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Chapter 1

Introduction

Mathematical formulation and even algorithmic approaches of finding min-
imal (direct) and overall reactions and mechanisms grew a great literature
in the last two decade. We refer here only to the works of Happel-Sellers-
Otarod [HS83], [S84], [HOS90], of Pethő [P90], [P93], [P95], of Friedler-
Bertók-Fan [B99] , [FBF00], Fishtik-Alexander-Datta [FAD99], [FD99] ,
Chevalier-Melenk-Warnatz [CMW90], and of LaFlamme and the present au-
thor [Sz91], [SzL95], [SzDL96], [Sz97], [SzL98], [Sz00], [Sz01], [SzDHL01],
[Sz01a], [Sz01b] and [SzP01] .

Further, recently many authors present lectures either on this field or
on the applications of it, we mention here only some names as X.X.Zhu
/Machaster, UK/, Klára Hunek, Pál Jedlovszky and János Tóth /Technical
University, Budapest/, Csanád and Botond Imreh /University of Szeged/,
Gábor Kiss and Sándor Balogh /MOL/.

Starting with our first paper on this field [Sz91] we followed the linear
algebraic model of Pethő [P90], which was also invented independently by
Happel-Sellers-Otarod [HS83] and in [S84] . In our further papers [Sz91],
[SzL95], [SzDL96], [Sz97], [SzL98], [Sz00], [Sz01], [SzDHL01], [Sz01a],
[Sz01b] and [SzP01] we made an extensive research of this field in several
aspects.

In the present Thesis we introduce the main results of our research we
made in the last decade(1) in the field of the theory of simplexes. This the-
ory, among others can be applied to reaction mechanisms and other field
of chemistry and physics, as reactions among species (or groups of atoms),
dimensionless groups in physics, PNS networks, etc., too. These investiga-

1) Major parts of the researches was done during the author’s study tour at Professor
Claude LaFlamme in Calgary, Canada (1994) and at Professor Árpád Pethő in
Hannover, Germany (1995).
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CHAPTER 1. INTRODUCTION 2

tions do not deal with the same subject (simplexes) only: the questions and
results have many connections among the different Chapters. One separate
Chapter contains a list of further possible research questions, and another
summarizes the basic definitions and properties of not common mathematical
notions [matroids]. All the results collected in the present Thesis have been
appeared in our papers [Sz91], [SzL95], [SzDL96], [Sz97], [SzL98], [Sz00],
[Sz01] or are ready for preparation in manuscript form [SzDHL01], [Sz01a],
[Sz01b] and [SzP01].

Let us now just to outline the content of our research contained in the
present Thesis. A detailed Summary is given in the forthcoming Sections.

We introduce first our mathematical model (in Chapter 2) for describing
and studying reaction mechanisms among a given set of reactions. The model
is based in linear algebra only. This generality allows us to apply both the
model and the algorithm based on it also for several other problems.

Next we present our polynomial fast algorithm for finding all minimal
(circle-free) mechanisms in a given set of reactions based on our model. Let
us mention that the presented algorithm, compared to others in the literature,
is fully automatic, works for any input and is considerable fast.

Since the model we use is quite general, with (or without) some minor
modifications of it and of the algorithm we can solve other related prob-
lems. For example, we can find also the complete set of (circle-free) reaction
mechanisms resulting any given possible reaction, or all reactions which can
occur as resulting reaction, i.e. containing terminal species only. These easy
modifications can be carried out also for reactions, dimensionless groups or
PNS networks.

A further Chapter is devoted to our calculations which give upper and
lower bounds to the number of possible (circuit-free) mechanisms for any
given set of reactions. These bounds are sharp, that is in some extreme cases
the number of possible mechanisms is exactly the given small or large number.
These bounds can be applied in any practical example for estimating the
possible number of (cicuit-free) mechanisms, or in the other applications, the
number of reactions, groups, etc. These calculations turn out more general
than just in linear spaces, as our model required for reaction mechanisms. So,
another Chapter deals with these more general calculations in the structure
of matroids. (Since these structures might not be common for some Readers,
in the last Chapter we provide a short introduction of them.)

This further generalization suggests still other applications. In Section
”Beyond the thesis” we mention this and other questions which we suggest
for further research.

Several examples for applications are presented in detail for explaining
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both the model, the algorithm, its speed, its variations for other related
problems and for comparing the number of outcomes to our calculations of
(upper and lower) bounds.

Another but closely related question concerning reactions and mecha-
nisms are the quantities which are linear on the set of reactions. (We call
these quantities valuation operators.) A quantity is linear if its value for the
final reaction can be computed from the values of those reactions which mech-
anisms results the final reaction, using just a linear computation. (The exact
definition with a deep linear algebraic investigation is provided in Chapter 6
”The valuation operator”.)

The below Sections provide more detailed summary of the results of the
Thesis. The last one is devoted for acknowledgements.

1.1 Simplexes

For fully understanding of the generality of our method and algorithm we de-
vote Chapter 2 ”Introduction and mathematical formulation” for examples of
different types (as atoms, reactions, mechanisms, process network syntheses
or dimensionless units in physics) and the abstract general mathematical
model for them. Shortly speaking, each object (reaction, mechanism, etc.)
we represent by a vector in a suitable dimension in such a way that (chem-
ical/linear) combination of these object are represented by the same linear
combination of their vectors.

For example, any chemical speci (or group of atoms, i.e. functional bond
only)

A =
m∑

i=1

ai · Ei ,

consisting of the atoms E1, ..., Em can be assigned to the vector

A := [a1, ..., am]T

from the m -dimensional linear space.
Or, to the reaction

X =
n∑

i=1

bi · Ai ,

which uses the species A1, ..., An (bi ∈ Z for i = 1, . . . , n) we can
correspond the vector

X := [b1, ..., bn]T ∈ Rn .
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Though the mathematical notion (”simplex”) we introduce has its own
curiosity in mathematics, here we focus mainly on chemical aspects of its
applications only.

Since this linear algebraic notion plays central role in the present Thesis,
let its definition stay also here.

Definition 1.1 (see Def.2.1) A set of vectors S ⊂ Rn is called a simplex
iff S is linearly dependent but all of its proper subsets T ⊂ S , T 6= S are
linearly independent. ¤

In our applications vectors and simplexes may be interpreted in different
ways in stoichiometry or in physics. For example, if we consider species
/ functional bonds / groups of atoms as vectors then simplexes determine
minimal reactions. Second, in the case under vectors we mean reactions, each
simplex gives us a minimal / direct mechanisms. Third, if phisical quantities
(measuring) units are represented by vectors, simplexes mean dimensionless
quantities (constant) built up from them by multiplication and division.

1.2 The algorithm

In Chapter 3 ”The algorithm” we first introduce our new general algorithmic
method for solving the general algebraic problem: to find all simplexes in a
given (finite) set of vectors H ⊂ Rn. In other terms, for example: it generates
all minimal (circuit-free) reaction-mechanisms. This algorithm is based our
above linear algebraic model, it lists all the simplexes in polinomial short
time, without any repetition and is fully automatic.

It is clear (by the definition) that all simplexes in Rn must have size at
most n + 1 . However, there is no mean to try out all subsets of H ⊂ Rn

having this or smaller size for finding all simplexes in H : this would require

n+1∑
i=1

(
M

i

)
=

(
M + 1

n + 2

)
− 1 ≈ (M + 1)n+2 (1.1)

steps where M denotes the size of H , the number of inputs, each if of
dimension n .

The base idea for accelerating our algorithm is the following Fact (which
follows immediately from the definition of simplexes):

Fact: No subset of a (linearly) independent set can be simplex, neither
can any set which contains a dependent subset. ¤
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Our algorithm starts with the singleton containing the first element of
H. After, in each step it modifies the (just investigated) candidate subset
of H : enlarges, decreases or replaces one element of it, according to that
subset was dependent or independent and according to the previous Fact.
This observation considerable accelerates the algorithm in most of the cases.
Computer experiments, which are presented in Chapter 8 show that our
algorithm is really considerably fast.

On the other hand, our results in Chapter 4 ”On the number of simplexes”
(or see in the next Section) show that in many extreme cases the (maximal)
number of simplexes (outputs) may be exactly(

M

n + 1

)
≈ Mn+1 (1.2)

which has just a bit smaller magnitude than (1.1). (In Chapter 4 we also
provide lower bounds for the number of simplexes [outputs].) For compar-
ison, in all computer examples in Chapter 8 we indicate both real running
time (in seconds) and these lower and and upper bounds of possible extreme
cases.

This (base) algorithm was first published in [Sz91] in 1991, it differs in
its basis from Happel- Sellers- Otarod’s in [HOS90] and Bertók’s [B99].

Surprisingly enough only slight modifications were neccessary of the input
set for many different and effective further applications.

For example, if only a set of reactions as possible parts of a mechanism
and the set of terminal and nonterminal (chemical) compounds are given, we
might be asked to find (all) the (possible) resulting reactions which contain
of terminal compounds only. This requirement can be answered by an easy
modification of the input matrix (and an unmodified run of the algorithm).

Or, we may want to collect those direct (circuit-free) mechanisms which
lead to a certain (given) reaction. Since each reaction is represented by a
vector and circuit-free mechanisms correspond to simplexes, we only have to
look for simplexes which contain the vector representing our given reaction.
For achieveing this we only have to analyse the method of our algorithm
how it selects new sets (more precisely it modifies the old ones) for looking
simplexes. We have just to put this given vector to the first place and to
stop the algorithm when the investigated set leaves this first vector. Similar
tricks are also applicable for more given vectors and various requirement for
simplexes which contain all of them or at least one of them, etc.

Though there is no (theoretical or practical) limit for the number of the
input-vectors or for their dimension for our algorithm, a previous decreasing
of them, if applicable, is always useful. This question is discussed in Section
3.2.0, computer experiments are shown in Chapter 8.
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These modifications are discussed in the second part of Chapter 3, in
Sections 3.2.0 through 3.2.3. We conclude Chapter 3 with a mathematical
justification of the correctness of these modifications of our algorithm.

These extensions of the base algorithm with their mathematical investi-
gations have been appeared in [Sz01] .

1.3 On the number of simplexes

In Chapter 4 ”On the number of simplexes” we present a detailed investiga-
tion on the number of simplexes and the structure of the extreme configura-
tions. Let us highlight that the maximal number of simplexes would not be a
hard combinatorial example (using Sperner’s wellknown theorems from com-
binatorics), but we also reveal the structure of the extreme configurations,
too, which is the hard problem.

In other words, for example, considering a (given) list of reactions, we
can give numerical bounds for the number of circle-free mechanisms possible
among these reactions.

In details, in Chapter 4 we prove the following results:

Theorem 1.2 (see Thm.4.3) For any H ⊂Rn of fixed size, so that H spans
Rn , simp(H) is maximal if and only if any n vectors of H are linearly
independent. ¤

Theorem 1.3 (see Thm.4.5) For any H ⊆ Rn of fixed size so that H spans
Rn, simp(H) is minimal if H consists of n linearly independent equiva-
lence classes of sizes differing by at most one from each other, where each
equivalence class is a set of parallel vectors.

In case H contains no simplexes of size at least 3, the minimal configu-
ration is unique. ¤

Let again draw the Reader’s attention to the facts that the above results
focus mainly on the structure of the extreme configurations. The number of
simplexes is a corollary of these results:

Corollary 1.4 (see Cor.4.10) Let H ⊆ Rn so that H spans Rn and |H| =
m. Then, writing m = an + b where 0 ≤ b < n , we have

b ·
(

a + 1

2

)
+ (n − b) ·

(
a

2

)
≤ simp(H) ≤

(
m

n + 1

)
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and the extreme values may be achieved only by the following unique config-
urations as

(i) simp(H) is maximal if and only if any n vectors of H are
linearly independent,

(ii) simp(H) is minimal if H consists of n linearly independent
equivalence classes of sizes differing by at most one from each other, where
each equivalence class is a set of parallel vectors.

Especially, when m is divisible by n (i.e. b = 0), we have

n ·
(

m
n

2

)
≤ simp(H) ≤

(
m

n + 1

)
. ¤

The question for the minimum value of simp(H) is open if no parallel
vectors are allowed in H. Unfortunately our methods in proving the minimum
case work only if we allow parallel vectors (ie. to use the same specie more
than one time). So the lower bound must be much larger when we exclude
parallel vectors, but at this time the question for the minimum value of
simp(H) is open if no parallel vectors are allowed in H . (This restriction is
irrelevant in the maximum case.)

The special case n = 3 when excluding parallel vectors is dealt in the
next Theorem:

Theorem 1.5 (see Thm.4.11) For any H ⊆ R3 of fixed size not equal to
3, 4 or 7 such that H spans R3 and contains no collinear vectors, simp(H)
is minimal if and only if H is contained in two intersecting planes, one of
which is of size 3; i.e. precisely when H contains three linearly independent
vectors {u1, u2, u3}, another vector v coplanar with u1 and u2 and the rest
H\{u1, u2, u3, v} coplanar with u2 and u3 . ¤

For |H| = 3 , H must consist of 3 linearly independent vectors as it
is required to span R3, and therefore simp(H) = 0 . For |H| = 4, there
are 2 optimal configurations with 1 simplex. The optimal configurations are
explained below in Figures 4.1 and 4.2 in the third Section of Chapter 4.

Corollary 1.6 (see Cor.4.12) Let H ⊆ R3 such that H spans R3, |H| =
m ≥ 4 and contains no collinear vectors. Then we have:(

m − 2

3

)
+ 1 +

(
m − 3

2

)
≤ simp(H) ≤

(
m

4

)
. ¤
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These investigations throw some light also to the behaviour and speed of
our algorithm, and also to all the applications as well. In other words, these
formulas give immediately bounds for the number of chemical minimal reac-
tions / direct mechanisms in a given set of species (groups of atoms or func-
tional bonds) / reactions since the number of the involved elements/species
is known and fixed.

Let us highlight here again that our bounds are sharp and we also char-
acterize the unique extreme constructions. The only open case is when we
do not allow parallel vectors is solved in only in R3 , the proof occupies the
last Section of our Chapter 4. These results are originally published in our
joint works [SzL95] , [SzL98] with Claude LaFlamme.

Higher dimensions are mentioned in Chapter 7 ”Beyond the thesis”.

1.4 Computational results

In Chapter 8 ”Computational results” we present some runs of our base
algorithm and of the extended variants of it. We used a PsII Packard Bell
Personal Computer with 400 MHz CPU speed, the number and the dimension
of the input vectors in our examples both are between 10 and 20. We used
examples from the literature and compared our results (both output and
speed) to the other algorithms mentioned in the literature.

From these in- and outputs and Tables not only the running time and
the size of the input and output (one of them has more than 3000 out-
put simplexes, i.e. circle-free mechanisms) can be studied, but also several
other quantities which we investigated theoretically in the previous Chapters.
These computational results have already been appeared in the last Section
of [Sz01] .

1.5 Valuation operators

The other main question we deal with in the present Thesis is a theoretical
investigation of linear quantities already used in chemistry.

Chapter 6 ”The valuation operator” studies the behaviour of chemical
species (functional bonds or just groups atoms) and reactions, mechanisms
among them. Here we investigate the linear quantitative characteristic prop-
erties of the ”components” taking part in a structure, in a reaction or in a
mechanism. For example, the reaction heat of a reaction, resulted by a mech-
anism, can be computed from the reaction heats of the reactions taking part
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of the mechanism. Further wellknown examples for linear (or additive) quan-
titatives of this kind are, for example molar volumes, entalpy of formation
or heat capacity of species, the standard Gibbs free energy change (or free
entalpy) of reactions, or Reynold’s number of measure units in physics. De-
tailed examples and precise definitions are given at the introductory part of
Chapter 6.

As a result of our linear algebraic interpretation, among others, a one-line
proof for Hess’ law is presented.

Our main results in this Chapter are first revealing the firm mathematical
base of the concepts and methods already in use in this field of chemistry.
(We use the wellknown results of higher linear algebra.) Second, we present
new mathematical connections among these chemical concepts, which may
offer new points of view or even new computing techniques for the linear
characteristics of components.

The results of this Chapter have already been appeared in [Sz00].

1.6 Matroids

In Chapter 5 ”Matroids” we investigate more general mathematical concept
of vectors, simplexes, linear spaces and bases of them. Matroids are rel-
atively new structures in mathematics, they are common generalization of
linear spaces (considering only independence of vectors but not the opera-
tors), graphs (the structure of circle-free edge sets), set-systems, in other
words hypergraphs (investigating the independence of certain subsets of a
ground set), partitions of sets, etc. Matroids deal with the properties of the
relation of independence, which means, in the language of mechanisms that
a mechanism is circuit-free. The definition and basic properties of matroids
is presented in the Appendix.

More precisely we focus on the generalization of the question on the num-
ber of bases and of circuits in matroids and on the structure of the extreme
constructions. Similarly to the previous Chapter, we have to deal separately
with the cases with and without loops and/or parallel elements.

The results in this Chapter are results of a joint research of several years
with György Dósa, Mihály Hujter and Claude LaFlamme, are published in
[SzDL96] and planned in [SzDHL01] .

In Chapter 5 we justify the results below:

Theorem 1.7 (see Thm.5.3) If m > n+1 , then only the uniform matroid
Um,n contains the maximum number of circuits,

(
n+1
m

)
. If m = n + 1 ,

all matroids of size m and of rank n contain exactly 1 circuit. ¤
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Theorem 1.8 (see Thm.5.5) Only the uniform matroid Um,n contains the
maximum number of bases, namely

(
m
n

)
. ¤

Theorem 1.9 (see Thm.5.6) For each m and n there is a unique matroid
Mo of size m and of rank n containing minimal number of bases, namely
1, when we allow loops in the matroid. ¤

Theorem 1.10 (see Thm.5.7) Any matroid M of size m and of rank n
contains at least n−m circuits. A matroid contains exactly m−n circuits
if and only if the circuits of the matroid are pairwise disjoint. ¤

Theorem 1.11 (see Thm.5.11) Suppose that there are neither large circuits
nor loops in the matroid M and {a1, a2, . . . , an} is any fixed base of M
. If ϑi denotes the number of elements in M parallel to ai (including
ai itself) for i = 1, 2, . . . , n , then M contains the minimum number of
circuits iff |ϑi − ϑj| ≤ 1 for i 6= j . ¤

Corollary 1.12 (see Cor.5.12) The minimum number of circuits in a
matroid of size m and of rank n, where m = an + b , 0 ≤ b < n , is

b ·
(

a + 1

2

)
+ (n − b) ·

(
a

2

)
and in particular, if m is a multiple of n,

n ·
(

m
n

2

)
. ¤

Theorem 1.13 (see Thm.5.13) a) For m < 2n , a matroid of size m
and rank n contains the minimal number of circuits iff all its circuits are
disjoint.

b) For m ≥ 2n , a matroid contains the minimal number of circuits iff
it contains only 2-element circuits (i.e. parallel elements), and the sizes of
the equivalence classes of parallel elements differ by at most 1 . ¤

Theorem 1.14 (see Thm.5.19) A matroid M of size m and rank n
contains the minimal number of bases iff it has a base {a1, a2, . . . , an} such
that all other elements in M are parallel to a1 . ¤

Corollary 1.15 (see Cor.5.21) The minimal number of bases is m−n+1 ,
and the minimal configuration is unique when we allow no loops but parallel
elements in the matroid. ¤
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1.7 Beyond

In Chapter 7 ”Beyond the Thesis” we just list, in a more or less detailed
form, a couple of open questions and ideas, connected to the fields of the
thesis, for further researches. We indicate that the investigation of most of
these questions are in progress and are to be published in the near future in
[Sz01a] , [Sz01b] and in [SzP01] .

Among others, we formulate the below problems.

Problem 1.16 (see Probl.7.3) What is the minimal number of simplexes if
assuming the minimal size of dependent subsets (’circles’ in matroids) is at
least k for any fixed k ∈ N ? ¤

Conjecture 1.17 (see Conj.7.2) Suppose that H is of fixed size, spans Rn

and contains no collinear vectors. Then the minimal value of simp(H) is is
attained precisely in the following configurations:

1. If n is even, H contains n linearly independent vectors {ui : i =
1, . . . , n} and the remaining ones are divided as evenly as possible between
the planes {[ui, ui+1] : i = 1, 3, . . . , n − 1} .

