �x and �y of x and y , with real numbers �a and �b .
(In the language of statistics we write � = g (�) and �� = �a��+�b.) If, moreover the
transformation of x and y to �x and �y can be done graphically (see below), then
the simple but illustrative "ruler method" (see below) can be applied. Graphical
transformation means that we do not draw the datapoints (�i; �i) and/or the func-
tion � = g (�) in the usual Cartesian coordinate system but in another, modi�ed
one. (Examples with �gures are given in the subsequent subsections.) In modi-
�ed coordinate systems the values "x" and "y" are written not in the geometric
(real) distance but in �x and �y, i.e. we have logarihmic or other scales on the axes,
instead of the usual equidistant ones. This results that the graph of the function
y = g (x) is transformed to be linear. The theory of such "linearizing methods"
is explained in [SzI2], a computer program (application) for drawings is in [HM].
Please, try it! Other computer programs, like Excel is familiar with some, but
not all of these transformations. Illustrative applications can be learned in Section
5.3.5 "Normality testing" and in the subsequent ones.
After the transformation (6.26) we can apply the formulas of Theorem II.95

directly to the dataset
n
(��i; ��i) : i = 1; :::; n

o
to get the values of �a and �b in (6.26).

Be careful: the error M
�
[�b+ �a�� � ��]2

�
in (6.26) is not the same as in the

original (6.4), even it might not be minimal at the same values at a; b and at �a;�b !
We make only simpler and approximate computations.
We give some more accurate investigations and computations of (6.4) in Section

6.6 Nonlinear regressions - direct methods.

3 ) We use here the accent �x instead of x̂ since x̂ is used for another notion in Statistics.
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6.5.1 The Ruler Method

Looking at Figure 4 in Section "Linear regression" we can imagine the following
illustrative method for (straight) line �tting4). After dotting the dataset to the
coordinate grid, take a common ruler and �t it manually to the dataset, so that the
ruler can �t the set of dots in the best ("closest") way. From the position of this
ruler you can determine the slope (a) and the intersection value (b) of the wanted
line y = ax + b. You might �t your ruler to the monitor of your computer when
using [HM] or Excel. This method (modifying the coordinate scales) is widely
used not only in statistics but in all natural sciences (physics, chemics, biology,
astronomy, economy, etc.)
In the following subsections we learn several methods to transform various

function graphs into (straight) lines, in order to apply either the formulas of The-
orem II.95, or to use "The Ruler Method" for those function graphs, too. On the
webpage [HM] you can display (almost) any function in all coordinate systems.
Please try it! Figure 2 in Section 5.3.5 Normality testing also used a coordi-
nate transformation (called normal) to straighten normal cumulative distribution
functions, the program (application) on [HM] can handle normal coordinate trans-
formations, too.

6.5.2 Exponential regression

The function equality5)

� = b � ac�� (6.27)

turns to
lg (�) = lg (b) + � � c � lg (a) , (6.28)

or in short form to
�� = �b+ � � �a (6.29)

when applying lg to (6.27), i.e. ` (x) = lg (x) , �� = lg (�) , �� = lg (�) , �a = c � lg (a)
and �b = lg (b).
This means, that we can use the linear regression method to the (similarly

transformed) dataset �
��i; ��i

�
:= (�i; lg �i) (i = 1; :::; n) , (6.30)

4 ) This approximative method was widely used till the mid of XX. century for easier problems.
See also the section "Normality Testing".

5 ) The equality (6.27) � = b � ac�� can be written in the form � = b � d� where d = ac, so c can
be eliminated.
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so �a and �b can be computed from the formulae of Theorem II.95. Finally we must
not forget to use

a = exp

�
�a

c

�
= e�a=c and b = exp

�
�b
�
= e

�b (6.31)

to get a and b (for the expression (6.27)).

Using semilogarithmic6) coordinate system, i.e. logarithmic scale one axe
(now �) and usual (equidistant) scale on the other axe (now �).

Figure 7: Exponential function in Cartesian (left), in semilogarithmic
(medium) coordinate systems, and its transform by (6.28) (right)

On the webpage [HM] you can display any exponential (and any other) function
in the semilogarithmic coordinate system as well.
On http://math.uni-pannon.hu/~szalkai/koordinata/semilog-uj-f.jpg and on

http://math.uni-pannon.hu/~szalkai/koordinata/semilog-uj-hata.jpg we supply semi-
log coordinate drawings in high resolution.

6 ) The word "semi" means "half".
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6.5.3 Logarithmic regression

Now we have the function equality

� = a � lg (�) + b , (6.32)

which is itself linear in �� = lg (�) and �� = � , i.e. ` (x) = lg (x), �a = a and
�b = b. This means, that we can use the linear regression method to the (similarly
transformed) dataset in (6.30) and we immediately get a and b .

We have to use semilogarithmic coordinate system again, but now we need
logarithmic scale on the axe � and equidistant scale on the axe � .

Figure 8: Logarithmic function in Cartesian and in semilogarithmic
coordinate systems

On http://math.uni-pannon.hu/~szalkai/koordinata/semilog-uj-f.jpg and on
http://math.uni-pannon.hu/~szalkai/koordinata/semilog-uj-hata.jpg we supply semi-
log coordinate drawings in high resolution.
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6.5.4 Power regression

The function
� = b � �a (6.33)

turns to
lg (�) = a � lg (�) + lg (b) (6.34)

or in short form to
�� = a � �� +�b (6.35)

where �� = lg (�), �� = lg (�), �a = a and �b = b. Now use the linear regression method

to the dataset
�
��i; ��i

�
:= (lg �i; lg �i), compute �a and �b from Theorem II.95, and

use
a = �a and b = exp

�
�b
�
= e

�b . (6.36)

In this case we have to use the (double) logarithmic coordinate system, i.e.
logarithmic scale on both axes.

On the Figure below we see power functions for di¤erent exponents.

Figure 9: Power functions in Cartesian and in (double) logarithmic
coordinate systems

On http://math.uni-pannon.hu/~szalkai/koordinata/loglog-uj-f.jpg we supply
a loglog coordinate drawing in high resolution.
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6.5.5 Hiperbolic regression

The general hiperbolic function ("inverted relations", "fordított arányosságok")
has the form

� =
�� + �

� + �
(6.37)

which can not be linearized, in general, since it has four unde�ned constants
(�; �; ; �). Though we can simpli�y by one of them (which is nonzero), e.g. by
� 6= 0 gives (6.37) to

� =
� + �=�

(=�) � � + �=� =
� + �0

0� + �0
, (6.38)

i.e. we actually still have three unde�ned constants, which are still more than two.

So, we must eliminate one of the constants �; �; ; �.

Theorem II.104 The function (6.37) has the following forms when one of the
parameters is zero (using �� = 1=� and �� = 1=�):

I) if � = 0 (and � 6= 0) then 1
�
=


�
� � + �

�
, i.e. �� = 0� + �0,

II) if � = 0 (and � 6= 0) then 1
�
=
�

�
� 1
�
+


�
, i.e. �� = �0�� + 0,

III) if  = 0 (and � 6= 0) then � = �

�
� � + �

�
= �0� + �0,

IV) if � = 0 (and  6= 0) then � = �


+
�


� 1
�
, i.e. � = �0�� + �0.

