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Introduction

The aim of this booklet is to introduce the students to the world of random phenomena.
The real world is plenty of random things. Without striving to be complete, for example, think
of the waiting time in the post office, the working time of a machine, the cost of the repair of an
instrument, the event of insurance, stock market and rate of exchange, damages caused by
computer viruses and so on. It is obvious that these random phenomena have economic
significance as well; consequently their random behaviour has to be handled. The method is

served by probability theory.

The concept of probability has been developingfor centuries. It originated in gambles, for
example playing cards, games with dice but the idea and the methods developed can be applied
to economic phenomena, as well. Since the medieval ages people realized that random
phenomena have a certain type of regularity. Roughly spoken, although one can not predict
what happens during one experiment but it can be predicted what happens during many
experiments. The mentioned regularities are investigated and formed by formal mathematical
apparatus. The axiomatic foundation of probability was published by Kolmogorov in 1933 and
since then the theory of probability, as a branch of mathematics, has been growing incredibly.
Nevertheless there are problems which are very simple to understand but very difficult to solve.
Solving techniques require lots of mathematical knowledge in analysis, combinatorics,
differential and integral equations. On the other hand computer technique is developing very
quickly, as well; hence a large amount of random experiments can be performed. The
behaviour of stochastic phenomena can be investigated experimentally, as well. Moreover,
difficult probabilistic problems can be solved easily by simulation after performing a great

amount of computations.

This booklet introduces the main definitions connected to randomness, highlights the
concept of distribution, density function, expectation and dispersion. It investigates the most
important discrete and continuous distributions and shows the connections among them. It
leads the students from the properties of probability to the central limit theorem. Finally it ends

with fundamentals of statistics preparing the reader for further statistical studies.
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a. Basic concepts and notations

The aim of this chapter

The aim of this chapter is getting the reader acquainted with the concept of
the outcome of an experiment, events, occurrence of an event, operations on
events. We also introduce the o algebra of events.

Preliminary knowledge

The applied mathematical apparatus: sets and set operations.

Content

a.1. Experiments, possible outcome, sample space, events

a.2. Operations on events

a.3. o algebra of events
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a.l. Experiments, possible outcome, sample space, events

The fundamental concept of probability theory is the experiment.

The experiment is the observation of a phenomenon.

This phenomenon can be an artificial one (caused by people) or natural phenomenon, as well.
We do not care whether the experiment originates from man made or natural circumstances.
We require that the observation could be repeated many times.

Now we list some experiments:

Measuring the water level of a river.

Measuring air pollution in a town.

Measuring the falling time of a stone from a tower to the ground.

Measuring the waiting time at an office.

Measuring the amount of rainfall at a certain place.

Counting the number of failures of a machine during a time period.

Counting the number of complains connected to a certain product of a factory.
Counting the infected files on a computer at a time dot.

Counting the number of falling stars at night in August.

Counting the number of heads if you flip 100 coins.

Investigaing the result of flipping a coin.

Investigating if there is an odd number among three rolls of dice.
Investigating the energy consumption of a factory during a time period.
Investigating the demand of circulation of banknotes at a bank machine.
Investigating the working time of a part of a machine.

Investigating the cost of the treatment of a patient in a hospital.

Summing the daily income of a supermarket.

Summing the amount of claims at an insurance company during a year.
Listing the winning numbers of the lottery.

9 LRI

If one “measures”, “counts”, “investigates”, “sums” and so on, one observes a phenomenon. In
some cases the result of the observation is unique. These experiments are called deterministic
experiment. In other cases the observation may end in more than one result. These experiments
are called stochastic or random experiments. Probability theory deals with stochastic
experiments.

If one performs an experiment (trial), he can consider what may happen. The possible results
are called possible outcomes, or, in other words, elementary events. The set of possible
outcomes will be called the sample space.

We denote a possible outcome by o, and the sample space by Q.

What is considered as a “possible outcome” of an experiment? It is optional. First, it depends
on what we are interested in. If we flip a coin, we are interested if the result is head (H) or tail
(T) but usually we are not interested in the number of turnings. We can also decide whether the
result of a measurement should be an integer or a real number. What should be the unit of
measurement? If you investigate the water level of a river, usually the most important thing is
the danger of flood. Consequently low-medium-high might be enough as possible outcomes.
But possible outcomes are influenced by the things that are worth investigating to have such
cases which are simple to handle. If we are interested in the number of heads during 100 flips,
we have to decide whether we consider the order of heads and tails or it is unnecessary.
Therefore, during a probabilistic problem the first task is to formulate possible outcomes and
determine their set.

In the examples of the previous list, if we measure something, a possible result may be a

nonnegative real number, therefore Q =R, . If we count something, possible outcomes are
nonnegative integers, therefore Q= N. If we investigate the result of a flip, the possible
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outcomes are head and tail, so Q= {H, T}.This set does not contain numbers. The sample
space may be an abstract set. If we list the winning numbers of the lottery (5 numbers are
drawn out of 90), a possible outcome is @, ={1,2,345}, and another one

is®, = {10,20,50,80,90}. Possible outcomes are sets themselves. Consequently, the sample
space is a set of sets, which is an abstract set again.

If an experiment is performed, then one of its possible outcomes will be realized. If we repeat
the experiment, the result of the observation is a possible outcome which might be different
from the previous one. This is due to the random behaviour. After performing the trial we know
its result, but before making the trial we are only able to consider the possible results.

In practice events are investigated: they either occur or not.

Events are considered as subsets of the sample space. That means, certain possible outcomes
are contained in a fixed event, others are not in it. We say that the event A occurs during an
experiment if the outcome in which the trial results is the element of the set A. If the outcome
observed during the actual experiment is not in A, we say that A does not occur during the
actual experiment. If the observed outcomes differ during the experiments, the event A may
occur in one experiment and may not in another one.

This meaning coincides with the common meaning of occurrence. Let us consider some very
simple examples.

EL Roll a single six-sided dice. The possible outcomes are: 1 dot is on the upper
face, 2 dots are on the upper face, ..., 6 dots are on the upper face. Briefly, Q= {12,3,4,5,6}.
i=1,2,3,4,5,6 indicates the possible outcomes by the number of dots. Let A — Q. The elements
of A are the odd dots on the face. If the result of the roll is o, =1, then o, € A. We say that A
occurs during this experiment. On the other side, in common parlance we usually say that the
result of the roll is an odd number. If the result of the experiment is s =6, then o, 2 A, A
does not occur during this experiment. The result of roll is not odd. Although A is a set, A
expresses the “sentence” that the result of the trial is odd. If the trial ends in showing up
g = 6, we say shortly that the result of the roll is “six”.

E2. Measure the level of a river. Q =R . Suppose that if the level of the river is
more than 800 cm, then there is a danger of flood. The sentence “there is a danger of flood” can
be expressed by the event (set) A= g( eR; :800< x}c Q. If the result of the measurement

is =805 cm, thenw € A. A occurs, and indeed, there is a danger of flood. If the result is the
measurement is =650 cm, thenw ¢ A. We say A does not occur, and really, there is no
danger of flood in that case.

E3. Count complains connected to a certain type of product. Now Q= N. If “too
much problems” means that the number of complains reaches a level, for example 100, then the
sentence “too much problem” is the set A = {n e N:100< n}. If the number of complaints is

® =160, then ® € A.The event A occurs and there are too much complains. If the number of
complains is® =286, thenm ¢ A. A does not occur, and indeed, the result of the trial does not
mean too much problems.

The event Q is called certain event. It occurs for sure, as whatever the outcome of the
experiment is, it is included in Q , therefore Q occurs.
The event J (empty set) is called impossible event. It can not occur, since whatever the
outcome of the experiment is, it is not the element of .

Further examples of events:
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E4. Flip a coin twice. Consider the order of the results of the two flips.
Now Q = {(H,H),(H,T),(T,H),(T, T)}, where the outcome (H, T) represents that the
first flip is head, the second one is tail.
The event “there is at least one head among the flips” is the set A = {(H, H),(H,T),((T,H)}.
The event “there is at most one head among the flips” is the set B = {(H, T),(T,H),(T, T)}.
The event “there is no head among the flips” is the set C = {(T, T)}
The event “there is no tail among the flips” is the set D = {(H, H)}.The event “the first flip is
tail” is the set E = {(T,H),(T,T)}.
The event “the flips are different” is the set F = {(H, T), (T, H)}
The event “the flips are the same” is the set G = {(H, H), (T, T)}

We note that the number of subsets of sample space Q is 2* =16, consequently there are 16
events in this example including the certain and the impossible event as well.

E5. Roll a die twice. Take into consideration the order of the rolls. In that case

(11),(1,2),(1,3),(1,4),(1,5),(1.6),(21),(2,2),(2,3),(2,4),(2,5),(2,6),(3.1). (3,2), (3.3).(3,4),(3.5).(3,6),

. {(4,1), (4.2).(43).(4.4).(4.5).(4,6).(51).(5.2),(53).(5.4).(55). (5.6).(61).(6,2). (6.3),(6:4). (6.5). (6,6)} )

The event “there is no 6 among the rolls” is
A={11)@2)13).@4)@5).(21)...,(25)....51)...,(55)}.

The event “the sum of the rolls is 6” is B = {(1,5),(2,4),(3,3),(4,2), (5.1)} .

The event “ the maximum of the rolls is 3” is C = {(1,3),(2,3),(3,3),(3,2),(31)} .
The event “the minimum of the rolls is at most 5” is D = {(5,5),(5,6),(6,5),(6,6)} .

As the number of possible outcomes is 6-6=236, therefore the number of events is
2% ~6.87-10".

E6. Pick one card from a deck of Hungarian “seasons” cards containing 32 playing
cards. A deck of Hungarian cards contains 32 playing cards, 8 of them are reds, greens,
pamkins and bells. The figures are ace, king, knight and knave, furthermore seven, eight, nine
and ten. For example a playing card is ace of red, another one is ten of bells (see Fig al).

Now. €= ace of reds, ace of greens, ace of nuts, ace of pamkins , knave of reds,....,
" |knight of reds,..., king of reds,...., ten of reds, seven of reds.... '

The event “the picked card is a red” is
_{ace of reds, knight of reds, knave of reds, king of reds,}

ten of reds, nine of reds, eight of reds, seven of reds

The event “the picked card is ace” is
B= {ace of reds,aceof greens,aceof nuts,aceof pumkins }

The event “the picked card is ace and red” is C = {ace of reds}.
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Figure al Some cards from a deck of Hungarian “seasons” cards
http://www.wopc.co.uk/hungary/seasons.html

E7. Pick two cards from a deck of Hungarian “seasons” cards without replacing the
chosen card. Do not take into consideration the order of the cards.
In this case the sample space is

_ [faceof reds, aceof greens}, {ace of reds, knight of greens}.....,
| {seven of nuts, ten of pamkins },..... '

containing all the sets of two different elements of cards.
The event “both cards are ace” is


http://www.wopc.co.uk/hungary/seasons.html
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{ace of reds, ace of greens}, {ace of reds, ace of pamkins },
A = {ace of reds, ace of pamkins }, {ace of greens, ace of nuts},
{ace of greens, ace of pamkins }, {ace of pamkins, ace of nuts }

The event” both cards are reds” is
B = {{ace of reds, king of reds}, {ace of reds, knight of reds},....} .

If we want to express the event the “first card is a red”, it can not be expressed actually,
because we do not consider the order of cards. If we want to express this event, we have to
modify the sample space as follows:

Q™ = {(ace of reds, ace of greens),(ace of greens, ace of reds),....}.

The outcome (ace of reds, ace of greens) means that the first card is the ace of reds; the second
one is the ace of greens. The outcome (aceof greens, ace of reds) means that the first card is
the ace of greens; the second one is the ace of reds. To clarify the difference, we emphasize that
outcome {ace of reds, ace of greens} means that one of the picked playing cards is the ace of

reds, the other one is the ace of leaves. In the sample space Q™ the event “first card is red”
can be written easily. This is an example in which the formulation of the sample space depends
on the question of the problem, not only on the trial.

E8.  Choose a number from the interval [0,1]. In that case Q =[01].

The event “ the first digit of the number is 6” is A = [0.6,0.7).

The event “ the second digit is zero” is
C=[0,0.01)U[0.1,0.11)U[0.2,0.21)U...[0.9,0.91). The event “all the digitls of the number

are the same” is B= {0,0.i,O. 2,...,0. 9} .

In this example the number of all possible outcomes and the number of events are infinity.

a.2. Operations on events

As events are sets, the operations with events mean operations on sets. In this subsection we
interpret the set operations by the terminology of events.

e Union (or sum) of events
First recall that the union of two or more sets contains all the elements of all the sets.
Let A and B be events, that is AcQ andBcQ. Then AuUBcQ holds as well. AUB
occurs if me AU B holds, consequently we A or meB. If me A, then A occurs, if weB,
then B occurs. Summarizing, the occurrence of A\ B means that either A or B occurs. At
least one of them must occur. That means either A or B or both events occur. We emphasize
that ,,OR” is not an exclusive choice but a concessive one. The union of events can be
expressed by the word OR.

¢ Intersection (or product) of events
First recall that the intersection of two or more sets contains all the common elements of the
sets.
Let A and B be events, that is AcQ andBc Q. Now AnBcQ holds, as well. AnB
occurs if @me A B holds, consequently me A and weB. If me A, then A occurs, if ®eB
then B occurs. Summarizing, occurrence of AN B means that both A and B occur. The
intersection of events can be expressed by the word AND.
Two events are called mutually exclusive if their intersection is the impossible event. That is if
either of them holds the other one can not occur.

e Difference of two events
First recall that the difference of the sets A and B contains all of elements of A which are not
contained by B.



Probability theory and mathematical statistics— Basic concepts and notations 8

Let A and B be events, thatis Ac Q andB<=Q. Then A\Bc<Q holds as well. A\ B occurs
if ®e A\B holds, consequently me A and m¢B. If ®e A then A occurs. If o¢B then B
does not occur. Summarizing, occurrence of A\ B means that A occurs but B does not.

e Complement of an event
Note that the complement of a set A is the set of all the elements in Q which are not in A. We

denote it by A.
Let A be an event, that is Ac Q. Then AcQ holds, as well. ®e A holds, if oz A. If
o ¢ A, then A does not occur. Consequently, A can be expressed by the word NOT A.

Remarks

e Operations on events have all the properties of operations on sets: the union and
intersection are commutative, associative, the union and intersection is distributive.
o Further often used equality is the following one:

A\B=AnB, and the de Morgan identities:

AUB=ANB, and for infinitly many sets | JA, =("|A;
i=1 i=1
ANB=AUB, and for infinitely many sets (A, =|_JA, .
i=1

i=1

Now we present some examples how to express complicated events by the help of simple ones
and operations.

E1. Choose one from the students of Pannon University. Let A be the event that the
student is a student of economics and let B be the event that the student lives in a student
hostel. In this case the sample space is the set of all the students of the university, one of its
subsets is the set of those students who are students of economics; another of its subsets is
formed by the students living in a student hostel. If the chosen student belongs to the subset
mentioned first, then the event A occurs. Actually, for example, the following events can be
described by A, B and operations:

The chosen student is a student of economics but does not live in a student

hostel: ANB=A\B.
He/she is not a student of economics and he does not live in a student hostel: A~ B.
He/she is not a student of economics or does not live in a student hostel: A UB.

He/she is a student of economics or does not live in a student hostel: A U B.

He/she is not a student of economics and he/she lives in a student hostel or he/she is a student
of economics and does not live in a student hostel: (A\B) U (B\A).

He/she is a student of economics and he/she lives in a student hostel or he/she is not a student

of economics and he/she does not live in a student hostel: (A N B)u (Z\ N E).

E2. In a machine two parts may fail: part x and part y. Let A be the event that part x
fails, let B be the event that part y fails.
If both parts fail, then A~ B holds.
At least one of them fails: A U B holds.
Part x fails but part y does not: A\ B holds.
One of them fails: (A\B)u (B\A) holds.

Neither of them fails: A ~ B holds.
At least of them does not fail: A B holds.
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We note that in this case the sample space can be defined as follows:
Q= {(f,f),(f,n)n,f) (n,n)}, and possible outcome (f,n) represents that part x fails and part y

does not.
E3. Let us investigate the arrival time of a person to a meeting. Let us suppose that the
arrival time is a point in [-515]. (-1 represents that he arrives 1 minute earlier than the

scheduled time, 5 represents that he arrives 5 minutes late). Let A be the event that he is late, B
the event that the difference of the scheduled time of meeting and the arrival time is less than 2
minutes (briefly “small difference”). Now A=(0,15], B=(-2,2).

The event that he is late but small difference is AN B.

He is not late or not small difference is: AUB.

Both events or neither of them hold: (A ~B)U (A A B).

He is late but not small difference is: A~ B.

a.3. The ¢ algebra of events

Definition Let the set of all possible outcomes be fixed and denoted by Q. The set A
containing some of the subsets of Qis called a 0 algebra, if the following properties hold:

1. Qe A.
2. IfAe A, then Ac A holds, as well.
3. IfA, € A,i=123...., then UAi e A holds as well.
i=1
Remarks

e Jc AasP=Qand Qe A.

e Applying the properties of operations one can see that if A; € A , thenﬂAi e A. For

i=1

the proof, note that ifA; €A, thenA; A, consequently | JA e A. Therefore,

i=1

0 o0 o0

Ua=NA=AcA.
=1

i=1 i i=1
e If AcA andBe A, then A\Be A holds as well. For the proof, note that
A\B=ANB.If BeA,thenBe A holds as well, and A~ Be A is also satisfied.