2. If n is odd, H again contains n linearly independent vectors {ui : i =
1, . . . , n}, one extra vector in the plane [un−1, un] and finally the remaining
vectors divided as evenly as possible between the planes {[ui, ui+1] : i =
1, 3, . . . , n − 2} with lower indices having precedence. ¤

Conjecture 1.18 (see Conj.7.4) For matroids M of size m and with rank
k , minimal number of circuits is contained in the uniform matroid Uk,n−3,
so the lower bound is

1 + 3 ·
(

m − 3

k − 1

)
+ 3 ·

(
m − 3

k − 2

)
+

(
m − 3

k − 3

)
≤ simp(M) . ¤

Problem 1.19 (see Probl.7.5) Let the set of vectors H := {A1, ..., Am} ⊂
RN and a subset of H V := {V1, . . . , Vt} ⊂ H be given. What is the
possible minimal and maximal number of simplexes S ⊂ H containing
at least one vector from the set V , that is S ∩ V 6= ∅ ? ¤

Definition 1.20 (see Def.7.6) Let the vectors of the i ’th hierarchy (i ∈ N)
be

Hi := {A(i)
1 , ..., A

(i)
ki
} ⊂ Rni .



CHAPTER 1. INTRODUCTION 12

Suppose, that the set of simplexes of Hi is

Si := {S(i)
1 , ..., S

(i)
ti } ⊆ P(Hi)

and identify these simplexes to the set of indices

Si
j := {u ≤ ki : Au ∈ Si

j} ⊆ {1, ..., ki} , (j ≤ ti) .

Suppose further that these simplexes determine (up to a constant factor)
the linear combinations ∑

v∈Si
j

λi,j
v Av = 0 (j ≤ ti).

Then we define the vectors of the next hierarchy as

A
(i+1)
j := [µ1, ..., µki

] ∈ Rki , (j ≤ ti) ,

where

µv =

{
λi,j

v

0
if v ∈ Si

j

if v /∈ Si
j

,

so, of course, the next dimension is

ni+1 = ki . ¤

Problem 1.21 (see Probl.7.7) Study the properties of this hierarchy, the
connections among these levels, and study their applications to linear algebra,
chemistry, physics, etc. ¤

Problem 1.22 (see Probl.7.9) Is there a (finite) set of circuit-free mecha-
nisms/reactions which linear combinations would give the set of all mecha-
nism/reactions?

Find this set theoretically, algorithmically, and/or describe its properties.
¤
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Chapter 2

Examples and mathematical
formulation

The mathematical model we use in the present Thesis is standard and quite
wellknown, first described in [P90] and [Sz91], partly similar to Seller’s and
others’ [S84], [HOS90]. By ”standard” we mean that linear algebraic rep-
resentation of reactions and their mechanisms is used in most of the works
published in the theory of reaction mechanisms. Well, if we consider the law
of mass balance (conservation of material) only, neglecting the reasons of a
mechanism, this method is easy and quite natural.

Following Á.Pethő, we extend the use of our linear algebraic model for
other fields. Let us highlight in advance that our method is exactly the same
both for reactions, mechanisms, and for dimensionless groups. We can de-
scribe all of these problems in the language of linear combinations of vectors,
and in order to find the desired object (minimal reactions/mechanisms/di-
mensionless groups) we need to find, in all of the three above cases, minimal
linearly dependent subsets of these vectors. We call these subsets of vectors
simplexes. Since our algorithm finds all simplexes in any set of given vectors,
it can be applied immediately for all of the three problems above.

Let us start with some examples to which we will be able to use our gen-
eral linear algebraic concepts and our proposed algorithmic solution. These
examples help us to deduce and understand the general notions we have to
deal with.

15



CHAPTER 2. EXAMPLES AND MATH. FORMULATION 16

2.1 Reactions

If we are given the chemical species (or groups of atoms, i.e. functional
bonds only) A1, ..., An which consist of the atoms E1, ..., Em as

Aj =
m∑

i=1

ai,j · Ei

where ai,j ∈ N for j = 1, ..., n and i = 1, ...,m , and we suppose that the
sets {A1, ...An} and {E1, ..., Em} are fixed, then we can assign the specie
Aj to the vector

Aj := [a1,j, ..., am,j]
T

for j = 1, ..., n , which vectors are elements of the m -dimensional linear
space spanned by the (natural) set of base vectors {E1, ..., Em} .(1) We can
of course assume that the vectors Aj are, in fact, in the linear space Rm, that
is Aj ∈ Rm for j = 1, ..., n .

Now, a (possible) chemical reaction among the species {Aj : j ∈ S}
does exists for any set of indices S ⊆ {1, ..., n} if and only if the system of
homogen linear equations ∑

j∈S

xj · Aj = 0 (2.1)

has nontrivial solution for xj ∈ R (j ∈ S) by the law of mass balance (con-
servation of material). Further, a solution {xj : j ∈ S} easily determines
uniquely a chemical reaction among the species {Aj : j ∈ S} (2),(3) .

(The structure of the solutions of homogen linear equations is discussed
in [P67].)

For example, consider the species A1 = C , A2 = O , A3 = CO
and A4 = CO2 , that is we use the elements E1 = C and E2 = O as
base ”vectors”. So m = 2 (=the number of atoms =the dimension) and

1) Of course the chemical speci Aj and the vector Aj ∈ Rm are not the same, above
we mentioned the (natural) correspondence among them. However, in what follows, we
will not emphasize the difference between the species Aj and the vectors Aj ∈ Rm .

2) Species (groups of atoms or functional bonds) with positive coefficients represent the
right hand side of the reaction equality (starting compounds) while species with negative
coefficients are moved to the left hand side (the products of the reaction).

3) All the solutions for the unknowns xj for j ∈ S are rational since the components
ai,j of the vectors Aj — the coefficients of the homogen linear equation (0) — are all
integers.
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n = 4 (=the number of species/ vectors). The columns of the following
Table represent the vectors A1 through A4 :

A1 A2 A3 A4

C 1 0 1 1
O 0 1 1 2

C O CO CO2

(2.2)

Now, for example, taking the S = {A1, A2, A3} we get the solution(4)

X1 = [x1, x2, x3, x4]
T = [1, 1,−1, 0]T

which corresponds to the minimal reaction

C + O = CO .

The assumption that the equation (2.1) has nontrivial solutions is equiv-
alent to that the vector set {Aj : j ∈ S} ⊆ Rm is linearly dependent.
The corresponding reaction is called minimal iff for no T ⊂ S, T 6= S
there might be any reaction among the species {Aj : j ∈ T} . That is, the
vectorset {Aj : j ∈ T} is linearly independent for any T ⊂ S , T 6= S .

This motivates Definition 2.1 below, where we will call such subsets of
Rm as simplexes.

The only simplexes in the above example are (we write the sub-indexes
of the vectors Ai only) S1 = {1, 2, 3} , S2 = {1, 2, 4} , S3 = {1, 3, 4} and
S4 = {2, 3, 4} . After solving the corresponding equations (2.1) we get the
following (complete) list of minimal reactions :

X1 = [1, 1,−1, 0]T : C + O = CO
X2 = [1, 2, 0,−1]T : C + O2 = CO2

X3 = [1, 0,−2, 1]T : C + CO2 = 2CO
X4 = [0, 1, 1,−1]T : O + CO = CO2

(2.3)

(We continue this example in the next Section.)

Of course the reactions obtained in the above way are only possibilities,
for example the reaction

2Au + 6HCl → 2AuCl3 + 3H2

does not occur under normal conditions, i.e. we are interested in reactions
from mathematical (quantitative) point of view.

4) the co-ordinates of X , corresponding to vectors Aj which do NOT belong to the
simplex S , are always 0 .
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2.2 Mechanisms

We can build up mechanisms (and also minimal ones) from any set of
reactions just on the same way as we built up reactions from species in the
previous Section. (Mechanisms are the main topic of our present research,
we investigate them in more detail in Chapter 3 ”The algorithm and its
variations” and in Chapter 8 ”Computing results”.)

Well, if we are given the reactions X1, ..., Xk which use the species
(groups of atoms or functional bonds) A1, ..., An then we can correspond
these reactions to the vectors X1, ...,Xk ∈ Rn in the n -dimensional lin-
ear space Rn, where the base vectors are A1, ...,An (=the standard base)
representing each speci involved in the reactions. That is:

Xj =
n∑

i=1

bi,,j · Ai

where bi,j ∈ Z for j = 1, ..., k and i = 1, . . . , n (5),(6).
Then any linear combination

M =
k∑

j=1

λj · Xj (2.4)

of the vectors Xj with integer (or rational(7)) coefficients λj ∈ Z represent
a (possible) mechanism M in a natural way: during that mechanism the
reaction Xj takes place λj-many times (see the example below). Negative
coefficients of course, mean that the corresponding reactions take place in
reversed order. This reaction uniquely can be described by the vector of the
coefficients

λ := [λ1, . . . , λk]
T ∈ Zk

Let us emphasize here that the detailed flow of the mechanism can be de-
tected from the above vector of the coefficients but not at all from the sum-
vector of the linear combination in (2.4).

5) Moving the terms with negative coefficients bi,j < 0 to the left-hand side of the
equality (initial materials of the reaction) and leaving the others in the right-hand side
(resulting materials) we get the usual form

∑
i∈X b′i,jAi =

∑
i∈Y b′i,jAi of the mechanism.

6) by the law of the mass-balance we surely must have AX = 0 for the matrix
A := [A1, ..., An] which ”codes” the sum-formulae of the species A1, ..., An .

7) after multiplying all the coefficients by the common denominator we get integer
coefficients
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For further investigations we are adviced to extract the notion of the
resulting (overall) reaction denoted by R(M) or R(λ) , corresponding
to the mechanism M in (2.4) as :

R(λ) :=
k∑

j=1

λjXj ∈ Rn

(see [S84]) which is the final reaction, caused by the reactions Xj , λj -many
times one after another, 1 ≤ j ≤ k .

Let us remark that this model does not reveals the order of or any other
connection among the reactions in a mechanism. B.Bertók recently intro-
duced a graph -theoretical approach in [B99] for dealing with problem.

In the practice we distinguish terminal species (the starting and final
ones that we interested in) and intermediate ones (which occur only dur-
ing the mechanism). These terms are from [HOS90], the terms chemical
and active species are also in use. According to this distinction of species
(or just groups of atoms/ functional bonds), mechanisms are called steady
state mechanisms ([HS83]) if the corresponding reaction (called overall
reaction) contains of terminal (chemical) species only.

The mechanism is called direct or minimal mechanism ([HS83]) if the
set of active reactions (vectors with nonzero coefficient)

S(λ) := {j ≤ k | λj 6= 0}

can not be decreased to yield the same resulting (overall) reaction R(λ). In
other words: there is no proper subset S ′ $ S(λ) such that R(µ) = α ·R(λ)

and S(µ) = S ′ for some coefficient-vector µ ∈ Zk and rational number
α ∈ Q . In this case the corresponding reaction R(λ) is called simple or
minimal reaction.

Using our terminology, the solutions of the linear equations∑
j∈S

yjXj = 0 (2.5)

are minimal mechanisms iff the set S ⊆ {1, . . . , k} is a simplex, again !

Milner uses the term direct path and Sellers ([S84]) the cycle-free
mechanism for minimal mechanisms.

With slight modifications of our pure linear algebraic algorithm, detailed
in Chapter 3, we can solve several problems: we can find all minimal mech-
anisms resulting to any given reaction, or we can find all overall reactions if
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the sets of terminal and intermediate (chemical and active) species are given.
These and other applications are explained in detail in Section 3.2.

Happel, Sellers and Otarod in [HOS90] and Bertók in [B99] published
algorithms for finding direct steady -state mechanisms Pethő and Kumar in
[KP85] presented only an output for minimal reactions. Our computational
results are listed and the related ones are compared to the above ones in
Chapter 8 ”Computational results”.

Continuing our example from the previos Section, the co-ordinates of the
vectors X1, ...,X4 , which represent the [minimal] reactions from , see (2.2)
and (2.3), are

X1 X2 X3 X4

A1 = C 1 1 0 1
A2 = O 1 2 1 0
A3 = CO -1 0 1 -2
A4 = CO2 0 -1 -1 1

(2.6)

Funny enough in our example we have again four simplexes. Solving the
corresponding equations, we get the following list of minimal mechanisms
(cycles):

Y1 = [−1, 0, 1, 1]T : C + O ←− CO
O + CO −→ CO2

C + CO2 −→ 2CO

Y2 = [−1, 1,−1, 0]T : C + O ←− CO
C + 2O −→ CO2

O + CO ←− CO2

(2.7)

Y3 = [2,−1, 0,−1]T : 2(C + O −→ CO)
C + 2O ←− CO2

C + CO2 ←− 2CO

Y4 = [0,−1, 2, 1]T : C + 2O ←− CO2

2(O + CO −→ CO2)
C + CO2 −→ 2CO

For all these mechanisms Yi the resulting (overall) reaction R(Yi) = 0
(the void reaction) for i = 1, 2, 3, 4.
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2.3 Dimensionless groups

This application was first mentioned in [P90] and is not from stoichiometry,
but reveals the structure of composite measure units in physics, too: we can
easily (fully automatically) find minimal identities among physical quantities
by finding (all) simplexes again in a certain set of vectors.

Let there be given m elementary quantities (mass,lenght,time,etc.) de-
noted by E1, ..., Em and n quantities A1, ..., An (n ∈ N is any number)
as

Aj =
m∏

i=1

E
ai,j

i

where ai,j ∈ Z for j = 1, ..., n and i = 1, ...,m . Clearly we can assign the
quantities Aj to the vectors

Aj := [a1,j, ..., am,j]
T ∈ Rm

for j = 1, ..., n, which vectors are in the m -dimensional linear space Rm.
Now, a (possible) dimensionless group (real number) of the quantities
{Aj : j ∈ S} does exists for any S ⊆ {1, ..., n} iff the equality∏

j∈S

A
xj

j = 1 (2.8)

holds, or equivalently (considering the exponents) the homogeneous system
of linear equations ∑

j∈S

xj · Aj = 0

has nontrivial solution for xj ∈ R (j ∈ S) . That is, we again reached to
the system of linear homogen equations (2.1) and to the problem of finding
simplexes!

For example, consider the flow of a fluid through a heated tube and the
heat transfer between the pipe wall and the fluid. Consider now the following
quantities:

A1 = tube diameter = d (`) (length, basic quantity)
A2 = linear velocity = v (s/t)
A3 = fluid density = ρ (m/`3)
A4 = viscosity = ν (m/`t)
A5 = heat capacity = κ (A/t2T )
A6 = heat transfer coeff. = λ (m/t3T )
A7 = thermal conductivity = µ (m`/t3T )
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In matrix form:

m ` t T
A1 = d 0 1 0 0
A2 = v 0 1 -1 0
A3 = ρ 1 -3 0 0
A4 = ν 1 -1 -1 0
A5 = κ 0 2 -2 -1
A6 = λ 1 0 -3 -1
A7 = µ 1 1 -3 -1

(2.9)

For example, one minimal dimensionless group X1 of the seven ones is the
following:

X1 = [0, 0, 0, 1, 1, 0,−1]T ,

which corresponds to the equality

ν · κ = µ · c

for some constant c ∈ R .

2.4 General formulation and remarks

From the above examples we can extract the following general linear algebraic
notion (see [P90], [Sz91] or [SzL95]):

Definition 2.1 A set of vectors S ⊆ Rn is called a simplex iff S is
linearly dependent but all of its proper subsets T ⊂ S , T 6= S are linearly
independent. ¤

Let us point out that the above definition is a pure linear algebraic one,
free of any chemical or physical meaning. Further, though it has some cor-
relation with geometrical simplexes (see eg. [Sz99]), we should not mix the
above definition with geometric simplexes.

On the other hand, general methods for looking for simplexes in a given
set of vectors have many practical applications as we have seen in the previous
Sections. For example, we could list all (possible) reactions among a given
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set of species (or groups of atoms), or all (possible) mechanisms if the set of
reactions we can use is given, etc.

Our two main question we deal in general in the present Thesis are the
following. (1) - to invent an algorithm which searches for all simplexes in
a given arbitrary set of vectors, and (2) - to give bounds for the number
of simplexes which may be contained in a given arbitrary set of vectors, in
advance (i.e. before we run the algorithm).

In what follows we state these problems in some more details.

As we have seen in the three introductory different examples in the above
Sections, our first main mathematical problem is the following.

Problem 2.2 Find in a given vectorset H = {v1, v2, . . . , vM} ⊂ RN all
simplexes S ⊆ H , i.e. minimal dependent subsets of H.

The author’s algorithm, introduced already in 1991 in [Sz91] (and de-
scribed in the next Chapter) solves directly the above computational prob-
lem, so can be applied directly for any of the three above practical problems.
With some minor modifications we apply it for some other special questions,
mainly in study of reaction mechanisms in Section 3.2. (See also [Sz01] .)
We compare this algorithm to the others we found in the literature also in
the next Chapter.

The second problem we focus on in the present Thesis is the number of
simplexes in a given set of vectors (in other words, the number of the possible
minimal mechanisms/ reactions).

Problem 2.3 Give upper and lower bounds for the number of simplexes
which can be contained in a given set of vectors H ⊂ RN .

This question is partially solved yet, hard in full details. Our recent
papers [SzL95] and [SzL98] give almost full answers. We present these
results in Chapter 4 ”On the number of simplexes”.

Let us remark here that the size of the simplexes need not be the same,
moreover they do not have any connection with the bases of the linear space
(of all possible reactions/ mechanisms/ dimensionless groups). Examples in
Chapter 8 show that large sets of vectors in high dimension might have few
simplexes only, and small sets in low dimension might have many simplexes.
This means, that it is very hard to give the exact number of simplexes in a
given vectorset!
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Beyond these two main questions we also introduce the results of our
research on the generalizations of the above (second) problem.

The paper [SzDHL01] generalizes the mathematical notion of simplexes
and counts their number not only in linear spaces but in more general struc-
tures called matroids. Matroids are common generalizations of linear spaces
(or just certain sets of vectors), graphs, set systems, partitions, etc. This
means, that any result we receive about the simplexes (circles) of matroids
are direct results, among others for example, to linear spaces and so reactions
mechanisms. (The definition and basic properties of matroids are introduced
shortly in the last Chapter ”Appendix”.)

One could observe the connection between species and reactions (see
(2.2), (2.3) and (2.4): the vectors of the higher ”hierarchy” are the outputs
of the hierarchy of a lower level. That is, the first three levels of this hi-
erarchies are: (1) vectors (species/ groups of atoms/ functional bonds);
(2) solution vectors corresponding to simplexes (i.e. reactions); (3) so-
lution vectors of simplexes of the above vectorset (i.e. mechanisms in our
example), and so on ...! Details and further properties of this infinite
hierarchy will be investigated in [Sz01a] and [SzP01] . We discuss these
hierarchies, among others, in Chapter 7 ”Beyond the thesis”.

A general linear algebraic notion (linear functional) is applied to chemical
rections and mechanisms in [P95] where it is called the valuation operator,
this question is investigated in our paper [Sz00], i.e. in Chapter 6 ”The
valuation operator”.

This general notion and its linar algebraic investigation, of course, pro-
vides another information, a developped one, on reaction mechanisms and
other chemical and physical phenomena. We deal not only with the possi-
bility or the number of reactions but with their quantitaive characteristics.
These kind of characteristics (we call them valuation operators in Chapter
6) are, for example the reaction heat, molar volumes, entalpy of formation
or heat capacity of species, the standard Gibbs free energy change (or free
entalpy) of reactions, or Reynold’s number of measure units in physics.

Problem 2.4 Investigate the general properties of valuation operators in lin-
ear spaces.

As we indicated above, this problem is dealt with in Chapter 6.

Further problems for further research which are connected to the present
Thesis are listed in Chapter 7 ”Beyond the thesis”.
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We conclude this Section with some general properties of simplexes. We
will use them in our proofs in the forthcoming Chapters, but they are of
interest of their own, too.

As prof. Árpád Pethő in [P67] showes, all solutions (not only minimals)
of systems of homogeneous linear equations (2.1) can be calculated from min-
imal ones, this was the first case when he introduced the notion of simplexes.

Let us mention further that solving the system of linear equations (2.1)
the solution vector can be assumed to have integer co-ordinates (components)
only since (2.1) has integer coefficients, and we can multiply the rational
components of the solution vector by the common denominator.

The following property is of interest in hiw own, but we will use it in the
next Chapter when proving the equivalence of two variants of our algorithm.