Proof. I) If � = 0 (and � 6= 0) then � = �

� + �
() 1

�
=
� + �

�
=


�
��+ �

�
i.e. �� = 0� + �0.

II) If � = 0 (and � 6= 0) then � = ��

� + �
() 1

�
=
� + �

��
=
�

��
+
�

��
=



�
+
�

�
� 1
�
i.e. �� = �0�� + 0.

III) If  = 0 (and � 6= 0) then � = �� + �

�
=
�

�
� � + �

�
i.e. � = �0� + �0.

IV) If � = 0 (and  6= 0) then � =
�� + �

�
=
��

�
+
�

�
=
�


+
�


� 1
�
i.e.

� = �0�� + �0.
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The above Theorem helps us to transform the dataset f(�i; �i) : i = 1; :::; ng to
the appropriate one

n
(��i; ��i) : i = 1; :::; n

o
, how to solve the linearized regression

problem �� = �a�� +�b by Theorem II.95 and after how to get the constants �; �; ; �
in (6.37) from �a and �b .

Corollary II.105
I) If � = 0 (and � 6= 0) then use the dataset

�
��i; ��i

�
:=
�
�i;

1
�i

�
, and after

Theorem II.95 let � = 0 , � = 1 ,  = �a and � = �b .

II) If � = 0 (and � 6= 0) then use the dataset
�
��i; ��i

�
:=
�
1
�i
; 1
�i

�
, and after

Theorem II.95 let � = 1 , � = 0 ,  = �b and � = �a .

III) If  = 0 (and � 6= 0) then use the dataset
�
��i; ��i

�
:=
�
�i;

1
�i

�
, (unchanged)

and after Theorem II.95 let � = �a , � = �b ,  = 0 and � = 1 .

IV) If � = 0 (and  6= 0) then use the dataset
�
��i; ��i

�
:=
�
1
�i
; �i

�
, and after

Theorem II.95 let � = �b , � = �a ,  = 1 and � = 0 .

Proof. I) The system of equations


�
= �a and

�

�
= �b has the solution

� = 1 ,  = �a and � = �b .
The other cases are similar.

We can use the transformations of Theorem II.104 also for drawing linear
graphs of (6.37) on special coordinate systems: one or both (or none) of the axes
are reciprocial.

Corollary II.106
I) if � = 0 (and � 6= 0) then use normal (equidistant) axe for � and reciprocial
axe for � ,
II) if � = 0 (and � 6= 0) then use reciprocial scale on both axes,
III) if  = 0 (and � 6= 0) then (6.37) is already linear, so use the traditional
Cartesian axes,
IV) if � = 0 (and  6= 0) then use reciprocial axe for � and normal (equidistant)
one for � .

One example for Case II) is shown below:
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Figure 10: Reciprocial function in Cartesian and in reciprocial
coordinate systems

We draw your attention to that Excel can not draw reciprocial coordinate
system but [HM] can. Please try it! [HM] can handle all of the four cases above.
On https://math.uni-pannon.hu/~szalkai/koordinata/reciprok-skala-160.gif we

supply a reciprocial coordinate drawing in high resolution.

Remark II.107 We can observe on the Figure above, that the origin of the Carte-
sian coordinate system moved to the " in�nity", along the (straight) line, in both
directions, and further, the intersection points ("tengelymetszetek") of the linear
graph with the axes (in the reciprocial coordinate system) correspond to the asymp-
totes of the ("original") hyperbola (in the Cartesian coordinate system).

6.5.6 Logit-probit regression

In pharmacy and in marketing statistics the following relation is investigated
(a; b can be any real parameters):

� =
ea�+b

1 + ea�+b
= 1� 1

1 + ea�+b
, (6.39)

which is closely related to the normal distribution. Here � can be any real number
but 0 < � < 1 .
Since the inverse of the function y = 1� 1

1+ex
is x = ln

�
y
1�y

�
, applying

ln
�

y
1�y

�
to (6.39) we get

ln

�
�

1� �

�
= a� + b . (6.40)
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This means, that we can write �� = ln
�

�
1��

�
, �� = � and apply the formule

of Theorem II.95 to the dataset
�
��i; ��i

�
:=
�
�i; ln(

��i
1���i

)
�

to compute �a = a

and �b = b.

4 3 2 1 1 2 3 4

4

3

2

1

1

2

3

4

x

y

Figure 11: The function 1� 1

1 + ex
(blue) and its inverse ln

�
x

1� x

�
(red)

The functions
eax+b

1 + eax+b
are symmetric to the point

�
� b
a
; 1
2

�
, so

ex

1 + ex

is symmetric to
�
0; 1

2

�
(like �).

We should use the transformation ln
�

y
1�y

�
on the y axe so that the functions

y = 1 � 1

1 + eax+b
can have straight line graphs, details can be found in [SzI2].

Unfortunately neither Excel nor [HM] can make this transformation. The construc-
tion and the shape of the Figure 12 below is similar to the Gaussian coordinate
system on Figure 2.
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Figure 12: The function 1� 1

1 + ex
(blue) in the logit-x coordinate system

6.6 Nonlinear regressions - direct methods

When no linearizing method is applicable, we have to minimalize (6.4) directly.
In very few fortunate cases we might get the solution directly.
When g is a polynomial, the regression is called parabolic . Here we introduce

only the quadratic (second order) regression.
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6.6.1 Quadratic regression

Now we consider the function

� = a+ b� + c�2 . (6.41)

0) In the case b = c = 0 we have a power function, which was dealt in a
previous section.

I) In the case
P
xi = 0 we have to solve the following system of linear equations

for a; b; c :

b =

nP
i=1

�i�i

nP
i=1

�2i

,

8>>><>>>:
an+ c

nP
i=1

�2i =
nP
i=1

�i

a
nP
i=1

�2i + c
nP
i=1

�4i =
nP
i=1

�2i � �i

. (6.42)

II) For the general case we have to minimize the function

F (a; b; c) =
nX
i=1

�
a�2i + b�i + c� �i

�2
=

=
nX
i=1

a2�4i + 2ab�
3
i + 2ac�

2
i � 2a�2i �i + b2�2i + 2bc�i � 2b�i�i + c2 � 2c�i + �2i =

= a2A+ b2B + c2C + abD + acE + bcF � aG� bH � cI + J
where

A =
nX
i=1

�4i , B =
nX
i=1

�2i , C = n , D = 2�
3
i , E = 2

nX
i=1

�2i , (6.43)

F = 2

nX
i=1

�i , G = 2
nX
i=1

�2i �i , H = 2

nX
i=1

�i�i , I = 2
nX
i=1

�i , J =
nX
i=1

�2i .