Strictly speaking, the elements of the G algebra ‘A are called events. The above properties
express that if some sets are events, then their union, intersection, difference and complement
are events, as well.

In probability theory we would like to determine the probability of events which characterize
the relative frequency of their occurrence during many experiments.
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b. Probability

The aim of this chapter

The aim of this chapter is getting the reader acquainted with the basic
properties of probability. We present the relative frequency, introduce the
axioms of probability and we derive the consequences of the axioms.
Classical and geometric probability are also introduced and applied for

sampling problems.

Preliminary knowledge

The applied mathematical apparatus: sets and set operations. Combinatorial

counting problems. Co-ordinate geometry. Basic knowledge in any computer

program language.

Content

b.1. Frequency, relative frequency

b.2. Axioms of probability

b.3. Consequences of axioms

b.4. Classical probability

b.5. Geometric probability
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b.1. Frequency, relative frequency

The aim of probability theory is to characterize an event by a number which expresses its
relative frequency. More precisely, let the events which occur frequently during many
experiments be characterized by a “large” number. Moreover, let the events which are rare be
characterized by a small number. If one performs n experiments and counts how many times
the event A occurs, one gets the frequency of A denoted by k,(n). It is obvious, that

0<k, <n.We are interested in the proportion of occurrences of A to the number of trials, so
. . . kn(n
we have to divide k , (n) by n, that is to take the relative frequency, Ka(m) .
n

that 0< A 1
n

It is easy to see

@ =1. If A and B are events for which AnB=, then
Kaug (M) _ K (n) " kg (n)
n n n
frequency depends on the actual series of experiments, hence it changes if we repeat the series
of experiments again. During the centuries, people recognized that the relative frequency has a
kind of stability. As if it had a limit. To present this phenomenon let us consider the following

example.

Moreover, k(n)=n, therefore

. The value of relative

Kaog(N) =k (n)+kg(n), consequently

Let the experiment be flipping a coin many times. Let A be the event that the result is a head
during one flip.

In Table b.1, one can see the frequency and relative frequency of the event A as the function of
the number of experiments (n).

Result

of the T T T H T T H T H H

trial

K (n) 0 0 0 1 1 1 2 2 3 4

n 1 2 3 4 5 6 7 8 9 10

K (n) 0 0 0 025 |0.2 0.17 0.27 | 025 |0.33 0.4
n

Table b.1 Frequency and relative frequency of heads as the function of the number of
experiences

K A ()

Draw the graph of relative frequency An as the function of n. We can see the graph in the

following figures: Fig.b.1, Fig.b.2, Fig.b.3 show oscillations. On the top of all, if we performed
the series of experiments once again, we presumably would get other results for relative
frequencies. If we increase the number of experiments the graph changes. Although there are
fluctuations at the beginning of the graph, later they disappear, the graph looks almost constant.
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Fig.b.2 Relative frequency of heads as the function of the number of experiences
(n=1000)

The mentioned phenomenon becomes more and more expressive if we increase the number of
experiments, as Fig. b.3 shows, as well.
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Fig.b.3 Relative frequency of heads as the function of the number of experiences
(n=10000)

If we look at Fig.b.3 thoroughly, we can realize that for large values of experiments, the
relative frequency is almost a constant function. Although fluctuations in the number of heads
exist, they are small compared to the number of experiments. This phenomenon was mentioned
during the centuries by the statement “relative frequency has a kind of stability”. This
phenomenon is expressed mathematically by the “law of large numbers”.

b.2. Axioms of probability

If we would like to characterize the relative frequency by the probability, then the probability
should have the same properties as the relative frequency. Therefore, we require the properties
for probability presented previously for the relative frequency.

Definition Let A be a o algebra. The function P: A — R is called a probability measure if
the following three requirements (axioms) hold:

I) 0<P(A).
) PQ)=1.

| P(A,).

i=1

I If A;e A, i=123,...forwhich A, nA; =@ i=]j, then P(UAJ=

®©
i=1

Remarks
e The above axioms 1), 1) and IlI) are called Kolmogorov’s axioms of probability and
were published in 1933.
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e Probability measure maps the ocalgebra of events to the set of real numbers. The
elements of ‘A (events) have probability. As P maps to R, P(A) is a real number. The
number P(A) is called the probability of the event A.

o We define the probability by its properties. It means that every function is a probability
measure that satisfies I), I1) and I11).

o Properties 1), 11) and I11) correspond to the properties of relative frequency. The property
P(A) <1 is not a requirement; it can be proved from the axioms. Additive property is presented
for two events in the case of relative frequency, but it is required for countably infinitely many
events in axiom I1) in case of probability.

o Property I) expresses that the probability of any event is a nonnegative number.

o Property 1) expresses that the probability of the certain event equals 1.

o Property I11) expresses the additive property of the probability for countably infinitely
many mutually exclusive events.

e As A is a o algebra, property IIl) is well defined. If A; € A, i=123,...hold, then

(U A, j e A is also satisfied, consequently it has a probability.

i=1

If a function P satisfies axioms 1), 11) and IlI), then it satisfies many other properties, as well.
These properties are called the consequences of axioms.

b3. Consequences of the axioms

We list the consequences of the axioms and we present their proofs. During this we do not use
any heuristic evidences, we insist on strict mathematical inferences.

Cl.|P(@)=0.
=ududu... and N =. That means that the impossible event can be written as
the union of infinitely many pair-wise mutually exclusive events. Consequently, axiom I11) can

n

lim > x;, we can conclude that

n—o4
i=1

be applied and P(@) =) P(@). Recalling that > x; =
i=1 i=1

P(@):ZP(@):nliTwn-P(@). If 0<P(Z) holds, then the limit is infinite, which is a
i=1

contradiction, as P(<) is a real number. If P(&)=0, then n-P(J)=0 also holds for any
value of n, therefore the limit is 0. In that case 0=P(J) = Z P() =0 holds, as well. Finally,

i=1
P() can not be negative, remember axiom I). Hence P(&) =0 must be satisfied.

C2. (finite additive property) If A; e A, i=12,...,nand A, "A; =0, i= ], then

n
P(ALU...UA,)=) P(A)=P(A))+..+P(A,)|
i=1
We trace this property to axiom IlI). Let A,,, =9, A,,, =9,.... Now we have infinitely
many events and A, NA; =9, i=12,..., j=12,..., iz]If i<n and j<n, this is our

assumption, if n<i or n<j holds, then A; =& or A; =, consequently their intersection is



Probability theory and mathematical statistics— Probability 15

the impossible event. Now axiom 1) can be applied and

P(UAi):P(OAi)ziP(Ai)=ZP(Ai)+P(®)+P(®)+...

As P(D)=0, we get P(U A= z P(A;) and the proof is completed.

i=1 i=1

C3. LetAcAand BeA.|f AnB=@,then P(AUB)=P(A)+P(B)|
This is the previous property for n=2 with notation A; =A and A, =B. We emphasize it
because the additive property is frequently used in this form.

C4.Let Ac A.|P(A)=1-P(A)
This connection is really very simple and it is frequently applied in the real world.

It can be proved as follows: Q=AUA, and AnA=0. Applying C3 we can see, that
P(Q) =P(A) + P(A) . Taking into consideration axiom II) P(Q)=1, we get 1=P(A) + P(A).
Rearranging the equality, it is easy to get C4. We mention that ‘A is o algebra, consequently
if Ac A then Aec A, which means that A also has a probability.

C5.Let AcA and Be A.If BC A, then P(A\B)=P(A) - P(B)]

This formula expresses the probability of the difference of A and B with the help of the
probabilities of A and B.

Note that BcA implies the equality A=(A\B)UB, moreover (A\B)nB=y.
Consequently C3 can be applied and results in P(A)=P(A\B)+P(B). Rearranging the
formula we get C5.

C6.Let Ac A and Be A.[If Bc A, then P(B)<P(A)|

Recall C5, and take into consideration axiom ). These formulas imply
0<P(A\B)=P(A)—P(B). Non-negativity of P(A)—P(B) means C6.

C7.Let Be A.[P(B)<1]

This inequality is straightforward consequence of C6 with A=0Q.
The formula expresses that the probability of any event is less than or equal to 1. This property

kA(n)<1
— <L

coincides with the property of relative frequency

C8.Let Ac A and Be A.[P(A\B)=P(A)-P(ANB)|

It is obvious that A=(A\B)U(ANB) and (A\B)n(AnB)=2.

Using C3 they imply P(A)=P(A\B)+P(A N B). Subtracting P(AB) from both sides we
get C8.

We emphasize that in this formula there is no extra condition on the events A and B, but C5

contains the conditionB < A. Consequently C8 is a more general statement than C5. We
mention that if B< A, then A B =B, therefore in this case C5 coincides with C8.

C9.Let Ac A and Be A.[P(AUB)=P(A)+P(B)-P(ANB)]

This formula expresses the probability of the union with the help of the probabilities of the
events and the probability of their intersection.

To prove it, consider the identity A UB=(A\B)UB. Now (A\B)nB=@. Applying C3 we

get P(A U B) =P(A\B)+P((B). Now C8 implies the identity
P(A UB)=P(A)-P(ANB)+P(B) and the proof is completed.




Probability theory and mathematical statistics— Probability 16

We note that C9 does not require any assumption on the events A and B. C3 holds only for
mutually exclusive events. If AnNB=J, then P(ANB)=0 and
P(AuB)=P(A) +P(B)-P(AnB)=P(A)+P(B) coinciding with C3.

We emphasize that the probability is not an additive function. It is additive only in the case of
mutually exclusive events.

C10. Let AcA and Be A.P(AUB)<P(A)+P(B)|
This formula is a straightforward consequence of C9 taking into account that 0<P(A N B). If
we do not subtract the nonnegative quantity P(AnB) from P(A)+P(B), we increase it,

consequently C10 holds. We note that C10 is not an equality, it only gives an inequality for the
probability of the union.

Cll. Let AcA,BeAand CeA.

Then,

IP(AUBUC)=P(A)+P(B) +P(C)-P(AnB)-P(ANC)-P(BNC)+ P(ANBNC) |
This formula is generalization of C9 for three events.

It can be proved as follows. Let X=AuB and Y=C.Now AuBuUC=XuUY. Applying
three times C9, first for X and Y, secondly for A B thirdly for AnC and BN C we get
P(AUBUC)=P(XUY)=P(X)+P(Y)-P(XNY)=P(AUB) +P(C)-P((AUB)NC)=
P(A) +P(B) —-P(AnB) +P(C)-P((AnC)u(BNC))=P(A) + P(B) + P(C) —-P(ANB) -
~(P(ANC)+P(BNC)-P(ANCNBNC))=P(A) +P(B) +P(C) -P(AnB) -P(ANC) -
-P(BNC)+P(ANBNC).

We note thatif AnB=BnNC=AnC=J,then AnBnC=, and
P(ANB)=P(ANC)=P(BNC)=P(ANCNBNC)=0. Hence in this case CI1l1 is
simplified to P(AuwBUC) =P(A) +P(B) + P(C) coinciding with C2.

Cl2. LetA eAi=12..n.

P(UAJ:ZH:P(AQ— Y PANA)+ D PANANA) - +(D)TPA NLNA))
i=1 i=1

I<i<j<n I<i<j<k<n

The formula can be proved by mathematical induction following the steps of the proof of C11
but we omit it.

It states that the probability of the union can be determined with the help of the probabilities of
the events, the probabilities of the intersections of two, three,...., and all the events.

The relevance of the consequences is the following: if we check that the axioms are satisfied
then we can use the formulas C1-C12, as well. With the help of them we can express the
probabilities of “composite” events if we determine the probabilities of the “simple” events.

Now we present examples how to apply C1-C12, if we know the probability of some events.
Further examples will be listed in the next subsection as well.

E1. In a factory two types of products are manufactured: Type | and Type II.
Choosing one product, let A be the event that it is of Type I. According to quality, the products
are divided into two groups: standard and substandard. Let B be the event that the chosen
product is of standard quality. If we suppose that P(A)=0.7, P(B)=0.9 and

P(A nB)=0.65, give the probability of the following events:
The chosen product is of Type II.: P(Z\) =1-P(A)=0.3. (apply C4)
The chosen product is of substandard quality: P(E) =1-P(B)=0.1.(apply C4)
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The chosen product is of Type | and it is of substandard quality:
P(A N B)=P(A\B)=P(A)—P(ANB)=0.7-0.65=0.05. (apply C8)

The chosen product is of Type Il and it is of standard quality:
P(BNA)=P(B\A)=P(B)-P(AnB)=0.9-0.65=0.25. (apply C8)

The chosen product is of Type | or it is of standard quality:

P(AuB)=P(A)+P(B)-P(AnB)=0.7+0.9-0.65=0.95. (apply C10)

The chosen product is of Type Il or it is of substandard quality:
P(AUB)=P(AnB)=1-P(AnB)=1-0.65=0.35.(apply de Morgan’s identity and C4)
The chosen product is of Type Il and it is of substandard quality:
P(ANB)=P(AUB)=1-P(AUB)=1-0.95=0.05. (apply de Morgan identity and C4)
The chosen product is of Type | and of standard quality or it is of Type Il and of substandard
quality.
P(AnB)U(ARB)=P(AnB)+P(ANB)-P(ANB)~(ANB)=065+0.05-0=0.7.
(apply C10, and Cl as (AN B)n (K A E)z 3).

The chosen product is of Type | and of substandard quality or it is of Type Il and of standard
quality.
P(AnB)u(AnB)=P(AnB)+P(A~B)-P(ANB)~(AnB)=PA\B)+PB\A)=
P(A)—-P(AnB)+P(B)-P(AnB)=0.7-0.65+0.9-0.65=0.3. (apply C10, C8 and C1
taking into account that (A A E)m (Z\ A B)z @)

E2. Choose a person from the population of a town. Let A be the event that the chosen
person is unemployed, let B be the event that the chosen person can speak English fluently. If
P(A)=0.09, P(B)=0.25 and P(AnB)=0.02, then determine the probability of the

following events:

The chosen person is not unemployed: P(A) = 0.91. (apply C4)

The chosen person can not speak English fluently and he is unemployed:
P(BNA)=P(A\B)=P(A) - P(AB)=0.09 -0.02 =0.07 . (apply C8)

The chosen person can speak English fluently and he is not unemployed:
P(BNA)=P(B)-P(BNA)=0.25-0.02=0.23. (apply C8)

The chosen person can not speak English fluently or he is unemployed:
P(BUA)=P(B)+P(A)-P(BNA)=1-0.25+0.09 —0.07 =0.77 (apply C10 and C8)
The chosen person can speak English fluently or he is not unemployed:
P(AUB)=P(A)+P(B)-P(AnB)=1-0.09 +0.25 —0.23 =0.93 (apply C10 and C8)
The chosen person is not unemployed or can not speak English fluently :
P(AUB)=P(ANB)=1-P(AnB)=1-0.02=0.98 (apply de Morgan identity and C4)
The chosen person is not unemployed and can not speak English fluently:
P(ANB)=P(AUB)=1-P(AUB)=1-(P(A) + P(B) - P(A N B))=

1-(0.09 +0.25 - 0.02)= 0.68 (apply de Morgan identity and C4 and C10)

E3. Gamble two types of races. Let A be the event that you win on the 1* race, let B be the
event that you win on the 2" race. Suppose P(A)=0.01, P(B)=0.03, P(A~B)=0.002.

Determine the probability of the following events:

You win on the race of at least one type:
P(AuB)=P(A)+P(B)-P(AnB)=0.01+0.03-0.002 =0.038 (apply C10)

You win on neither of them:

P(ANB)=P(AUB)=1—(P(A)+P(B)— P(ANB))=1-0.038 =0.962 (apply C4 and C10)
You do not win on at least one of them:
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P(AUB)=P(ANB)=1-P(AnB)=1-0.002 =0.998 (apply de Morgan identity and C4)
You win on the 1% race but do not win on the 2" race:

P(A N B)=P(A) - P(A ~B)=0.01—0.002 =0.008 . (apply C8)

You win on 1% race or do not win on the 2" race:

P(A U B)=P(A) + P(B) - P(A " B) =0.01 + (1-0.03) - (0.01—0.002) = 0.978 .(Apply  C10,
C4 and C8)

You win on both of them or you win on neither of them:
P(ANB)U(ANB)=P(ANB)+P(ANB)-P(ANBNANB)=

0.002 +0.962 —0=0.964 . (apply C10 and de Morgan identity)

You win on one of them but not on the other one:
P(A\B)U(B\A)=P((A\B)+P(B\A)-P(A\B)n(B\A)) =

P(A) —P(A N B)+P(B)— P(AnB)=0.01-0.002 + 0.03 —0.002 =0.036 (apply C10)

b.4. Classical probability

In this subsection we present the often used classical probability. We prove that it satisfies
axioms 1), 11) and I11).

Definition Let Q be a finite, nonempty set, |Q=n.Let A =2, the set of all the subsets of

A
Q. The classical probability is defined as follows: P(A) := % :

Theorem Classical probability satisfies axioms 1), 11) and I11).