Lemma 2.5 Any set of vectors U = {u1, . . . , um, v} is a simplex if and
only if the set {u1, . . . , um} is linearly independent and all the coefficients
αi in the existing equality

v =
m∑

i=1

αiui (2.10)

are different from zero.

Proof. If the set U\{uio} would be dependent for some i0 ≤ m then we
would have

βv · v +
∑
i6=io

βiui = 0

and βv 6= 0 since the set {u1, . . . , um} was assumed to be linearly indepen-
dent.

This implies

v =
∑
i6=io

βi

βv

ui

which contradicts to (2.10) since the coefficient of uio in the last linear com-
bination is 0 while all the coefficients of ui for each i ≤ m constructing v are
unique since the set {u1, . . . , um} is assumed to be linearly independent.



Chapter 3

The algorithm and its
variations

As we have indicated in the previous Chapters, our general linear algebraic
algorithm, published in [Sz91] solves the mathematical Problem 2.2 in gen-
eral. That is, it searches for all simplexes in an arbitrary (finite) collection of
vectors H ⊂ Rn . On the basis of the examples in the previous Chapter, one
can easily apply this algorithm directly for finding minimal either reactions,
mechanisms or dimensionless groups.

The running time of the algorithm is polynomial in the size of the input,
we discuss the speed of it just after we introduced our algorithm in the first
Section in detail. A working program list in Pascal language of the main part
of the algorithm is enclosed at the end of the present Chapter.

In the second Section we discuss a couple of ”modifications” of our base
algorithm for solving other related questions (mainly for studying mecha-
nisms). Under these ”modifications” of our algorithm we mean that for
solving other related problems, we have to (and can) find the suitable form
for input for solving those other problems. According to this trick, we can
use our original algorithm (which searches all the simplexes in a given set of
vectors) without any modification. The correctness of these modifications
is proved in precise mathematical way in that and the subsequent Sections.

We compare our algorithm to others in the literature in the last Section
of the present Chapter.

Many practical computer experiments are discussed in Chapter 8 ”Com-
putational results”.

26
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3.1 The algorithm

To start with we are given a set of vectors H ⊆ Rn (input) having size
|H| = M and we have to find all simplexes S ⊆ H, i.e. minimal dependent
subsets of H, without any repetition, and in the shortest time, as possible.

The only interesting part of the algorithm might be how to generate
(=book- keeping + modifying) all simplexes of a given set of vectors, since
checking whether a chosen set of vectors is simplex or not is standard.

We chosed the lexicographic enumeration of all (possible) simplexes (sub-
sets) and the ”back- and forth” method for modifying. To store the elements
of a subset S j H of vectors H (or equivalently the indexes of the vectors)
we chose a string called szimplex[] in our program with an information-
character on the last byte of it. (We put the info character to the last posi-
tion only for convenience. Also for convenience we labeled the vectors with
the characters A,B,... .)

The last info character of this string (representing the subset S j H we
just examine for being simplex) is one of the following:

’ ’ (space) - S is untested
’i’ - the whole S is independent
’d’ - one of the proper subsets of S is dependent
’s’ - S is a simplex

The procedure which modifies the vector- subset is called Procedure
Modify.

Just after each modification this procedure always puts a space to the
place of the info character (which is, for convenience, the last one of the
string representing the set of vectors we investigate). The main program
keeps testing whether the new vectorset is a simplex or not and fills out the
last info character according to the test. After this the main program calls
Procedure Modify for modifying the new vector-subset, and so on.

Clearly for each simplex the main program solves the system of linear
equations 2.1 where the columns of the coefficient matrix are exactly the
vectors of the actual simplex.

Now let us see Procedure Modify in more details, it is enclosed also
at the end of the paper [Sz91].

M denotes the number of all the given vectors, while S will denote the
set of the vectors we just examine (or shortly the indices of them only) with
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the last information character, that is(1)

S ⊂ {1, 2, . . . ,M, ′ ′, ′i′, ′d′, ′s′} .

Further, c always denotes an arbitrary character, k, t ≤ M and

T ⊆{1, 2, . . . , t − 1}

is any subset in the case t is fixed. Now, the pseudocode of the main part of
our algorithm is the following:

Procedure Modify

S := {1};
while not end do begin

if S = {k, k + 1, . . . ,M ; c} and c 6= d then END;
if S = {k, k + 1, . . . ,M ;′ d′} then S := {k, k + 1, . . . ,M − 1,M ;′ ′};
if S = {T, t,M ; c} then S := {T, t + 1;′ ′};
if S = {T, t; ′i′} then S := {T, t, t + 1; ′ ′};
if S = {T, t; ′d′} then S := {T, t + 1; ′ ′};
if S = {T, t; ′s′} then S := {T, t + 1; ′ ′};

end ;

The program does not miss any simplex because, roughly speaking, it
checks the (candidate) subsets of the given vectorset in lexicographical order.
Further, the program avoids repetition of output simplexes for the same
purpose, for checking all possible candidates in lexicographical order.

A working routine in Pascal language is shown in the last Section of the
present Chapter or in [Sz91].

3.1.1 The speed

One of the most crucial parts of the algorithm’s speed is: how many times
do we need to check the linear dependency of a subset T ⊆ H of the
input vectorset H ⊂ Rn for finding all the simplexes S ⊆ H . For exact
measurement of steps of algorithms the following notations are in use (see
eg.[CLR]):

Definition 3.1 For any functions f, g : N → N we say that f =O(g)
(”big oh of g”) iff for some positive constants c ∈ R+ we have

f(n)

g(n)
< c ,

1) set theorists would call S rather a sequence than a set
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that is

f(n) < c · g(n)

for all n ∈ N . ¤

Definition 3.2 For any functions f, g : N → N we say that f = Θ(g)
(”big theta of g”) iff for some positive constants c1, c2 ∈ R+ we have

c1 <
f(n)

g(n)
< c2 ,

that is

c1 · g(n) < f(n) < c2 · g(n)

for all n ∈ N . ¤

In some books we can find ≤ signs instead of < in the above formulae,
or the requirement ”for all n ≥ n0 for some fixed n ∈ N ” instead of for
all ”n ∈ N ” as in our definitions above. These alteration does not effect
significally the above Definitions, that is they are equivalent to the above
ones, since the constants ci are all positive. (This equivalency can be seen
easily.)

Further, as [CLR, Section, 2.1.2] points out, some literature does not
make any difference even between O and Θ. Since in our Thesis we give
upper bounds only to the speed of our algorithm, we use O only.

An easy analysis of the algorithm shows that our algorithm runs at most
for O(Mn+1) time (in the worst case) where M = |H| is the size of the input.
Since, all examined subsets of the M vectors have size at most n + 1, the
spanned dimension (=range) +1 of the input vectorset. This is polynomial
time in M , the number of vectors. The results in Chapter 4 ”On the number
of simplexes” show that the maximal (possible) number of simplexes (=the
size of the output) is really of this magnitude.

According to this estimation everyday size inputs (some dozen of vectors
in 10–20 dimensional spaces) require some seconds only on modern comput-
ers. We used a Packard Bell IBM-compatible personal computer with 366
MHz CPU time, 16 MB RAM, Turbo Pascal 6.0 on DOS-shell of Windows 97.
(We applied these simple computational tools succesfully for implementing
and running our algorithm.)
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Concrete computational experiments on (also large) datasets are shown in
Chapter 8 ”Computational results”. The number of these checks is displayed
in each of our examples in the last line of all the tables.

Perhaps a smart data-handling could avoid repeated checkings of subsets
T ⊆ H for their linear dependency, but we do not think it would fasten
considerably our algorithm.

3.2 The extensions

Surprisingly enough a couple of related questions can also be solved by slight
modifications not of the above algorithm but however of the input set of
vectors only!

We explain here our ideas mainly refereeing for mechanisms, though the
algorithm itself and the following ideas can be used in general in any other
problem, in any linear space.

3.2.0 Reducing the dimension

Using some easy observations we can reduce the size of the input and so the
running time of our computer.

(a) Clearly any vector (reaction) which is linearly independent of the
others must be omitted since no simplexes could contain it. Though any
systematic search for all these kind of vectors requires considerable time,
for huge datasets (about 30 vectors in 30 dimension, i.e.hours of CPU time)
this would offer a remarkable time saving, using some minute elementary
algebraic computation.

For an outstanding example let us highligh here the case of Methane-
Methanol example of [HOS] (which is also our example 8.6 in Chapter 8)
where especially the reactions S9 and S11 both contain exactly one extra
species (a single co-ordinate), namely C2H6 and CH3OCH3 respectively,
which do not occur in any other reactions. This clearly means that they
must be linearly independent of the others. And in fact, S9 and S11 are not
listed at all in Table X in [HOS], which also can be seen in Chapter 8 : Table
8.6.a) shows the original example while in Table 8.6.b) we can see the effect
of omitting S9 and S11 .

(b) If we have a vector with exactly two nonzero co-ordinates it may also
be omitted and further the dimension of all the remaining vectors may be
decreased by one.
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In the language of chemistry : such a vector stands for a reaction of type

A = λB

for some (positive) number λ ∈ R. This clearly implies that the species
(groups of atoms/ functional bonds) A and B are equivalent. That is, the
species A can be replaced to λB, for example, in all the other reactions while
the species A and the reaction A = λB can be omitted. (Eg. C6H6 =
3C2H2 .) This decreases both the number of species (dimension) and of
reactions (vectors). Of course to each mechanism M− in this reduced lower
dimensional space we might add the reaction A = λB if the species B occurs
in M− to form a real mechanism M in the original problem. (Of course M
must not be minimal, so if we search for minimal mechanisms we might have
also to examine its minimality after.)

Let us examine this construction in the language of mathematics, too.

Construction. Let the vectorset H ⊆ RN be given and suppose that
the vector X ∈ H has exactly two nonzero co-ordinates xu = λ · xv where
λ ∈ R\{0} is arbitrary nonzero real number and X = [x1, . . . , xN ]T . For each
vector Y ∈ H let us now substract the v’th co-ordinate λ-times from the u’th
one and delete the v’th co-ordinate from Y to get the vector Y− ∈ RN−1.

In formula: from the vector Y = [y1, . . . , yN ]T ∈ RN we construct the
vector

Y− := [y1, . . . , yu − λ · yv, . . . , yv−1, yv+1, . . . ,yN ]T ∈ RN−1

if we suppose u < v . ¤
Clearly X− = 0 .
Let now

H− := {Y− | Y ∈ H, Y 6= X} ⊆ RN−1 .

Lemma 3.3 For any S− ⊆ H− we have that S− is linearly independent
iff the set S ∪ {X} is linearly independent, where S := {Y | Y− ∈ S−} .

Proof. Let S := {Yi|i ≤ t} . Since only the u’th co-ordinates of the
vectors Y ∈ H were changed, and further all other co-ordinates of X were
0 which were not deleted, we have to focus on the u’th co-ordinates yi

u of Yi

only. (Recall that the u’th co-ordinate of Y −
i is yi

u − λ · yi
v .) This means,
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that for any set of coefficients µ1, . . . , µt ∈ R we have

t∑
i=1

µiY
−
i = 0 iff

t∑
i=1

µi(y
i
u − λ · yi

v) = 0

iff
t∑

i=1

µiy
i
u = λ ·

t∑
i=1

µiy
i
v =: c

iff
t∑

i=1

µiYi =
c

xu
· X .

Now let us consider any subset S− ⊆ H− . Using the previous lemma we
have that S− is simplex iff S ∪ {X} is dependent and S\{Y} ∪ {X}
is independent for all Y ∈ S , Y 6= X iff either S ∪ {X} is a simplex
or S is dependent but in the latter case we must have a simplex T ⊆ S
not containing X . Using this observation we can reduce the search for
simplexes in H : we have to search for them among the set S ∪ {X} and all
the subsets of S for every simplex S− ⊆ H− .

Let us emphasize that we did not mention such difficulties above when we
spoke in the language of chemistry. There we did not bother of finding mini-
mal original reactions in the previous paragraph what caused this difference.

This reduction is illustrated in our example 8.7 ”Glucose to Pyruvate
Conversion” in Chapter 8 which is taken from [HOS90].

In this example the original problem proposed 14 vectors in the 13 -
dimensional space, but introducing 3 new technical vectors we finally started
with 17 vectors. (The role and use of these technical vectors is explained
in Subection 3.2.1.i.) The first part of Table 8.7 shows this original problem
which required 93 seconds on our computer.

However, applying the above reduction for all the eight reaction of type
A = λB , we reached to a problem containing only 9 vectors in the 6-
dimensional space. This input required 0.10 seconds, details are shown in
the middle part of Table 8.7.

For the last part we applied one further reduction for a resulted new reac-
tion of this type. The CPU time decreased from 93.00 to 0.00 seconds! (Of
course, by 0.00 sec we mean that we measured the CPU time with precisity
0.01 seconds and the last run required less than 0.01 seconds.) We have
to admit, that we did not make any computations for decoding – finding
simplexes in the original problem from the reduced ones, so far.
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3.2.1 Searching for (direct) overall reactions

In this subsection we consider the case when the resulting (overall) reaction

Xk+1 = R(λ)

is not known but the lists of the terminal (chemical) species (what we want
to synthese and what are the initial ones), and intermediate (active) species
(which occur only during the mechanism) are given. (For terminology see
[HS83] or our Section 2.2 in Chapter 2 above). Remark that all species
are supposed to be either terminal or intermediate ones.

Our goal now is to find all mechanisms of which corresponding reactions
contain terminals (chemical) species only, these reactions are called over-
all ones. Again, our algorithm provides minimal mechanisms (i.e.direct or
cycle-free ones) with their minimal (i.e.simple) reactions.

(i) For this purpose enlarge first the given set of vectors {X1, ...,Xk} ⊆
RN with new ”ideal” vectors Vt ∈ RN to separate terminate and interme-
diate species: one new vector Vt for each terminate species At where t ∈ T .
In more detail, let all but the t -th co-ordinates of Vt be equal to 0 while let
the t -th co-ordinate (representing At) of Vt be equal to 1.

Now, from any mechanism

k∑
j=1

λj · Xj +
∑
t∈T

µt · Vt = 0 (3.1)

we can extract the overall reaction

R := −
∑
t∈T

µt · Vt (3.2)

where, as usual, the initial species are with negative coefficients and the
synthesed ones with positive coefficients. Clearly now the mechanism

M :=
k∑

j=1

λj · Xj (3.3)

has exactly the resulting (overall) reaction

R(M) = R .

Of course we have to consider only the simplexes of the extended vectorset
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S ⊆ {X1, ...,Xk} ∪ {Vt | t ∈ T} (3.4)

which contain at least one new vector Vt . Otherwise we would get mecha-
nisms M resulting the void reaction R(M) = 0 (as without introducing
the new vectors {Vt | t ∈ T}) .

We have to find simplexes S in the set (3.4) since we are interested in
minimal mechanisms. This might be an essential restriction for finding all
mechanisms. In (iii) below we discuss another, two-stage solution for finding
all minimal (direct) overall reactions and minimal mechanisms resulting the
corresponding overall reaction, though the method we just presented is a
direct, one-stage one for the same problem. In Section 3.3 we give an exact
mathematical proof for that the present method and the one in (iii) give the
same output. In other words, the above method based on (3.3) and (3.4)
really gives all minimal reactions and their minimal mechanisms. So we can
use our algorithm automatically in one stage as we discussed above in (3.3)
and (3.4), which means a fast solution to our problem.

After we have extended our vectorset {Xi : i ≤ k} with the new vectors
{Vj : j ∈ T} to the set

H := {Xi : i ≤ k} ∪ {Vj : j ∈ T}

we may run our algorithm either for finding

all simplexes in H (VarAll)

or only those which contain at least one of the new vectors

only intersecting {Vj : j ∈ T} (VarOnly)

and we can compare these runs to when we searched for all simplexes in the
original vectorset

in the original {Xi : i ≤ k} . (VarOrig)

Clearly for all computational quantities ν (for eg. time, number of
simplexes, checked subsets,etc.) we must have

ν(V arAll) = ν(V arOnly) + ν(V arOrig). (3.5)

This easy fact can be also seen in each of in Tables 8.5 through 8.7 in Chapter
8 ”Computational results”.
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(ii) We must not forget about the law of mass balance (preservation of
the material) in the mechanism M which results the reaction

R = R(M) = −Σt∈T µt · Vt

by (3.2).
This is not a problem from chemical point of view: since all the given

reactions (input vectors) satisfy this law, their linear combination satisfies,
too, since by (3.1) we have R = Σk

j=1λj · Xj . (In other words, this law
holds automatically for the output mechanism assuming it hold for all of the
input reactions.)

From mathematical point of view: this law is equivalent to that the vector
R ∈ RN must satisfy the requirement

B · R = 0 (3.6)

for the matrix B ∈ Rm×N which codes the sum-formulae of all the species
(groups of atoms/ functional bonds) involved in our problems: in any of the
input vectors {Xi : i ≤ k} did it, as we described in Chapter 2.

The equality (3.6) might be curious if we used only (3.2) as R = −Σt∈T µt·
Vt , but using

R =
k∑

j=1

λj · Xj (3.7)

from (3.1) and the assumption

B · Xj = 0 (∀j ≤ k)

we clearly have

B · R =
k∑

j=1

λjBXj = 0 .

For an additional explanation of the proof in Section 3.3 below, let us
mention the next variant for ensuring the law of the mass balance. Let us
first enlarge the dimension of all the vectors {Xi : i ≤ k} and {Vj : j ≤ t}
with as many new co-ordinates as many atoms the vectors {Vj : j ∈ T} (i.e.
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the terminate species) are built up. Next, let us code the sum-formula of
these new vectors Vj in their own new co-ordinates as we described in Chapter
2, while we let all the new co-ordinates of the old vectors {X1, ...,Xk} to
be equal to 0. We do not think it would be interesting to present such
computational runs which, of course, would gave the same results but in
some more time!

Let us emphasize again that running our algorithm with the modified
dataset (as in (i)) we immediately get (in one run) also the steady-state
mechanism

M :=
k∑

j=1

λj · Xj

with R(M) = R , that is the mechanisms which yield exactly the given
reaction R. Since our algorithm lists all simplexes of the vectorset

{Xi : i ≤ k} ∪ {Vj : j ∈ T}

in its full run, we have only to separate all mechanisms corresponding to
several reactions, so we get all (direct) steady-state mechanisms with all their
(simple) overall reactions in a single run. This means that in the present case
there is no need for further running the variant described in subsection 3.2.2.

(iii) Another variant to the problem of finding all minimal overall reac-
tions and minimal (direct) mechanisms leading to them would be the follow-
ing.

Let us first search all the possible minimal reactions among the terminate
species as it is described in Chapter 2. Then, for each minimal reaction let
us search separately the minimal (direct/steady state) mechanisms among
the original given set of reactions, which mechanisms belong to the actual
minimal reaction as described in the next Subsection 3.2.2.

This idea requies several lower dimensional runs of our algorithm (and
transfering data among them) instead of a single higher dimensional one as
we suggested in (i). Let us warn however our Readers that in the preliminary
search for all the possible minimal reactions among the terminate species we
may get also reactions which can not be built up from the original given set
of reactions and so imply void runs in the next step !

Computational examples for these comparisons are presented in the ex-
amples 8.5 through 8.7 in Chapter 8.

Example 8.5 and Table 8.5 are the most illustrative. In the original
problem we were given 7 vectors Si in dimension 10 and 4 terminal species
built up from 3 element.
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The first column ”Terminal species” of Table 8.5 shows the preliminary
run of our algorithm listing all the possible reactions d1, ..., d4 among the 4
terminate species (mentioned in (i) above). In the other steps we did not any
use of this computation for the other columns(2).

Column 2 of Table 8.5 shows the search for all possible mechanisms among
the original reactions, or, in other words, linear combinations (i.e. simplexes)
of the given vectors Si resulting the zero vector, i.e. the void reaction. The
single mechanisms we found shows that the reactions S1, . . . , S7 are not lin-
early independent.

Columns 3 and 4 show computation when we introduced the new vectors
V1, . . . , V5 representing one-to-one the terminal (chemical) species as we sug-
gested in the first part of Section 3.2. For comparison of CPU time we run
the algorithm first for all simplexes then for those which contain at least one
new vector Vi only. That is, both without and with halting the programme
after leaving all new vectors, Column 3 and 4 show the differences. Our
algorithm found the total 12 minimal mechanisms mj in 1.87 seconds.