Now
dF
da
= 2Aa+ bD + cE �G = 0

dF
db
= 2Bb+ aD + cF �H = 0

dF
dc
= 2Cc+ aE + bF � I = 0

9>>>>=>>>>; ()

8>>>><>>>>:
2aA+ bD + cE = G

aD + 2bB + cF = H

aE + bF + 2cC = I

,

which is a system of linear equations, and has the solution
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a =

det

24G D E
H 2B F
I F 2C

35
det

242A D E
D 2B F
E F 2C

35 , b =
det

242A G E
D H F
E I 2C

35
det

242A D E
D 2B F
E F 2C

35 , c =
det

242A D G
D 2B H
E F I

35
det

242A D E
D 2B F
E F 2C

35 ,

i.e.

a =
F 2G+ 2CHD � FHE + 2BEI � FDI � 4BCG

den
,

b =
HE2 + 2CGD � FGE + 2AFI �DEI � 4ACH

den
,

c =
D2I + 2BGE � FGD � 4ABI �HDE + 2AFH

den
,

where the common denumerator is

den = 2AF 2 � 2FDE + 2CD2 + 2BE2 � 8ABC .



Chapter 7

Mathematical background

For more details see other textbooks and courses.

The main idea is the following. When we calculate a test number, we
make a statistic, i.e. a composite function � = g (�) = g (�1; :::; �n) of the sample
� = (�1; :::; �n) (see De�nition II.6).

For example, in the t-test we have:

tsz := � =
p
n �
�� �m0

��
=
p
n �

�1 + :::+ �n
n

�m0s
�21 + :::+ �

2
n

n
�
�
�1 + :::+ �n

n

�2 . (7.1)

If we know the distribution of each data �i , then the distribution of � = g
��!
�
�

can be determinded by mathematical methods and the critical values, like t" = �
satisfying

P (� < �) = 1� " (7.2)

i.e.

P (� � �) = " (7.3)

can be computed and collected in tables.

79
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Figure 13: Critical value

We only have to �nd these critical values in the tables, eg. at the end of this book.

To "statistic-fans" we outline the Student- or t- and the �2 - distribution below.

7.1 The Student- or t- distribution

De�nition II.108 Let � and �1; :::; �n � N(0; 1) (i.e. standard normal) in-
dependent r.v.-s. Then

� =
�vuut nP
i=1

�2i

n

(7.4)

is called Student- or t- distribution of degree of freedom n . �

Theorem II.109 The density function is

f� (x) =

�

�
n+ 1

2

�
p
n� � �

�n
2

�
�
�
1 +

x2

n

�n+1
2

(7.5)

where

� (x) :=

1Z
0

tx�1e�tdt (7.6)
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is the so called � - function (especially � (n) = (n� 1)! for n 2 N).

Further, M (�) = 0 does exist only for n � 2 , and D2 (�) =
n

n� 2 does

exist only for n � 3 . �

Figure 14: Student distributions for n = 5, 15, 100
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7.2 The �2 distribution

De�nition II.110 Let �1; :::; �n � N(0; 1) (i.e. standard normal) independent
r.v.-s, then

� :=

nX
i=1

�2i (7.7)

is called chi-square distribution with parameter n . �

Theorem II.111 The density function is

f�(x) =
x
n
2
�1e�

x
2

2
n
2 � �

�n
2

� (7.8)

for 0 < x . Further, M (�) = n and D2(�) = 2n for all n . �

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

Figure 15: �2 distributions for n=1 and n=2
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Figure 16: �2 distributions for several n
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Part III

Stochastic Processes
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Chapter 8

Introduction

When considering di¤erent phenomena changing, or following each other in
time, �rst: these phenomena are stochastic (random, "véletlen", or simply too dif-
�cult to us), and second: they might have some connections among them at certain
level. These sequences of random phenomena are called Stochastic Processes ("sz-
tochasztikus folyamatok").
In this Chapter we only highlight the main de�nitions and main properties of

the most important stochastic processes, more detailed introductions can be found
in the books [KT1], [KT2] and [KT3].

8.1 Elementary notions

De�nition III.1 Any sequence of random variables (r.v.,"v.v.")
�!
� = (�t : t 2 T)

for some index-set T is called a stochastic process ("sztochasztikus folyamat"),
or s.p. ("szt.f.") for short.

In case T = N we write
�!
� = (�1; �2; :::; �t; :::) and say discrete ("diszkrét"),

in case T = R (t 2 R) we say continuous ("folytonos") stochastic process. �

Remark III.2 i) In practice we measure the same quantity (
) several times:
in time moments t 2 T . Both discrete (separated, "elkülönült") and continuous
measurements are well known in practice.
ii) Each measurement (r.v.) �i can also be a vector (higher dimensional) r.v.:

�i =
h
�
(1)
i ; :::; �

(n)
i

i
.
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8.2 Examples

Example III.3 If we throw a dice for each t 2 N we have �t : 
! f1; 2; 3; 4; 5; 6g
and each �t has the same distribution and they are mutually ("páronként") inde-
pendent from each other.

8.2.1 The Brownian motion

("Brown1)-mozgás"), also called Wiener2) process ("Wiener-folyamat").

A particle keeps moving in the space and let �t denote its place in time t 2
R . We assume that its movement in the future is independent of the previous
movement, and the distance of its movement is described by a normal distribution.
In a general mathematical form we can write:

De�nition III.4 A (one-dimensional) Brownian motion ("Brown-mozgás") is
a stochastic process such that:

a) for any time moments t0 < t1 < ::: < tn < ::: the increments i.e. relative
movements ("növekmények, relatív elmozdulások")

� i := �i � �i�1 (8.1)

are mutually independent r.v.,
(a process with this property is said to be a process with independent incre-
ments.)

b) the probability distribution of the general increment r.v.

� (x) = �t+x � �t (x 2 R) (8.2)

depends only on x = �t and neither on t1 = t or on t2 = t+ x ,

c)

P (�t � �s < x) =
1p

2�B (t� s)
�

xZ
�1

e
�u2

2B(t�s)du = (8.3)

=
1p

2�B (t� s)
�

xZ
�1

exp

�
�u2

2B (t� s)

�
du (8.4)

for some constant B 2 R+ and for all s < t . �
1 ) Robert Brown (1773-1858) Scottish botanist and palaeobotanist.
2 ) NorbertWiener (1894 -1964) American mathematician.
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Theorem III.5 i) Assuming �0 = 0 we have M (�t) = 0 and D
2 (�t) =

p
B�t;s

for all t 2 R+.
ii) For any t0 < t1 < ::: < tn < t the conditional probability is

P
�
�t < x j �t1 = x1; :::; �tn = xn

�
=

1p
2�B (t� tn)

�
x�xnZ
�1

exp

�
�u2

2B (t� tn)

�
du .

�

Remark III.6 i) According to c) of De�nition III.4 and Theorem i) above we
know, that the distance made by the particle in ( any but �xed) time �t;s = t� s
has a normal distribution with mean m = 0 and dispersion � =

p
B�t;s . This

assumption is encouraged by the Central Limit Theorem (see [SzI1]).
ii) It is also reasonable to have that the distribution of �t � �s and that of

�t+h � �s+h are the same for any �xed 0 < h if we assume the medium to be in
equilibrium.
iii) It is also clear that the displacement (relative motion) �t � �s should

depend only on the length t-s and not on the time t when we begin the observation.
iv) Theorem ii) says that the exact place of the particle depends only on the

latest known position xn and all the previous information xn�1 , ... , x1 are
unimportant.
v) Higher dimensional Brownian motions can be de�ned similarly, but you must

not consider them coordinatewise Brownian motions.
vi) See also the Section Markov proceeses.