Proof First we note that ‘A is a o algebra, consequently P maps the elements of a o algebra to
A

the set of real numbers. Since 0<|A| and |Q|=n, P(A) :=%20 is satisfied, as well.

_lel_
P(Q): o 1.

Finally, if A; cQ, i=12,...with A; NA; =0, i#], then A; = except for finitely many
indices i, as Q has only finitely many different subsets. If A, #& i=12,...,k, and

Ua| Sia

i=1

o o

k k
JAi|=D A, therefore . We can conclude

i=1 i=1

AiNnA; =0 i#], then

k

k UAi Z|A|| n

thatP(_JA;) = '|19| = 1|Q| =>"P(A,). If we supplement the events A; by empty sets,
i=1 i-1

neither the union nor the sum of the elements of the sets change. This means that axiom III)

holds, as well.

Remarks

k
i=

e In the case of classical probability P({co}) = % = l for anyoe Q. This formula
n
expresses that all outcomes have the same probability. Conversely, if P({o})= x, for anyo e Q,
n
then  1=P(Q)=P(Jo))=n-x,  which implies x:%.
i=1

Furthermore,
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A
P(A):P(Um):ZP({m}):leﬁ. Consequently, if all the outcomes are equally
weA weA u)eAn
probable, we can use the classical probability.
e In many cases, the number of elements of Q and A can be determined by
combinatorial methods.

Examples
E1l. Roll a fair die once. Compute the probability that the result is odd, even, prime,

can be divided by 3, prime and odd, prime or odd, prime but not odd.

A fair die is one for which each face appears with equal likelihood. The assumption “fair”
contains the information that each outcome has the same chance, consequently we can apply
classical probability. We usually suppose that the die is fair. If we do not assume it, we will
emphasize it.

Returning to our example, Q={1,2,3,4,5,6}. | =6. P({i})z% ,i=1,2,3,4,5,6.
= i = = —H—E—
A=the result is odd = {1,3,5}, |A|=3, F>(A)_IQI =5=05.
B=the result is even={2,4,6}, B=3 P(B)=H=§=05
e ’ o 6
_ is prime= _ _[d_s_
C=the result is prime= {2,35}, |C|=3, P(C) = 96 =05.
_ . _ Dl _2
D=the result can be divided by 3=1{3,6},|D|=2, P(D) =@ =5 =0.333.

E=the result is prime and odd = {35}, |[E|=2, P(E) = % =0.333.
F=the result is prime or odd = {1,2,35}, [F|=4, P(F) = % =0.667 .

G= the result is prime but not odd = {2}, |G| =1, P(G) =%= 0.167 .

We draw the attention that P(F) can be computed also in the following way: F=CUA,
consequently P(F)=P(C) + PA)-P(CnA) _3 + 3.2_4 :

6 6 6 6
Similarly, G=CNA=C\A, P(C\A)=P(C)-P(ANC) =

ol w
ol N
o

We note that these latest computations are unnecessary in this very simple example but can be
very useful in complicated examples.

E2. Roll a fair die twice. Compute the probability of the following events: there is no six

among the rolls, there is at least one six among the rolls, there is one six among the rolls,

the sum of the rolls is 5, the difference of the rolls is 4, the two rolls are different.
Q={i,j):1<i<61<j<8,i,]j int egers}. The outcome (i,j) can be interpreted as the result of
the first roll and the result of the second roll. For example (1,1) denotes the outcome, when the
first roll is 1, and the second roll is also 1. (3,1) denotes the outcome that the first roll is 3, the
second one is 1. (1,3) means that the first roll is 1, and the second roll is 3, which differs from
(3,2). If the die is fair, then (i,j) has the same probability as any other pair, whatever the values
of i and j are (integers from 1 to 6). Consequently, each outcome has equal probability.

|0=6-6.
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A=there is no “six” among the rolls = {(11), (1,2).....(15), (2.1),..., (2,5),.....((52), (5,2)....(5,5)} .
|A|=5-5=25, P(A) =2
36

B=there is at least one ,,six”” among the rolls

11
={(16).(2,6).(36).(4.6).(5,6).(6.2).(6,2).(6.3).(6,4).(6,5).(6.6)} . [B|=11, P(B) = T
Another way for solving this exercise if we realize that B=A. Therefore,
25 11
P(B)=1-P(A)=1-—=—",
(B) (A) %30

C= there is one ,,six”” among the rolls
{1.6).(2,6).(36).(4,6).(5.6).(6.1).(6,2).(6,3).(6,4).(6,5)}. |C| =10, P(C) = % =0.278 .

D=the sum of the rolls is 5 = {(1.4),(2:3),(3.2), {41}}. [D| =4, P(D) = % _ % —0.111,

E=the difference between the two rolls is 4={(15),(2,6),(6,2),(5.1)}. |E|=4, P(E):%:
0.111.
F=the results of the rolls are different = {(1,2),(2,1).....(6,5), (5.6)}. [F|=30, P(F) = % =0.833.

Roughly spoken, the key of the solution is that we are able to list all the elements of the events
and we can count them one by one.
Of course, if the number of possible outcomes is large, this way is impracticable.

E3. Roll a fair die repeatedly five times. Compute the probability of the following
events: there is no ,,six” among the rolls, there is at least one ,,six”” among the rolls, there is one
,,six” among the rolls, all the rolls are different, all the rolls are different and there is at least
one ,,six”” among the rolls, there is at least one ,,six” or all the rolls are different, there is at least
one ,,six”” and there are equal rolls.

Qz{(il,iz,i3,i4,i5):1£ij <6,int egers, j=1,2,3,4,5}. Now i, denotes the result of the first
roll, i; denotes the result of the jth roll. If the die is fair, then all the outcomes are equally
likely. |2|=6-6-6-6-6=6°=7776 .
A=there is no “,six™ among the rolls = {(iy,i,,is,i4,i5):1<i; <5,int egers, j=1,2,3,4,5}.
12

|A|=5° =3125. P(A) 3D a0,

7776
B=there is at least one ,,six”” among the rolls=A . P(B)=1-P(A) =1-0.402 =0.598 .
C=there is exactly one “six” among the rolls ={11116).(11126)...,(6,555,5)}.

5
|C|:( J.1.5.5.5.5:3125 ] p(c)=%=0.402.
1 7776
D=all the rolls are different = {(1,2,345),(1,2,3,4,6)...,(654,32)}. |D|=6-5-4-3-2=720,

P(D) =2 _0.003 .
7776

E= all the rolls are different and there is at least one “six” among the rolls=D " A=D\A.
P(E)=P(D) - P(A " D). As we need the value of P(D n A), we have to compute it now. The

set D m A contains all the elements of Q in which there is no “six” and the rolls are different.
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|/AND|=5-4-3-2-1=120, P(AmD)z%zo.OIS. Finally,
P(E) = P(D) — P(A n D) =0.093 — 0.015 = 0.078 .

F= there is at least one “six” or all the rolls are different=AUD.

Applying P(A U D) =P(A) + P(D) - P(A " D) we get

P(F)=P(AUD)=1-P(A) + P(D) - (P(D) - P(D n A))=1—-0.402 + 0.015 = 0.613 .

G=there is at least one “six” and there are equal rolls=s AND=AuUD.
P(G)=P(AUD)=1-P(AUD)=1-(P(A) + P(D)-P(AND))=

=1-(0.402 +0.093 — 0.015)=1-0.480 = 0.520.

E4. Choose two numbers without replacement from a box containing the integer numbers
1,2,3,4,5,6,7,8,9. Compute the probability that both of them are odd, both of them are even, the
sum of them is at least 15, one of them is less then 4 and the other is greater then 7, the
difference of the numbers is 3.

If we take into consideration the order of drawn numbers, then the possible outcomes are
(i,,i,) i, #iy, 1<i; <9, 1<i, <9, iy, are integers.
Q={(iy,i,)i; #i,1<i; <91<i, <9,int egers}. | =9-8="72. If we draw each number in the
box with equal probability, all possible outcomes have the same chance. Consequently,
classical probability can be applied. Now contract those outcomes which differ only in the
order. For example, (1,2) and (2,1) can be contracted to {1,2}.

Actually, Q*={{i,i,}:1<i, <i, <9,int egers}. As two possible outcomes were contracted,

consequently each possible outcome (without order) has equal chance in this model as well.
Roughly spoken, one can decide whether he/she wants to consider the order or not, classical

9 ! .
probability can be applied in both cases. Q* = = il = 98 =36
2 2171 2
Consider the event: both of them are even:
If we consider the order, then

A={((24).(26),(28).(4,2).(4,6).(48),(6,2).(6.4).(6:8).(8,2).(8:4). (8.6)}
|A|=4-3=12 , P(A):%:O.lﬁ? .
If we do not consider the order, then

A*={{24}126},{28},{46},148},{68}}. |A*= (;’J =6, P(A%) = % =0.167 .

Finally, we can realize that we get the same result in both cases.
Both of them are odd:

B=1{13).(L5) 1L7).(19).(31)....(9.7)}, |B|=5-4=20, P(B) = % =0.278.

B*={{L.3},{15}.... {7.9}}, [B*= [2} =10, P(B*) = % =0.278 .

The sum of them is at least 15:

C=16,9).(78).(7.9).(87).(89).(9.6).(9.7).(98)},|C|=8, P(C) = % =0.111.

C*=1{169},7.8},17.9},189}}, [CH =4, P(C*) = % =0.111.

One of them is less than 4 and the other one is greater than 7:
D =1{(18).(81).(19).(9.1).(2.8).(8,2).((2.9).(9,2),(38).(8,3).(3.9).(9.3)}, [D| =12=2-3- 2,
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P(D) =2 ~0.167 .
72

D*={{i,,i,}:1<i, <3,8<i, <9,int egers}.|D*=3-2=6, P(D*):%:O.167 :

The difference of the numbers is 3:
E=1{L4).(41).(25).(52).(36).(6:3).(4,7),(7.4).(58).(85).(9.6).(6,9)}, [E| =12,

P(E) =2 0.167 .
72

Ex={fL4},{25},136),147), 158}, 69}, [E " =6, P(E) = % =0.167 .

E5. Pick 4 cards without replacement from a pack of French cards containing 13 of each of
clubs (%), diamonds (¢), hearts (¥) and spades (#). Compute the probability that there is at least
one spade or there is at least one heart, there is no spade or there is no heart, there is at least one
spade but there is no heart, there are 2 spades, 1 heart and 1 other, there are more hearts than
spades.

If we do not take into consideration the order of the cards picked, then

52
Q* = {{ace of hearts, 7 of diamonds, king of spades, 8 of spades},.....}. |Q* = (4 J: 270725 .

Actually the appropriate possible outcomes can not be listed and it is difficult to count them.
The operations on the events and the consequences of axioms help us to answer the questions.
Let X *be the event that there is no spade, Y * the event that there is no heart among the

82251
270725

=0.304.

picked cards. Now, [X* = GQJ =82251 =Y ¥, P(X*)=P(Y*) =

A= there is at least one spade or there is at least one heart:
A=X*0UY*=X*nY*, consequently P(A)=1-P(X*"Y*). We need the value of
P(X*NY*) . X*~Y * means that there is no spade and at the same time there is no heart,

26
therefore all of the cards picked are diamonds or clubs. [X* Y % = (4 J:14950 ,

P(X*NY*) = 14950 _ 0.055, P(A)=1-0.055=0.945 .
270725

B=there is no spade or there is no heart:

B=X*UY*,

P(B) = P(X *UY*) = (P(X*) + P(Y*) - P(X *"Y*))=0.304 + 0.304 —0.055 = 0.553 .
There is at least one spade but there is no heart:
C=X*NY*=Y*\X*, P(C)=P(Y*)—P(X*NY*)=0.304 —0.055 = 0.249 .
D= there are 2 spades, 1 hearts and 1 other card.
ID|= (13j : (lsj(%j ~ 26364 , P(D) = 22204 _ 097
2 1 M1 270725

E=there are more spades than hearts = there is one of spade and there is no heart or there are 2
spades and O or 1 hearts or there are 3 spades and 0 or 1 heart or each card is a spade. These
events are mutually exclusive therefore their probabilities can be summed up.

) IR0 ) &
I HIG

P(E) = {
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The reader is kindly asked to compute it numerically.

b.5. Geometric probability

In this subsection we deal with geometric probability. It is important for understanding the
concept of continuous random variable.

Definition Let Qbe a subset of R,R?, R or R", 4<n, and let p be the usual measure on the
line, plane, space,... Let us assume that p(Q) =0, and p(Q)=o. Let A be those subsets of

Qthat have measure. Now the geometric probability is defined by P(A) ::%.
i
Remarks
e Axiom I) holds as 0<p(A), and 0< pu(Q).
e Axiom Il) is the consequence of the definition P(Q):= % =1.
i

o Axiom III) follows from the measure-property of p. For measures it holds that

“(UAi)ZZ“(Ai) supposing A; NA; =, i= j. Therefore, under the same assumption
i=1 i=1

Ay Sy

i= i= (A) <
P A)=_—1= _ =l _ i) _ (ALY
(g ) n(€2) () (@) z (Ai)

i=1

e The usual measure on R,R?,R? is the length, area and volume, respectively. Their
concept can be generalized. Further knowledge on measures can be found in the book of
Halmos.

u(A)

e The definition P(A) :E expresses that the probability of an event is proportional to
n

its measure. In the case of classical probability the “measure” is the number of the elements of
Q. Now the number of elements of Q is infinity.

o If n(Q)=1, then P(A)=pn(A). The consequences of the axioms are the frequently used
properties of measure. See for example C8 and C9.

e The proof of the fact that the set of those subsets of Q that have measure is a ¢ algebra
requires lots of mathematical knowledge, we do not deal with it actually.

o Random numbers on computers are numbers chosen from the interval [0,1] by geometric
probability approximately. That is, the probability that the number is situated in a subset of
[0]] is proportional to the length of the subset. As the length of the interval [0,1] equals 1, the

probability coincides with the length of the set itself.

Examples
E1. Choose a point from the interval [0, ] with geometric probability. Compute the

probability that the second digit of the point equals 4.
Q=[0,7], lenght is abbreviated by pi. u(Q)=r.
A= the second digit is 4 =  [0.04,0.05)U[0.14,0.15)u...U[3.14,7].

pn(A)=31-0.01+t—-3.14=0.3116 , P(A) = wA) =0.0992 .
T
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E2. Shot on a circle with radius R. The probability that the hit is situated in a subset
of the circle is proportional to the area of the subset. Compute the probability that we have 10,
9 scores.

Q is the circle with radius R. area(Q)=u(Q)=R? - . Let A be the event that the hit is 10
scores. 10 scores means that the hit is inside the inner circle lined black, which is a circle with

R 2
radius R . Consequently, u(A) = R jzn P(A) = (10) - _ 1
10 H 10 ! Rzt 100

R
N

Fig.b.4 Events A and B

Let B be the event that the hit is 9 scores. It means that the hit is not in the inner part but in the
following annulus. As the hits are between concentric circles,

2
uw(B) = [igj - (%) n= %n . Consequently, P(B) = % .
Compute the probability that the distance of the hit and the centre of the circle equals % .
Let C be the event that the distance between the hit and centre of the circle equals %. The
points whose distance from the centre equals % are situated on the graph of the circle of radius
% drawn by red in Fig.b.5.The area of the curve is zero, as it can be covered by the annulus

which is the difference of the open circle with radius %+ AR | and the open circle with radius

—, for any positive value of AR .
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Fig.b.5 Event C,, and event {co:

R <d(®»,0) <B + AR}
2 2

2 2
Consequently, p(C)s(%+ARj -n—(%j -n:(R -AR+(AR)2)n, which tends to zero if

AR tends to zero. That implies that pu(C) =0. Therefore, P(C) = ? =0.
T

We draw the attention to the fact that despite even though C= &, P(C)=0 holds. Moreover, if
we use the notation C, = {Q:d(Q,O) =x}, then P(C,)=0, for any value of 0<x <R . Now

Q= UCX holds. Moreover, if x=y, then C, nC, =0. P(Q)=1 but P(Q);ﬁZP(CX).

0<x<R
The reason of this paradox is that the set {x:0<x <R} is not finite and is not countable. This
is a very important thing in order to understand the concept of continuous random variables.

E3. Choose two numbers independently of each other from the interval [-1,1] with
geometric probability. Compute the probability that the sum of the numbers is between 0.5 and
15.

To choose two numbers from the interval [— 1,1] with geometric probability independently of
each other means to choose one point in the Cartesian coordinate system, namely from the
square [-11]x[-11] with geometric probability. If the first number equals x, the second number

equals y, then let the two dimensional point be denoted by Q(X,y) . Roughly spoken, let the
first number be put on the x axis, the second number be put on y axis. Now Q =[-11}x[-11],
n(Q) =4. Let A be the event that the sum of the numbers is between 0.5 and 1.5. We seek the
points Q(x,y) for which 0.5<x+y<1.5.



Probability theory and mathematical statistics— Probability 26

L : : L L . : L L : :
1 08 06 04 02 0 02 04 06 08 1

Fig.b.6. The set of all possible outcomes Q and the set of appropriate points

These points are in the section between the red lines given by x+y=0.5 and x+y=1.5
presented in Fig.b.6.