3.2.2 (Direct) steady state mechanisms

In this subsection we deal with the case when we do know already one or
more resulting (overall) reactions (determined either by chemical or other
mathematical method) to which we want to determine all the (minimal)
mechanisms leading to these given reactions.

Let us deal first with the case when we are given a single resulting reaction
R. For our purpose let us first extend the given vectorset

H := {X1, ...,Xk}

with the new vector Xk+1 := R and then let make our algorithm list only
the simplexes containing R .

Since any mechanism (3.7) which results the reaction R can be trivially
transformed to the vanishing linear combination

k+1∑
j=1

λj · Xj = 0

2) So far we did not made any computer experiments for the idea presented in (iii) since
all our computations concerning mechanisms were below 25 minutes, the long-running
example in Section 8.4 is for all the minimal mechanism where the resulting (overall)
reaction is already given.
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(which is called a cycle in [S84]), we should only substract Xk+1 from the
above equality and the remaining mechanism

M :=
−1

λk+1

k∑
j=1

λj · Xj

would certainly result the reaction R , that is R(M) = R . M is minimal
of course.

Since we are looking only for simplexes which do contain the fixed vector
R = Xk+1 , we have to apply our bounding formulas from Chapter 4 ”On
the number of simplexes” for k many vectors only! In other words, the
computing time decreases by a factor of approximately

k − n

k + 1
= 1 − n + 1

k + 1

when we search for simplexes containing R (as a fixed element) instead of
containing all possible subsets of H ∪ {R} , which is a (k + 1) -element
subset of Rn.

The above trick can be extended easily to the case when we are given
more than one fixed resulting (overall) reactions R1, . . . ,Rt at the same
time. We simply have to add these vectors to H and we have to consider
only the simplexes

S ⊆ H ∪ {R1, . . . ,Rt}

which contain exactly one of the new vectors R1, . . . ,Rt . Clearly this
parallel computing is adviced for small t only since we are interested in
simplexes S with this property and checking that

|S ∩ {R1, . . . ,Rt}| = 1

would require some time for large t. For large t, which has magnitude of k, we
recommend to run this modified algorithm separately for each set H ∪{Ri}
for all i ≤ t .

3.2.3 Neither reactions nor terminate species are known

We can also handle the case when no terminal (chemical) species are se-
lected at all at the beginning but we want to find all overall reactions. By
our algorithm we search for all the possible simplexes and compute (all)
the corresponding resulting (overall) reactions which give the answer. Ob-
serve however that in the meantime we have already listed the corresponding
overall mechanisms, too. This means that there is no need for any further
computing.
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3.3 Proof of the equivalence

In this Section we give a (mathematical) proof for the equivalence of the vari-
ations of our algorithm given in (i) and in (iii) in Subsection 3.2.1. Namely,
we justify that the same set of all direct overall reactions and their minimal
mechanisms can be obtained either with the one-stage method described in
(i) or the two-stage variant introduced in (iii) in Subsection 3.2.1.

So, we are given the (arbitrary) vectorset

{X1, . . . ,Xk} ⊆ Rn

Let further

{V1, . . . ,Vt} ⊆ Rn

be any set of linearly independent set of vectors where t � n . Let us denote
the set of all these vectors by H , i.e. let

H := {Xj : j ≤ k} ∪ {Vi : i ≤ t} .

We have to prove the equivalence of the simplexes of the vectorset H and
those of {Xj : j ≤ k} ∪ {SR} for certain vector SR ∈ Rn.

Theorem 3.4 For any simplex S ⊆ H , S = {Xj : j ∈ K} ∪ {Vi : i ∈ T}
where K ⊆ {1, . . . , k} and T ⊆ {1, . . . , t} are nonempty subsets, and for
the vector

SR := −
∑
j∈K

µj · Xj =
∑
i∈T

λi · Vi (3.8)

(for the suitable coefficients µj, λi ∈ R), the set

S ′ := {Xj : j ∈ K} ∪ {SR}

is also a simplex.

Proof. Since S is minimal dependent, all the coefficients in (3.8) must
be different from 0. Then Lemma 2.5 completes the proof.

The above Theorem ensures that the method we described in (i) of Sub-
section 3.2.1 finds all simplexes (solutions) what the other variation in (iii)
has found.
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We will prove the other direction in Theorem 3.5 below, what is not true
for any set H of vectors and simplex S ′ = {Xj : j ∈ K} ∪ {SR} , we also
need the additional assumptions (First) through (Fifth) below.

First, we need that all the vectors Xj (j ≤ k) satisfy

B · Xj = 0 (∀j ≤ k) (3.9)

for a given (arbitrary) matrix(3) B ∈ Rm×n , though this is not required
for the vectors Vi (i ≤ t) ! Denote now

{bi : i ≤ n} ⊆ Rm

the set of column - vectors of B .

Second, we need that the vectors Vi (i ≤ t) are the first t standard
base vectors of Rn, that is all but the i’th co-ordinates of Vi are equal to 0
while the i’th co-ordinate equals to 1.

Third, we have to observe the connection

B · Vi = bi (∀i ≤ t)

(which is a trivial consequence of Second).

Recall now that we want to prove that each solution (minimal overall
reaction and direct mechanisms) received from the variant (iii) of our algo-
rithm (in Subsection 3.2.1) will also be provided by the variant in (i) ibid.
This implies the following assumptions we may use:

Fourth, let the vector SR in (3.8) and let the set

S ′ = {Xj : j ∈ K} ∪ {SR}

be a simplex. By (iii) of Subsection 3.2.1 we also have that the set

{bi : i ∈ T} ⊆ Rm

is also a simplex!

Let us mention that by (3.8) we have

0 = B·
∑
j∈K

µjXj =
∑
i∈T

λiB · Vi =
∑
i∈T

λibi (3.10)

3) For chemists: B codes the sum-formulae of all the species involved in the input
reactions Xj (j ≤ k) as we described in Section 2.1.
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which implies that {bi : i ∈ T} is dependent for any vector SR satisfying
(3.8).

The above result (Fourth) implies the below one which will be useful in
our proof:

Fifth, the above set of indices T satisfies the following minimality prop-
erty:

” T ⊆ {1, . . . , t} is minimal in the sense that there is no proper subset
T ′ $ T for which ∑

j∈L

µ′
jXj =

∑
i∈T

λ′
iVi (3.11)

would hold for some L ⊆ {1, . . . , k} . ”

Now we are ready to prove the converse of Theorem 3.4.

Theorem 3.5 Let

S ′ = {Xj : j ∈ K} ∪ {SR} ⊆ RN

be any simplex where SR satisfies (3.8), further the above assumptions
(First) through (Fifth) hold.

Then the set

S := {Xj : j ∈ K} ∪ {Vi : i ∈ T}

is also a simplex.

Proof. S is clearly dependent by (3.8). The sets S\{Vio} for each i0 ∈ T
are independent using the minimality property (3.11) for T since (Fourth)
implies that T is nonempty.

Let now j0 ∈ K be arbitrary and suppose by contradiction that the set
S\{Xjo} is dependent. Let further

SQ := −
∑
j∈K

µ′
jXj =

∑
i∈T

λ′
iVi (3.12)

for some µ′
j,λ

′
i ∈ R where µ′

j0
= 0 . Arguing now as in (3.10) we get

0 = −B·
∑
j∈K

µ′
jXj =

∑
i∈T

λ′
iB · Vi =

∑
i∈T

λ′
ibi . (3.13)
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Since the set {bi : i ∈ T} is simplex, all solutions of the homogeneous
equality

0 =
∑
i∈T

γibi

are parallel, this is an another easy characterization of simplexes. For our
equalities in (3.10) and in (3.13) this implies that the coefficient vectors
[λi : i ∈ T ]T and [λ′ : i ∈ T ]T are parallel. This would imply by (3.8) and
(3.12) that the vectors SQ and SR were also parallel, i.e. SQ = τ ·SR would
hold for some τ ∈ R . Using (3.8) and (3.12) again this leads to a contradiction
since the vectors {Xj : j ∈ K} were supposed to be independent, moreover
µ′

j0
= 0 but also none of the coefficients µj was 0 , finally SQ may not be

the zero vector.

The above Theorem clearly justifies that each solution (minimal overall
reaction and direct mechanisms) produced by the variant (iii) of Subsection
3.2.1 is also be given by the other one in (i) of the same subsection.

3.4 Comparison to other algorithms

In this Section we compare the problems what other algorithms in the litera-
ture solve and their speed only. As we pointed out, all these and our methods
give the same outputs for the same inputs.

The first algorithm for generating reaction mechanisms I met was J.Happel-
P.H.Sellers- M.Otarod ’s one, published in [HOS90] which mainly used
elementary matrix operations and linear combinations of linear equations.
Their method is rather theoretical with some manual computations. It uses
elementary matrix operations for reducing the system of linear equations,
and uses heuristic find for bases of the set of all solutions. In their paper
the authors do not give all details of the algorithm, which searches reaction
mechanisms only and not simplexes in general. As the authors announce
in their paper, a computer program in Fortran language is available. This
program, with the small examples supported runs for seconds only, we did
not tried it with larger examples.

Recently B.Bertók evaluated an algorithm, based on graph theoretic
concepts, using some linear programing. His algorithm is explained in his
Thesis [B99] and his joint paper [FBF00] with L.T.Fan and F.Friedler.
He considers not only the species contained in the given reactions but displays
the connections among these reactions in a bipartite directed graph, usually
called a P-graph or PNS -network. In a P-graph we have two types of vertices:
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one for reactions and the other for species. We connect each reaction with
its input and output species with directed edges, in Figure 7.1 we can see a
typical P-graph. Minimal reactions mean circle-free paths from the starting
to the final terminal species in P-graphs. Bertók searches for these circle-
free paths with linear algebraic and graph-theoretical tools with the help of
Linear Programing. The author of the present Thesis had the opportunity
to compare both the outputs and the speed of his and Bertók’s algorithm
(most of these test examples are listed in Chapter 8). As we mentioned, the
outputs are the same, running times are of the same magnitude.

If we search only for the set of the reactions taking part in a minimal
(circle-free) mechanisms, without any interest on the order of these reac-
tions, our linear algebraic model is sufficient. Positive and negative entries
of any vector distinguish in- and out- species of the corresponding reaction,
no further directed graph is neccessary for this purpose.

In the paper of S.Kumar and Á.Pethő [KP85] and also in [CMW90]
of C.Chevalier, H.Melenk and J.Warnatz the authors talk about one
computing examples but we could not find details of any algorithm. They also
do not give details of larger size examples nor their computing experiments.
So we could not compare their algorithm to ours.

The output lists all of these algoritms (of course) are either identical
or can be converted easily to each other. As to our information the other
algorithms do not use less time than our algorithm above. We think that
running small test-examples on modern personal computers can not reveal
the difference of the speeds of the different algorithms.

More details are supplied in Chapter 8.

3.5 A program list

We do not include the whole source code of our program since only the
modifying procedure is of interest. However let us include this procedure
here in full detail, being it is very short.

meretx := M ; { the number of input vectors }

PROCEDURE MODIFY; { modifying the vector - list }

var hossz,elso,utolso : integer ;
label ret ;
begin
hossz := length(szimplex) ;
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elso := ord(szimplex[1]) - 64 ;
utolso := ord(szimplex[hossz-1]) - 64 ;
if szimplex[hossz]=’ ’ then goto ret ; { not checked }
if (elso+hossz-2=utolso) and (utolso=meretx) and (’d’<>szimplex[hossz])

then begin { end sequence }
vege := true ; { program ends }
goto ret ;
end ;

if (elso+hossz-2=utolso) and (utolso=meretx) and (’d’=szimplex[hossz])
then begin { end sequence }
utolso := ord(szimplex[hossz-2]) + 1 ; { new last item }
sstr := copy(szimplex,1,hossz-3) + char(utolso) + ’ ’ ;
szimplex := sstr ;
goto ret ;
end ;

if utolso=meretx then { end reached but }
begin { not end sequence }

utolso := ord(szimplex[hossz-2]) + 1 ; { new last item }
sstr := copy(szimplex,1,hossz-3) ;
szimplex := sstr + chr(utolso) + ’ ’ ;
goto ret ;
end ;

if szimplex[hossz]=’i’ then { independent => enlarging }
begin
szimplex[hossz] := chr(utolso+64+1) ;
szimplex := szimplex + ’ ’ ;
goto ret ;
end ;

if szimplex[hossz]=’d’ then { dependent => new last item }
begin
szimplex[hossz-1] := char(ord(szimplex[hossz-1])+1) ;
szimplex[hossz] := ’ ’ ;
goto ret ;
end ;

if szimplex[hossz]=’s’ then { simplex => test another }
begin
szimplex[hossz-1] := char(ord(szimplex[hossz-1])+1); {last enlarging}
goto ret ;
end ;

ret : ;
end ; { proc.modify }



Chapter 4

On the number of simplexes

The main question of the present Chapter is:

How many simplexes (minimum or maximum) can be found in a given
set of vectors H ⊂ Rn and what are the extreme configurations, if only
the dimension of the space (n) and the size of the vectorset H is fixed ?

In other words, we want bounds for simplexes (minimal reactions) when-
ever the dimension (number of possible atoms) and the size of the given vec-
torset (number of species) are given. (Recall, that a set of vectors S ⊂ Rn

is called a simplex iff S itself is linearly dependent but all its subsets are
independent.)

Let us observe that we have to assume that H spans Rn , or in other
words, n is the dimension of the spanned subspace [H] of H , since, our
formulae on the number of simplexes must contain also the quantity n .

As we indicated in the introduction, to determine the extreme configura-
tions is the real problem, the number of the simplexes is just a corollary.

For this purpose we introduce the following notations.

Definition 4.1 (i) simp(H) denotes the number of simplexes contained
in H for any set of vectors H ⊂ Rn.

(ii) For any set of vectors S ⊂ Rn we denote by [S] the spanned
subspace (in other words, the linear hull, or the algebraic closure ) of S.

(iii) A simplex is called small if it contains just two elements (par-
allel ones), otherwise it is called large. A k-simplex denotes a simplex
of size k . ¤

Now, our main results in the present chapter are the following:

45
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Theorem (see Thm.4.3) For any H ⊂Rn of fixed size (so that H spans
Rn), simp(H) is maximal if and only if any n vectors of H are linearly
independent. ¤
Theorem (see Thm.4.5) For any H ⊆ Rn of fixed size (so that H spans
Rn), simp(H) is minimal if and only if H consists of n linearly independent
equivalence classes of sizes differing by at most one from each other, where
each equivalence class is a set of parallel vectors. ¤
Corollary (see Cor.4.10) Let H ⊆ Rn so that H spans Rn and |H| = m.
Then, writing m = an + b where 0 ≤ b < n , we have

b ·
(

a + 1

2

)
+ (n − b) ·

(
a

2

)
≤ simp(H) ≤

(
m

n + 1

)
.

and the extreme values may be achieved only in the unique configurations
described in the above theorems.

Especially, when m is divisible by n (i.e. b = 0), then we have

n ·
(

m
n

2

)
≤ simp(H) ≤

(
m

n + 1

)
. ¤

The question for the minimum value of simp(H) is open if no parallel
vectors are allowed in H. Unfortunately our methods in the minimum case
work only if we allow parallel vectors (ie. to use the same species more than
one time). So the lower bound must be much larger when excluding parallel
vectors, but at this time the question for the minimum value of simp(H) is
open if no parallel vectors are allowed in H . (This restriction is irrelevant
in the maximum case.)

The special case n = 3 when excluding parallel vectors is dealt in Section
4.3 in the next Theorem:

Theorem (see Thm.4.11) For any H ⊆ R3 of fixed size not equal to 3,
4 or 7 such that H spans R3 and contains no collinear vectors, simp(H)
is minimal if and only if H is contained in two intersecting planes, one of
which is of size 3; i.e. precisely when H contains three linearly independent
vectors {u1, u2, u3}, another vector v coplanar with u1 and u2 and the rest
H\{u1, u2, u3, v} coplanar with u2 and u3 . ¤

For |H| = 3, H must consist of 3 linearly independent vectors as it is
required to span R3, and therefore simp(H) = 0 . For |H| = 4, there are
2 optimal configurations with 1 simplex. The optimal configurations are
explained below in Figures 1 and 2 in the third Section.

Higher dimensions are discussed in Chapter 7 ”Beyond this thesis”.
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4.1 The maximum case

The question of maximal number of simplexes and finding the (unique) ex-
treme configuration, in a given set of vectors H ⊂ Rn, is relatively easy
and requires no special assumption (as in the case of minimal number of
simplexes) on the set of given vectors.

Let us emphasize that if we asked only the maximal number of simplexes,
Sperner’s wellknown theorem in combinatorics (see eg. [Sz01n] or below)
would serve us an easy solution for the maximal number of simplexes:

Theorem 4.2 (Sperner, 1930) For any set S of size m , k ≤ m
2

and
subsets A1, ..., A` j S such that |Ai| ≤ k and

Ai " Aj for i, j ≤ `, i 6= j (4.1)

we must have ` ≤
(

m
k

)
. ¤

The assumption (4.1), which is called Sperner-property, clearly holds
if Ai is simplex for each i ≤ ` .

However, in our theorems below we explore also the structure of the
maximal configurations, i.e. which subsets H ⊂Rn may contain the maximal
possible number of simplexes.

Theorem 4.3 For any H ⊂Rn of fixed size (so that H spans Rn), simp(H)
is maximal if and only if any n vectors of H are linearly independent.

Proof. Fix H ⊂Rn of size m. Choose V = {v1, v2, ..., vn} ⊆ H spanning
Rn, and suppose u ∈ H\V belongs to a linearly dependent subset of H of
size at most n. Choose u′ ∈ Rn not in any subspace generated by any n − 1
elements of H. Define now

H′ := (H\{u}) ∪ {u′} .

Then |H′| = |H| and we first show that simp(H′) ≥ simp(H) .
So let S = {u1, u2, ..., uk} ⊆ H be a simplex of H. If u /∈ S then S is

still a simplex of H′. If u is an element of S, say u = ui , then S\{ui} is
independent, and so we can choose V ′ ⊆ V of size n−k+1 so that S\{ui}∪V ′

is again linearly independent but also spans Rn. But then

S ′ := S\{ui} ∪ V ′ ∪ {u′}

is a new simplex of H′. Moreover, the map S → S ′ is one-to-one, and hence
simp(H′) ≥ simp(H) as desired.
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Thus simp(H) is maximal when any n element of H are linearly indepen-
dent.

We now show that no other configuration may have so many simplexes.
For this, let S ⊆ H be a fixed simplex of ` element. Using the above

construction repeatedly m − ` many times, we can assume that no vector u
of H′\S belongs to any subspace generated my n − 1 elements of H\{u}.

However it is now easy to obtain an upper bound for the number of
simplexes in H : indeed we have S itself which is preserved and then there
are only n + 1 element simplexes which must contain at most `− 1 elements
of S . That is

simp(H) ≤ 1 +
`−1∑
i=0

(
`

i

)
·
(

m − `

n + 1 − i

)
= 1 +

(
m

n + 1

)
+

(
m − `

n + 1 − `

)
.

But this quantity is strictly less than
(

m
n+1

)
whenever n + 2 ≤ m.

For m = n, there are no simplexes and for m = n + 1 there is a configu-
ration with exactly one k -simplex for every 2 ≤ k ≤ n + 1 .

This completes the proof.

Corollary 4.4 For any H ⊂Rn of fixed size (so that H spans Rn) we have

simp(H) ≤
(

m

n + 1

)
. ¤

4.2 The minimum case with parallel vectors

In this section we give a lower bound for the number of simplexes contained in
a given collection of vectors H ⊆ Rn of fixed size. We show that this bound is
sharp when we allow parallel vectors in H, namely we provide a construction
which attains this minimal number of simplexes for each prescribed size of
H. It turns out that, however, that this construction is not unique, if we
allow parallel vectors in H.

The Theorem below summarizes our results:

Theorem 4.5 For any H ⊆ Rn of fixed size so that H spans Rn, simp(H)
is minimal if H consists of n linearly independent equivalence classes of sizes
differing by at most one from each other, where each equivalence class is a
set of parallel vectors.

In case H contains no large simplexes, the minimal configuration is unique.



CHAPTER 4. ON THE NUMBER OF SIMPLEXES 49

Proof. From now on fix n and m and consider a collection H ⊆Rn of size
m which also spans Rn and for which simp(H) is minimal. Clearly m ≥ n.