8.2.2 The Poisson process

("Poisson3) folyamat")
Fix an event A � 
 and for t 2 R+;0 let �t count the number of times A occured

in the time period [0; t]. So each �t is represented as a nondecreasing step function.
Obviously �0 = 0 can be assumed.

Example III.7 Many pratical phenomena can be considered as a Poisson process.
(These are based on the concept of the law of rare events.) For example:
the number of x-rays emitted by a substance undergoing radioactive decay,
the number of telephone calls originating in a given locality,
the occurence of accidents at a certain intersection,
the occurence of errors in a page of typing,
breakdowns of a machine,
the arrival of customers for service, ...

3 ) Siméon Denis Poisson (1781 - 1840) French mathematician, physician and statistician.
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The mathematical de�nition is as follows:

De�nition III.8 A stochastic process is called Poisson process if

a) the increments are mutually independent r.v. (see (8.1)),

b) the general increment r.v. depends only on �t (see (8.2)),

c) the probability of at least one event happening in a time period of duration h
is

P (A in h) = p (h) := a � h+ o (h) for h! 0 (8.5)

and for some �xed a > 0 (and o(h)
h
! 0 as usual),

d) the probability of two or more events happening in time h is o (h) . �

Remark III.9 Postulate d) is only to exclude the possibility of the simultaneous
occurence of two or more events.

Let Pm (t) denote the probability that exactly m events occur in time t , i.e.
Pm (t) = P (�t = m), m = 0; 1; 2; ::: . Now d) can be can be stated in the form:

1X
m=2

Pm (t) = o (h) , (8.6)

and clearly p (h) =
1X
m=1

Pm (t) . Some further calculations show that

P0 (t) = e
�at for t 2 R+;0 . (8.7)

Clearly P0 (h) = 1� p (h) and P1 (h) = p (h) + o (h) .
Finally, using Pm (0) = 0 for m 2 N we get the following:

Theorem III.10 For each t 2 R+;0 and m 2 N

P (�t = m) = Pm (t) =
(at)m

m!
e�at (8.8)

where a is determined in (8.7). Therefore, �t follows a Poisson distribution
with parameter � = at for each t 2 R+;0 . �

The Poisson process often arises in a form where the time parameter is replaced
by a suitable spatial ("térbeli") parameter (e.g. in 2- or 3- or in higher dimensions).
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Example III.11 For example, consider a set C � Rd of points distributed in the
space Rd (1 � d). For any (measurable, "mérhet½o") set H � Rd let

�H := NH = jH \ Cj (8.9)

denote the number of points (�nite or in�nite) from C contained in H. We agree
that NH is a random variable for each �xed set H � Rd.

De�nition III.12 The collection {NH : H � Rd is measurable} of random
variables is said to be a homogeneous ("homogén") Poisson process if the follow-
ing assumptions are ful�lled:

(i) the number of points in disjoint regions are independent r.v., that is NH1 and
NH2 are independent if H1 \H2 = ; ,
(ii) for any subset H � Rd of �nite volume ("térfogat") NH has a Poisson distri-
bution with mean

� =M (NH) = a � V (H) (8.10)

where V (H) is the (d-dimensional) volume of H and a 2 R+ is a �xed parameter.
�

Remark III.13 The parameter a measures in a sense the intensity ("intenzitás,
er½osség") component of the distribution, which is independent of the size or shape
of H .

Example III.14 Spatial ("térbeli") Poisson processes arise, for example
in considering the distribution of stars or galaxies in space,
in distribution of plants and animals on Earth,
in distribution of bacteria on a microscope slide,
etc.
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Chapter 9

General stochastic processes

De�nition III.15 The stochastic processes s.p. ("sztochasztikus folyamat")�!
� = (�t : t 2 T) are classi�ed by:

- the state space ("állapottér") S where �t : 
! S ,

- the index or parameter set ("indexhalmaz, paraméterhalmaz") T ,

- the dependence relations ("függ½oségi viszonyok") among the r.v. �t . �

9.1 The state space

("állapottér")
This is the "space" (set) S in which the possible values of each �t "lie".

De�nition III.16 o) Finite ("véges") state spaces are of form S = fs0; s1; :::; sng
for some n 2 N .
i) In the case S = fs0; s1; :::; sn; :::g or S = N we refer to the process

�!
� as

integer valued ("egészérték½u") or alternatively as a discrete state ("diszkrét
állapotú") process. These sets are also called enumerable or denumerable ("fel-
sorolható, megszámlálható") sets.
ii) If S = R the real line or a (real) interval [a; b] � R then we call

�!
� a

real-valued ("valós érték½u") stochastic process.
iii) If S j Rk is a subset of Rk (or possibly the whole Rk) - the more dimensional

space then
�!
� is said to be a k -vector ("k -vektor") process. �

93
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As in case of a single r.v., the choice of the state space is not uniquely speci�ed
by the physical situation being described, although one particular choice usually
stands out as most appropriate.

9.2 The index (parameter-) set

("indexhalmaz, paraméterhalmaz")

De�nition III.17 i) If T = N [ f0g = f0; 1; :::g then we shall always say that�!
� is a discrete time ("diszkrét idej½u") stochastic process. When T is discrete
we shall often write �n instead of �t .
ii) If T = R+;0 = [0;1) then

�!
� is called a continuous time ("folytonos

idej½u") process.
iii) The case T = fmeasurable setsg j P

�
Rd
�
and other cases are also

possible. �

Example III.18 We have already cited examples where the index set T is not one
dimensional, e.g. spatial Poisson processes.
Another example is that of waves in oceans, where we may regard the latitude

("szélességi") and longitude ("hosszúsági") geographical ("földrajzi") coordinates
as the value of t and �t is then the height of the wave at the location t 2 R2.

9.3 The mean-, dispersion- and autocovariance
functions

("várható érték-, szórás- és kovariancia- függvények")

De�nition III.19 For any s.p.
�!
� the functions fM (�t) : t 2 Tg, fD (�t) : t 2 Tg

and fcov (�t; �s) : t; s 2 Tg are called mean-, dispersion- and auto / self co-
variance functions ("várható érték / átlag, szórás- és auto / ön- kovariancia
függvények"). �



Chapter 10

Classical types of stochastic
processes

The in/dependencies ("függ½oségi viszonyok") among the r.v. �t are the most
important properties of the stochastic processes.

10.1 Processes with stationary independent in-
crements

("Független stacionárius [állandó] növekmény½u szt.f.")

De�nition III.20 i) If the random variables

�t1t2 := �t2 � �t1 ; �t2t3 := �t3 � �t2 ; :::; �tntn�1 := �tn � �tn�1 (10.1)

are independent for all choices of t1 < t2 < ::: < tn (clearly T = N or T =
R), then we say that

�!
� is a process with independent increments ("független

növekmény½u").
ii) If the index set T contains the smallest index t0 (i.e. T = N or T =

[t0;1)), then it is also assumed that (expanding (10.1))

�t0 := �t0 ; �t0t1 := �t1 � �t0 ; �t1t2 := �t2 � �t1 ; :::; �tntn�1 := �tn � �tn�1 (10.2)

are (also) independent. �
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Remark III.21 If the index set is discrete, that is T = N , then a process with
independent increments reduces to a sequence of independent r.v.