(SJZ (ljz
2 2 1
Tzl, P(A):Z

H(A) =5

Compute the probability that the sum of the numbers equals 1.
Let B be the event that the sum of numbers equals 1. The points of B are the points of the line
given by x +y=1 (see Fig.h.7)

AN

06
0.4

Fig.b.7. The set of points given by the equation x +y =1
w(B) =0, consequently, P(B)=0.

E4. Choose two numbers independently from each other with geometric probability
from the interval [0,1]. Compute the probability that the square of the second number is less

than the first one or the square of the first one is greater than the second one.

Q=[02]x[01], n(©)=1. We seek those points Q(x,y) for which y<x? or x<y?, that is
Jx < y . The appropriate points are bellow the curve given by y=x?, furthermore above the
curve given by y= Jx (see Figure b.8.)
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Fig.b.8. Those points for which y < x? or x <y? holds

If A is the set of appropriate points, then

1 1 3t [o3

u(A):J.xzdx+J.(1—\/;}ix={X—} +[x- ;( _li1-2-2_ (667 and
5 0 3 0 > 3 3 3

0

P(A) = g = 0.667 .

E5. Use the random number generator of your computer and generate N=1000,
N=10000, N=100000, N=1000000 random numbers. Divide the interval [0,1] into 10 equal
parts, and count the ratio of the random numbers situated in the sub-intervals (%%}
i=0,1,2,...,9. Draw the figures!

Relative frequencies of random numbers being in the above intervals are shown in Figs.b.9.
b.10. b1l. and b.12. for the simulated random numbers N=1000, 10000, 100000, 1000000,
respectively. The pictures show that by increasing the number of simulations, the relative
frequencies become more and more similar, the random numbers are situated more and more

uniformly. If the probability of being in the interval is really % , then relative frequencies are

closer and closer to this probability.
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Figure b.9. Relative frequencies of random numbers in case of N=1000

0.1

0.08

Relative frequency
°
o
&l

Relative frequency

Figure b.11. Relative frequencies of random numbers in case of N=100000
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Relative frequency

Figure b.12. Relative frequencies of random numbers in case of N=1000000

E6. Approximate the probability of event A in E3) by the relative frequency of the
event A applying N=1000, 10000, 100000, 1000000 simulations. Give the difference between
the approximate values and the exact probability.

First we mention that if a number is chosen from [0,1] with geometric probability, then its
double is chosen from [0,2] with geometric probability and the double and minus 1 is chosen
from the interval [-1,1] with geometric probability.

The relative frequencies of A and their differences from the exact probability 0.25 can be seen
in Table b.2. One can realize that if the number of simulations increases, the difference
decreases.

N=1000 N=10000 N=100000 N=1000000
Relative 0.2670 0.2584 0.2517 0.2502
frequency
Difference 0.0170 0.0084 0.0017 0.0002

Table b.2. Relative frequencies of the event and their differences from the exact probability

The relative frequencies of the event that the sum is in (— 2 +é,—2 +151} , 1=0,...19 can be

seen in Figs.b.13,b.14. One can see that the shapes of the graphs are getting more and more
similar to a roof.
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Fig.b.13. The relative frequencies of the event that the sum is in (— 2+ é —2+ 151} )

i=0,...19 for N=1000 and 10000

Fig.b.14. The relative frequencies of the event that the sum is in (— 2+ é —2+ 151} ,

i=0,...19 for N=10000 and 100000
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c. Conditional probability and independence

The aim of this chapter

The aim of this chapter is to get the reader acquainted with the concept of
conditional probability and its properties. We present the possibilities for
computing non-conditional probabilities applying conditional ones. We also

define the independence of events.

Preliminary knowledge

Properties of probability.

Content

c.1. Conditional probability.

c.2. Theorem of total probability and Bayes’ theorem.

c.3. Independence of events
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c.1. Conditional probability

In many practical cases we have some information. We would like to know the probability of
an event and we know something. This “knowledge” has an effect on the probability of the
event; it may increase or decrease the probability of its occurrence.

What is the essence of conditional probability? How can we express that we have some
information?

Let Q be the set of possible outcomes, ‘A the set of events, let P be the probability. Let
A,Be A. If we know that B occurs (this is our extra information), then the outcome which is
the result of our experiment is an element of B. Our word is restricted to B. If A occurs, then
the outcome is a common element of A and B, therefore itis in A B. The probability of the
intersection should be compared to the “measure” of the condition, i.e. P(B). Naturally,

0<P(B) has to be satisfied.
Definition The conditional probability of the event A given B is defined as

P(A|B):=%,ifO<P(B).

Remarks
e Notice that the definition of conditional probability implies the form
P(AnB)=P(A|B)-P(B), called multiplicative formula.

e The generalization of the above form is the following statement: if
0<P(A;n..nA,_; nA,) holds, then

P(A, NA, NN A =PA)-P(A,|A)-P(A A, NAL) .- P(A, A, NN AL ).
It can be easily seen if we notice thatP(A,) - P(A, |A;) =P(A; N A,),
P(A; 1A, NA,)-P(A,nA,)=P(A;nA, nA;), and finally,
PAA, A N..nA L) PA N..nA L) =PA, Nn..0A L NA).
o If we apply classical probability, then

|ANB|
P(A|B) = P(ANB) = |Q| =|AmB|. Roughly spoken: there are some elements in B,
P(B) H B|
o

these are our “new (restricted) world”. Some of them are in A, as well. The ratio of the number
of elements of A in our “new world” and the number of elements of the “new world” is the
conditional probability of A.

Theorem Let the event B be fixed with 0 < P(B) . The conditional probability given B satisfies
the axioms of probability 1), I1), I11).

Proof:

1) 0<P(A|B),as 0<P(AnB),and0<P(B).

P(QNB) P(B) 1

1) P(Q|B)=1, as P(Q|B):= o@ P

) If A eA,i=123.. AinA;=0, i#],then P(UAi |B)=ZP(Ai |B).
i=1 i=1
The proof can be performed in the following way: notice that if A;"A;=<, then

(A, nB)"(A; nB)=2 holds as well. Now
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{(UAJ“B] [O(AiﬁB)J S P(A, N B)
|_1 _ i=1 _ 2 P(AI ﬁB) _ =
P(UA =" T r® @ _Z P(B) = 2PAB)

i=1

This theorem assures that we can conclude all of the consequences of axioms.We can state the
following consequences corresponding to Cl1,..., C12 without any further proof.
e P(@|B)=0.

o If AjeA,i=12..n forwhichA, nA; =, i=], then P(JA, |B):ZH:P(Ai |B).

e If CcA,then P(C|B)<P(A|B)

e P(A|B)<1.

e P(A|B)=1-P(A|B).

e P(A\C|B)=P(A|B-P(ANC|B).

e P(AUC|B)=P(A|B)+P(C|B)-P(ANC|B).

e P(AUC|B)<P(A|B)+P(C|B)).

e P(AUCUD|B)=P(A|B)+P(C|B)+P(D|B)-
P(ANC|B)-P(DNC|B)-P(AND|B)+P(ANCAD|B).

P(UAJBJ ZP(A |B)— D P(A,nA;|B)+

1<i<j<n

+ D PANANAB) -+ (-1)"P(A;n...AA, |B).

I<i<j<k<n

These formulas help us to compute conditional probabilities of “composite” events using the
conditional probabilities of “simple” events.

Examples
E1. Roll a fair die twice. Given that there is at least one “six” among the results,

compute the probability that the difference of the results equals 3.
Let A be the event that the difference is 3, B the event that there is at least one “six”’.
P(ANB)

The first question is the conditional probability P(B|A). By definition, P(B|A) = PA)

ANB={63),(36)}, P(ANB)=—

={16).(26)..(36).(4.6).(56).(6.:6),(61).(6,2).(63).(6.4).(6.5)} . P(A)= % -

2
P(B|A) =m 36 _2 Roughly spoken, our world is restricted to A, it contains 11
P(A) E [
36

elements. Two of them have difference 3. If all possible elements are equally probable in the
entire set Q, then all possible outcomes are equally probable in A, as well. Consequently, the

conditional probability is % :

Given that the difference of the results is 3, compute the probability that there is at least one

(TP 1)

S1X™.
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The second question is the conditional probability P(A|B). By definition,

_PANB) 5_ _6
P(A|B) = o) . B={(14),(41),(25),(52),(36),(6,3)}, P(B) %5
2
_P(AnB) 3 _1
Consequently, P(A|B) = P(B) _E 3
36

Roughly spoken, our world is restricted to the set B. Two elements are appropriate among
them. If all possible elements are equally probable in the entire set Q, then all possible
outcomes are equally probable in B, as well. Consequently the classical probability can be

applied, which concludes that the conditional probability equals % = % .

E2. Roll a fair die 10 times, repeatedly. Given that there is at least one “‘six”,
compute the probability that there is at least one “one”.
Let A be the event that there is no “six” among the results, and B the event that there is no

“one” among the results. The question is the conditional probability P(E | K) .

P(ANB) P(AUB) 1-P(AUB) 1-(P(A)+P(B)-P(ANB)
PAA)  P(A)  1-PA) 1-P(A) '

Now we can see that we have to compute the values P(A), P(B) andP(ANB).

510 510 410
25 =061, P(B)= 2 =061, P(ANB) =5

P(B|A) 1-(P(A) + P(B) -P(ANB) _1- (0.161 +0.161 — 0.017) _06% _ oo
1-P(A) 1-0.161 0.839
E3. Choose two numbers independently in the interval [0,1] by geometrical
probability. Given that the difference of the numbers is less than 0.3, compute the probability
that the sum of the numbers is at least 1.5.
Let A be the event that the difference of the numbers is less than 0.3. The appropriate points in

the square [0,1]x[0,1] are situated between the straight lines given by the equation x —y=0.3

andy —x=0.3. It is easy to see thatP(A)=1—-0.72 =0.51. A B contains those points of A
which are above the straight line given by x+y=1.5. This part is denoted by horizontal lines in
Fig.c.1. The cross-points are Q,(0.6,0.9) and Q,(0.9,0.6). The area of the appropriate points

P(B|A) =

P(A) = =0.017 .

2
is Lu(A) = [Jo.sz 1032 j - [Jo.f +0.12 j . 0;’ —0.06 +0.045 = 0.105 , P(A ~B)=0.105 .

1

x+y>1 5/

x-y;dS

Fig.c.1. The points satisfying conditions 1.5<x+y and |[x —y|<0.3
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P(ANB) 0.105

PBIA)= P(A) 051

=0.206 .

E4. Order the numbers of the set {1,2,3,4,...,10} and suppose that all arrangements

are equally probable. Given that the number “1” is not on its proper place, compute the
probability that the number 10 is on its proper place.
Let A, be the event that the number “i” is in its proper place. The question is the conditional

probability P(A,, |A,). Now
P(Ayp m'?1) _ P(Ap \A)) _ P(Ayp) —P(Aypy NA))

P(A,) P(A,) 1-P(A)
We can see that we need the values P(A,), P(A,,) and P(A,; NA,).
Q=1(iy,ip i) :1<i; <10,int egers, j=12,...,10,i; #i, if j=k|, for example
(1,2,3,456,7,89,10), (5234,7,910,817) and so on. |Q =10!= 3628800 .

P(Alo |AT1) =

Ay =L i) 2<i; <10, int egers, j=2....,10,i; =i, if j=k|, [A|=9!, P(Al)z%:o.l.

- 9!
Similarly, P(A,) = 0 0.1.

A A ={Liy.10):1<i; <10,int egers, j=2....,9,i; #i, if j=k|, [A; NAL|=8 as the

1
numbers 1 and 10 have to be on their proper places, P(A; N A,y) = % = ﬁ =0.011.
11 8
TherEfore, P(Alo |'?1) — P(AlO) - P(AlO mAl) — 10 10-9 — 10-9 :E =0.099 .
1-P(A,) 9 9 a8
10 10

ES5. Order the numbers of the set {1,2,3,4,...,10} and suppose that all arrangements are

equally probable. Given that the number “1” is not on its proper place, compute the probability
that the number “10” or the number “5” is on its proper place.
Let A, the event that the number “i” is on its proper place. The question is the conditional

probability P(A,, U Ag |,?l) . Recall the properties of conditional probability, namely
P(Ap UAs A1) =P(Ay |A)) +P(As [AL) —P(Ayp NAs [A,).
We can realize that the conditional probabilitiess P(A,,|A;), P(As|A;) and
P(A,, NA; |A_1) are needed. P(A, |,?1) was computed in the previous example, and
P(Ag |,?1) can be computed in the same way.
P(Ay, NAs NAL) _ P(Ap NAg) —P(A NAg NA,)

P(A,) 1-P(Ay)
(Lig,ig,04.5,i¢,07,i5,1,10):2<i; <4,6<i 39,}

P(Ap NAg|A)) =

A, NA:NA, =
e {integers, j=2346,789,i =i, if j=k

|A10 NA;N Al| =7! as the numbers ,,1”, ,,10” and ,,5” are on their proper places.
7! 1

Consequently, P(A;,;, "A: NA,)=—=
quently, P(As M As DA = 15" 1098

=0.001, and
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1 1 7
— P(A,nA)-PA,NA. NA)) .9 10.9. 9.
P(A, NA |A,) = 10 5 10 5 1)_10-9 10-9-8 _10-9-8 _
10 10
- —oou.
81-8
Now
v N e — 8 8 7 121
P(Ayy WAs|A)=P(Ap |A) +P(As |A) —P(Aypy nAs |A) = —+ ————=——-=0.187.

81 81 81-8 81-8

E6. Pick 4 cards without replacement from a package containing 52 cards. Given
that there are no hearts or there are no spades, compute the probability that there are no hearts
and there are no spades.

Let A be the event that there are no hearts, B the event that there are no spades. The question is
the conditional probability P(ANB|A U B).
P(ANB)N(AUB) P(ANB)
P(AUB) P(AUB) '
We have to compute the probabilities P(A ~B) and P(A w B). This latter one requires P(A),
P(B) and P(AB). As the sampling is performed without replacement we do not have to
consider the order of the cards.
Q={{i,i,,is,0,}: i; are the cards from the package,i; j=12,34aredifferent if j= k.

52 39 26
ol= 2] == ] lane-[2

39 26
P(A) —4 P(B)=0.304 ,P(ANB) —4 0.055
= = =U. , M = =U. ,
52 52
4 4
P(AuB)=P(A)+P(B)-P(AnB)=0.553.
P(AnB) 0.055
P(AuB) 0.553
E7. Pick 4 cards without replacement from a package containing 52 cards.
Compute the probability that the first card is a heart, the second and the third cards are
diamonds and the fourth one is a spade.
Let A be the event that the first card is a heart, B the event that the second one is a diamond, C
the event that the third card is a diamond and D the event that the last one is a spade. The
question is P(ANBNCn D). Applying the generalized form of the multiplicative rule, we

can write that PIANBNCD)=P(A)-P(B|A)-P(C|AnB)-P(D|[An~BNC). Notice
that the conditional probabilities P(B|A), P(C|AnB), P(D|AnBNC) can be computed

by the following arguments. If we know that the first card is a heart, then the package contains
at the 2" draw 51 cards and 13 are diamonds of them. The third and last ones can be any cards,

consequently P(B|A) =;—i. If we know that the first card is a heart and the second one is a

P(ANB|AUB)= as (AnB)c(AUB).

P(ANB|AUB)= =0.099 .

diamond, then the package contains 50 cards at the third draw and 12 are diamonds of them.

The last one can be any card, consequently P(C|A N B) = % :
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Finally, if we know that the first card is a heart, the second and third ones are diamonds, then
the package contains 49 cards at the last picking and 13 are spades among them. Consequently,
P(D|AN BmC)zg. As P(A)=§, PANBNCNnD)= 13 1812 13 0.004 .

We present the following “simple” solution as well. As the question is connected to the order of
pickings, we have to consider the order of the picked cards.

Q={(i,,i,.is,i,):i; are the cards from the package,i; j=1234aredifferent if j=k|.

|Q| =52-51-50-49 . If the first draw is a heart, then we have 13 possibilities at the first draw. If
the second card is a diamond, then we have 13 possibilities at the second picking. If the third

card is a diamond again we have only 12 possibilities at the third picking, as the previous draw
eliminates one of the diamond cards. Finally, if the last card is a spade, we have 13 possibilities

at the last picking. Consequently, |A "B CnD|=13-13-12-13,

13-13-12-13 . .
P(ANnBNCnD)=——————, which is exactly the same as we have got by applying the
( ) 52 .51.50.49 y got by applying

multiplicative rule.

c.2. Theorem of total probability, Bayes’ theorem

In the examples of the previous section the conditional probabilities were computed from
unconditional ones. The last example was solved by two methods. One of them has applied
conditional probabilities for determining an unconditional one. The law of total probability
applies conditional probabilities for computing unconditional (total) probabilities. To do this,
we need a partition of the sample space Q.

Suppose that Q, ‘A, and P are given.

n
Definition The set of events B,,B,,...,B, € A is called a partition of Q, if Q:UBi and
i=1

We note that a partition cuts the set of possible outcomes into some mutually exclusive events.
Every possible outcome belongs to an event and none of them can belong to two events.