Let θ1, ..., θp ⊆ H be the distinct collections (equivalence classes) of par-
allel vectors of H, and abusing notation, let θ1, ..., θp be members of each
class, which we use as representatives of the classes. We shall also use θi to
denote |θi| , the size of the collection represented by θi . Recall further that
we call a simplex large if it contains at least 3 elements, otherwise it is small,
and [S] denotes the spanned subspace of S for any set of vectors S ⊂ Rn.

For going on we need two lemmas before.

Lemma 4.6 If H contains a minimal number of simplexes, then
(i) all vectors contained in large simplexes are contained in no other

simplex and, especially, large simplexes are disjoint;
(ii) we may assume that H has no large simplexes at all.

Proof. (i) Let

H =

p∪
i=1

θi

and suppose that H contains a large simplex S , this forces p ≥ n + 1 .
By relabeling, we may assume that θ1 and θ2 are members of S and that
actually

S = {θi : i ∈ I}

where |I| ≥ 3 .
We define now

k := the number of large simplexes that contain both θ1 and θ2 ,
k1 := the number of large simplexes containing θ1 but not θ2 ,
k2 := the number of large simplexes containing θ2 but not θ1

and suppose without loss of generality that k1 ≥ k2 .
Take note now that

k ≥
∏

i∈I\{1,2}

θi .

Now we form H′ by deleting all elements of the collection θ1 and replacing
each of them by a new vector in the collection of θ2 . Observe that H′ still
spans Rn as θ1 was a linear combination of the other members of any large
simplex containing it. Further, this modification only affects the simplexes
containing at least one member of θ1 or θ2 .
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Before this modification, H contained(
θ1

2

)
+ k1θ1 +

(
θ2

2

)
+ k2θ2 + kθ1θ2

many simplexes containing a member of either θ1 or θ2 .
After this construction, H will have(

θ1 + θ2

2

)
+ k2(θ1 + θ2)

of such simplexes. The remaining simplexes are unchanged.
By minimality of simp(H) , we must have(

θ1

2

)
+ k1θ1 +

(
θ2

2

)
+ k2θ2 + kθ1θ2 ≤

(
θ1 + θ2

2

)
+ k2(θ1 + θ2)

which, after an elementary calculation, reduces to

k1 − k2 ≤ θ2(1 − k)

and therefore k = 1 (as k ≥ 1) and k1 = k2 . Thus

1 = k ≥
∏

i∈I\{1,2}

θi

which forces (by symmetry) that θi = 1 for each i ∈ I .
But now, if a vector v belongs to two different large implexes S1 and S2,

then

(S1 ∪ S2)\{v}

is a linearly dependent collection on non-parallel vectors which therefore must
contain a large simplex S ′. But S ′ must contain at least 2 element from either
S1 or S2 which contradicts to the previous paragraph, i.e. to k = 1. This
proves the first part of the Lemma.

(ii) Finally, without changing simp(H) , we may replace one vector of
a large simplex S by one parallel to another member of S which in effect
replaces a large simplex of H by a 2-simplex, and H still spans Rn.

This completes the proof of the Lemma.
Now we turn to vectors contained only in ”small” simplexes, ie. in pairs

of parallel vectors.

Lemma 4.7 If |H| = m , simp(H) is minimal and H contains only small
simplexes, then all vectors must belong to a collection of parallel vectors of
sizes differing by at most 1.
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Proof. By the previous Lemma, we can assume that H contains no large
simplex. Obviously, each collection θi of parallel vectors accounts for

(
θi

2

)
such simplexes.

If θi > θj +1 , then putting one vector from θi to θj decreases the number
of simplexes in H as shows the inequality(

θi

2

)
+

(
θj

2

)
>

(
θi − 1

2

)
+

(
θj + 1

2

)
. (4.2)

This completes the proof of the Lemma.
Now we turn to the proof of the Theorem.

Proof. of Theorem 4.5.
Let us suppose that given a collection H ⊆ Rn of size m which spans Rn

and for which simp(H) is minimal and without large simplexes. Now we can
write

H =
n∪

i=1

θi

and therefore, if m = an + b where 0 ≤ b < n (and a ≥ 1), we have

simp(H) = b ·
(

a + 1

2

)
+ (n − b) ·

(
a

2

)
≤ simp(H)

as desired. The strict inequality (4.2) in the last Lemma shows that this
configuration is unique when H contains no large simplexes.

From the above results one can easily deduce the minimal number of
simplexes:

Corollary 4.8 Assuming H ⊆ Rn spans Rn and H has size m , and m =
an + b where 0 ≤ b < n (and a ≥ 1), then we have

b ·
(

a + 1

2

)
+ (n − b) ·

(
a

2

)
≤ simp(H) . ¤ (4.3)

As we indicated, the minimal configuration is not unique, more precisely
when allowing large simplexes. For example, for n + 1 ≤ m < 2n − 1 we
have other constructions for achieving the lower bound in (4.3), as well:

Example 4.9 Let K = {e1, ..., en} ⊂ Rn a fixed base and let

{I1, ..., Ik} ⊆ P({1, ..., n})
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be a partition of the index-set {1, ..., n} where each partition class Ij has
size at least 2 , i.e. k < n

2
. Let further the vectors

vj :=
∑
i∈Ij

µiei (j ≤ k)

be arbitrary elements of the subspaces

Lj := [{ei : i ∈ Ij}] ⊂ Rn

such that no µi might be 0 . Then, by Lemma 2.5 all the sets

{ei : i ∈ Ij}

are simplexes. This means, that the vectorset

H = {e1, ..., en} ∪ {v1, ..., vk}

has n + k elements and k many large simplexes. ¤

Using the results of Theorems 4.3 and 4.5 we easily can summarize our
quantitative results as:

Corollary 4.10 Assuming H ⊆ Rn spans Rn and H has size m , and m =
an + b where 0 ≤ b < n (and a ≥ 1), then we have

b ·
(

a + 1

2

)
+ (n − b) ·

(
a

2

)
≤ simp(H) ≤

(
m

n + 1

)
. ¤ (4.4)

Unfortunately these bounds are far from each other, but both of them are
strict. Only the lower bound can be raised with certain assumption: exclud-
ing parallel elements, or more generally: excluding small simplexes. These
cases are discussed in the forthcoming Section, in Chapter 5 ”Matroids” and
in Chapter 7 ”Beyond the thesis”.

4.3 The minimum case without parallel vec-

tors in R3

In this section we completely describe the more appropriate problem of how to
obtain the minimal number of simplexes in R3, allowing no collinear vectors
among our given vectors.
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Theorem 4.11 For any H ⊆ R3 of fixed size not equal to 3, 4 or 7 such that
H spans R3 and contains no collinear vectors, simp(H) is minimal if and
only if H is contained in two intersecting planes, one of which is of size 3; i.e.
precisely when H contains three linearly independent vectors {u1, u2, u3}, an-
other vector v coplanar with u1 and u2 and the rest H\{u1, u2, u3, v} coplanar
with u2 and u3 . ¤

(Since the proof of the above Theorem is fairly long, we only refer to [SzL98]
where the reader can find all details.)

For |H| = 3, H must consist of 3 linearly independent vectors as it is
required to span R3, and therefore simp(H) = 0 .

For |H| = 4, there are 2 optimal configurations with 1 simplex, these
constructions are displayed in Figure 4.1.

Here and for all subsequent figures, points represent vectors, and aligned
points represent vectors in the same plane.

Figure 4.1: Two optimal configurations for |H| = 4

For |H| = 7, the analysis contained in this paper will provide the required
tools for the reader to verify that there are 3 optimal configurations with 17
simplexes (one of which is contained in 6 planes each of size 3), as Figure 4.2
displays them.

Theorem 4.11 easily implies the following bounds for the number of sim-
plexes:

Corollary 4.12 Let H ⊆ R3 such that H spans R3, |H| = m ≥ 4 and H
contains no collinear vectors. Then we have:(

m − 2

3

)
+ 1 +

(
m − 3

2

)
≤ simp(H) ≤

(
m

4

)
. ¤
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Figure 4.2: Three optimal configurations for |H| = 7

The general problem in Rn regarding the minimum size of simp(H) where
H is of fixed size, spans Rn and contains no collinear vectors remains open.
However we have a conjecture that the minimum is attained precisely in
certain configurations, details are explained in Conjecture 7.2 in Chapter 7
”Beyond the thesis”.



Chapter 5

Matroids

In this Chapter we investigate the maximum and minimum number of bases
and circuits in a matroid and their structure. These problems are natural
generalizations of the concept ”simplexes” and the problems in the previous
Chapter.

5.1 Introduction

Recall that the (linear algebraic and not geometric) simplexes in Rn are any
sets of vectors S ⊂ Rn such that S itself is linearly dependent but all its
proper subsets are independent. This notion does not use the usual oper-
ators + and · of vectors of Rn but only the relation independence among
them. (We could substitute Rn to any finite dimensional linear space, of
course.) The general structures matroids deal with this relation indepen-
dence only. Moreover, these structures are common generalizations of linear
spaces, graphs, set systems, partitions, etc., so any result on matroids has
many corollaries for these latter structures. (Exhaustive investigations of
matroids can be found eg. in Recski’s [R89] or Oxley’s [O92] books.)

For an arbitrary matroid, the corresponding notion of a simplex is called
a circuit, that is a dependent set all of whose proper subsets are independent.
Now the corresponding generalized problem is the following:

“ What is the minimum and maximum number of circuits and bases in
matroids of given size and rank and what are the extremal configurations? ”

We completely solve the maximum case and partially answer the mini-
mum case, where the exact value of the lower bound remains open when
neither parallel elements nor loops are allowed in the matroid.

55
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Let us highlight again that the main question is to determine the ex-
tremal configurations, the maximal number of circuits and bases is a not too
hard combinatorial question using Sperner’s theorems.

Despite of ours and others’ intensive search for relevant literature, only
Murty’s paper [M71] on equicardinal matroids (where all circuits have the
same size) was found.

The matroid terminology used here fits to Recski’s [R89], Oxley’s [O92]
or to the author’s [Sz01n] works.

Definition 5.1 Let X be an arbitrary nonempty set and let F ⊆ P (X) any
system of subsets of X. Now the structure M = (X,F) is called a ma-
troid if the following properties hold:

(I1) ∅ ∈ F
(I2) y ∈ F and x ⊆ y imply x ∈ F (F is descending)
(I3) for any set x ⊆ X the maximal subsets of x belonging to F have

the same size (depending only x).
The members of F are called independent subsets of S . ¤

X is called the ground set of M and F is the set of independent
subsets of X. We usually use m for the size of the matroid, i.e. the cardinality
of X, and n for its rank n, i.e. the cardinality of any base of M. We assume
that 0 < n < m, as the case m = n is trivial. Through this note we use the
following convenient notion:

Definition 5.2 A circuit is called small if it consists of at most 2 elements.
A circuit will be called large if it contains at least 3 elements. ¤

Our main results in this Chapter are listed in the series of the Theorems
5.3, 5.5, 5.6, 5.7, 5.11, 5.12, 5.13, 5.19 and 5.21.

5.2 On the maximum

In this Section we count the maximum number of circuits and bases in ma-
troids of size of m and rank n, exhibiting the unique structure of the resulting
matroids.

5.2.1 Maximum number of circuits

Our results in this section can be summarized in the following Theorem:
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Theorem 5.3 If m > n+1, then only the uniform matroid Um,n contains
the maximum number of circuits,

(
n+1
m

)
. If m = n + 1, all matroids of size

m and of rank n contain exactly 1 circuit.

Proof. To prove Theorem 5.3 we first describe Construction 1 for build-
ing a new matroid M′ = (X ′,F ′) from any matroid M = (X,F).

Construction 1: Let u be an element of X . Then M′ is obtained by
freely adding a new element u′ to M\u. [See Oxley’s book, [O], Section 7.2.]
Note that

X ′ := X\{u} ∪ {u′}

and

F ′ := {f ∈ F : f ⊆ X\{u}} ∪ {f ∪ {u′} : f ∈ F , f ⊆ X\{u}, | f |≤ n − 1} .

It is straightforward to verify that the size and rank are preserved, and
that the new element u′ is not a member of any small circuits in M′. More
importantly, if an element of X\{u} is not contained in a small circuit of M,
then the same remains true in M′. Further the number of circuits in M′ is
at least that of M.

We continue our proof by the following Lemma:

Lemma 5.4 The number of circuits in M is strictly less than
(

n+1
m

)
when-

ever M contains a small circuit and m > n + 1.

Proof. of the Lemma: Let K ⊆ X be a fixed small circuit of ` elements,
` ≤ n. Using the above Construction 1 repeatedly m−` times, we can replace
each u ∈ X\K by a new element u′ as described. The number of circuits
has not decreased and in fact the circuits left are K itself and all other ones
must be of size n + 1. The number is therefore at most

1 +
`−1∑
i=o

(
`

i

)(
m − `

n + 1 − i

)
= 1 +

(
m

n + 1

)
−

(
m − `

n + 1 − `

)
which is strictly less than

(
m

n+1

)
iff m > n + 1 .

Now we can conclude the proof of our Theorem.

Proof. of Theorem 5.3. For the case m = n + 1 , we have a base
{u1, u2, . . . , un} and therefore S = {u1, u2, . . . , un, v} contains a unique
circuit. This concludes the proof of Theorem 2.1.
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5.2.2 Bases

It turns out that the above Construction 1 does not decrease the number of
bases either, and again only Um,n does have the maximum number of bases,
namely

(
m
n

)
. We can assume that m > n > 0 and we consider a matroid

M = (X,F) of size m and rank n.

Theorem 5.5 Only the uniform matroid Um,n contains the maximum num-
ber of bases, namely

(
m
n

)
.

Proof. We first verify that the number of bases does not decreases during
Construction 1, where an element u ∈ X has been replaced by an element
u′. Let B ⊆ X be a base of M. If u /∈ B then B remains a base also in
M′; otherwise (if u ∈ B) B\{u} ∪ {u′} is now a base in M′.

This means that we have a one-to-one correspondence between the bases
of M and some bases of M′.

We now show that any matroid containing small circuits contains strictly
less than

(
m
n

)
bases. Let M = (X,F) be a matroid containing a small

circuit K of size ` where ` ≤ n. As before, replace all the elements u of
X\K repeatedly by a corresponding u′ as described in the Construction 1.
In the final matroid the bases are exactly all the n-element subsets of X not
containing K. The number of these subsets is

`−1∑
i=o

(
`

i

)(
m − `

n − i

)
=

(
m

n

)
−

(
m − `

n − `

)
which is clearly strictly less than

(
m
n

)
using ` ≤ n ≤ m .

5.3 On the minimum

In this Section we give a lower bound for the number of circuits and bases
contained in a matroid of size m and of rank n. As opposed to the maximum
case, the answer here for the minimum case depends on whether we allow
loops or parallel elements; subsections 5.3.1 and 5.3.2 investigate separately
these cases. We again describe the unique (minimal) configurations. As
in [SzL95] and in [SzL98], a third case excluding both loops and parallel
elements remains open.

5.3.1 Allowing loops

In this subsection we analyze the minimum number of circuits and bases in
matroids, allowing one element dependent sets, called loops. (These loops are
necessarily circuits.)
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We shall assume that m > n, since the trivial case m = n implies that
such a matroid would have no circuit and only one base.

Theorem 5.6 For each m and n, there is a unique matroid Mo of size
m and of rank n containing the minimal number of bases, namely 1, when
we allow loops in the matroid.

Proof. Let Mo := (Xo,Fo) be the matroid of size m and rank n where

Xo = {u1, . . . , un, v1, . . . , vm−n}

and B = {u1, . . . , un} is the (only) basis, and v1, . . . , vm−n are loops, the
only circuits of the matroid. (Note, that B is the the unique basis in the
matroid Mo.)

We show now that any matroid but Mo contains more than one base.
Observe that such a matroid M contains a circuit, say K, of more than one
element.

Consider any element from K\B. This element must be independent, by
the definition of a circuit, and can therefore be extended it to a second base
of M .

Theorem 5.7 Any matroid M of size m and of rank n contains at least
n−m circuits. A matroid contains exactly m−n circuits if and only if the
circuits of the matroid are pairwise disjoint.

Proof. Consider a base B of the matroid M. For any u ∈ X\B the
corollary of the weak axiom for circuits implies that there is a (unique) circuit
containing u included in B ∪ {u} . We conclude that M has at least m − n
many circuits. Now suppose that M contains exactly m − n circuits. Fix a
base B of M, and let X\B = {v1, v2, . . . , vm−n} . For each 1 ≤ i ≤ m− n
there is a circuit Ki ⊆ B ∪ {vi} . These circuits are different for i 6= j
since Ki must contain vi , but Kj does not contain it. If there were two
intersecting circuits Ki and Kj containing a common element u, then, by
the strong axiom for circuits, the set Ki ∪ Kj\{u} would contain a circuit
K, necessarily distinct from all circuits Kα (1 ≤ α ≤ m − n) which is a
contradiction.

Remark 5.8 The matroid Mo defined above also contains exactly m − n
pairwise disjoint circuits, i.e. loops.
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5.3.2 Allowing parallel elements, no loops

As before, M = (X,F) denotes an arbitrary fixed matroid of size m and
of rank n. Recall that two elements are called parallel if together they form
a circuit. In this subsection we determine the minimal number of circuits
and bases in the case where M may not contain loops, but where parallel
elements are allowed.

We describe a second construction to modify the matroid in order to
reduce the number of bases and circuits. Using this construction we will
describe the unique structures of matroids having the minimal number of
circuits and bases.

Construction 2: Let u1 ∈ X be any fixed element such that, when
deleting it from X, the rank does not decrease, ie. r(X) = r(X\{u1}.
(For example, any element which is a member of a circuit has this property.)

Fix further a second arbitrary element u2 ∈ X and a new element u′ /∈ X.
We now define the matroid M′ := (X ′,F ′) by

X ′ := X\{u1} ∪ {u′}

and

F ′ := {f ∈ F : f ⊆ X\{u1}} ∪ {f ∪ {u′} : f ∪ {u2} ∈ F , f ⊆ X\{u1, u2}} .

¤
In practice, this second construction will be used when u1 and u2 are

members of a common circuit. The effect is essentially that we delete u1

from the matroid and add a new u′ parallel to u2.

Lemma 5.9 M′ = (X ′,F ′) is again a matroid of size m and of rank n.

Proof. The size and rank of M′ have not changed since |X ′| = |X| = m,
and since by Construction 2, u1 was chosen so that its removal does not
decrease the rank of M. What must be verified carefully is that M′ is
a matroid, although only the so-called independence augmentation axiom
requires a proof; that is we must show that if f1 and f2 are members of F ′

with |f1| < |f2| , then there is an element e ∈ f2 \ f1 such that f1 ∪ e ∈ F ′.
There are four cases, depending whether u′ ∈ fi .

The only interesting case is when u′ /∈ f1 and u′ ∈ f2 . This means that
f1 ∈ F but u1 /∈ f1 ; and if f ′

2 = f2 \ {u′} then f ′
2 ∪ {u2} ∈ F , f ′

2 ⊆
S \ {u1, u2} .

But |f1| < |f ′
2 ∪ {u2}| and there is therefore an e ∈ f ′

2 ∪ {u2} \ f1 such
that f1 ∪ {e} ∈ F . If e = u2 then f1 ∪ {u′} is as desired. If otherwise
e 6= u2 then f1 ∪ {e} is good enough.
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We are now ready to investigate the effect of this Construction 2 on the
number of circuits and of bases.

Circuits

In order to find the structure of the extreme minimal matroid, we investigate
the effect of the above Construction 2 on the number of circuits, with a
careful choice of the element u1.

Lemma 5.10 Suppose that u1, u2 ∈ X are contained in a same large cir-
cuit, and denote ki the number of circuits containing ui but not uj . If
k1 ≥ k2 , then deleting u1 from M and adding a new element parallel to u2

into M as in Construction 2 does not increase the number of circuits.

Proof. Denote also by k12 the number of circuits containing both u1

and u2, and as usual let u′ be the new element we just added to M. Notice
that exactly the circuits containing u1 were deleted during the Construction
2, i.e. k1 + k12 many. We introduced new circuits, namely the two-element
circuit {u2, u

′} and the circuits now containing u′ instead of u2 in M (but
not u1), we have k2 many of them. Thus the number circuits is changed
by k2 + 1 − k1 − k12 , which is not positive since k1 ≥ k2 and k12 ≥ 1 .
Moreover, the number of circuits remains unchanged iff k1 = k2 and k12 = 1.