�!
� where

�0 = �0 and �n = �n � �n�1 for n = 1; 2; :::: (10.3)

in the sense that knowing the individual distributions of �0 , �1 , ... enables one
to determine the joint distribution of any �nite subset

�
�n1 ; :::; �nm

	
of
�!
� .

Especially
�n = �0 + :::+ �n for all n = 0; 1; 2; :::: (10.4)

De�nition III.22 If the distribution of the increments or di¤erences ("növek-
mények, különbségek")

�t+h � �t (10.5)

depends only on the length h of the interval and not on the time t (for all t 2 T and
h 2 R+), then the process is said to have stationary increments ("stacionárius
[állandó] növekmény½u").
For a process with stationary increments the distribution of �t1+h��t1 is the

same as the distribution of �t2+h � �t2 no matter what the values of t1 , t2 and
h . So, we can denote this distribution by

#h := �t+h � �t (10.6)

where t 2 T is arbitrary �xed index. �

Theorem III.23 If a process
�!
� = f�t : t 2 Tg where T = [0;1) or T = N has

stationary independent increments and has a �nite mean (i.e. each all M(�t) does
exists), then it is elementary to show that

M(�t) = m0 +m1 � t (t 2 T) (10.7)

where m0 =M(�0) and m1 =M(�1)�m0 .

Similarly
�2�t = �

2
0 + �

2
1 � t (t 2 T) (10.8)

where
�20 =M [(�0 �m0)

2] = D2(�0) (10.9)

and
�21 =M [(�1 �m1)

2]� �20 = D2(�1)�D2(�0) . (10.10)

�
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Remark III.24 Both the Brownian motion process and the Poisson process have
stationary independent increments.

10.2 Martingales

("Martingálok")

De�nition III.25 Let
�!
� be a real-valued s.p. with discrete or continuous para-

meter set T . We say that
�!
� is a martingale ("martingál") if

i) M(j�tj) <1 for all t 2 T ,

ii) for any n 2 N , for any t1 < t2 < ::: < tn < tn+1 and for all values
a1; a2; :::; an 2 S

M
�
�tn+1 j �t1 = a1; :::; �tn = an

�
= an . � (10.11)

Remark III.26 i) Observe the absolute value of �t in i) and recall that i) is
stronger than "�t has a �nite mean".
ii) Martingales may be considered as appropriate models for fair games in the

sense that �t denotes the amount of money that a player has at time t. The
martingale property ii) states then that the average amount a player will have at
time tn+1 , assuming that he has amount in the previous time tn , is equal to an ,
regardless of what his past fortune (in the interval [tn; tn+1] and before) was.
iii) The word "martingale" originally meant a gambling strategy in which one

doubles the stake after each loss.

Claim III.27 i) One can easily verify that if � i are independent r.v. and
M(� i) = 0 , then the process

�n = �1 + :::+ �n (n 2 N) (10.12)

is a discrete martingale.
ii) Similarly, if �t for 0 � t has independent increments whose means are

0 then
�!
� is a continuous time martingale.
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10.3 Markov processes

("Markov1) folyamatok")

De�nition III.28 A process
�!
� is said to be Markov s.p. ("Markov folyamat")

if

P
�
a < �t � b j �t1 = a1; :::; �tn = an

�
= P

�
a < �t � b j �tn = an

�
(10.13)

for all t 2 T whenever t1 < t2 < ::: < tn < t and for all values a1; a2; :::; an 2 S .
�
For discrete state (S = fs0; s1; :::; sn; :::g) and discrete time (T = N [ f0g) the

assumption (10.13) can be written easier:

De�nition III.29 A process
�!
� is said to be a discrete Markov s.p. ("diszkrét

Markov folyamat") or a Markov-chain ("Markov-lánc") if

P
�
�tn+1 = an+1 j �t1 = a1; :::; �tn = an

�
= P

�
�tn+1 = an+1 j �tn = an

�
(10.14)

for all t1 < t2 < ::: < tn < tn+1 2 T and for all a1; a2; :::; an 2 S . �
Remark III.30 i) Roughly speaking a Markov s.p. is one with the property that,
if the value of �t is given, then the values of �s for s > t do not depend on the values
of �u for u < t . That is the probability of any particular future behaviours of the
process, when its present state (�t) is known exactly, is not altered by additional
knowledge concerning its past behaviour.
We should make it clear, however, that if our knowledge of the present state

(�t) of the process is imprecise, then the probability of some future behaviour will
be altered by additional information in general, relating to the past behaviour of
the system.
ii) Note that a Markov s.p. having a �nite or denumerable state space S is

called a Markov chain ("Markov-lánc").

Example III.31 Discrete Brownian motion as partial sums of indepen-
dent r.v.�s ("Diszkrét Brown -mozgás, mint független v.v. részletösszege")
Let a particle keep moving on the real line on the integer points Z , starting

from 0 , and suppose that it moves in the n �th moment 50% to the left and 50% to
the right. If all the steps are independent, then

�!
� is a discrete Markov s.p. where

�n = �1 + :::+ �n 1 � n (10.15)

and �i are independent and the values of �i are �1 with probability 0:5
(i.e. �i : 
! f�1;+1g, P (�i = �1) = P (�i = +1) = 0:5 .

1 ) Andrey Andreyevich Markov (1856-1922) a Russian mathematician.
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Claim III.32 In general, it is easy to prove, that partial sums (10.15) of inde-
pendent r.v. �i are always a discrete Markov s.p. �

De�nition III.33 The Markov chain
�!
� in (10.15) is called homogeneous ("ho-

mogén") if �i all have the same distribution, otherwise
�!
� is inhomogeneous

("inhomogén"). �

Example III.34 If we place re�ecting mirrors ("visszaver½o tükör") or back-kicking
walls ("visszapattanó falak") to the points �K and K , from where the particle
ultimately (100%) turns back, then we also get a Markov-chain.

Example III.35 Let N 2 N be �xed, let �i be independent r.v. which have values
f0; 1; :::; N � 1g with arbitrary probabilities. Now if we de�ne �!� as �0 = �0 and

�n+1 =

�
�n + �n
�n + �n �N

if �n + �n < N
if �n + �n � N

(10.16)

then
�!
� is also a Markov chain.

This example is called lower rounding ("lefelé kerekítés, csonkítás") against
over�oating ("túlcsordulás ellen").

De�nition III.36 Let A � R be an interval of the real line. Then the function

P (x; s; t; A) := P (�t 2 A j �s = x) (10.17)

for t > s is called transition probability function ("átmenetvalószín½uség-függvény")
and is basic to the study of the structure of Markov s.p. �

Claim III.37 We may express the condition (10.13) also as follows:

P
�
a < �t � b j �t1 = a1; :::; �tn = an

�
= P (xn; tn; t; (a; b]) . (10.18)

�

It can be proved that the probability distribution of
�
�t1 ; :::; �tn

�
can be com-

puted in terms of (10.17) and the initial distribution function of �t1 .