Theorem (Law of total probability) Let B,,B,,...,B, € /A be a partition of Q, and assume that
0<P(B;), i=12,...,n. Then for any event A e A the following equality holds

n
P(A)=)_P(A|B)P(B;).
i=1
Proof: As 0<P(B;), the conditional probabilities are well defined.

P(A)=P(ANQ)= P(Ar{LnJ BiJ) = P[U(Am B )J.

i=1 i=1
Notice that if B, nB; =&, then (AN B,)n(ANB,)=2. Therefore the unioned events are
mutually exclusive and the probability of the union is the sum of the probabilities.

P[O(AmBi)J=ian:P(AﬁBi)-

i=1

Recalling the multiplicative rule P(A N B;)=P(A|B;)-P(B;) we get

P(A)=3 P(AIB)P(B)).
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An inverse question can be asked in the following way: if we know that A occurs, compute the
probability that B; occurs. The answer can be given by Bayes’ theorem as follows:

Theorem (Bayes’ theorem) Let B, B,,...,B, € /A be a partition of Q, and assume 0<P(B;),
i=12,..,n. Then for any event AeA with 0<P(A), the following holds:
P(A|B;)-P(B;) _ P(A|B;)-P(B;)

SRS WINESTICH
P(B.NA) _P(AIB):-P(B,)  P(A|B,)-P(B,)

" SRS WINERICH

P(B;|A)= i=12,..,n.

Proof P(B; |A) =

Remarks

e Notice that the unconditional probability is the weighted sum of the conditional
probabilities.

o The law of total probability is worth applying when it is easy to compute conditional
probabilities.

e The construction of the partition is sometimes easy, in other cases it can be difficult.
The main point is to be able to compute conditional probabilities.

e The theorem can be proved for countably many sets B;, i=12,..., as well.

e Bayes’ theorem can be interpreted as the probability of ,,reasons”. If A occurs, what is
the probability that its ,,reason” is B;, i=123,...

Examples
E1. In a factory, there are three shifts. 45% of all products are manufactured by the

morning shift, 35% of all products are manufactured by the afternoon shift, 20% are
manufactured by the evening shift. A product manufactured by the morning shift is substandard
with probability 0.04, a product manufactured by the afternoon shift is substandard with
probability 0.06, and a product manufactured by the evening shift is substandard with
probability 0.08. Choose a product from the entire set of products. Compute the probability that
the chosen product is substandard.

Let B, be the event that the chosen product was produced by the morning shift, let B, be the

event that the chosen product was produced by the afternoon shift and let B, be the event that
the chosen product was produced by the evening shift. B,, B, , B, is a partition of the entire set
of all products. Let S be the event that the chosen product is substandard. Now,
P(S|B,)=0.04,P(S|B,)=0.06, P(S|B;)=0.08. Furthermore,

P(B;)=0.45, P(B,)=0.35,P(B;)=0.2. Applying the law of total probability we get
P(S)=P(S|B,)-P(B,) +P(S|B,)-P(B;) + P(S|B;) - P(B3) =
0.04-0.45+0.06-0.35+0.08-0.2=0.055 .

If the chosen product is substandard, compute the probability that it was produced by the
morning shift. If the chosen product is substandard, which shift produced it most probably?
P(S|B,)-P(B;) 0.04-0.45

P(B,|S) = =0.327.
P(S) 0.055
P(B, |S) = P(SIB,)-P(B,) _0.06-0.35 033
2 P(S) 0.055 '
P(B, |S) = P(S|B;)-P(B;) _0.08-0.2 0291
3 P(S) 0.055 '

If the chosen product is substandard, the second shift is the most probable, as a ,,reason”.
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This example draws the attention to the differences between the conditional probabilities
P(S|B,)and P(B,|S), P(S|B,)and P(B,|S), P(S|B;)and P(B,|S). Although the maximal
value among P(S|B,), P(S|B,)and P(S|B,)is the first conditional probability, the maximal
value among P(B,|S),P(B, |S) and P(B,|S) is the second one. P(S|B,) is the ratio of the
substandard products among the products produced by the morning shift, P(B, |S) is the ratio

of the products produced by morning shift among all substandard products. These ratios have to
be strictly distinguished.

E2. People are divided into three groups on the basis of their qualification: people
with higher, intermediate and elementary degree. We investigate the adults. 25% of all adults
have elementary, 40% of all adults have intermediate and the rest of people have higher degree.
A person having elementary degree is unemployed with probability 0.18, a person having
intermediate degree is unemployed with probability 0.12 and a person having higher degree is
unemployed with probability 0.05. Choose a person from the adults. Compute the probability
that he/she is unemployed.

Let B, be the event that the chosen person has elementary degree, B, be the event that the

chosen person has intermediate degree, B, be the event that the chosen person has higher
degree. B,,B,,B; is a partition of the entire set of Q. Let E be the event that the chosen
person is unemployed. P(B,;)=0.25, P(B,)=04 and P(B;)=0.35, furthermore
P(E|B,)=0.18, P(E|B,)=0.12, P(E|B;)=0.05. Applying the law of total probability we
get P(E)=P(E|B,)-P(B,) + P(E|B,) - P(B,) + P(E| B;) - P(B,) =
0.18-0.25+0.12-0.4+0.05-0.35 =0.1105 .

If the chosen person is not unemployed compute the probability that he has
elementary/intermediate/ higher degree.

P(E|B,)-P(B,) (L-P(E|B,))-P(B,) 0.82-0.25

P(B, €)= £ = ~0.230 |
P(E) 1-P(E) T 1-0.1105

P(B |E)=P(E'Bz)'P(Bz):(1—P<E|Bz))'P(Bz) 088:04 0o
2 P(E) 1-P(E) 1-0.1105

P(B |E>=P(E'BS)'P(BS):(1—P<E|83))-P(Bs) 095035 ..
3 P(E) 1-P(E) 1-0.1105

We draw the attention to the fact that P(E| B,)=1-P(E|B,) according to the properties of
conditional probability.

E3. Pick two cards without replacement from a package of cards containing 52
cards. Compute the probability that the second card is a heart.
If we knew that the first card is a heart or not, the conditional probabilities of the event “second
draw is a heart” could be easily computed. Consequently the unconditional probability can be
also computed with the help of the conditional probabilities.

Let B, be the event that the first card is a heart and B, =B, . Now B, and B, form a partition

of the entire set of Q. Let A be the event that the second draw is a heart. Now, P(A|B,) = 2—21 ,
13 13 39
P(A|B, )_ , furthermore P(B,)=— =% , P(B,)=— = . Applying the law of total probability

we get
P(A)=P(A[B,)-P(B,) + P(A|B,) -P(B,) = 2.3 , 1339 _ 13:(12+39) 13 o5
51 52 51 52  51.52 52
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Given that the second draw is a heart compute the probability that the first one is not a heart.

13 3
P(A|B,)-P(B,) 51 4 39
P(leA)z ( | 2) ( 2):51 4=_
P(A) 025 51
Given that the second draw is not a heart compute the probability that the first one is a heart.
91
P(B,|A) = PAI Bl)_' PB.) _51 4 _13 , taking into account that P(A|B,)=1—-P(A|B,).
P(A) 3 51
4

c3. Independence of events

The conditional probability of an event may differ from the unconditional one. It may be
greater or smaller than the unconditional probability, and in some cases they can be equal, as
well. Let us consider the following very simple examples.

Roll two fair dies. Let A be the event that the sum of the rolls is 7, let B be the event that the
difference of the rolls is at least 4, let be C the event that the difference of the rolls is 0, finally

let D be the event that the first roll is 1. Now P(A) = 5 , P(B) = 5 , P(C)= i, P(D) :i.
36 36 36 36
2
One can easily see that P(B|A) = PENA) _36_1 >P(B),
P(A) 6 3
36
1
picia)=PENA) _PE) o pcy, poja)="POA) 36 _pip) . This latter case is
P(A) 1 P(A) 1
6 6

the case when the information contained in A does not change the chance of D. It can be

checked that P(A|D) :m _1 P(A) also holds, which means that the information in

P(D) 6
D does not change the chance of A either. The relation is symmetric. Similarly,
p(A[B)=PBOA) L1 bay andp(ajc)=PACC) o pay.
P(B) 3 P(C)

Definition The events A,Be A are called independent if P(A nB) =P(A) - P(B).

Now we prove that this definition is a generalization of the previous concept.

Theorem Let A and B be events for which 0<P(A) and O<P(B). Then A and B are

independent if and only if P(A|B)=P(A) and/or P(B|A)=P(B).

Proof Recalling the definition of conditional probability, we can write that

P(A|B)=m and P(B|A)=m
P(B) P(A)

definition, P(AnB)=P(A)-P(B). Dividing by P(A) and P(B) we get the equalities

. If A and B are independent, then, by



Probability theory and math. statistics— Conditional probability and independence 41

P(ANB) P(ANB) . P(ANB) _ o
W =P(B) and —P(B) =P(A), respectively. Conversely, —P(A) P(B) implies
P(A ~B) =P(A) - P(B), and so does % ~P(A).

Remarks

e The definition of independence is symmetric.

o The definition of independence is valid even in the case of 0=P(A) or P(B)=0.

e If 0=P(A) or P(B)=0, then A and B are independent. Take into consideration that
P(ANB)<P(A), P(AnB)<P(B), consequently P(AnB)<min(P(A),P(B))=0.
Therefore, P(ANB)=0=P(A)-P(B).

¢ Independent events are strongly different from mutually exclusive events. If A and B
are mutually exclusive, then AnB=J, P(AnB)=0. P(A)-P(B)=0 implies P(A)=0 or
P(B)=0. If A and B are mutually exclusive and P(A)=0=P(B) holds, then A and B can
not be independent. Roughly spoken, if A and B are mutually exclusive and one of them
occurs, the other one can not occur. Occurrence of A is a very important piece of information
with respect to B.

¢ In the example presented at the beginning of the subsection the events A and D are
independent but the events A and B are not. Neither are A and C.

e The independence of A and B means that the “weight” of A in the entire set equals the
“weight” of A in B.

Examples
El. Roll a fair die 5 times. Let A be the event that all rolls are different let B the

event that there is no “six” among the rolls. Are the events A and B independent?
Applying our knowledge on sampling with replacement it is easy to see that

6-5-4-3-2 5° 5.4.3.2.1
————=0.003, P(B)=6—5=0.42, PANB)=———_—
P(AnB) = P(A)-P(B), A and B are not independent. If we know that there is no “six”
among the rolls then we can “feel” that the chance that all the rolls are different has been

decreased. We have only five numbers to roll instead of six ones.

P(A) = =0.015. As

E2. There are N balls in a box, M of them are white, N-M are red. Pick n balls from
the urn with replacement. Let A be the event that the first one is red, let B the event that the last
one is white. Are the events A and B independent?

Recalling the results in  connection with  sampling  with  replacement,

|;)()A\):(N_I\/I)'Nm1 — N-M =1—M, P(B):M:M,
N N N N N
_(N—M)-N”Z-M_(N—M)-M_( _M].M B ‘
P(ANB)= N = N =1 N N.As P(ANB)=P(A)-P(B), A

and B are independent.
Roughly spoken, the result of the first picking does not effect the result of the last picking, it
does not increase and does not decrease the chance of picking a white ball.

E3. There are N balls in an urn, M of them are white N-M are red. Pick 2 balls from
the urn without replacement. Let A be the event that the first one is red, let B the event that the
second one is white. Are the event A and B independent?

Recalling the results in connection with sampling without replacement, we can write

P(AmB):M p(A):(N_M)'(N_l) _(N-M)
N-(N-1) ' N-(N-1) N

. P(B) can be computed by the
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help of the theorem of total probability as follows:

% .As P(AnB)=P(A)-P(B), A and B are not independent.

Roughly spoken, if we know that the first draw is red, the chance of the second one being white
has been increased. The reason is that the relative number of white balls in the urn has
increased.

E4. People are grouped into three groups on the basis of their qualification: people
with higher, intermediate and elementary degree. We investigate the adults. 25% of all adults
have elementary, 40% of all adults have intermediate and the rest of people have higher degree.
A person having elementary degree is unemployed with probability 0.18, a person having
intermediate degree is unemployed with probability 0.12 and a person having higher degree is
unemployed with probability 0.05. Choose a person from the adults. Are the events A=“the
chosen person is unemployed” and B, ="the chosen person has higher degree” independent?

Recalling the law of total probability we get P(A)=0.1105, but P(A|B,)=0.05. As
P(A|B;)=P(E), A and B, are not independent. If somebody has higher degree, the

probability of the event that he is unemployed has decreased. The ratio of the unemployed
people in the whole population is higher than the ration of the unemployed among people
having higher degree.
E5. Roll a fair die 3 times. Let A be the event that the sum of the rolls is at least 17,
and let B be the event that all the rolls are the same. Are A and B independent?
Taking the condition into account, the sum of the rolls can be 17 and 18. If the sum is 17 then
we roll two “six”s and one “five”. if the sum is 18, then we have three “six”-s.

P(A) = 3'2'31'1 +6i3 :(;13. There are four elements in A. One of them satisfies that all of the

6-1-1

rolls are the same, consequentIyP(BlA)zi. Finally, P(B)= =%. Now we can see

that P(B|A) = P(B), therefore A and B are not independent.

Theorem If the events A and B are independent, then A and B, furthermore A and B are
independent, as well.

Proof

P(ANB)=P(A\B)=P(A)-P(ANB)=P(A)-P(A)- P(B) = P(A)(1— P(B)) =P(A) - P(B).
P(ANB)=P(AUB)=1-P(AUB)=1—(P(A)+P(B) - P(ANB))=

1-(P(A) + P(B) — P(A) - P(B))=(1- P(A))1- P(B)).

Now let us consider the independency of more than two events.
Definition The events A, iel are called pairwise independent if any two of them are

independent, that is P(A; N A, ) =P(A;)-P(A,) j kel j#k.
Definition The events A; i<l are called independent, if for any finite set of different indices
{i iy, i, } theequality P(A, nA, N..nA,)=P(A,)-P(A,,)-...-P(A,,) holds.

Remarks

o If the number of elements of the set of indices equals 2, the above property expresses
the pairwise independence.

e Pairwise independence of events does not imply independence of the events. We
construct the following example in which pairwise independence holds but
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P(ANBNC)=P(A)-P(B)-P(C). Let Q={,234}, P({i})z%, i=1234. Let
A={,2},B={3},C={L4}. Now P(A)=P(B) = P(C):%:O.s,

ANnB=BNnC=AnC=1{}, P(AmB)=P(BmC)=P(AmC)=P({1}):%=0.25.

Consequently, P(AnB)=P(A)-P(B), P(AnC)=P(A)-P(C), P(BNC)=P(B)-P(C). It
means that A, B and C are pairwise independent. But

P(ANBANC)=P({l})=0.25 = P(A)-P(B)-P(C) =

0|

Definition Experiments are called independent if the events connected to them are
independent. In more detail for two experiments: if A, is the set of events connected to an

experiment, A, is the set of events connected to another experiment, then for any A< A, and
Be A, the events A and B are independent. The experiments characterized by the set of
events A, ,i el are independent if for any A, € A; the events A, are independent.

Remarks

° Sampling with replacement can be considered as a sequence of independent
experiments. If the first draw is the first experiment, the second draw is the second experiment
and so on, the events connected to different draws are independent.

e If we do sampling without replacement, then the consecutive draws are not independent
experiments, as E3) in the previous subsection illustrates.

Examples
E6. Fill two lotteries (90/5) independently. Compute the probability that at least

one of them is bull’s-eye.
Let A be the event that the first lottery is bull’s-eye, let B the event that the second one is

bull’s-eye. The question is P(AUB). P(A) = 1 P(B)=—=,

1
)’ 90
6
P(AnB)=P(A)-P(B) = : . Applying P(AuUB)=P(A)+P(B)—P(AnB) we get

P(AUB)=—2 -+

=)0

E7. Fill 10 million lotteries independently. Compute the probability that at least one
of them is bull’s-eye.
Let A; be the event that the ith experiment is bull’s-eye. The question is P(A; U..UA 7).

Instead of it, let us first consider its complement.
P(A, U.LUA )=P(A; NA, NNA G ). As the experiments are independent, the

probability of the intersection of the events connected to them is the product of the
probabilities. Therefore
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107

P(A,nA, N0 A ) =P(A)-..-P(A ;) = 1-- L | _o79s.

N

Consequently, P(A; U...u A107 )=1-0.796=0.204.

E8. How many lotteries are filled independently, if the probability that there is at
least one bull’s-eye among them equals 0.5?
Let A, i=12,...,nbe the event that the ith experiment is bull’s-eye. The question is the value
of n if P(A;u..UA,)=05. Following the argument of the previous example E7

n

P(A, U..UA_)=P(A, "A, N..NA, )= 1- L | —1-05-0s5.

-]

Taking the logarithm of both sides, we get

n-log(1-— %) =log 0.5, n= Iog—O.51 = 30463322 , which is much more than the half of
log(1--—-)
5 90
5

possible fillings. But if you fill 30 million lotteries the probability that there are identical
fillings is almost 1. If you fill them independently, it may happen that the first one and the
second one contain the same numbers crossed.
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d. Random variable

The aim of this chapter
This chapter aims to get the reader acquainted with the concept of random
variables as random valued functions. We introduce the concept of
distribution, cumulative distribution function and probability density
function. We present how to the use cumulative distribution function to

express probabilities. We introduce the concept of independent random
variables.