Using Construction 2 repeatedly we eventually reach a matroid not con-
taining any large circuits, only circuits consisting of two parallel elements.
Therefore among this kind must be a matroid having the minimum num-
ber of circuits. The following Theorem say that all of matroids having the
minimum number of circuits are among this kind.

Theorem 5.11 Suppose that there are no large circuit and no loops in the
matroid M and let {a1, a2, . . . , an} be any fixed base. If ϑi denotes
the number of elements in M parallel to ai (including ai itself) for i =
1, 2, . . . , n then M contains the minimum number of circuits iff

|ϑi − ϑj| ≤ 1 for i 6= j .

Proof. It is not difficult to verify that the assumptions on M together
with the weak axiom for circuits imply that every element of X is parallel to
one and exactly one of the ai ’s, and therefore

n∑
i=1

ϑi = m .
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Suppose on the contrary that ϑj > ϑ` + 1 for some j, ` ≤ n . Delete
aj and add an element parallel to a`, as in the above Construction 2. Since
there are no large circuits in our matroid, the number of circuits in M is(

ϑj

2

)
+

(
ϑl

2

)
+

∑
i6=j,`

(
ϑi

2

)
which becomes in M′(

ϑj − 1

2

)
+

(
ϑ` + 1

2

)
+

∑
i6=j,`

(
ϑj

2

)
.

These expressions clearly show that the number of circuits did strictly de-
crease.

Defining a relation on X by

b ∼ c

iff they are parallel to the same ai is an equivalence relation, we obtain that
a matroid as above contains the minimal number of circuits exactly in the
case when the equivalence classes of parallel vectors have almost all the same
size, i.e. differing by at most one.

Corollary 5.12 The minimum number of circuits in a matroid of size m
and of rank n , where m = an + b , 0 ≤ b < n , is

b ·
(

a + 1

2

)
+ (n − b) ·

(
a

2

)
and in particular, if m is a multiple of n,

n ·
(

m
n

2

)
. ¤

Now we turn to the exact structure of the matroids containing the min-
imal number of circuits. We will see that for small matroids there are more
possibilities while the structure of large matroids are unique.

Theorem 5.13 a) For m < 2n , a matroid of size m and rank n contains
the minimal number of circuits iff all its circuits are disjoint.

b) For m ≥ 2n , a matroid contains the minimal number of circuits iff
it contains only 2-element circuits (i.e. parallel elements), and the sizes of
the equivalence classes of parallel elements differ by at most 1 .
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Let us note, that there are many matroids satisfying a) while the matroids
described in b) are, in fact, isomorphic.

The proof of the above theorem is based upon the following lemmas.

Lemma 5.14 If M contains two large circuits K and L , then

|K ∩ L| ≤ 1 .

Proof. If K ∩ L contains two distinct elements u1 6= u2 then the proof
of Lemma 5.10, using k12 ≥ 2 shows that M does not contain the minimal
number of circuits.

Lemma 5.15 Let K be a large circuit and let u /∈ K be arbitrary. Then
either u is parallel to some element of K , or else u is not contained in
any large circuits intersecting K .

Proof. Suppose that L is a large circuit containing u and intersecting
K. Using Lemma 5.14, we must have exactly one element in K ∩ L , say v .

Then, by the strong axiom of circuits of matroids, there is a circuit H ⊆
K ∪ L\{v} containing u .

If H is large, then at least one of the two sets H ∩L and H ∩K has at
least two elements, contradicting the previous Lemma.

If H is small, then u must be parallel to an element of K .
This completes the proof.

Lemma 5.16 No element of a large circuit can be parallel to any element
of the matroid.

Proof. Consider a large circuit K = {u1, u2, . . . , up} (i.e. p ≥ 3) .
Suppose on the contrary that an element of K, say u1, is parallel to some
other element u′

1 6= u1 . We claim that K ′ = {u′
1, u2, . . . , up} is again a

large circuit, contradicting Lemma 5.14. If K ′ ∈ F , then we could extend
it to a base B, but now B ∪{u1} would contain the distinct circuits K and
{u1, u

′
1} , contradicting the weak axiom for circuits. However every proper

subset of K ′ does belong to F ; indeed otherwise such a subset must contain
a circuit L, which cannot be large by Lemma 5.14 again. But L cannot be a
two-element circuit since u′

1 is parallel to u1 .

The above lemmas imply that each large circuit must be disjoint from
every (large or small) circuit in M . Now it remains to consider small circuits.

Lemma 5.17 If M contains a large circuit, then there are no three pairwise
parallel elements in M .
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Proof. Let K be a large circuit and suppose that three pairwise parallel
elements exist in M. By Lemma 5.16, we may assume that none of these
three elements belong to K. Let u1 be one of these three elements and let u2

be any element of K. Use once again Construction 2 to delete u1 and add a
new element u′

2 parallel to u2; this is possible as M is assumed to contain no
loops and therefore u1 satisfies the hypothesis for the Construction. Using
a calculation similar to Lemma 5.10 and the same notation, we have k2 = 1
since K is the only circuit containing u2 . k1 ≥ 2 since we have at least
two elements parallel to u1, and finally k12 = 0 since u1 is not contained
in any large circuit intersecting K by Lemma 5.15 and is not parallel to
any element of K by Lemma 5.16 Therefore, during the Construction 2,
we deleted k1 circuits; we added the circuit {u2, u

′
2} of course as well as

the circuit K\{u2} ∪ {u′
2} . Thus the number of circuits has changed by

1 + 1 − k1 ≤ 0 , so this number certainly did not increase. But now we
can use the procedure described in Lemma 5.16 to decrease the number of
circuits. This contradiction shows that M was not minimal.

Now we can turn to the proof of Theorem 5.13.

Proof. of Theorem 5.13.
The above results show that all circuits in M must be disjoint in the

presence of a large circuit. In this case fix any base B of M. For each
element u of S \ B , B ∪ {u} must contain a circuit, which in turn
must contain at least one element of B . Since all circuits are assumed to
be pairwise disjoint, S \ B can contain at most n elements. Therefore for
m ≥ 2n , a matroid with the minimum number of circuits cannot contain any
large circuit. In the lack of large circuit, using Theorem 5.11, the equivalence
classes of parallel elements must have almost the same size. This implies the
statement of Theorem 5.13.

Remark 5.18 The last part of the above proof describes uniquely the struc-
tures of matroids containing the minimal number of circuits when m ≥ 2n.

BASES

The structure of matroids containing the minimal number of bases is always
unique, as described in the following Theorem.

Theorem 5.19 A matroid M of size m and rank n contains the minimal
number of bases iff it has a base {a1, a2, . . . , an} such that all other elements
in M are parallel to a1 .
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As in the previous subsection, we use Construction 2 to achieve the min-
imal number of bases. The following result describes the effect of this con-
struction on the number of bases.

Lemma 5.20 Let K be a large circuit in M and let u1, u2 ∈ K . Denote by
`1 the number of bases containing u1 but not u2, and similarly for `2. Then
deleting u1 and adding a new element parallel to u2 (as in Construction 2),
the number of bases strictly decreases whenever `1 ≥ `2 .

Proof. Denote by `12 the number of bases containing both u1 and u2. By
deleting u1, we loose exactly the bases containing u1 , that is `1 + `12 many
of them. By adding a new element to M parallel to u2, we gain `2 many new
bases. Clearly the set {u1, u2} is independent since K is assumed to be a
large circuit, so it can be extended to a base, which implies `12 ≥ 1 . This,
together with `1 ≥ `2 means that the number of bases strictly decreases.

Using the above result, we can remove each large circuit of the matroid
while decreasing the number of bases. In other words, the matroids con-
taining the minimal number of bases do not contain any large circuit. This
means that we are able to prove Theorem 5.19.

Proof. of Theorem 5.19. Suppose that M does not contain any large
circuit, and let B = {a1, a2, . . . , an} be any fixed base of M . By adding
any other element u to this set, we obtain the collection B∪{u} which must
contain a circuit, and therefore u must be parallel to one of the base elements
ai, since M does not contain large circuits.

Denote ki the number of elements from X\B parallel to ai (including
ai itself); clearly

∑n
i=1 ki = m . Now the number of bases (picking an

element from each equivalence class) is

n∏
i=1

ki .

But in the case k` ≥ kj ≥ 2 , we can delete an element parallel to aj and
add a new element to M parallel to a` ; the number of bases changes to

n∏
i 6=j,`

ki · (kj − 1) · (k` + 1)

which is strictly less. This implies that all but one ki equals to 1 .

Corollary 5.21 The minimal number of bases is m − n + 1 , and the
minimal configuration is unique. ¤
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Despite our above results, the structural and quantitative properties of
the matroids with extreme quantity of bases or loops, containing neither
loops nor parallel elements, is open.

Problem 5.22 Characterize the matroids with the minimal number of cir-
cuits and bases, when neither parallel elements or loops are allowed.

We discuss this question in some more detail in Chapter 7 ”Beyond the
Thesis” .



Chapter 6

The valuation operator

Using the ideas explained in the introductory Chapters 1 and 2 we inter-
pret the vectors of the n -dimensional Euclidean space Rn in several ways as
species (groups of atoms), reactions, mechanisms, measure units, etc. Now
then any linear (additive and homogeneous) quantity (chemists call them
valuation operators) of any of these interpretations is, in fact a linear func-
tional L : Rn → R. Many examples, practical methods and even applications
are described for example also in [RS66] or in Pethő’s works, widely used
already in practice and are called estimation and correlation methods of ther-
modynamic parameters in thermodynamics and thermophysics.

Using the theory of linear functionals (esp. the Representation Theorem
of F. Riesz) we can investigate the structure of these linear functionals and
may draw further conclusions.

We presented a theoretical investigation and background for calculation
methods already in use concerning valuation operators (increments/ linear
functionals/ quantitative characteristics) in several fields of chemistry and
physics.

As direct consequences we prove e.g. that linear increments can really
be computed as weighted sum of the increments of the components (see
(6.3) in Corollary 6.5), or we presented a one-sentence proof of Hess’ law in
thermochemistry in (6.5), we gave estimates for the magnitude of L(S) in
(6.8), etc.

6.1 Vectors

Below we shortly list again stoichiometrical and physical examples which we
can interpret with vectors of Rn and just after we connect them with linear
quantites in order to illustrate our general ideas which will be explained in

67
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the next Section.

a) Species: if the species (either active or chemical or groups of atoms
only) A1, ..., An consist of the atoms E1, ..., Em as Aj =

∑m
i=1 ai,jEi where

ai,j ∈ N for j = 1, ..., n and i = 1, ...,m, and the set {E1, ..., Em} is fixed,
we can assign to the species Aj the vectors(1)

Aj := [a1,j, a2,j, ...,am,j]
T ∈ Rm

or in other words Aj =
∑m

i=1 ai,jEi for j = 1, ..., n assuming that {E1, ..., Em} ⊆
Rm is a (natural) base in Rm.

We can use the same model when the components E1, ..., Em denote
(functional) groups of atoms which is widely used in practice.

The molar volume of species is usually computed as the sum (i.e. lin-
ear combination) of the components’ data. This is a typical example where
we can assume that the molecular quantitative property (increment) can be
added linearly from the amount of that property (increment) of the com-
ponents (functional groups or bonds). Other examples are the enthalpy of
formation or the heat capacity.

b) Reactions: if we are given the reactions X1, ..., Xk which use the
(fixed set of) species A1, ..., An as Xj =

∑m
i=1 bi,j · Ai then we can cor-

respond to these reactions the vectors Xj := [b1,j, . . . , bn,j]
T ∈ Rn, i.e.

Xj =
∑m

i=1 bi,j · Ai where bi,j ∈ Z for j = 1, ..., k and i = 1, . . . , n if

the base vectors were be chosen to A1, ..., An ∈ Rn .(2)

The standard Gibbs free energy change ∆Go (or free entalpy) of a reaction
is the sum (linear combination) of the standard chemical potencials µi of the
components (species) involved in the reaction as

∆Go =
n∑

i=1

νiµ
o
i .

The heat of reactions when studying mechanisms: Hess’ wellknown law
states that the resulting heat is again the sum (linear combination) of the
heat of single reactions taking part in the mechanism. (This example is
studied in [P93] and in [P95].)

1) We do not emphasize the difference between the species Aj and the vectors Aj .
2) Moving the terms with negative coefficients bi,j to the left-hand side of the equality

(initial materials of the reaction) and leaving the others in the right-hand side (resulting
materials) we get the usual form of the mechanism.
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c) Mechanisms: any linear combinations of (the fixed set of) reactions
{X1,... , Xk} are called mechanisms, and similarly we can assign these mech-
anisms Mt =

∑k
j=1 λt,j · Xj to the vectors mt := [λt,1, . . . , λt,k]

T , i.e.

mt =
∑k

j=1 λt,j·Xj ∈ Rk where of course λt,j ∈ Z for t = 1, . . . , ` and

j = 1, . . . , k .(3) The base in this case, is {X1, ..., Xk} ⊂ Rk.

d) Measure units: every (composite) measure unit M1, . . . ,Mn is built
up from elementary units E1, . . . , Em (such as lenght, mass, time, etc.) as
Mi =

∏m
j=1 E

ai,j

j where ai,j ∈ Z for i = 1, . . . , n and j = 1, . . . ,m.
Clearly we again can assign the measure units Mi to the vectors M i :=
[ai,1, . . . , ai,m]T ∈ Rm since any product of the powers of the units Mi

correspond to a linear combination of the vectors M i (see e.g. the Reynold’s
numbers).

For properties which are not linear but multiplicative instead, as in the
present example, we can use the logarithm function for getting linear corre-
spondance – among the logarithm of the property of the parts, as we did in
example d) in Section 2 (see also [P90]) or is applied eg. in [MK] for drawing
Pourbaix diagrams.

One could find many more such examples (e.g.how atoms are built up
from atomic parts) where our theory below could also be applied.

Clearly the long list could be continued up to infinity.

6.2 Mathematical formulation

Let us remark that we have to fix the set of building components (atoms/
species/ reactions) to build more complicated structures (as species/ re-
actions/ mechanisms) in advance since this set gives not only the base of
the space but the dimension or even the space itself in which our investiga-
tions take place. For our further reference we fix these concept into a precise
definition.

Definition 6.1 All the elements of an arbitrary but fixed and finite set

{C1, . . . , CN}

are called components, and any (possibly only formal) linear combination

S =
N∑

i=1

si · Ci

3) Negative coefficients mean that the corresponding reactions take place in reverse
order.
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of its elements with arbitrary real numbers si ∈ R are called structures.
¤

At the end of this Chapter we discuss the case of subsequent adding new
structures containing new components, i.e. how to extend the dimension of
the space we are in and how to continue the calculations in the extended
space without giving up our old results.

Next, we call any linear mapping of real value (i.e.a linear functional)
which maps from (the above) structures a valuation operator.

Definition 6.2 Any linear mapping (or functional) L : Rn → R is called
a valuation operator. ¤

6.3 Riesz’s Theorem

Using our terminology all valuation operators are linear functionals of the
form L : V → R for some vectorspace V , so we can apply the following theo-
rem of Frigyes Riesz which (and all the other results cited in the subsequent
Sections) can be found in any linear algebraic book.

Theorem 6.3 (Representation Theorem of F. Riesz) If V is any finite
dimensional linear space with an arbitrary scalar product < ., . >: V ×V → R
then for every linear functional L : V → R there is a (unique) fixed vector
a ∈ V (depending only on L) such that

L(v) =< a, v > (6.1)

holds for every vector v ∈ V . ¤

Since Riesz’s theorem is valid for any scalar product <, > (symmetric,
positive definite and bilinear function from V ×V to R) on the space V , for
applications we may choose first the Euclidean product

< u, v >:=
n∑

i=1

uivi

where [u1, . . . , un]T and [v1, . . . , vn]T denote the coordinates of u and v with
respect to a fixed base B ⊆ V . (We discuss all the possible scalar products
of Rn and the connections among them in Section 6.5.)

So we get the following special case of Riesz’s Theorem:



CHAPTER 6. THE VALUATION OPERATOR 71

Theorem 6.4 If V is any finite dimensional linear space with any fixed base
{b1, . . . , bn} ⊆ V then for every linear functional L : V → R there is a
(unique) fixed vector a ∈ V (depending only on L) such that

L(v) =
n∑

i=1

aivi (6.2)

holds for every vector v ∈ V where [a1, . . . , an] and [v1, . . . , vn] denote
the co-ordinates of a and v with respect to the base B . ¤

Using (6.2) this latter variant of Riesz’s Theorem tells us for valuation
operators (e.g. in our examples above) the following:

Corollary 6.5 If the linear space RN is determined by the components
{C1, . . . , CN} , then for any valuation operator L : RN → R there is a
unique vector a = [a1, . . . , aN ]T ∈ RN such that L can be computed as

L(S) =
N∑

i=1

ai · si (6.3)

for any structure S =
∑N

i=1 si · Ci . ¤

(Recall Definition 6.1 for the notion of components and structures.)

This clearly means that the values of every valuation operator on any
structures in all of the examples: not only is determined by the components
involved but simply it is the weighted sum of the numbers of the components
in the structure.

This observation might facilitate the investigations of any valuation oper-
ators in any of our (or other) examples. For example, we have to determine
only the coefficient vector a ∈ RN for the given valuation operator and after
this we can trivially count (or further investigate) its value on the basis of
(6.3).

The above result might be not new for chemists: trivially the linearity of
L implies

L(S) = L
(∑N

i=1 si · Ci

)
=

∑N
i=1 si · L(Ci) (6.4)

which clearly implies (6.3) choosing ai := L(Ci) for i = 1, . . . , N . Let us
remark here that the above computation assumes that L can be computed
for components Ci on the same way as for structures S .
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However, the real power of Riesz’ Theorem lies in the fact that it is valid
for any scalar product on any linear space V . We used it only in the very
special case of Euclidean scalar product with respect to the base {C1, . . . , Cn}
of our interested components! The variety of and the connections among
different scalar products and bases in Rn is explained in Section 6.5.

One surprising application of the above results is a one-sentence proof of
Hess’ law in thermochemistry.

Theorem 6.6 (Hess’ law) If a linear combination of the reactions X1, . . . , Xk

results the zero (i.e. void) mechanism M then the sum (the same linear
combination) of the reaction heats H(Xj) of the reactions Xj will also be 0.

Proof. This is trivial since if
∑k

j=1 λjXj = M then

H
(∑k

j=1 λjXj

)
= H(M) = 0 . (6.5)

The following theorem is also well known, using it we can give bounds for
the values of L(S) in advance:

Theorem 6.7 (Cauchy -Bunyakowsky-Schwarz) For any linear space V and
scalar product <, >: V × V → R on V the equality

|〈a, x〉| ≤ ‖a‖ · ‖x‖ (6.6)

holds for every vectors a, x ∈ V where ‖x‖ :=
√

< x, x > is the norm of all
the vectors x ∈ V . ¤

Corollary 6.8 For any linear space V with the arbitrary scalar product
<, >: V ×V → R on it and for any linear functional L : V → R we have

| L(S) |≤ c · ‖S‖ (6.7)

for any vector S ∈ V where c ∈ R is a fixed constant depending on L and on
the scalar product <,> only (but not the vector S itself). ¤

Using (6.7) we can estimate the magnitude of L(S). For example, if <,>
is the Euclidean (quadratic) scalar product on RN then we have

| L(S) |≤ c ·
√

s2 + . . . + s2
N (6.8)

where

c =
√

a2 + . . . + a2

(the quadratic sum of the L-values of the componets) and a is defined in
(6.2) in Theorem 6.4.
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6.4 Direct sums

In all of the above results we had to fix the dimension of the space in advance.
This clearly fixes the number of components which can be used.

In this Section we explain the possibility of later (subsequent) adding new
structures containing new components, i.e. how to extend the dimension of
the space we are in, and continue the calculations without giving up the old
ones. Though the below results solve this problem we must be careful in
practical computations.

Extending the dimension by introducing new base vectors (components
in our examples) can be handled with direct sums of linear spaces and of
linear operators.

Let us recall here that the direct sum V = V1⊕V2 means that each vector
v ∈ V can be written uniquely in the form v = v1 + v2 for some v1 ∈ V1 and
v2 ∈ V2 (which clearly implies V1 ∩ V2 = {0}). Further, L := L1 ⊕ L2 means
L(v) = L1(v1) + L2(v2) for the linear operators L : V → R, L1 : V1 → R,
L2 : V2 → R and for any vectors v, v1, v2 above.