De�nition III.38 A Markov s.p. for which all realizations or sample functions
f�t : t 2 [0;1)g are continuous functions, is called a di¤usion process ("di¤úziós
folyamat"). �

Remark III.39 Poisson processes are continuous time Markov chains, and Brown-
ian motions are di¤usion processes.
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For Markov chains the transition probability function , (10.17) and (10.18) can
be written in easier form.

De�nition III.40 For a Markov chain
�!
� = f�n : n 2 Ng

i) the probabilities

np
(r)
i;k := P

�
�n+r = k j �n = i

�
(10.19)

are called r -step transition probabilities ("r -lépéses átmenetvalószín½uségek"),
shortly t.p., for r; n; i; k 2 N .
ii) the (�nite or in�nite) matrix

n�r :=
h
np
(r)
i;k

i
i;k
=

2664
np
(r)
1;1 np

(r)
1;2 :::

np
(r)
2;1 np

(r)
2;2 :::

::: ::: :::

3775 (10.20)

is called transition probability matrix ("átmenetvalószín½uség mátrix").
For homogeneous Markov chains the index n is usually omitted. We also omit

r in case r = 1 . �

Claim III.41 All the entries of n�r are probabilities 2 [0; 1] and each row has
sum 1 since

1X
k=1

np
(r)
i;k =

1X
k=1

P
�
�n+r = k j �n = i

�
= 1 . � (10.21)

De�nition III.42 Any quadratic ("négyzetes") matrix (either �nite or in�nite)
with nonnegative entries is called stochastic matrix ("sztochasztikus mátrix") if
its each row has sum 1 (see (10.20) and (10.21)).

Moreover, if each column has sum 1, too, i.e.
1P
i=1

np
(r)
i;k = 1 , then the matrix

is called a double stochastic matrix ("kétszeresen sztochasztikus mátrix"). �

Claim III.43 Products of (double) stochastic matrixes is also a (double) stochas-
tic one. �

The following theorem is a fundamental one on Markov chains.
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Theorem III.44 If the 1 -step transition probabilities are independent of n , then
any r -step t.p. are also independent, and

�r = (�)
r (10.22)

i.e. the r -th power of the matrix � = �1 . �

Remark III.45 i) The special case �r = �
r1 ��r2 of (10.22) for r1+r2 = r ,

i.e.

p
(r)
i;k =

1X
j=1

p
(r1)
i;j � p

(r2)
j;k (10.23)

is often in use without mentioning and is calledMarkov equality ("Markov egyen-
l½oség").
ii) The transition probabilities np

(r)
i;k are conditional probabilities ("feltételes

valószín½uségek"), so the unconditional ("feltétel nélküli") probabilities of �n

pk (n) := P (�n = k) k 2 N; n 2 N[ (0) (10.24)

are called absolute probabilities ("abszolút valószín½uségek") of �n . �

De�nition III.46 A Markov-chain
�!
� is called ergodic ("ergodikus") if all the

limit probabilities
Pk := lim

r!1
p
(r)
i;k (10.25)

do exist, they are independent of i , and

1P
k=1

Pk = 1 . � (10.26)

Remark III.47 i) In general, the behaviour in which sample averages formed
from a process converge to some underlying parameter of the process is termed
ergodic. (See Remark III.49, too.)

ii) (10.26) says that the events

Ak = f lim
r!1

�r = kg � 
 (10.27)

form a complete system of events ("teljes eseményrendszer").

The folloving result is a fundamental one in the theory of Markov chains.
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Theorem III.48 Ergodicity theorem of Markov ("Markov ergodicitási tétele"):
A homogeneous Markov chain

�!
� having �nitely many states ("véges állapotú") is

ergodic if and only if

� =

2664
p1;1 p1;2 ::: p1;N
p2;1 p2;2 ::: p1;N
::: ::: ::: :::
pN;1 pN;2 ::: pN;N

3775 (10.28)

(see (10.20)) has a power �v (v 2 N) in which at least one column contains

only positive elements.

Further, the convergence in (10.25) is exponential:��pri;k � Pk�� � (1�M�)nv�1 (10.29)

where M is the number of columns of �v containing positive elements, � is the
least number in these columns. (Clearly 0 < M� � 1.) �

Remark III.49 i) The assumption of ergodicity in (10.25) and in the previous
theorem asserts the existence of a step number v and of at least one state s 2 S
which state can be reached from any other state in at most v many steps with
positive probability.

ii) Another meaning of ergodicity is that if starting from any state si 2 S ,
after a large number of steps the process reach the state sk with probability Pk but
independently of si ! Moreover we have lim

n!1
pk (n) = Pk .

iii) By the Markov inequality (10.23) we get

pn+1i;k =
NX
j=1

p
(n)
i;j � p

(1)
j;k , (10.30)

and taking n!1 we get

Pk =

NX
j=1

PjPj;k for 1 � k � N . (10.31)

It is not hard to prove that the system of equalities above has a unique solution
for the unknowns Pk for 1 � k � N . This system of equalities is often helpful in
practice.
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iv) If the matrix (10.20) for r = 1 -step is double stochastic and the process
is ergodic then �n and lim

n!1
�n are also double stochastic ones. Since all the

elements of the k -th column Pk , so Pk = 1=N (where N = jSj). This means, that
the marginal distribution (after n!1) is uniform ("egyenletes") on the numbers
1; :::; N .

Example III.50 Consider the practical problem of the volume of a water-pu¤er
lake of a factory ("víztározó"), from [P].
Let K denote the volume of the lake, and let us try to use exactly (at most)

M quantity water each year. Clearly we use less water if there is no M water
in the lake, in this case we empty the lake. Suppose that K;M are integers and
0 < M < K .
Denote �t the water supply of the river in the t �th year (t 2 N), i.e. �1; ::: are

independent discrete r.v. with the same distribution, Im (�t) = N and let

pi := P (�t = i) . (10.32)

Let further �t denote the water level of the lake at the end of the year (t 2 N),
i.e. after we took out M , and denote �0 the starting level.

Clearly the lake contains no more than K water in each moment, so we must
have

�t+1 := max
�
min

�
�t + �t+1; K

�
�M ; 0

	
(10.33)

which implies
Im (�t) = f0; 1; :::; K �Mg (10.34)

and we let
Pi;j := P

�
�t+1 = j j �t = i

�
(10.35)

the possible water level in the next year.

For simplicity we assume

M < K �M i.e. M < K=2 . (10.36)

Solution III.51 Clearly

Pu;v = 0 if u�M > v i.e. u� v > M , (10.37)

or even, for suitable u; v; w (among others)

0 � u; v � K �M and 0 � w =M + v � u (10.38)
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imply
Pu;v = P (�t = w) () u�M + w = v (10.39)

i.e.
Pu;v = pv+M�u . (10.40)

Further, for suitable j

Pj;K�M = pK�j + pK�j+1 + ::: . (10.41)

Finally, we have the following (large) system of equalities for Pi;j .