Preliminary knowledge

Properties of probability. Analysis, taking derivative and integrate.

Content

d.1. Random variables as random valued functions.

d.2. Cumulative distribution function.

d.3. Continuous random variable.

d.4. Independent random variables.
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d.1. Random variables as random valued functions

In this section we introduce the concept of random variables as random valued functions.
We suppose that Q, A and P are given.

First we introduce a simple definition and later, after presenting lots of examples, we make
it mathematically exact.

Definition The function &:Q — R is called a random variable.

Remarks

¢ Random variables map the set of possible outcomes to the set of real numbers. The
values of random variables are numbers. If we know the result of the experiment, we know
the actual value of the random variable. Before we perform the experiment, we do not know
the actual outcome; hence we do not know the value of the function. “Randomness” is
hidden in the outcome.

e Although we do not know the value of the function, we know the possible outcomes
and the values assigned to them. In analysis, these values are called the image of the
function. We will call them possible values of the random variable.

e If we know the possible values of the function, we can presumably compute the
probabilities belonging to these possible values. That is we can compute the probability that
the function takes this value. Additional refinement is needed to enable us to do this in all
cases.

e Asthe elements of Qare not real numbers in some cases, the function & may not be

drawn in a usual Cartesian frame.

Examples
E1l. Flip acoin. If the result is heads we gain 10 HUF, if the result is tail we pay

5 HUF. Let & be the money we get/pay during a game.

Q={H,T}, A=22, P is the classical probability. £:Q—>R, £(H)=10, §(T)=-5. The
possible values of & are 10 and -5, and P(§=10)=P({H})=0.5, P(§=-5)=P({T})=0.5.
Before performing the experiment we do not know the value of our gain, but we can state

that it can be 10 or -5 and both values are taken with probability 0.5.
E2. Roll a fair die. We gain the square of the result. Let & be the gain playing one

game.
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Q={,23456}, A=2", P is the classical probability.£:Q —»R, &(i)=i?.£(1)=1% =1,

£(2)=2%=4, £(3)=3%=9, §(4)=4%=16, £()=5°=25 £(6)=6°=36. Moreover,

P(&:iz)zP({i}):%. Summarizing, the possible values of & are 1,4,9,16,25,36, and the

probabilities belonging to them are % Before we roll the die we do not know how much
money we gain, but we can state that it may be 1,4,9,16,25 or 36, and all of them have
o1
probability = .
6
E3. Roll afair die twice. Let & be the sum of the rolls.
Q={11),12).....(6,6)}, A =22, P is the classical probability. £:Q—R, &((i, ) =i+].
For example, &((L))=2, &((25)=7, &((6,6))=12. The possible values of & are

2,3,4,5,6,7,8,9,10,11,12.

P(e=2) =P~

P(E=3)= P({<1,2),(2,1)}>:% P(e=4)=P({(13).3D.(22)}) =%,

P(£=5)=P({14),(23),(32),(41)}) = % P(£=6)=P({(L5),(2.4),(33).(4,2), 5D)) = %

P(=7)=P({L6). (25). 34, (4. (62), (6 D) = -

P(£=8)=P({(2.6,(35),(44),(53),(6,2)}) = % P(£=9)=P({(36).(45),(54),(6,3)}) = %

P(& =10) = P({(4,6). (55),(6.4)}) = % P(& =11) = P({(5.6). (6.5)) = %

P(c=12) = P({(e,e)})=%.

We mention that the sets B, ={w:&(w) =i} i=2,3,...12 are mutually exclusive and the
union of them is Q. They form a partition. Consequently, the sum of the probabilities
belonging to the possible values equals 1.

E4. Choose two numbers without replacement from the set {0,1,2,3,4}. Let & be
the minimum of the chosen numbers.

Actually, Q={{i,,i,}:0<i, <i, <4,integers}, &:Q—>R, &, i,)=min{i,,i,},

5
(o) =(2] =10. £({0,4})=0, £({2,3}) =2 and so on. The possible values of & are 0,1,2,3
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and  P(E=0)=P({01},{0,2},{03},{0.4) = % . PE=)=P{L2},{L3} {14} = % ,
2 1
P(¢=2)=P({2,3},{2.4)) = 5 PE=3)= P({3.4)) = o

E5. Pick two numbers with replacement from the set {0,1,2,3,4}. Let & be the
minimum of the picked numbers.
Actually, Q={(i,,i,):0<i,,i, <4/integers}, &:Q—>R, &((ii,)=min{i,i,},
|| =5-5=25. £((0,4)) =0, &((33))=3 and so on. The possible values of & are 0,1,2,3,4
and P(&=0)=P({(0,0),(0,1),(0,2),(0,3),(0,4), 1,0), (2,0), (3,0), (4,0)}) = % ,
P(£=1)=P((LD), (1.2), (13), (1.4), (4]), (4,2), (43)) = %
P(£=2)=P((22),(23),(24),(3.2),(4.2)) = % P(£=3)=P((33),(34),(4.3)) = % ,

P(e=4)=P(44) = o

E6. Choose two numbers with replacement of the set {0,1,2,3,4}. Let & be their

difference.
Actually, the elements of the sample space are as in the previous example, but the mappings
differ. £((11))=0, &((41))=3, and so on. The possible values of & are 0,1,2,3,4 and

P(5=0)=P((00). 1D(22). B3 4D =

P(£=1)=P({(0), (1,0)(21), (12),(3,2),(2.3),(34), (4,3)}) = 2% !

P(5=2)=P({(0.2). (03D, (L3). (42). 29 = .

P(5=3)=P({(0.3),(30). (L4), (41)}) =%, P(c=4) = P({(0,4),(4,0>})=%.

E7. Fire into a circle with radius R and suppose that the probability that the hit
is situated in a subset of the circle is proportional to the area of the subset. Let & be the
distance of the hit from the centre of the circle.

Actually, Q is the circle and ‘A are those subsets of the circle which have area. If Q is a

point of the circle, then £(Q)=d(O,Q). Possible values of & are the points of the interval
[0,R]. P(E=0) =P({O}):§=O. P(E= R)=:—2R, where p, is the area of the
T T

boundary of the circle with radius R, which equals 0. P(=R)=0. If 0<x<R, then
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P(E=X) =:—2X , Where p, is the area of the boundary of the circle with radius x, which
T

equals 0, as well. Consequently, all possible values have probability 0.
E8. Choose two numbers independently from the interval [0,1] by geometric

probability. Let & be their difference.

Now, Q= [0,1]x[0,1] , Which is a square. u(Q) =1. The possible values of & are the points of

[01]. Actually, P(&zO)z”({Q(X’y) :1x=y}mQ). The area of the line given by the

equation x=y in the square equals 0, consequently, P(E=0)=0.

P(E=1) =M:O. Generally, If O<u<2, then

tdQeay):x—y|=ufn

Q) . .
N . The set {Q(x,y):|x -y|= u} consists of the points

P(E=u)=

of the lines given by x-y=u and y-x=u, and the area of the two lines equals 0. Therefore
P(=u)=0.

Remarks
e The common feature of E1, E2,...,E6 is that the set of the possible values are finite.
e Another common feature of E1, E2,...,E6 is that if x; is a possible value of &, then
P(E=x;)#0.
e If the possible values of & are denoted by Xi,.,X,, then the sets

B, ={w:&(0)=x,} form a partition of Q. Consequently,
D PE=x;)=) P(B,)=P(Q)=1.
i=1 i=1

e The common feature of E7 and ES8 is that the set of possible values is uncountably
infinite and if x is a possible value then P(& =x)=0. Nevertheless, P(U{o: &(w) = x}) =1. If

B, ={0:&(0)=x}, and B, ={o:E(®) =y}, then B, "B, =, if x=y. If the set of

0

possible values were countable, then P(O {o: @) =%;) =D _P(lo:&(w) =X, f) =0 would

i=1 i=1
hold.
e In E7 and EB8 the probabilities P(§<x) are worth investigating instead of P(§ =x), if
the set {w:&(w)<x} has probability, i.e. {w:&(w)<x}e A. This requirement is

included in the mathematically correct definition of random variables.
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Definition The function &:Q —R is called a random variable, if for any xeR
{o:&(@)<x}e A.

Definition The function £:Q — R is called a discrete random variable, if the set Im(&) is
finite or countably infinite. Those values in Im§& for which P(§=x) =0, are the called the

possible values.
Definition The distribution of the discrete random variable & is the set of the possible

values together with the probabilities belonging to them. We denote it by

X1, Xy, oo X, ) o X1, Xpy ooo. o )
€~ or in the infinite case &~ with
pl’ p2’ o pn pl, pza .
p; =P(E=x;).
Remarks

° The definition of a discrete random variable can be more general as well. In many

cases & is called a discrete random variable, if there is countable subset C of Img, for

which ZP(&‘,: Xx)=1. This means that the set Im& may be uncountable, but the values
xeC

outside C have probability zero together, that is P(|_J{w: &(w) =x}) =0.

xeC

0

. If {0:&(0)<x}e A, then {m:&(co)zx}:ﬂ {m:xgg(m)<x+%}:

n=1

o0

N ({m:é(m) <X +%} \o:&(w) < x}] cA, aa A is o algebra. Consequently,

n=1
P({o:&(w) = x}) is well defined.
. In examples EL.,..., E6. in the previous subsection, the distributions of random

variables & are given, namely:

10, -5
InEL. &~ .
05 05
1 4 9 16 25 36
Ing2.¢~1 1 1 1 1 14
6 6 6 6 6 6
2 3 4 5 6 7 8 9 10 11 12
nE3. ¢=1 2 3 4 5 6 5 4 3 2 1
36 36 36 36 36 36 36 36 36 36 36
o 1 2 3
In E4. &~ .
04 03 02 0.1
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[0 1 2 3 4}
InE5. &~

036 028 0.2 0.12 0.04

[0 1 2 3 4}
InE6. &~ .

0.2 032 024 0.16 0.08

o The examples in E7. and E8. are not discrete random variables even in the

generalized sense of definition.

d.2. Cumulative distribution function

As the probabilities P(§=x) are not always appropriate for characterizing random
variables, the probability P(§ < x) is investigated. This probability depends on the value of

x. If we consider this probability as the function of x, we get a real-real function. This
function is called the cumulative distribution function.

Definition Let & be a random variable. The cumulative distribution function of & is
definedas F:R >R F.(X)=P(¢ <x)=P({w:&(w) < X}).
Remarks

. If the random variable § is fixed, then the index is omitted.

. As F is areal-real function, it can be represented in the usual Cartesian frame.

Examples
Determine the cumulative distribution functions of the random variables in E1, E2, E6, E7,

and ES8 in subsection d.1.

E1 ¢ 10, -5
' 05 05)

It can be seen easily that if x <-5, then P(€ <x) =P() =0.
If -5<x<10,then P(§<x)=P(=-5)=P({T})=0.5.
If 10 < x, then P(§<x)=P(Q)=1.

0 if x<-5
Summarizing F(x) =P(§<x)=40.5 if -5<x<10.
1 if10<x

The graph of this function can be seen in Fig. d.1.
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1
Figure d.1. The cumulative distribution function of the random variable & ~ [

F(x) =

E6.§~(

F(x) =

frs

1
E2. a~(1
6

0if x<1

lif l<x<4
6

gif 4<x<9
6

§if 9<x<16
6

%if 16 <x<25

%if 25<x<36
1if 36 <x

0 1 2

0if x<0
0.2if 0<x<1
052if 1<x<2
0.76if 2<x<3
0.92if 3<x<4
1lif 4<x

X3

0.4

0.2

o

0.2

‘15

4
1
6

9
1
6

3

:
-10

4

02 032 0.24 0.16 0.0SJ

. :
5 o

25 36
11
6 6

.
5

:
10

L
15

20

|
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E7.If 0<x<R,
] u(x) x°m 2 .
then F(x) = P(& <x) = P({Q e Q:d(0,Q) < x}) = e T T where p(x) is the area
T T

of the circle with radius x. Of course, if x<0, then P(E<x)=P(Z)=0, and if R<X,

then P(§ < x) =P(Q)=1. Summarizing,
0 if x<0
X2

F(X): ? if 0<x<R.
1 if R<x

which can be seen in Fig.d.2.

Figure d.2. The cumulative distribution function of the random variable presented in E7

E8. F(u)=P(&<u)=P({Q(x,y):[x - y|<u}) if 0<u<1.
Recall that [x —y| <u means, that x—u<y if y<x,and y<x+u if x<y.
Those points for which |x—y|<u are situated between the straight lines given by the
equations y—x=u and X —Yy=u.The area of the appropriate points can be computed by

subtracting the area of the two triangles from the area of the square. The area of a triangle is

(1-u)®

. Consequently, P(& <u)=1-(1-u)? if 0<u<1. It is obvious that if u<0, then

P(x-y|<u)=P(@)=0,and if 1<u, then P(x —y|<u)=P(Q) =1.
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y-X=u

Figure d.3. Appropriate points for the [x —y| <u with u=0.35

0 ifu<O
Summarizing, F(u)=41—-(1-u)? if O<u<1.
1 ifl<u

The graph of the cumulative distribution function cumulative can be seen in Fig. d.4.

Figure d.4. The cumulative distribution function of the random variable presented in E8

The graphs of the cumulative distribution functions presented have common features and
differences, as well. The most conspicuous difference is in continuity, namely the

cumulative distribution functions of E1, E2, E6 have discontinuity in jumps, while the
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cumulative distribution functions of E7. and ES8. are continuous. The common features are
that they are all increasing functions with values between 0 and 1.
Let us first consider the property of cumulative distribution functions. First we note that

0<F(x)<1 forany xeR, as F(x) is a probability.

Theorem Let & be a random variable and letF:R — Rbe its cumulative distribution

function. Then F satisfies the followings:

A) F is a monotone increasing function, that is, in case of x <y F(x) <F(y).
B) lim F(x)=0and lim F(x)=1.
C) F is continuous function from the left.

Remark

° The proof of the previous properties can be executed on the basis of the properties

of probabilities but we omit it.

The above properties characterize cumulative distribution functions, namely

Theorem If the function F:R — R satisfies the properties A) B) and C), then there exist a
sample space Q, a o algebra ‘A and a probability measure P, furthermore a random

variable & whose cumulative distribution function is the function F.

Cumulative distribution functions are suitable for expressing the probability that the value of
the random variable § is situated in a fixed interval. We list these probabilities with

explanation in the following theorem:

Theorem

a) ‘P(g e(—:o,a))=P(E<a)= F(a)‘ by the definition of cumulative distribution
function.

b) P& [a, %)) =P(§>a) =1-F(a)|

P(¢e[a,0))=P(E>a)=P(t <a)=P({n:&(w) <a)) =1-F(a).

c) [P(€ e (—,a]) =P(¢ <a) =F(a) + P(§ =a)]
P(¢<a)=P({o:&(w) <aju{n:E(o)=a}) =P({w:&(w) <a}) + P{o:&(0) =a))
=F(@)+P(E=a).
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d) P& < (a,%)) =P(&>a) =1-F(a) -P(&=a)},
P(&>a)=P({o:E(0) >a}) =P(lo:&(w) 2 af) - P({w:E(0) =af) =1- F(a) - P(¢ =a) .

e) P [a,b)) =P(a <& <b) =F(b) - F(a)]
P(¢e[a,b)) =P(a<&<b)=P({on:&(w) <b}) - P({w: &(w) <a}=F(b) - F(a).
Note that {0:&(w) <ajc {o:&(w) < b}, consequently the probability of the difference is the

difference of probabilities.
f) P& [a,b]) =P(a <& <b) =F(b) - F(a) + P(E=b)]

Pla<g<h)=P({m:a<g(w)<b}u{w:&(w)=b})=P{n:a<&(w)<b})+P{w:&(w)=b))
F(b) — F(a) + P(6=b). We note that {w:a<&(w)<b}n{n:&(w)=b}=&, consequently

the probability of the union equals the sum of the probabilities.

9) [P(£ € (a,b)) =P(a<&<b)=F(b) - F(a) -P(§ =a)]
P(a<&<b)=P({w:a<&(w) <b}\{w:&(w)=a}) = F(b) - F(a) - P({w: &(w) =a}) .
h) [P(¢<(a,b]) =P(a<&<b)=F(b)—F(a) -P(¢ =) + P(£=h) |

Pla<&<b)=P({w:a<&(w)<b}u{n:&(w)=b})=
P({o:a < &(w) <bf) + P(lo: &(w) = bj) = F(b) — F(a) - P(§ =a) + P(¢ = b) .
i) P(E=a)= A!dim0 F(a+ Aa) — F(a)|.

P(¢=a)= P(ﬁ{m:as&,(m) <a+l}) = lim P({m:asé(m) <a +1}) = lim (F(a+1) - F(a)]
) n n—oo n n—oo n

= lim (F(a + %)j —F@).

Remarks
o |im (F(a+£))—F(a) is the value of the jump of the cumulative distribution
n—o0 n

function at ,,a”.

e IfF is continuous at “a”, then AIimO F(a + Aa) =F(a), consequently P(§=a)=0.
a—0+

e If Fis continuous on R, then P(§=x)=0 for any xeR. Examples for this case

were presented in E7 and E8. Further examples can be given with the help of

geometric probability.