Theorem 6.9 If V is any linear space which is a direct sum of the two spaces
V = V1 ⊕ V2 then every linear functional L : V → R can be written in the
form L = L1 ⊕ L2 where Li : Vi → R are linear functionals for i = 1, 2.

On the other hand, if Li : Vi → R are linear functionals for i = 1, 2 then
the function L := L1 ⊕ L2 , L : V → R is also linear. ¤

Using Riesz’ Theorem 6.3 for all the vector spaces V, V1 and V2 separately,
clearly we have that L(v) =< a, v >, L1(v1) =< a1, v1 > and L2(v2) =
< a2, v2 > hold for all vectors v∈V , v1 ∈ V1 and v2 ∈ V2 for some fixed
special vectors a∈V , a1 ∈ V1 and a2 ∈ V2 . Let us emphasize however that
a is not the (direct) sum of a1 and a2 in general. This latter requirement
can be ensured e.g. when the subspaces V1 and V2 are orthogonal to each
other (with respect to the scalar product <,>) which means v1 ⊥ v2 (i.e.
< v1, v2 >= 0) for all v1 ∈ V1, v2 ∈ V2 . We state the exact result below.

Theorem 6.10 If V = V1⊕V2 and L = L1⊕L2 are arbitrary as in Theorem
6.9, <,>: V × V → R is an arbitrary scalar product such that V1 and V2

are orthogonal to each other (with respect to this scalar product) and further
the vectors a ∈ V , a1 ∈ V1 and a2 ∈ V2 satisfy

L(v) =< a, v >, L1(v1) =< a1, v1 > and L2(v2) =< a2, v2 >

for all v ∈ V , v1 ∈ V1 and v2 ∈ V2 , then
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a = a1 ⊕ a2 = a1 + a2 . ¤ (6.9)

In order to formulate extensions of valuation operators we need the con-
cept and the notation of restriction

L |H : H → W

of any linear mapping L : V → W and subspace H of V (in our applications
V = RN and W = R).

Clearly

L = L |V1 ⊕L |V2

holds for any linear mapping L : V → W and subspaces V1, V2 of V if
V = V1 ⊕ V2 .

Corollary 6.11 If the vectors a ∈ RN , b ∈ RM are determined by the
arbitrary but disjoint sets of components {C1, . . . , CN} and {D1, . . . , DM}
and by the (arbitrary) valuation operators L1 : RN → R, L2 : RM → R ,
which are restrictions of the same valuation operator L : RN+M → R , then

L(S) =
N∑

i=1

ai · si +
M∑

j=1

bj · sN+j (6.10)

holds for any structure S =
∑N+M

i=1 si · Ci ∈ RN+M . ¤

The above result allows us just to add the values of L(S1) and L(S2) to
get the value of L(S) if S = S1 +S2 is any but disjoint partitioning
(concerning the involved components) of the structure S. In other words,
applying newer components (either atoms or species or reactions, etc.) we
are allowed just only to extend our previous databases, the linearity of L
ensures that no new data or computational methods are neccessary.

6.5 Scalar products

We give here a brief summary of scalar products in any finite dimensional
linear space, revealing both the variety and boundary of them and also the
connections among them. This helps us to find the exact role of the Eucledian
scalar product we used in Section 6.1 for a fixed base of the space. All notions
and results can be found in any standard graduate level linear algebraic
textbook.

First we have to to clarify some notions.
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Definition 6.12 The matrix A ∈ Rnxn is symmetric if AT = A , in
other words ai,j = aj,i for i, j = 1, . . . , n where ai,j are the entries of A .

For i ≤ n the i-th main subdeterminant or main minor di ∈ R of
A is the determinant of the left-upper submatrix of size i × i of A formed
by the first i many rows and columns of A .

The matrix is positive definite iff all its main minors d1, . . . , dn are
positive. ¤

In what follows let V be any fixed finite dimensional linear space of
dimension n ∈ N with any fixed base B = {b1, . . . , bn} ⊆ V . (No special
role at all will possess the base we chose in what follows.) In what follows,
we will not force any distinction of the vectors u ∈ V and their co-ordinates
[u1, . . . , un]T ∈ Rn with respect to the fixed base B.

Theorem 6.13 The mapping A : V × V → R ,

A(u, v) := uTAv =
n∑

i=1

n∑
,j=1

ai,j · ui · vj

is bilinear for any matrix A ∈ Rn×n. A is symmetric if and only if A is
symmetric. A is positive definite (i.e. A(u, u) > 0 for u ∈ V , u 6= 0) if
and only if A is positive definite. ¤

The below two results together give a complete characterization of scalar
products on any finite dimensional vectorspace.

Corollary 6.14 The mapping A : V × V → R ,

A(u, v) := uTAv

is always a scalar product on V for any symmetric and positive definite matrix
A ∈ Rnxn . ¤

Theorem 6.15 For any scalar product A : V ×V → R there is a (unique)
matrix A ∈ Rnxn such that A(u, v) = uTAv . ¤

A clearly depends on the base B ⊆ V of the space but there are simple
formulae for transforming the above matrices of a fixed scalar product A to
any other base. Even special bases can easily been found by the below result.
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Theorem 6.16 (Gram–Schmidt) For any scalar product A : V × V → R in
any finite dimensional linear space V there is a base F = {f

1
, . . . , f

n
} ⊆ V

in which elements are orthogonal with respect to A, i.e. A(f
i
, f

j
) = 0 for

i 6= j . ¤

Corollary 6.17 If A and F are as in the above theorem then the matrix A ,
corresponding to A and F , is diagonal with positive entries, that is for every
u, v ∈ V we have

A(u, v) = uT Av =
n∑

i=1

ai,iuivi

where the coefficients ai,i ∈ R are all positive. ¤

The next (and last) result summarizes the connections among different
scalar products on a given finite dimensional linear space: there is no differ-
ence at all among different scalar products on a fixed linear space V – from
the topological point of view, at least.

Theorem 6.18 For any two scalar products A,B : V ×V → R there is an
automorphism I : V → V such that

A(u, v) = B(I(u), I(v))

holds for any vectors u, v ∈ V . Moreover, I is continuous with respect to
the topologies induced by A and B, i.e. I : (V,A) → (V,B) is a (topological)
homeomorphism. ¤

Our first application of the above result is to the Euclidean scalar product,
of course. This last Theorem says especially, among others that any valuation
operator can be measured in any measure unit, up to a scalar factor.



Chapter 7

Beyond the thesis

During our theoretical investigations on the topic of the present Thesis
(mainly mathematical we mean) a dozen of further questions arose. In this
Chapter we shortly list these ideas for further investigations.

7.1 On the algorithm

We mentioned in Chapter 3 ”The algorithm” Mr. Bertók’s graph theoretical
algorithm. Because of the close connections between our algorithms, it would
be fruitful to synthesize both of our ideas.

Problem 7.1 Study the connections between graph theoretical and linear al-
gebraic methods. ¤

For example, one can extract data from p-graphs for PNS (Process Net-
work Syntheses) to feed our linear algebraic algorithm, a simple example is
given in Figure on the next page.

First we suspect that additional information, included in the graph, can
be coded among the input vectors (similar to that we suceeded in Section
3.2 several time, or order of the reactions, requiring one another, etc.), and
second, we can synthesize the linear algebraic and graph theoretical methods.
These results are planned to summarize in [Sz01a] and [Sz01b] .

7.2 More exact lower bounds

We also have mentioned the question of minimal number of simplexes in
higher dimensions if no parallel vectors are allowed among the vectors.

77
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Conjecture 7.2 Suppose that H is of fixed size, spans Rn and contains no
collinear vectors. Then the minimal value of simp(H) is is attained precisely
in the following configurations:

1. If n is even, H contains n linearly independent vectors {ui : i =
1, . . . , n} and the remaining ones are divided as evenly as possible between
the planes {[ui, ui+1] : i = 1, 3, . . . , n − 1}.

2. If n is odd, H again contains n linearly independent vectors {ui :
i = 1, . . . , n}, one extra vector in the plane [un−1, un] and finally the remain-
ing vectors divided as evenly as possible between the planes {[ui, ui+1] : i =
1, 3, . . . , n − 2} with lower indices having precedence. ¤

Similar questions (with similar methods) can be raised also for matroids,
see [SzDHL01]. In more general, one could ask the following:

Problem 7.3 ” What is the minimal number of simplexes if assuming the
minimal size of dependent subsets (’circles’ in matroids) is at least k for any
fixed k ∈ N ? ¤
(The minimal size of dependent subsets is called the girth of the matroid.)
With prof. Oxley together we have conjectures concerning this question we
are working on. One of our conjectures is the following.

Conjecture 7.4 For matroids M of size m and with rank k , minimal
number of circuits is contained in the uniform matroid Uk,n−3 , so the lower
bound is

1 + 3 ·
(

m − 3

k − 1

)
+ 3 ·

(
m − 3

k − 2

)
+

(
m − 3

k − 3

)
≤ simp(M) . ¤

Some related questions will be included in our joint work [SzDHL01] .

Another variant on the number of simplexes is when we have to count
simplexes containing one fixed reaction SR of the given ones, or the simplexes
which contain at least one vector from the set {V1, . . . , Vt} . More precisely
we ask:

Problem 7.5 Let the set of vectors H := {A1, ..., Am} ⊂ RN and a subset

V := {V1, . . . , Vt} ⊂ H

of H be given. What is the possible minimal and maximal number of simplexes
S ⊂ H containing at least one vector from the set V , that is

S ∩ V 6= ∅ ? ¤
This bound would be important for the bound for the running time of

our modified algorithm, see Sections 3.2 and the Appendix ”Computational
results”.
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7.3 Hierarchies

We have already observed the general linear algebraic study of hierarchies
among atoms- species- reactions- mechanisms- etc., this concept will be dis-
cussed in general in [SzP01] . Here we introduce the idea of hierarchies.
Roughly speaking, our idea is as follows.

Definition 7.6 Let the vectors of the i ’th hierarchy (i ∈ N) be

Hi := {A(i)
1 , ..., A

(i)
ki
} ⊂ Rni .

Suppose, that the set of simplexes of Hi is

Si := {S(i)
1 , ..., S

(i)
ti } ⊆ P(Hi)

and identify these simplexes to the set of indices

Si
j := {u ≤ ki : Au ∈ Si

j} ⊆ {1, ..., ki} , (j ≤ ti) .

Suppose further that these simplexes determine (up to a constant factor)
the linear combinations ∑

v∈Si
j

λi,j
v Av = 0 (j ≤ ti).

Then we define the vectors of the next hierarchy as

A
(i+1)
j := [µ1, ..., µki

] ∈ Rki , (j ≤ ti) ,

where

µv =

{
λi,j

v

0
if v ∈ Si

j

if v /∈ Si
j

,

so, of course, the next dimension is

ni+1 = ki . ¤

Then we propose the next problem:

Problem 7.7 Study the properties of this hierarchy, the connections among
these levels, and study their applications to linear algebra, chemistry, physics,
etc. ¤

Professor Peter H.Sellers was kind as to share his general ideas for further
research in [S02] which are extremaly useful for the present problem.
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7.4 Theoretical questions

In [Sz01a] we plan to discuss in full detail the effect of extending the dimen-
sion of the vectors we proposed because of the law of mass balance (preser-
vation of material) explained in Subsection 3.2.1 in Chapter 3.

Problem 7.8 Discuss the theoretical and algorithmic effects of extending the
dimension of the vectors we proposed in Subsection 3.2.1 in Chapter 3. ¤

This problem is related to Problem 7.1 above, since in both cases we
extended either the dimension or the number of vectors, or both.

These modifications, of course have effect to the running time of the
algorithm, which is always contained in our investigations.

After a clear linear algebraic reformulation we plan to deal with the ques-
tion, based on Professor Árpád Pethő’s fundamental work [P67] , and this
is also a central question in researches of Happel-Sellers-Otarod [HS83] ,
[HOS90] and Friedler-Fan-Bertók [FBF00] and [B99] :

Problem 7.9 ”Is there a (finite) set of mechanism/reactions which linear
combinations would give the set of all mechanism/reactions”
Find this set theoretically, algorithmically, and/or describe its properties. ¤

Convex linear combinations clearly are not sufficient as it is wellknown
from linear algebra.
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[SzDL96] Szalkai, I., Dósa, Gy., Laflamme,C.: On the Maximal and
Minimal Number of Bases and Simple Circuits in Matroids and the Extremal
Constructions, Preprint 046, Dept. Math. Univ. Veszprém, 1996.

[Sz97] Szalkai, I.: Linear Algebra, Stoichiometry and Combinatorics,
Polygon VII. (1997), 35–51 (in Hungarian).

[SzL98] Szalkai, I., Laflamme,C.: Counting Simplexes in R3, Electr.
J. of Combinatorics vol.5 (1998) No.1, Res. Paper No. 40, 11 pp,

http://www.combinatorics.org, ref: Current Math.Publ. 1998, No.16.

[Sz99] Szalkai, I.: Handling Multicomponent Systems in Rn, I.: Theo-
retical Results, J. Math. Chemistry 25 (1999), 31–46.

[Sz00] Szalkai, I.: On Valuation Operators in Stoichiometry and in
Reaction Syntheses, J. Math. Chemistry 27 (2000), 377–386.

[Sz01] Szalkai, I.: A New General Algorithmic Method in Reaction Syn-
theses Using Linear Algebra, J. Math. Chemistry 28 (2000), 1–34.

[Sz01n] Szalkai, I.: Discrete Mathematics and Foundations of Computer
Sciences, Lecture Notes, University of Veszprém, 2001 (in Hungarian).
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Computational results

In this Chapter we present some concrete computational results for illustrat-
ing the output and the speed of our algorithm and the effect of its variations
described in Chapter 3. ”The algorithm and its variations”.

As we discussed in Chapter 3, the algorithm requires polynomial time in
the size of the input (the number of vectors) in fixed dimension. According
to this estimation, everyday size inputs (some dozens of vectors in 10-20
dimensional spaces) require some seconds only on modern computers, but
we can get answer in the case of hundreds of vectors in similar dimensions in
some hours, too.

Concrete computational experiments on (also large) datasets are shown
in the present Chapter. We used Borland’s Turbo Pascal 6.0 language and a
Packard-Bell PC with Pentium II. processor of 360 MHz.

The computing results of Happel-Otarod-Sellers[HOS90] and Bertók [B99]
require also about this running time but their results are not better at all
than of ours.

When a so called ”resulting” (overall) reaction SR is given (which we
have build from a linear combination of the other vectors) we made run our
program in two ways: we computed all simplexes (not regarding the extra
role of SR) and we also computed the mechanisms resulting the (overall)
reaction SR (i.e.the simplexes only which contain SR, see the subsection
3.2.1). Checking this latter requirement in each step slowed down slightly
our computer but our formula

ν(V arAll) = ν(V arOnly) + ν(V arOrig)

as (3.5) in subection 3.2.1 from Chapter 3 ”The algorithm and its variations”
is justified now.

86
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.1 Amundson

Our first example is taken from Amundson [A66] and also can be found in
[P90]. We have given the groups of atoms (functional bonds) CO, CO2, O2,
H2, CH2O, CH3OH, C2H5OH, (CH3)2CO, CH4, CH3CHO, H2O (of course
there is no resulting (overall) reaction now). The 213 minimal reactions
(simplexes) we also get by our computation, are listed in detail eg.in [P90].
Since we use three atoms C,O,H (i.e. the input consists of 3- dimensional
vectors) and there are no parallel vectors among the species we can use the
sharper lower bound from Corollary 4.10 from Chapter 4 ”On the number of
simplexes”.

N (dimension of the vectorspace) 3
n (dimension of what H spans) 3
M (number of input vectors: |H|) 11
simp(H) (number of simplexes) 213

1 +
(

M−2
3

)
+

(
M−3

2

)
(lower bound) 113 ≤(

M
n+1

)
(upper bound) ≤ 330

t (computational time [sec]) 0.22s
number of checked subsets of H 502

”Amundson”
Table 8.1
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.2 Ammonia

Our next example is called ”Ammonia” in [HOS90] and it is the 4’th
example in [B99]. The resulting (overall) and the examined (”possible ele-
mentary”) reactions are:

SR: N2+3H2→ 2NH3

S1 : N2 + ` = N2`
S2 : N2` + H2 = N2H2`
S3 : N2H2` + ` = 2NH`
S4 : N2 + 2` = 2N`
S5 : N` + H` = NH` + `
S6 : NH` + H` = NH2` + `
S7 : NH` + H2 = NH3 + `
S8 : H2 + 2` = 2H`
S9 : NH2` + H` = NH3 + 2`

where ` denotes the catalysator’s surface.

After running our algorithm we get the following minimal mechanisms:

1) 3S1 + 3S2 + 3S3 − 2S4 − 4S5 + 2S6 + 2S9 = SR

2) S1 + S2 + S3 + 2S6 + 2S8 + 2S9 = SR

3) S1 + S2 + S3 + 2S7 = SR

4) S4 + 2S5 − S6 + 3S7 − S9 = SR

5) S4 + 2S5 + 2S6 + 3S8 + 2S9 = SR

6) S4 + 2S5 + 2S7 + S8 = SR

7) − S1 − S2 − S3 + S4 + 2S5 − S6 + S7 − S9 = 0
8) S1 + S2 + S3 − S4 − 2S5 − S8 = 0
9) − S6 + S7 − S8 − S9 = 0

(The latter three mechanisms yield not SR but the zerovector - a cycle.)

Total Containing SR only
N (dimension of the vectorspace) 10 10
n (dimension of what H spans) 7 7
M (number of input vectors: |H|) 10 10
simp(H) (number of simplexes) 9 6

b ·
(

a+1
2

)
+ (n − b) ·

(
a
2

)
(lower bound) 3 ≤ 1 ≤(

M
n+1

)
(upper bound) ≤ 45 ≤ 36

t (computational time [sec]) 0.44s 0.28s
number of checked subsets of H 969 473

”Ammonia”
Table 8.2
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.3 Bertók 5

Our next example is Bertók’s 5’th example from [B99] which is taken
from [HS83]. The resulting (overall) and the examined (possible elementary)
reactions are:

SR: 2H2+2CO → CH4+CO2

S1 : CO` + ` = C` + O`
S2 : C` + H` = CH` + `
S3 : CH` + H` = CH2` + `
S4 : CH2` + H` = CH3` + `
S5 : CH3` + H` = CH4 + 2`
S6 : OH` + H` = H2O + 2`
S7 : CO2 + ` = CO2`
S8 : CO + ` = CO`
S9 : H2 + 2` = 2H`
S10 : CO2` + H` = CHOO` + `
S11 : CHOO` + H` = CHO` + OH`
S12 : O` + H` = OH` + `
S13 : CO` + O` = CO2` + `
S14 : CHOO` + ` = OH` + CO`
S15 : CO` + H` = CHO` + `

Now all the minimal mechanisms (the output) are:
1) S1 + S2 + S3 + S4 + S5 − S7 + 2S8 + 2S9 − S10 − S11 + S12 + S15 = SR

2) S1 + S2 + S3 + S4 + S5 − S7 + 2S8 + 2S9 − S10 + S12 − S14 = SR

3) S1 + S2 + S3 + S4 + S5 − S7 + 2S8 + 2S9 + S13 = SR

4) S10 + S11 − S12 + S13 − S15 = 0
5) S10 − S12 + S13 + S14 = 0
6) S11 − S14 − S15 = 0

Total Containing SR only
N (dimension of the vectorspace) 17 17
n (dimension of what H spans) 13 13
M (number of input vectors: |H|) 16 16
simp(H) (number of simplexes) 6 3

b ·
(

a+1
2

)
+ (n − b) ·

(
a
2

)
(lower bound) 4 ≤ 1 ≤(

M
n+1

)
(upper bound) ≤ 120 ≤ 105

t (computational time [sec]) 78.60s 43.28s
number of checked subsets of H 63, 429 31, 697

”Bertók 5”
Table 8.3
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.4 Bertók rn.in

This example was provided for us by Mr.Bertók personally as rn.in and was
presented in [FBF00]. The resulting (overall) and the examined (possible
elementary) reactions now are (S22 is omitted by technical purposes):

SR : N2 + 3H2 = 2NH3

S1 : H2 + ` = H2` S14 : N2H2` + N2` = N4H2` + `
S2 : H2` + ` = 2H` S15 : N2H4` + H` = NH2` + NH3`
S3 : N2 + ` = N2` S16 : N2H4` + N` = N2H` + NH3`
S4 : N2` + ` = 2N` S17 : H` + N2` = N2H` + `
S5 : N2` + H2` = N2H2` + ` S18 : N` + H2` = NH` + H`
S6 : N2H2` + ` = NH` + NH` S19 : H` + N2` = NH` + N`
S7 : N` + H` = NH` + ` S20 : H` + N2H2` = NH2` + NH`
S8 : NH` + H` = NH2` + ` S21 : N` + N2H2` = N2H` + NH`
S9 : NH` + H2` = NH3` + `
S10 : NH` + N` = N2H` + ` S23 : H` + N2H` = NH` + NH`
S11 : NH2` + H` = NH3` + ` S24 : H` + N2H` = NH2` + N`
S12 : NH2` + N` = N2H2` + ` S25 : NH3` = NH3 + `
S13 : N2H2` + H2` = N2H4` + `

Our calculations are summarized in the below Table:

Total Containing SR only
N (dimension of the vectorspace) 15 15
n (dimension of what H spans) 14 14
M (number of input vectors: |H|) 25 25
simp(H) (number of simplexes) 5, 609 3, 585

b ·
(

a+1
2

)
+ (n − b) ·

(
a
2

)
(lower bound) 11 ≤ 1 ≤(

M
n+1

)
(upper bound) ≤ 3, 268, 760 ≤ 1, 961, 256

t (computational time [sec]) 2.1·104s
≈5h50min

1.2·104s
≈3h21min

number of checked subsets of H 10, 664, 430 2, 846, 629

”Bertók rn.in”
Table 8.4

Let us mention that Bertók achieved the same list of simplexes as ours
but in 13 hours computer run comparing to our 3 hours 21 minutes.
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The following three examples illustrates the modifications described in
Section 3.2.