P0;0 = p0 + :::+ pM ,
P0;1 = pM+1 ,
...
P0;i = pM+i (for i = �t+1 < K �M i.e. M + i < K ),
...
P0;K�M�1 = pK�1 ,
P0;K�M = pK + pK+1 + ::: ,

P1;0 = p0 + :::+ pM�1 ,
P1;1 = pM ,
...
P1;i = pM�1+i ,
...
P1;K�M�1 = pK�2
P1;K�M = pK�1 + pK + ::: ,

...

...
Pj;0 = p0 + :::+ pM�j ,
Pj;1 = pM+1�j ,
...
Pj;i = pM�j+i (for j �M),
...
Pj;K�M�1 = pK�j�1 ,
Pj;K�M = pK�j + pK�j+1 + ::: ,
...
...
PM;0 = p0 (since M < K �M i.e. M < K=2),
PM;1 = p1 ,
...
PM;i = pi ,
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...
PM;K�M�1 = pK�M�1 (since M � K �M � 1),
PM;K�M = pK�M + pK�M+1 + ::: ,

PM+1;0 = 0 ,
PM+1;1 = p0 ,
...
PM+1;i = pi�1 (for i � K �M � 1),
...
PM+1;K�M�1 = pK�M�2 ,
PM+1;K�M = pK�M�1 + pK�M + ::: ,
...
...
PM+`;0 = 0 (for 1 � ` and M + ` � K �M i.e. ` � K � 2M),
...
PM+`;`�1 = 0 (see (10.37)),
PM+`;` = p0 ,
PM+`;`+i = pi (for `+ i � K �M � 1 i.e. i � K �M � `� 1),
...
PM+`;K�M�1 = pK�M�`�1 ,
PM+`;K�M = pK�M�` + pK�M�`+1 + ::: ,
...
...
PK�M;0 = 0 (see (10.36)),
PK�M;1 = 0 ,
...
PK�M;i = 0 (for i < (K �M)�M = K � 2M , see (10.37)),
...
PK�M;K�2M = p0 (by (10.40) v +M � u = K � 2M +M � (K �M) = 0),
...
PK�M;K�M�1 = pM�1 ,
PK�M;K�M = pM + pM+1 + ::: .

END of the Example.
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10.4 Stationary processes

("Stacionárius [állandó] folyamatok")

De�nition III.52 A s.p.
�!
� (where T can be any of the sets (�1;1) , [0;1) ,

Z or Nnf0g) is said to be strictly stationary ("er½osen stacionárius") if the joint
distribution functions of the families of random variables are

��t+h =
�
�t1+h ; �t2+h ; ::: ; �tn+h

�
and ��t =

�
�t1 ; �t2 ; ::: ; �tn

�
, (10.42)

that is F��t+h and F��t : R
n ! R are the same for all h > 0 and arbitrary �nite set

of t1; :::; tn 2 T . �

Remark III.53 This condition asserts that in essence the process is in probabilis-
tic equilibrium ("egyensúly") and that the particular times at which we examine
the s.p. are of no relevance. In particular the distribution of �t is the same for
each t 2 T .
The word stationary means "almost constant" ("majdnem állandó").

Theorem III.54 The mean- and dispersion functions of stationary processes do
not depend on t 2 T : M (�t) =M (�0) and D (�t) = D (�0) .
The autocovariance function depends on (t� s) :

cov (�t; �s) = cov
�
�t�s; �0

�
(10.43)

for t; s 2 T . �

De�nition III.55 A s.p.
�!
� is said to be

i) wide sense stationary ("gyengén stacionárius") if it possesses �nite second
moments (i.e. M

�
�2t
�
<1),

ii) covariance stationary ("stacionárius kovarianciájú") if cov(�t; �t+h) depends
only on h for all t 2 T . �

Recall, that cov (�; �) =M (� � �)�M (�) �M (�) .

Claim III.56 A s.p. that has �nite second moments is always covariance station-
ary, but there are covariance stationary processes that are not stationary. �

Remark III.57 Stationary processes are appropriate for describing many phe-
nomena that occur in communication theory, astronomy, biology and sometimes
in eonomics.
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De�nition III.58 AMarkov process is said to have stationary transition prob-
abilities ("stacionáris átmenetvalószín½uség½u") if P (x; s; t; A) , de�ned in (10.17)
is a function only of t� s . �

Remark III.59 Remember that P (x; s; t; A) of a Markov process is a conditional
probability, which is given in the present state. Therefore there is no reason to
expect that a Markov process with stationary transition probabilities is a stationary
process, and this is indeed the case.
Neither the Poisson process nor the Brownian motion process is stationary. In

fact, no nonconstant process with stationary independent increments is stationary.
However, if f�t : t 2 [0;1)g is a Brownian motion or a Poisson process,

then �t := �t+h � �t is a stationary process for any �xed h � 0 .

10.5 Renewal processes

("Felújítási folyamatok")

De�nition III.60 i) A renewal process ("felújítási folyamat") is a sequence
�!� = (�n : n 2 N) of independent and identically distributed positive r.v. repre-
senting the lifetimes of some "units" ("egységek"). The �rst unit is placed in
operation at time 0 , it fails at time � 1 and is immediately replaced by a new unit
(with the same properties) which fails at time � 1 + � 2 and so on. The time of the
n�th renewal ("felújítás") is

�n = � 1 + :::+ �n (n 2 N) . (10.44)

ii) A renewal counting ("számláló") process is �!� = (�t : t 2 R+;0) where for
t 2 R+;0 and n 2 N

�t = n
def() �n � t < �n+1 . (10.45)

�

Remark III.61 i) The renewal process �n gives us the time moment of the n �th
renewal, while a renewal counting process �t counts the number of renewals in the
time interval [0; t] . We often make no distinction between the renewal process and
its counting process.
ii) Renewal processes occur in many applied areas such as management science,

economics and biology. Renewal processes of equal importance often may be dis-
covered embedded in other stochastic processes that, at �rst glance, seem unrelated.
iii) The Poisson process with parameter � is a renewal counting process for

which the unit lifetimes have exponential distributions with common parameter � .
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10.6 Point processes

("Pontfolyamatok")

Note: S 6= S !

De�nition III.62 Let S j Rn be a �xed set in the n -dimensional space and let
A j P (S) be a family of subsets of S . A point process ("pontfolyamat") is a
s.p. indexed by the sets A 2 A , that is T = A , having the state space S = N[f0g
(nonnegative integers). In other words:

�!
� = f�A : A 2 Ag . �

Remark III.63 (i) Non-mathematicians please write A = P (S) , i.e. let A 2 A
mean "A j S is any (measurable) subset of S " .
(ii) We think a set of (enumerable) "points" C � S is being scattered over S in
some random manner, and of

�A = N(A) := jA \ Cj (10.46)

as counting the number of points from C in the (measurable) set A 2 A , i.e.
A j S .

Since N(A) is a counting function there are additional requirements on each
realization.

De�nition III.64 (continued):
i) if A1 \ A2 = ? and A1 [ A2 2 A then N (A1 [ A2) = N (A1) +N (A2) ,
i.e. �A1[A2 = �A1 + �A2 ,

ii) if ? 2 A then N (?) = 0 , i.e. �? = 0 , �

Clearly ii) follows from i).