Examples
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E9. Let the lifetime of a machine be a random variable which has cumulative

0, if x<0
distribution function F(X) =< eg* _g* .
———,if 0<x
e’ +e™*
Prove that F(x) is a cumulative distribution function.
To prove that F(x) is a cumulative distribution function it is necessary and sufficient to

check the properties A), B) and C).
A) For checking the monotone increasing property, take the derivative.

P AR Y e

(eX +e"‘)2 (eX +e‘x)

5 >0 if O<x,

consequently the function F is monotone increasing for positive values. As at x=0 the

function is continuous and it is constant for negative values, then it is increasing for all

values of x.
X -X —2X
B) lim F(x)= fim 0=0and lim F()=1. lim &% —jm 1= _1
X—>—0 X—>—o0 X—>0 x—wo X L a™X x>0l 4 e*2X
. e*—-e™ 0 . . i o
C) lim ———=—=0=1lim 0, consequently F is continuous at x=0, and it is
x->0+ X L™ 1 x—0-

continuous at any point X. Therefore F is continuous from the left.

Compute the probability that the lifetime of the machine is less than 1 unit.

1 -1

el —e
=0.762 .
el +et

P(6<)=F(1) =

Compute the probability that the lifetime of the machine is between 1 and 2 unit.

e2 _a2 pol_gt
PA<E<2)=F(2)-F1) = - -=0.964 —0.762 = 0.202

e2+e? el4e

Compute the probability that the lifetime is between 2 and 3 unit.

ed—e3 e?-_g?
P2<&<3)=F(@3)-F(2)=———— - —°__—0.995 - 0.964 = 0.03L
ed+e el +e

Compute the probability that the lifetime is at least 3 unit.
3,3
P(3<E)=1-F@) =1-—
e’ +e

=0.005.

=
Compute the probability that the lifetime of the machine equals 3.
P(§ =x) =0, as the cumulative distribution function of the lifetime is continuous at x=3.

At least how much time is the lifetime of the machine with probability 0.9?
Xx=? P(§2x)=09.1-F(Xx)=09=F(x)=0.1.
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X —X

eX —e_x =0.1. Substitute e* =y, we have to find the solution of the following equation:
e’ +e
1
7y 21 1.1
— Y _o1. Y _"2_01=09y>=11.  Consequently, yi="21222
1 y°+1 0.9
y+—
y

y=141.222 =+1.105 . As y=e*, O<y holds. e* =1.105 implies x =In1.105 =0.100 .

Finally, at most how much time is the lifetime of the machine with probability 0.9?

X=? PE<x)=0.9. PE<X)=PE<X)+P(E=x)=F(x)=0.9. Substitute e* =y, we
1

y_i
y

y+-
y

have to find the solution of the following equation: =0.9. Following the above steps

we get y= /Q ,and x=1In /£=1.472.
0.1 0.1

Definition: The random variables & and m are called identically distributed if

F. (x) =F, (x) holds for any value xeR.

Example
E10. Q, ={H, T}, A, =2, P is the classical probability, &(H)=-1,
E(T)=1.
Q,={123456}, A,=2%, P is the classical probability, n(i)=-1 if i is odd, n(i) =1 if
i is even. Now, & and m are identically distributed random variables, as

0 if x<-1
F.(x)=F,(x)=405 i -1<x<1.
1 ifl<x
We draw the attention to the fact that the distribution functions may be equal even if the

mappings are different.

Theorem If & and n are discrete and identically distributed then they have common
possible values and P(§=x;)=P(m=X,), i=123,...
Proof If the random variables have common distribution functions, then the jumps of the

cumulative distribution functions are at the same places. This concludes in common possible

values. Furthermore, the values of the jumps are equal, as well. Recalling that the jump
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equals the probability belonging to the possible value, this means that the random variables
take the possible value with the same probability. Consequently, they have the same

distribution.

d.3. Continuous random variable

Now we turn our attention to those random variables which have continuous cumulative
distribution function.

Definition The random variable & is called a continuous random variable if its cumulative

distribution function is the integral function of a piecewise continuous function, that is there

exists a f:R — R piecewise continuous (continuous except from finitely many points) for

which F(x) = jf(t)dt . The function f is called the probability density function of & .

Remarks
e The integral is a Riemann integral.
o [t is a well-known fact in analysis that the integral function is continuous at any

point, and at the points where f is continuous F is differentiable and F'(x) =f(x).

o If fis changed at a point, its integral function does not change. Consequently the
probability density function of a random variable is not unique. Consequently, we can
define it at some points arbitrarily. It is typically the case at the endpoints of intervals when
f has discontinuity.

e The name “probability density function” can be explained by the followings:

P(a<g&<a+Aa)

" expresses the probability that & is situated in the neighbourhood of the

point “a” relative to the length of the interval. It is a kind of density of being at the
neighbourhood of “a”. As

P(a£§<a+Aa)= F(a+ Aa) - F(a)

Pla<g¢<a+Aa)=F(a+Aa)-F@), " "

< —
If 0<Aa—0, then lim S@=E<d+Ad) ., F@+As)-F@)

Aa—0+ Aa Aa—0+ Aa

=F'(@)=f(@),

supposing that the limit exists.
o F@+Aa)—F@)~F () -Aa=f(a)-Aa, therefore where the probability density

function has large values there the random variable takes its values with high probability, if
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the length of the interval is fixed. If the probability density function is zero in the interval

[a,b], then the random variable takes its values in [a, b] with probability zero.

o If the cumulative distribution function is a jump function, then at the points of
jumps the derivatives do not exist. On the open intervals, when the cumulative distribution
function is constant, the derivative takes value zero, consequently there is no sense to take
the derivative of the cumulative distribution function.

o We note that there exist random variables which are neither discrete nor continuous.
They can be a “mix” of discrete and continuous random variables, their cumulative
distribution function is strictly monotone increasing continuous function in some intervals

and has jumps at some points. These random variables are out of the frame of this booklet.

Examples
E1. In the example given in E7 in subsection d.1., the probability density function

is the following:

2X .

— if 0 R
f(X):FI(X): R2 <X< .

0 otherwise

We note that at x =0 the function F is differentiable, and the derivative equals 0.At x =R
the function Fis not differentiable. The graph of the probability density function for
R =1can be seen in Fig. d.5.

181

16

081

0.6

Figure d.5. The probability density function of the random variable given in E7.

E2. The probability density function of ES8. in subsection d.1. is

2-2u ifO0<u<il
0 otherwise '

f(U)=F'(U)={
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The graph of f(u) can be seen in Fig.d.6.

° :
-1 0.5 o 0.5 1 15 2
u

Figure d.6. The probability density function of the random variable given in E8.

E3. The probability density function of E9. in the previous subsection
4 i oex
f(x)=F()=1(e* +e)
0 otherwise

This function can be seen in Fig.d.7.

)

Figure d.7. The probability density function of the random variable given in E9.

The above probability density function takes large values in the interval [0,1]] and small

values in [2,3] and indeed, P(0<§<1)=0.762 > P(2<§<3)=0.031.

Now let us investigate the general properties of density functions.
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Theorem If § is a continuous random variable, with probability density function f, then

D) 0<f(x) except from “some” points and
E) j f(x)dx =1.

Proof F is a monotone increasing function, consequently, its derivative is nonnegative,
when the derivative exists. If we choose the values of f to be negative when the derivative
does not exist, these points can belong to the set of exceptions. Usually we choose the
values of f at these points to be zero. On the other hand, by the definition of the improper

integral If(x)dx= limF(x) — lim F(x)=1-0.

The properties D) and E) characterize the probability density functions, namely
Theorem If the function f:R — R satisfies properties D) and E) then there exist a sample
space Q,a o algebra A and a probability measure P, furthermore a continuous random

variable & whose probability density function is the function f.

Remarks

o |f the random variables £ and n have the same probability density functions, then
they have the same cumulative distribution functions as well, therefore they are identically
distributed.

e If the random variables & and n have the same cumulative distribution functions,
then there derivatives also are equal at the points when the derivatives exist. At the points
when the derivatives do not exist we can define the probability density functions arbitrarily,
but only some points have this property. Consequently, if the continuous random variables
& and n are identically distributed, then they essentially have the same probability density
functions.

o If we would like to express the probability that the continuous random variable &

takes its values in an interval, we can write the following:
[PE<X)=P(E<X)=F(x)]

P(€>X) =P(£>x) =1-F(x)|

[P@a<g<b)=P(a<g<h)=P(a<&<b)=P(a<&<h)=F(b)—F(a)|

The reason for this is the fact that the cumulative distribution function of a continuous
random variable is continuous at any point, consequently it takes any (given) value with

probability 0. Hence we do not have to consider the endpoints of the interval.
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Now, we can express the probability of taking values in an interval with the help of the

probability density function.

Theorem If the continuous random variable & has probability density function f, then
b

P(asgsb):jf(t)dt.
a

Proof Applying the formula concerning the cumulative distribution function and the
properties of integrals we get

b a b
P(a<&<b)=F(b) - F(a) = jf(t)dt - jf(t)dt = jf(t)dt .

Remarks
e As the integral of a nonnegative function equals the area under the function, the

above formula states that the probability of taking values in the interval [a,b] equals the

area under the probability density function in [a,b]. For example, in the case of the random

05sinx fFO0<x<nm

variable given by the probability density function f(x):{ , the

0 otherwise

probability of taking values between % and %n can be seen in Fig.d.8. It is the area

between the two red lines.

0.5 \

0.45-
0.4f
0.35
03f
0.25
0.2f
0.15
01f

0.05f

Figure d.8. Probability expressed by the area between the two read lines

Example
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E4. Let the error of a measurement be a random variable & with probability

05-e* if x<0

density function f(x) = .
05-e7*if 0<x

The graph of this function can be seen in Fig.d.9.

Figure d.9. The probability density function given by f

Prove that f is probability density function.
To do this, check properties D) and E). As exponential functions take only positive values,

the inequality 0 <f(x) holds. Moreover,

X—>-0

© 0 ©

jf(x)dx = jO.Sede + jO.Se’de :0.5[ex ]?w + 0.5[— e’x]: = 0.56— lim e* )+
—0 —0 0

+ o.sgim —e ™ —(-1))=05+05=1.

Determine the cumulative distribution function of & .

F(X):Jf(t)dt: 1-05-e*if 0<x

—0

X {o.s-ex if x<0

The detailed computations are the following:

If x<0, then [f(t)ct = [ 0.5e'dt —[05-¢' [, =05¢* - lim 05e* =0.5-e* —0=0.5e".

X—>—00
—00 —00

If 0<x, then

jf(t)dt =T0.5etdt +j0.5-etdt _los-et, +[o5(-e)] =05+ (-0.5e™ - (-0.5))
—0 —0 0 0
1-05-67.
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Compute the probability that the error of the measurement is less than -2.
P(&<—2)=F(-2)=0.5e 2 =0.068 .

Compute the probability that the error of the measurement is less than 1.
P(£<1)=F(1)=1-05-¢'=0.816.

Compute the probability that the error of the measurement is between -1 and 3.
P(-1<£<3)=F@B3)-F(-1)=1-05-e2-0.5-¢ " =0.975-0.184 =0.791 ..
Compute the probability that the error of the measurement is more than 1.5.
P(L5<&)=1-F(15)=1-(1-05-¢7%)=0.112.

Now we ask the inverse question: at most how much is the error with probability 0.9?
We want to find the value x for which P(§ <x)=0.9.

Taking into account that P(§<x)=P(§<x)=F(x), we seek the value x for which
F(x)=0.9. Namely, we would like to determine the cross point of the function F and the

line y=0.9, as shown in Fig.d.10.

Figure d.10.The cumulative distribution function of & and the level 0.9

F(0)=0.5, consequently x is positive. For positive values of x F(x)=1-0.5-e7*.

Consequently, 1-0.5e™ =0.9. This implies 0.5-e™ =0.1, e * =0.2, x=-In0.2=1.61.
Give an interval symmetric to 0 in which the value of the error is situated with probability
0.9.

Now we have to determine the value x for which P(—x <& <x)=0.9. This means that
F(X) —F(—x)=0.9.  Substituting the formula concerning F(x) we et

1-05-e7* -0.5e* =1-e7 =0.9. This equality implies e ™* =0.1, x=-In0.1=2.3.

In Fig.d.11, the area between the two red lines equals 0.9.
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05
0.45
0.4
035
03f
Z 025-
0.2

0.15~

0.1 i
0.05;/K : i\\
| L

E - - E 1

d.11. The probability expressed by the area between the two read lines

At least how much is the error of the measurement with probability 0.99?

Now we would like to determine the value x for which P(x <&)=0.99.
P(x <&)=1-F(x), therefore F(x)=0.01. As F(0)=0.5, x is negative. Now we can write

the equality 0.5e* =0.01, x=|n%:—3.91. As Fig.d.12. shows, the area under the

density function from the red line to infinity equals 0.99.

045}
0.4
035}
03

Z 025(
0.2
015}

0.1

0.05 ;/PI// \I\——
0 : :

d.12.The probability expressed by the area above the red line
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d.4. Independent random variables

In this subsection we define independence of random variables.

Definition The random variables & and m are called independent, if for any values of
xeR and yeR the events {£<x} and {n<y} are independent, that is
P(E<xnn<y)=P(<X)-P(n<y). For more than two variables, the random variables
&,i=12,,...are called independent, if for any value of j, any indices
iy,ip,..0; €4 2,3...} and any value of x;, , k=12,., ]

P&, <X, N..NEy <xij):P(§i1 <X;i;) P&, <xi2)-...-P(§ij <Xij)-

The independence of random variables is defined by the independence of events connected
to them.

The following theorems can be stated:

Theorem If & and n are discrete random variables, the distributions of them are

§~(X1 Xoooo J and n~[yl Yoo ] then & and n are independent if and
Pr P2 - - 4 9 - - -
only if for any i=12, and j=12.. the equality

P(E=X, "n=Y;)=P(E=x,)-P(n=Y;) =P, -q; holds.

Theorem Let & and n be continuous random variables with probability density functions
f(x) and g(y), respectively. &€ and n are independent if and only if for any xeR and
yeR where the P(E<xnn<y) is differentiable, there the following equality holds:

D*P(E<x,m<Y)
oXoy

Examples
E1l. Flip acoin twice. Let & be the number of heads, and let n be the difference

=f(x)-a(y).

between the number of head and tails. Now, Q={(H,H),(H,T),(T,H),(T, T)}.&((H,H))=2,

g(T,7)=0,&(H,T))=1, &(T,H))=1. Therefore, a~[ o 1 2 J Moreover,

025 05 0.25
n((H,H)=2=n((T, 7)), and n((H,T))=0=n((T,H)).
n- (005 025J . PE=0nn=0)=P(@)=0=P(£=0)-P(n=0)=0.125. consequently ¢

and m are not independent.
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E2. Choose one point Q from the circle with radius 1 by geometric probability.
Put the circle into the Cartesian frame and let the centre be the point O(0,0). Let & be the

distance of the point Q from the centre O(0,0) of the circle, and n be the angle of the vector

x2.x

=x2if 0<x<1.

0Q . Now, 0<&<1, 0<n<2r. P(E<X)=

r r r [

1 L
-1 08 06 -04 -02 0 02 04 06 08 1

Figure d.13. Appropriate points for {¢ <x} and for {n <y}

y-r
Pin<y)=-2% -Y o<y<on.
i 271
(2o Y Xy
Furthermore, P(E<Xx N <y) = 2n __ 2 L if0<x<1,0<y<2n.
T T

1 : : : r L : : ¢
-1 08 06 -04 02 0 02 04 06 08 1

Figure d.14. Appropriate points for {&<x}n {n<y}
These together imply that P(E<xnm<y)=P(E<X)-P(n<y), if 0<x<1, 0<y<2r.
For the values outside [0,1]x[0,2x] one can check the equality easily, consequently & and n

are independent.
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e. Numerical characteristics of random variables

The aim of this chapter

In the previous chapter random variables were characterized by functions,
such as the cumulative distribution function or the probability density
function. This chapter aims to get the reader acquainted with the
numerical characteristics of random variables. These numbers contain less
information than cumulative distribution functions do but they are easier
to be interpreted. We introduce the expectation, dispersion, mode and

median. Beside the definitions, main properties are also presented.

Preliminary knowledge

Random variables, computing series and integrals. Improper integral.

Content

e.1l. Expectation.

e.2. Dispersion and variance.

e.3. Mode.

e.4. Median.
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e.l. Expectation

The cumulative distribution function of a random variable contains all the information about
the random variable but it is not easy to know and handle it. This information can be
condensed more or less into some numbers. Although we lose information during this
concentration, these numbers carry important information about the random variable,
consequently they are worth dealing with.

First of all we present a motivational example. Let us imagine the following gamble: we
throw a die once and we gain the square of the result (dots on the surface). How much
money is worth paying for a gamble, if after many rounds we would like get more money
than we have paid. About some values one can easily decide: for example 1 is worth paying
but 40 is not. Other values, for example 13, are not obvious. Let us follow a heuristic train
of thought. Let the price of a round be denoted by x, and let the number of rounds be n.
Now, the frequency of “one”, “two”, “three”, “four”, “five”, “six” are K,, K,,..., Kg,
respectively. The money we get together equals

1% -k, +2% -k, +3% -ky +4° -k, +5° -kg +6° - Kq.