.5 Ethylene Oxide

This example is introduced in[HOS90] as Ethylene Oxide Synthesis. We
are given the following reactions

S1 : O2 + ` = O2`
S2 : 2O` = O2` + `
S3 : O2` + C2H4 = O` + CH3CHO
S4 : C2H4O + ` = C2H4O`
S5 : O2` + C2H4 = C2H4O + O`
S6 : 5O2` + CH3CHO = 5O` + 2CO2 + 2H2O
S7 : C2H4O` = O` + C2H4

where the terminal (chemical) species are C2H4O, C2H4, O2, CO2 and H2O,
all the others are intermediate (active) ones.

As we indicated at the end of Section 3.2 we can find all (possible) direct
overall reactions among the above set of terminal species by our algorithm
(as detailed in Section 3.2). We got the following (complete) list of minimal
reactions

d1) 1C2H4 +1 /2O2 − C2H4O = 0
d2)

1/2C2H4 +3 /2O2 − CO2 − H2O = 0
d3)

5/2C2H4 + 3C2H4O − CO2 − H2O = 0
d4)

5/4O2 +1 /2C2H4O − CO2 − H2O = 0

in 0.00 sec which corresponds (in order) to d1, d3, d4, d2 of [HOS90], respec-
tively. Computational data concerning this run are shown in the first column
of Table 8.5.

The second column of this table shows searching for mechanisms (re-
sulting the zero vector, i.e. the void reaction) among the original vectors
(reactions S1 through S7). The single mechanisms we found shows that the
reactions S1, . . . , S7 are not linearly independent.

Columns 3 and 4 show computation when we introduced the new vectors
V1, . . . , V5 representing one-to-one the terminal (chemical) species as we sug-
gested in the first part of Section 3.2. For comparison of CPU time we run
the algorithm first for all simplexes then for those which contain at least one
new vector Vi only.

We have the following list of minimal mechanisms:

m1 : 7/6C2H4 + O2 − C2H4O −1 /3CO2 −1 /3H2O + S1 +1 /6S3 − S4+
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+1/6S6 − S7 = 0
m2 : C2H4 +1 /2O2 − C2H4O +1 /2S1 −1 /2S2 − S4 − S7 = 0
m3 : −C2H4 −1 /2O2 + C2H4O −1 /2S1 −1 /2S2 − S5 = 0
m4 : 2C2H4 + O2 − 2C2H4O + S1 − S4 + S5 − S7 = 0
m5 : −C2H4 − 3O2 + 2CO2 + 2H2O − 3S1 − 3S2 − S3 − S6 = 0
m6 : 1/3C2H4+O2−2/3CO2−2/3H2O+S1+1/3S3−S4−S5+1/3S6−S7 = 0
m7 : 5/6C2H4−C2H4O+1/3CO2+1/3H2O−S2−1/6S3−S4−1/6S6−S7 = 0
m8 : 5C2H4 − 6C2H4O + 2CO2 + 2H2O − S3 + 6S5 − S6 = 0
m9 : −5/2O2−C2H4O+2CO2 +2H2O−5 /2S1−7 /2S2−S3−S4−S6−S7 = 0
m10 : −5/2O2 − C2H4O + 2CO2 + 2H2O −5 /2S1 −5 /2S2 − S3 + S5 − S6 = 0
m11 : O2 +2 /5C2H4O −4 /5CO2 −4 /5H2O + S1 +2 /5S3 − S4 −7 /5S5+

+2/5S6 − S7 = 0
m12 : −S2 − S4 − S5 − S7 = 0

For comparing our above data to Table VII. of [HOS90], let us remark
that that Table contains mechanisms only for the minimal (direct) reactions
d1 and d3 and moreover its rows (m2, d3) and (m3, d3) are identical.

Further, the reaction

7/6C2H4 + O2 = C2H4O +1 /3CO2 +1 /3H2O

which can be extracted from our mechanism m1 above is not minimal, and
in fact it is not listed among the minimal (direct) reactions d1, d2, d3, d4

above we obtainde by running our algorithm with the sum formulas of the
terminal (chemical) species. The explanation is, that the vectors V1, . . . , V5

are linearly independent which makes the vectors occuring in mechanism V1

a simplex !
We computed in the Table 8.5 the lower and upper bounds (LB,UB)

according to the formulas of Chapter 4 but only in the case it is applicable
(i.e. except from the fourth column).
Again, our formula

ν(V arAll) = ν(V arOnly) + ν(V arOrig)

from (3.5) in subsection 3.2.1 of Chapter 3 can be checked in Table 8.5.
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Terminal Reactions With fictive vectors Vi

species only ALL simplexes WITH Vi only
N 3 10 10 10
n 3 6 9 9
M 5 7 12 12
simp(H) 4 1 12 11
LB 2 ≤ 1 ≤ 3 ≤
UB ≤ 5 ≤ 1 ≤ 66
t 0.00s 0.06s 1.87s 1.80s
chk 18 102 4, 000 3, 898

N = dimension of the vectorspace n = dimension of what H spans
M = number of input vectors = |H| simp(H) = number of simplexes

LB = b ·
(

a+1
2

)
+ (n − b) ·

(
a
2

)
(lower bound) UB =

(
M

n+1

)
(upper bound, if applicable)

t = computational time [sec] chk = number of checked subsets of H

”Ethylene Oxid”
Table 8.5
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.6 Methane to Methanol Conversion

Our next example is introduced in [HOS90] as Methane to Methanol
Conversion. We are now given the reactions

S1 : CH4 + O2 = CH3 + HO2 S9 : CH3 + CH3 = C2H6

S2 : CH3 + O2 = CH3O2 S10 : CH3 + OH = CH3OH
S3 : CH3O2 = CH2O + OH S11 : CH3 + CH3O = CH3OCH3

S4 : CH3O2 + CH4 = CH3O2H + CH3 S12 : CH2O + CH3 = CH4 + CHO
S5 : CH3O2H = CH3O + OH S13 : CHO + O2 = CO + HO2

S6 : CH3O = CH2O + H S14 : CH2O + CH3O = CH3OH + CHO
S7 : CH3O + CH4 = CH3OH + CH3 S15 : CHO + CH3 = CO + CH4

S8 : OH + CH4 = CH3 + H2O

where the terminal (chemical) species are CH4, O2, CH3OH, CO and H2O .
Again the first column of the table below compute all the direct overall

reactions among terminal species while the second column deals with the
(void) mechanisms among the given reactions S1 through S15.

As we indicated in Section 3.2, since only the reactions S9 and S11 contain
the extra species C2H6 and CH3OCH, the vectors representing them are
linearly independent from the others, so we can omit them and so we can
reduce the number and the dimension of the problem by two. For comparison
we made computer runs both with the original and with the reduced vectors:
these are the two parts of the table below. This reduction helped us to
decrease the CPU time from 27 min to 5 min!

The columns in both parts of the table show the various computations as
in our previous example 4.5 we explained (the first columns in the two parts
are the same).

The output set of mechanisms of the last two columns (i.e. when the input
is the reduced set of reaction vectors Si with V1, . . . , V5) is the following:

m1 : −2CH4−2O2+CH3OH+CO+2H2O+S1−2S2−S3−S4−S5−S7−
2S8 − S12 − S13 = 0

m2 : −2CH4 − 2O2 + CH3OH + CO + 2H2O + S1 − 2S2 −S3 −S4 −S5 −
2S8 − S13 − S14 = 0

m3 : −2CH4 − 2O2 + CH3OH + CO + 2H2O− 2S2 −S3 −S4 −S5 −S7 −
2S8 − S12 − S15 = 0

m4 : −2CH4 −2O2 +CH3OH +CO +2H2O−2S2 −S3 −S4 −S5 −2S8 −
S14 − S15 = 0

m5 : −2CH4 − O2 + 2CH3OH − S2 − S4 − S5 − S7 − S10 = 0
m6 : −2CH4 − O2 + 2CH3OH − S2 − S4 − S5 − S10 + S12 − S14 = 0
m7 : −CH4 −6 /4O2 + CO + 2H2O + S1 −6 /4S2 − S3 −2 /4S4 −2 /4S5

−2 /4S7 − 2S8 +2 /4S10 − S12 − S13 = 0
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m8 : −CH4 −6 /4O2 + CO + 2H2O + S1 −6 /4S2 − S3 −2 /4S4 −2 /4S5

+2 /4S7 − 2S8 + +2/4S10 − S13 − S14 = 0
m9 : −2CH4 − 3O2 + 2CO + 4H2O + 2S1 − 3S2 − 2S3 − S4 − S5 − 4S8 +

S10 − S12 − 2S13 − S14 = 0
m10 : −CH4−6 /4O2 +CO+2H2O−6 /4S2−S3−2 /4S4−2 /4S5−2 /4S7−

2S8 +2 /4S10 − S12 − S15 = 0
m11 : −CH4−6 /4O2 +CO+2H2O−6 /4S2−S3−2 /4S4−2 /4S5 +2 /4S7−

2S8 +2 /4S10 − S14 − S15 = 0
m12 : −CH4 −3 /2O2 + CO + 2H2O −3 /2S2 − S3 −1 /2S4 −1 /2S5 − 2S8

+1 /2S10 −1 /2S12 −1 /2S14 − S15 = 0
m13 : 2CH4 − 3CH3OH + CO + 2H2O + S1 − S3 + S4 + S5 + S7 − 2S8 +

2S10 − S12 − S13 = 0
m14 : 2CH4 − 3CH3OH + CO + 2H2O + S1 −S3 + S4 + S5 + 2S7 − 2S8 +

2S10 − S13 − S14 = 0
m15 : −2CH4 + 3CH3OH − CO − 2H2O − S1 + S3 − S4 − S5 + 2S8 −

2S10 + 2S12 + S13 − S14 = 0
m16 : 2CH4 − 3CH3OH +CO +2H2O−S3 +S4 +S5 +S7 − 2S8 +2S10 −

S12 − S15 = 0
m17 : 2CH4−3CH3OH +CO+2H2O−S3 +S4 +S5 +2S7−2S8 +2S10−

S14 − S15 = 0
m18 : 2CH4 − 3CH3OH + CO + 2H2O − S3 + S4 + S5 − 2S8 + 2S10 −

2S12 + S14 − S15 = 0
m19 : −O2 − CH3OH + CO + 2H2O + S1 − S2 − S3 + S7 − 2S8 + S10 −

S13 − S14 = 0
m20 : −O2−CH3OH+CO+2H2O+S1−S2−S3−2S8+S10−S12−S13 = 0
m21 : −O2−CH3OH+CO+2H2O−S2−S3+S7−2S8+S10−S14−S15 = 0
m22 : −O2−CH3OH +CO+2H2O−S2−S3−2S8 +S10−S12−S15 = 0
m23 : −S1 + S13 − S15 = 0
m24 : S7 + S12 − S14 = 0

The computer running which served the above results is summarized in
the following table:
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before the reduction:

Terminal Reactions With fictive vectors Vi

species only ALL simplexes WITH Vi only
N 3 16 16 16
n 3 13 16 16
M 5 15 20 20
simp(H) 4 2 24 22
LB 2 ≤ 2 ≤ 4 ≤
UB ≤ 5 ≤ 15 ≤ 1140
t 0.00s 30.38s 1353s ≈ 22m 1323s ≈ 22m
chk 18 30, 473 978, 297 947, 824

after the reduction

Reactions With fictive vectors Vi

only ALL simplexes WITH Vi only
N 14 14 14
n 11 14 14
M 13 18 18
simp(H) 2 24 22
LB 2 ≤ 4 ≤
UB ≤ 13 ≤ 816
t 5.49s 263s ≈ 4m 257s ≈ 4m
chk 7, 623 244, 611 236, 988

N = dimension of the vectorspace n = dimension of what H spans
M = number of input vectors = |H| simp(H) = number of simplexes

LB = b ·
(

a+1
2

)
+ (n − b) ·

(
a
2

)
(lower bound) UB =

(
M

n+1

)
(upper bound, if applicable)

t = computational time [sec] chk = number of checked subsets of H

”Methanol”
Table 8.6
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.7 Glucose to Pyruvate Conversion

Our last example is also taken from [HOS90] as Conversion of Glucose
to Pyruvate. Here the chemical species are abbreviated as

C = carbon dioxide N = 6 − P gluconate
D = dihydroxyacetone P P = pyruvate
E = erythrose 4 − P R = ribose 5 − P
F = fructose 6 − P S = sedoheptulose 7 − P
G = glucose 6 − P X = xylulose 5 − P
K = 2-keto-3-deoxy 6 − P gluconate Y = glyceraldehyde 3 − P
L = ribulose 5 − P

where the terminal (chemical) species are G, P and C.

The original set of reactions is

S1 : R + X = S + Y S8 : N = K
S2 : L = R S9 : L = X
S3 : N = L + C S10 : E + X = Y + F
S4 : G = N S11 : Y = P
S5 : F = D + Y S12 : D = P
S6 : G = F S13 : K = Y + P
S7 : D = Y S14 : S + Y = E + F

As we have discussed in Section 3.2 all the six reactions of type A = λB
can be omitted with a suitable modification of the remaining others to reduce
both dimension and the number of vectors. Let us emphasis here that we
have to add the fictive vectors V1, V2, V3 before this reduction since their co-
ordinates will also be modified. After this modification we get the following
list of vectors

V −
1 V −

2 V −
3 S−

1 S−
3 S−

5 S−
10 S−

13 S−
14

0 0 0 1 0 2 1 2 -1
0 1 0 0 1 0 0 0 0
0 0 1 -2 1 0 -1 0 0
1 0 0 0 -1 -1 1 -1 1
0 0 0 1 0 0 0 0 -1
0 0 0 0 0 0 -1 0 1

in which the rows correspond to the species P,C,X,K, S,E, respectively.
This transformation reduced the CPU time from 93 sec to 0.10 sec !
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For the Reader’s convenience we list here all the three sets of output
mechanisms: the original one, after the first and after the second reduction
(see the 2’nd, 5’th and the last but one columns of Table 8.7 below).

Let us recall that the new vectors V1, V2, V3 originally standed for the
species G,P,C respectively. However the reduction steps eliminated the
speci (row) G while all the remaining vectors were transformed to the vectors
V −

1 , . . . , S−
14 .

The original set of (output) mechanisms:

m1 : −1/2G + P + C − S3 − S4 +1 /2S5 +1 /2S6 +1 /2S7 − S9 − S13 = 0
m2 : −G + 2P + C − S3 − S4 + S7 − S9 − S12 − S13 = 0
m3 : −G + 2P + C − S3 − S4 − S9 − S11 − S13 = 0
m4 : −1/2G + P − S4 +1 /2S5 +1 /2S6 +1 /2S7 − S8 − S13 = 0
m5 : −G + 2P − S4 + S7 − S8 − S12 − S13 = 0
m6 : −G + 2P − S4 − S8 − S11 − S13 = 0
m7 : −1/2G + P −1 /2S5 −1 /2S6 −1 /2S7 − S11 = 0
m8 : −1/2G + P −1 /2S5 −1 /2S6 +1 /2S7 − S12 = 0
m9 : −G + 2P − S5 − S6 − S11 − S12 = 0
m10 : C − S3 − S4 + S5 + S6 + S7 − S9 + S11 − S13 = 0
m11 : C − S3 − S4 + S5 + S6 − S9 + S12 − S13 = 0
m12 : C − S3 + S8 − S9 = 0
m13 : −S4 + S5 + S6 + S7 − S8 + S11 − S13 = 0
m14 : −S4 + S5 + S6 − S8 + S12 − S13 = 0
m15 : S7 + S11 − S12 = 0

After the first reduction:

m−
1 : −V −

1 + V −
2 + V −

3 − S−
3 = 0

m−
2 : −1/2V

−
1 + 3V −

2 − S−
1 − 3S−

3 +1 /2S
−
5 − S−

10 − S−
14 = 0

m−
3 : −1/2V

−
1 + 3V −

2 − S−
1 − 3S−

3 − S−
10 +1 /2S

−
13 − S−

14 = 0
m−

4 : 5/2V
−
1 − 3V −

3 − S−
1 +1 /2S

−
5 − S−

10 − S−
14 = 0

m−
5 : 5/2V

−
1 − 3V −

3 − S−
1 − S−

10 +1 /2S
−
13 − S−

14 = 0
m−

6 : 5/2V
−
2 −1 /2V

−
3 − S−

1 −5 /2S
−
3 +1 /2S

−
5 − S−

10 − S−
14 = 0

m−
7 : 5/2V

−
2 −1 /2V

−
3 − S−

1 −5 /2S
−
3 − S−

10 +1 /2S
−
13 − S−

14 = 0
m−

8 : S−
5 − S−

13 = 0

Since two parallel vectors arised after this reduction: S−
5 ‖ S−

13 (moreover
both of them are of form A = λB) we could make a second reduction, this can
be seen in the last three columns of Table 8.7. The output set of mechanisms
is the following:

m=
1 : −V =

1 + V =
2 + V =

3 − S=
3 = 0
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m=
2 : 1/2V

=
1 + 3V =

2 − S=
1 − 3S=

3 − S=
10 − S=

14 = 0
m=

3 : 5/2V
=
1 − 3V =

3 − S=
1 − S=

10 − S=
14 = 0

m=
4 : 5/2V

=
2 −1 /2V

=
3 − S=

1 −5 /2S
=
3 − S=

10 − S=
14 = 0

This time we did not make any preliminary computation with terminal
(chemical) species only.
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original reactions
Reactions With fictive vectors Vi

only ALL simplexes WITH Vi only
N 13 13 13
n 12 13 13
M 14 17 17
simp(H) 3 15 12
LB 2 ≤ 4 ≤
UB ≤ 14 ≤ 680
t 8.00s 93.00s 85.00s
chk 14, 600 107, 368 92, 768

after the first reduction
Reactions With fictive vectors Vi

only ALL simplexes WITH Vi only
N 6 6 6
n 5 6 6
M 6 9 9
simp(H) 1 8 7
LB 1 ≤ 3 ≤
UB ≤ 1 ≤ 36
t 0.00s 0.10s 0.10s
chk 52 418 366

after the second reduction :
Reactions With fictive vectors Vi

only ALL simplexes WITH Vi only
N 5 5 5
n 4 5 5
M 4 7 7
simp(H) 0 4 4
LB 0 ≤ 2 ≤
UB ≤ 0 ≤ 7
t 0.00s 0.00s 0.00s
chk 5 65 60

N = dimension of the vectorspace n = dimension of what H spans
M = number of input vectors = |H| simp(H) = number of simplexes

LB = b ·
(

a+1
2

)
+ (n − b) ·

(
a
2

)
(lower bound) UB =

(
M

n+1

)
(upper bound, if applicable)

t = computational time [sec] chk = number of checked subsets of H

”Glucose”
Table 8.7
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eof.
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