De�nition III.65 Suppose S is a set in the real line (or plane os 3-dimensional
space) and for every subset A � S let V (A) be the length (area, volume, resp.)
of A . Then

�!� = f�A : A � Sg (10.47)

is a homogeneous Poisson point process of intensity � > 0 ("� intenzitású
(er½osség½u) Poisson-pontfolyamat") if A = P (S) (power set) and
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(i) for each A � S we have �A := N(A) (more precisely: �A := jA \ Cj)
has a Poisson distribution with parameter � � V (A) and � 2 R+ is (any) �xed
positive real number,
(ii) for every �nite collection fA1; :::; Ang � A of mutually ("páronként") dis-

joint subsets of S the r.v.�s �A1 ; :::; �An are independent. �

Remark III.66 (i) The above (i) says that the number of points from C in A do
not depend on the shape of A but the parameter in this Poisson distribution has
linear depency with the volume of A .
(ii) Every Poisson process f�t : t 2 [0;1)g de�nes a Poisson point process on

S = [0;1) . In fact, for any interval subset A = (s; t] for s < t we use
N(A) := �t � �s .
(iii) Poisson point processes arise in considering the distribution of stars or

galaxies in space, the planes distribution of plants and animals, or of bacteria on
a slide, etc.

10.7 Moving average processes

("mozgóátlag folyamatok")

De�nition III.67 Let
�!
� = f�n : n = 0;�1;�2; :::g i.e. T = Z (integers) be

uncorrelated r.v. having a common mean � and variance �2. Let m 2 N and a1 ,
a2 ,...,am 2 R be any �xed numbers and consider the process

�!
� = f�n : n 2 Zg

where
�n = a1�n + a2�n�1 + :::+ am�n�m+1 for n 2 Z . (10.48)

Now the s.p.
�!
� is called a moving average processes ("mozgóátlag folyamat").

�

Remark III.68 The naming "moving average" refers to the application when the
original s.p.

�!
� has extreme low and high (expected) values and perhaps peri-

odic or "seasonable" 2) ("szezonális"), and these huge di¤erences are decreased
and the extreme alterations are smoothed by taking the (weighted) average of m
consequtive r.v. �n , ... , �n�m+1 . So, the s.p.

�!
� contains the averages of

these consequtive r.v. � i , and goes on, i.e. moves. The usual arithmetic mean

2 ) Consider e.g. the changes of the numbers of tourists in the four seasons of years, or your
working attitude from Monday to Sunday and of the next weeks.
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("számtani/aritmetikai közép") uses a1 = ::: = am = 1
m

and weighted arith-
metic means ("súlyozott számtani közép") need a1 + ::: + am = 1 , however in
(10.48) the numbers ai can be any real numbers!

Figure 17: Moving average
�n are in blue and �n are in red

Claim III.69 M(�n) = � � (a1 + :::+ am)
and

D2(�n) = �
2 � (a21 + :::+ a2m). �

For the covariance we have

Theorem III.70

cov
�
�n; �n+v

�
= E

��
�n � � �

mP
i=1

ai

��
�n+v � � �

mP
i=1

ai

��
=

(10.49)

=

8<:
�2 � (amam�v + :::+ av+1av)

0

if v � m� 1

if v � m
. �

Since the covariance between �n and �n+v depends only on v and not on n ,

the process
�!
� is covariance stationary.
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Remark III.71 A common case is the "moving average" with a standardized vari-
ance in which ak = 1=

p
m for k = 1; :::;m . Now the covariance function

becomes

R (v) =

8><>:
�2 �

�
1� v

m

�
0

if v � m� 1

if v � m
. (10.50)

10.8 Autoregressive processes

("autoregressziós folyamatok")

De�nition III.72 Let f�n : n = 0;�1;�2; :::g i.e. T = Z (integers) be a covari-
ance stationary process (see Def.III.55). Then, for any real number � 2 R , j�j < 1
the r.v. de�ned by

�n = �n � � � �n�1 (10.51)

are uncorrelated ("korrelálatlanok") with zero means and a common variance �2 .
The s.p. de�ned in (10.51) is called an autoregressive process of order one
("els½orend½u autoregressziós folyamat"). �

Remark III.73 i) The word "regression" (latin) originally means "going back
to the past, using the old things". As usual, "auto" (greek) means "self". In
(10.51) � gives the "measure" of the autoregression.
ii) Recall, that "�i and �j are uncorrelated" only means that cov

�
�i ; �j

�
= 0

which is weaker than "�i and �j are independent".

From (10.51) we may write

�n = � � �n�1 + �n = ::: = �k � �n�k +
k�1P
j=0

�j�n�j for k � n . (10.52)

Further we have

Theorem III.74

M

24 �n � k�1P
j=0

�j�n�j

!235 =M h�
�k�n�k

�2i
= �2k �M

�
�2n�k

�
. � (10.53)
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M
�
�2n�k

�
is constant, i.e. independent of n and k, since the process

�!
� is

stationary.
Moreover, using j�j < 1 , the right hand side of (10.53) decreases to 0 at a

geometric rate. Thus

Theorem III.75

�n = lim
k!1

k�1P
j=0

�j�n�j =
1P
j=0

�j�n�j in m.s. (10.54)

where m.s. means mean square distance ("négyzetes közép távolságban") limit.

Equation (10.54) provides a representation of the original process
�!
� as a mov-

ing average process.
Since mean square convergence implies convergence of the means and second

moments, we have

Theorem III.76

M (�n) = lim
k!1

M

 
k�1P
j=0

�j�n�j

!
= 0 (10.55)

and

M
�
�2n
�
=

�2

1� �2
. � (10.56)

Let us compute the covariance between �n and �n+k .

Theorem III.77
M(�n � �n+k) = �2 � �k (10.57)

and so

cov
�
�n; �n+k

�
= �2 �

�
�k � 1

1� �2
�

(10.58)

for k 2 N . �

The generalization of (10.51) is:

De�nition III.78 Let f�n : n 2 Ng be a sequence of zero mean uncorrelated ran-
dom variables having a common variance �2 . Then the (stationary) process

�n = �1�1 + �2�2 + :::+ �p�p + �n (10.59)

for j�ij < 1 is called a p �th order autoregressive process ("p -edrend½u
autoregressziós folyamat"). �
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10.9 White noise processes

("fehérzaj folyamatok")

De�nition III.79 The s.p.
�!
� = f�t : t 2 Tg is a white noise process ("fe-

hérzaj folyamat") if the following holds:
for every �nite subset H � T we have that �H = f�t : t 2 Hg are standard inde-
pendent normal (Gaussian) distributions. �

Claim III.80 Clearly, by the independency, the common density function of �H
for H =

�
h1; h2; :::; hjHj

	
is

f�H

�
xh1 ; xh2 ; :::; xhjHj

�
=

1q
(2�)jHj

� exp
 
�x2h1 � x

2
h2
� :::� x2hjHj
2

!
(10.60)

since the (one dimensional) standard normal density function is

f (x) = 1p
2�
� e�x2=2 . �
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