

CONTENTS

Articles		
Mathematics: The greatest subject in the world	Adam McRride	354
Integral solutions of ass and mule problems	David Singmaster	365
The general Vieta-Wallis product for π	Thomas J. Osler	371
How rare are singular matrices?	Kerry G. Brock	378
An asymptotic formula for powers	Jeff D. Farmer	385
of binomial coefficients	and Steven C. Leth	363
Cycles, bicycles, tricycles and more	Barry Lewis	392
Some comments on inverse arithmetic functions	P. G. Brown	403
<i>n</i> -dimensional enrichment for Further Mathematicians	Martin Griffiths	409
Making the real projective plane	Claire Irving	417
The aberrancy of plane curves	Russell A. Gordon	424
About tsunamis	Maurice N. Brearley	437
Matter for Debate		
On building polynomials	C. J. Sangwin	441
Notes 89.57 to 89.91		
Non-existence of Fibonacci and Lucas numbers in amicable pairs of opposite parity	John H. Jaroma and James M. Mitchell	451
Series connected with the Fibonacci series	Ll. G. Chambers	454
A result on Fibonacci numbers	R. M. Welukar and M. N. Deshpande	455
Another representation of Pythagorean triples	Philip Maynard	456
Rapid decimal expansion of rational fractions	P. MacGregor	458
A new look at $x^m - y^n = 1, x - y = 1$	Roy Barbara	460
Fitting triangles to a square	P. G. Brown	461
Digital roots of Mersenne primes and even perfect numbers	Thomas Koshy	464
A simple method for finding tangents to polynomial graphs	Charles Strickland-Constable 466	
A short remark on difference equations	István Szalkai	467
An elementary derivation of Euler's series	Hwang Chien-Lih	469
for the arctangent function		
Which is bigger: $e^{(e^{\pi})}$ or $\pi^{(\pi^e)}$?	Klara Pinter	470

(The contents are continued inside the back cover.)

Typeset by Bill Richardson

Printed in Great Britain by J. W. Arrowsmith Ltd ISSN 0025-5572

FIGURE 1

CHARLES STRICKLAND-CONSTABLE Beech House, Haxby, York YO32 2LH

89.66 A short remark on difference equations

I read with interest Hirschhorn's note [1] on the recurrence relations

$$\begin{cases} a_0 = a, & a_{n+1} = a_n - b_n \\ b_0 = b, & b_{n+1} = b_n - c_n \\ c_0 = c, & c_{n+1} = c_n - d_n \\ d_0 = d, & d_{n+1} = d_n - a_n \end{cases}$$
(1)

and the 'lengthy calculation' (sic) of its explicit formula.

In this note we present the simple (and general but natural) method for solving higher dimensional linear recurrence relations:

$$\mathbf{x}_0 = \mathbf{a}_0, \qquad \mathbf{x}_{n+1} = A\mathbf{x}_n, \qquad n \geqslant 0$$

where $\mathbf{x}_n \in \mathbb{R}^k (n \in \mathbb{N})$ and $A \in \mathbb{R}^{k \times k} (k \in \mathbb{N} \text{ is any fixed number})$.

The solution clearly is $\mathbf{x}_n = A^n \mathbf{x}_0$ where the hard task is to determine the powers of the matrix $A \in \mathbb{R}^{k \times k}$.

In our example

$$\mathbf{x}_{n} = \begin{bmatrix} a_{n} \\ b_{n} \\ c_{n} \\ d_{n} \end{bmatrix}, \ \mathbf{x}_{0} = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}, \ \text{and} \ A = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ -1 & 0 & 0 & 1 \end{bmatrix}. \tag{2}$$

We present the general method using this example. This method may be well known, but we found it only in [2].

468

THE MATHEMATICAL GAZETTE

First calculate the eigenvalues and eigenvectors of A:

$$\lambda_1 = 2, \qquad h_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}, \qquad \lambda_2 = 1 + i, \qquad h_2 = \begin{bmatrix} -i \\ -1 \\ i \\ 1 \end{bmatrix},$$

$$\lambda_3 = 1 - i, \qquad h_3 = \begin{bmatrix} i \\ -1 \\ -i \\ -i \end{bmatrix}, \qquad \lambda_4 = 0, \qquad h_4 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

For determining the powers of A we use the fact that A is similar to a diagonal matrix B (since its eigenvalues are all different) where

$$A = TBT^{-1}$$

an

$$T = \begin{bmatrix} 1 & -i & i & 1 \\ -1 & -1 & -1 & 1 \\ 1 & i & -i & 1 \\ -1 & 1 & 1 & 1 \end{bmatrix}$$

(the eigenvectors are the rows) and

$$B = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1+i & 0 & 0 \\ 0 & 0 & 1-i & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

(the eigenvalues are in the diagonal).

So

$$x_n = A^n \mathbf{x}_0 = T B^n T^{-1} \mathbf{x}_0 =$$

$$\begin{bmatrix} 1 & -i & i & 1 \\ -1 & -1 & -1 & 1 \\ 1 & i & -i & 1 \\ -1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2^n & 0 & 0 & 0 \\ 0 & (1+i)^n & 0 & 0 \\ 0 & 0 & (1-i)^n & 0 \\ 0 & 0 & 0 & 0^n \end{bmatrix} \begin{bmatrix} \frac{1}{4} & -\frac{1}{4} & \frac{1}{4} & -\frac{1}{4} \\ \frac{1}{4}i & -\frac{1}{4} & -\frac{1}{4}i & \frac{1}{4} \\ -\frac{1}{4}i & -\frac{1}{4} & \frac{1}{4}i & \frac{1}{4} \\ \frac{1}{4}i & \frac{1}{4} & \frac{1}{4}i & \frac{1}{4} \end{bmatrix} \mathbf{x}_0.$$

References

- M. D. Hirschhorn, Some remarks on difference equations, *Math. Gaz.* 87 (July 2003) pp. 291-296.
- 2. I. Szalkai, Discrete mathematics and foundations of computer science, Lecture Notes, University of Veszprém, 2000 (in Hungarian).

ISTVÁN SZALKAI

University of Veszprém, Department of Mathematics, H-8200 Veszprém, Hungary

e-mail: szalkai@almos.vein.hu