The money we pay for gambling is n - x . We get more money than we pay if the following
inequality holds: n-x <1% -k, + 27 -k, +3% -k, +4% -k, +5° -k, + 6° - k. Dividing by n,
we get x<1? Kiigr Ko g K e Ki g0 Ks g2 Ko K0 i=1,2,...,6
n n n n n n n

expresses the relative frequency of the result "i". If they were about the probabilities of the

result "i", then %z% and the right hand side of the previous inequality equals

1 1

12.242%.=2 1
6 6

+3%.2 L

La2 b 1 1 91

+5%2. 2 +62 -—:—:151 . Therefore, if x<15i then the
6 6 6 6

money we get after many rounds is more than what we paid, in the opposite case it is less

than we what paid. The heuristic is % ~ % which has not been proved yet in this booklet,

but it will be done in the chapter h.

How can the value % be interpreted? If we define the random variable & as the gain

during one round, then & is a discrete random variable with the following distribution:

1 4 9 16 25 36
g~/1 1 1 1 1 1| Therighthand side of the inequality for x is the weighted
6 6 6 6 6 6
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sum of the possible values of & and the weights are the probabilities belonging to the

possible values. This motivates the following definition:

Definition Let & be a discrete random variable with finitely many possible values. Let the

Xl XZ Xn

distribution of & be §~(
Pt P2 - - Pq

J. Then the expectation of & is defined as

n
EE©)=D%-p;.
i=1
Let & be a discrete random variable with infinitely many possible values. Let

Xy X, ... . . . c '
g~ o b . Then the expectation of & is defined as E(§)=in -p; , if the
1 2 . . . i=1

series is absolutely convergent, that is Z|xi|.pi <o,
i=1

Let & be a continuous random variable with probability density function f. Then the

expectation of ¢ is defined as E(&) = Ix -f(x)dx supposing that the improper integral is

—00

absolutely convergent, that is I x| f(x)dx <oo.

—00

Remarks
o If the discrete random variable has only finitely many values, then its expectation
exists.
o If Z|xi| -p; =0 or 'f|x|-f(x)dx = oo, then, by definition, the expectation does not
i=1 —0

exist.

. i|xi|-pi<oo implies Zwlxi-pi<oo. Similarly, I|x|-f(x)dx<w implies
i=1 i=1 —0

[x-f(dx <co.
e The expectation of a random variable is finite, if it exists.
. ZXi -p; can be convergent even if it is not absolutely convergent. But in this case

i=1

if the series is rearranged, the sum can change. Therefore the value of the sum may depend
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on the order of the members, which is undesirable. This can not happen, if the series is
absolutely convergent.

e The expectation may not be an element of the set of possible values. For example, if
the random variable takes values —1 and 1 with probability 0.5 and 0.5, then expectation is
-1-05+1-05=0.

Examples
E1. We gamble. We roll a die twice and we gain the difference of the results.
Compute the expectation of the gain.

Let & be the difference of the results. The distribution of & can be given as follows:
0 1 2 3 4 5
¢~|6 0 8 6 4 21
36 36 36 36 36 36

6
Now E(&)=>x;p; =0-£+1-E+2-£+3-£+4-i+5-£=1.94.
=y 36 36 36 36 36 36

E2. We gamble. We roll a die n times and we gain the maximum of the results.
Compute the expectation of the gain.

Let & be the maximum of the results. The distribution of & can be given as follows:

Possible values are 1,2,3,45,6. and P(ézl):(%j, P(§=2)=[§j —[lj

re-a-(3) (3.
SESHRO RS SHROR

SRR RS GROI HREI RO
S ORI SO ORGRGEGRO)

E3. Flip a coin repeatedly. The gain is 10" if a head appears first at the nth

game. Compute the expectation of the gain.
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Let & be the gain. Now the possible values of & are 10, 100, 1000,.... and

P(E=10") :(3 . E(i)ZiXi P :iloi (%) :iSi =0,  consequently  the
i=1 i=1 i—1

expectation does not exist.
E4. Flip a coin repeatedly. The gain is 10" if a head appears first at the nth

game supposing n<m and 10™, if the we do not get a head until the mth game.(The bank
is able to pay at most a given sum, which is a reasonable assumption.) Compute the

expectation of the gain.

Let & be the gain. Now the possible values of & are 10, 100, 1000,...., 10™.

P(&:lO”):(%j , if n<m and P(g:lom){%] N

m m-1 i m-1 m-a
E(©) =% -pi= 10’ [3 +10" (%) =35 +10-5™* =
i=1 i=1 i=1

m-1
g 51

+10-5™1 =11.25.5™" —1.25 consequently the expectation exists.

E5. We compare the expectation of a random variable and the average of the
results of many experiences. We make computer simulations, we generate random numbers

in the interval [0,1] by geometric probability. Let the random number be denoted by & . Let

n=[6-£]+1. Now the possible values of =n are 1234567 and

Pn=1=P(fs-£]=0)=PO<t< =1, Pm=2)=p(s-eJ=n=PC<c<d=1

|~ ok

P(n:G):P([6-§]:5):P(gs§<1): , finally, P(n=7) =P([6£]=6)=P(£=1)=0.

6

Therefore, the distribution of n equals the distribution of the random variable which is

equal to the number of dots on the surface of a fair die. If we take the square of this random
variable, we get our motivating example presented at the beginning of this subsection.

Now repeating the process many times, and taking the average of the numbers 1,4,...,36 ,
we get the following results in Table e.1. Recall that the expectation of the gain equals
15.1667. The larger the number of simulations, the smaller the difference between the

average and the expectation.

Numbers of | 100 1000 10000 100000 100000 10000000

simulations

Average 13.94 15.130 15.0723 15.1779 15.1702 15.1646
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Difference | 1.2267 0.0367 0.0944 0.0112 0.0035 0.0021

Table e.1. Averages and their differences from the expectation in case of simulation
numbers n =100,...10’
E6. Recall the example presented in E7. in subsection d.1. Compute the
expectation of the distance between the chosen point and the centre of the circle.
Let & be the distance. The probability density function of &, as presented in subsection d.3.

22X g<x<R
is the following: f(x)=<R? .

0 otherwise

R

R
% X - 2X 2x3 2
Now E(§)= | x-f(X)dx = dx ={—} =—R.
£> ! R’ 3R%*|, 3

E7. Recall the example presented in E8. in subsection d.1. Compute the
expectation of the distance between the chosen points.
The probability density function of & as presented in subsection d.3. is the following:

2(1- if x<0<1
F0) = (1-x) i x |
0 otherwise

E©) = [x-Fdx = [x-20L-x Jix {xz —%} St

-0 0

E8. Compute the approximate value of the above expectation. Generate two

random numbers in [0,1] by geometric probability, compute their difference and take the

average of all differences. Repeating this process many times, we get the following results:

Numbers of | 100 1000 10000 100000 100000 10000000

simulations

Average 0.3507 0.3325 0.3323 0.3328 0.3331 0.3333

Difference | 0.0174 0.0008 0.0010 0.0005 0.0002 0.00007

Table e.2. Differences of the approximate and the exact expectation in case of different

numbers of simulations

E9. Choose two numbers in the interval [0,1] independently by geometric
probability. Let & be the sum of them. Now one can prove that the probability density

function is
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x if0<x<1
f(x)=42—-x if 1<x<2.

0 otherwise
Now
0 1 1 31! 372
X X 1 8 1
EE)= | x-f(X)dx = | x-xdx + [x-(2=x)dx=| = | +|[x?-2-| == 4+4-—--1+>=1
@ Pttaoee Proxa oo | |t 0] Fea o]

It is also possible to solve this problem by simulation. Generating two random numbers,

summing them up and averaging the sums one can see the following:

Numbers of | 100 1000 10000 100000 100000 10000000

simulations

Average 0.9761 1.0026 0.99995 1.0001 0.9999 1

Difference | 0.0239 0.0026 0.00005 0.0001 0.0001 0.00001

Table e.3. Differences of the approximate and the exact expectation in case of different

numbers of simulations

Properties of the expectation

Now we list some important properties of the expectation. When it is easy to do, we give

some explanation, as well. Let ¢ and n be random variables, and suppose that E(&) and
E(n) exist. Let a,b,ceR.

1. If £ and n are identically distributed, then E(§) =E(n) .
If & and n are discrete, then they have common possible values and P(& =x;)=P(n=X;),
consequently the weighted sums are equal, as well. If & and n are continuous random
variables, then they have common probability density function, consequently the improper
integrals are equal.

2. If &=c or P(¢=c)=1,then E(§)=c-1=1.

3. If0<g,then O0<E(§) holds.

If & is discrete, then all the possible values of & are nonnegative, therefore so is the
weighted sum, as well. If & is a continuous random variable, then 0<§ implies that its

probability density function is zero for negative x values. Consequently,

E(E) = Jx -f(x)dx =Jx -f(x)dx , which must be nonnegative.
—00 0
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4. E(E+m)=E(E)+EMm).

The additive property is difficult to prove using elementary analysis, but it follows from
the general properties of integral.

5. E(@-&+b)=a-EE)+b.

If & is discrete, then the possible values of a-&+b are ,,a” times the possible values of

& plus b, therefore so is their weighted sum. If & is continuous, then

Facn (X) =P(@€+b<x)=P(E< X ; b) = F(X ; b) supposing O<a. Taking the derivative

1 . x-b
fa§+b(x)=g'f( a ),

00 00 o0

E(a€ +b) = IX-fa§+b(X)dX :J.x-fa§+b(x)dx = J‘x%.f(

—00 —00 —00

x—Db
a

)ox = [ (ay +b)-f(y)dy =

ajy-f(y)dy+ b- .[f(y)dyzaE(&)er. A similar argument can be given for negative

value of “a” as well. If a=0 holds, then E(a-&+b)=b=aE(§) +b.

6. If a<g<b,then a<E(E)<b.

As a<§&, 0<E—a holds, therefore 0<E(§ —a) =E(&) —a, which implies a<E(E). A
similar argument can be given for the upper bound.

7. If £<n,thatis &(w) <n(w) forany e Q, then E(§) <E(n) .

Consider that E<n implies 0<n-¢§, consequently
0<EM-&)=EM)—E()=E(E) <E(m). We point out that it is not enough that the

possible values of & are less than the possible values of n, respectively. For example,

o 2.5 Now E(£)=1-0.1+4.09=37
01 09)' Mlos 02) Binihe v

E()=2-0.8+5-0.2=3.6, that is E(n) < E(%) .

8. Let &; i=1,2,..., n be independent identically distributed random variables with

expectation E(&;)=m. Then E(ié’;i) =n-m.

i=1

This is the straightforward consequence of the above properties, namely

EQQ &)= E(E)=n-m.
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9. Let &; i=1,2,...,n be independent identically distributed random variables with

n

g

expectation E(¢;)=m. Then E| 22— |=m.
n

n

;ai Lo

It follows from '*Tzﬁizzllé_,i :

10.If & and n are independent random variables and E(§-m) exists, then
E(E-m)=E(E) - E(n). The proof of this statement is outside this booklet.

X; Xy oo
11.1f & is a discrete random variable with distribution E;(pl p2 J
1 2 o

g:1—>R is a function for which {x,,X,,..fc 1, furthermore > |g(x;)|p; <o, then
i=1

E@(&) =Y 9(x;)p; .
i=1
Now g(£):Q—R is a random variable and its possible values are g(x;), and

P@(E)) =9a(x;)) = ij =q;. This implies the equality
F9(xj)=9(x;)

E(9(8)) = >, 9(x;)p; -Especially, if g(x) =x?, then E(£?)="x,"-p; .
i=1 i=1
12. If € is a continuous random variable with probability density function f, g:1cR

for which Im(¢) <1 and T|g(x)|f(x)dx<oo, then E(g(&) = Tg(x)-f(x)dx. Especially, if

g(x)=x?, then E(g(&)) =E(&*) = _[XZf(X)OIX :

Examples
E9. The latest property provides a possibility for computing integrals by

computer simulation. Since the expectation is an integral, and the expectation is around the
average of many values of the random variables, we can compute the average and it can be

used for the approximation of the integral. For example, if we want compute the integral

1
Isin xdx, then it can be interpreted as an expectation. Namely, let & be a random variable
0
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. - . . 1 if0<x<1
with probability density function f(x)= o and
0 otherwise.

0 1
E(sin &) = jsin x-f(x)dx:J.sin xdx. If & is a random number chosen by geometric
—0 0

0 if x<0
probability, then F(X)=P({<x)=<x if 0<x<1, and f(xX)=F'(x) =

{1 if 0<x<1
1 if 1<x

0 otherwise

Consequently, generating random numbers, substituting them into the function sinx, and
taking their average we get an approximate value for the integral. This is a simple algorithm.
We point out that the statement that expectation is about the average of many experiments
has not been proved yet in this booklet. It will be done using the law of large numbers in
chapter h. The following Table e.4. presents some results:

Numbers of | 100 1000 10000 100000 100000 10000000
simulations

Averages 0.4643 0.4548 0.4588 0.4586 0.4596 0.4597
Difference | 0.0046 0.0049 0.001 0.0011 0.0011 0.00002

Table e.4. Differences of the approximate and the exact value of the integral in case of

different numbers of simulations

E10. The additive property of the expectation helps us to simplify computations.

For example, consider the following example. Roll a die twice. Let 1 be the sum

of the results. Now, one can check that
2 3 4 5 6 7 8 9 10 11 12
n~|t 2 3 4 5 6 5 4 3 2 14 and
3% 36 36 36 36 36 36 36 36 36 36
11
E(n)=2xipi=2-i+3-£+4-i+5-i+6-i+7'£+8~£++9-i+
= 36 36 36 36 36 36 36 36
3 2 1 . ) .
10-£+11-£+12 -5:7 . Another method is the following: n=¢&, + &, where &, is the

result of the first throw and &, is the result of the second throw. Now &, and &, are

1 2 3 4 5 6
identically distributed random variablesand §, ~| 1 1 1 1 1 1)
6 6 6 6 6 6

1 1 1

; 1 1 .1
EE)=) Xip;=1-=+2-=+3-=+4-—+5-—+6--=3.5=E(E,),
' Zl 6 6 6 6 6 6 ?




Probability theory and math. statistics—-Numerical char. of random variables 79

consequently, n=¢&, +&, =E(§, +&,)=2-35=7.

e.2. Dispersion and variance

The expectation is a kind of average. It is easy to construct two different random variables

-1 1
which  have the same expectation. For example, §1~[05 05} and

-2 -1 0 1 2
&, ~ . They both have the same expectation, namely zero.
0.1 03 0225 025 0.125

The measure of the average distance from the expectation can be an important information,
as well. As E(§ —E(&)) =E(&) —E(E(E)) =0, therefore it is not appropriate to characterize

the distance from the average. The reason is that the negative and positive differences
balance out. This phenomenon disappears if we take E(|§ - E(§)|) . But if we use the square

instead of absolute value, the signs disappear again and, on the top of all the small
differences become smaller, large differences become larger. Squaring punishes large

differences but does not punish small ones. Consequently, it is worth investigating
E((e - E(®))? ) instead of E(—E(z)), if it exists.

Definition Let & be a random variable with expectation E(&) . The variance of ¢ is defined
as E2((-E(©))°)=D?(©), if it exists.

Definition Let & be a random variable with expectation E(&). The dispersion of & is

defined as D(2) =+/D2(€) , if D?(2) exists.
Remarks
e AsO0< (g - E(é))2 , SO is its expectation. Therefore its square root is well-defined.
e By definition, dispersion of a random variable is a nonnegative number. It is the
square root of the averaged square differences.
e It is easy to construct such a random variable which has expectation but does not

have dispersion. We will do it in this subsection, after proving the rule for its

calculation.

e Another name of the dispersion is the standard deviation.

Theorem If & is a random variable with expectation E(&), and E(£%) exists, then

D?(&) =E(?) - (E©))".
Proof Applying the properties of expectation
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D?(¢) =E((£—E(8))*) =E(&? — 26E(&) + (E(¥))*) = E(£®) — 2E(E)E(&) + E((E(8))*)
=EE?) - 2(E@E)) +(EE) =EE*) - (E@©) .

Remarks

o0

2
° DZ(E.\):ZXini—(ZXi ij if & is discrete, and
i=L

i=1

2
D?(&) = Ixzf(x)dx - Uxf (x)dx} if & is a continuous random variable.

—00 —00

o If £ and n are identically distributed random variables, then D(&) = D(n)

e In case of a discrete random variable with infinitely many possible values,

E(E?) = inzpi . If the series is not (absolutely) convergent, then inzpi =00,

i=1 i=1

e In case of a continuous random variable with probability density function f,

E(az)zfxzf(x)dx. If the improper integral is not (absolutely) convergent, then

szf(x)dx:oo.

—00

e If E(t?) does not exist, neither does D?(&). inzpizoo implies

i=1
D" (x; —¢)*p; = and Ixzf(x)dx:oo implies .[(X—C)Zf(x)dX:oo for any value of c.
i=1 —0 —0

e It can be proved that if E(&?) exists, then so does E(&).

e Let & be a continuous random variable with probability density function

0 if x<1
f(x)=9 2 . S Then the expectation of the random variable is

o0 o0

2 1 11" 1
E@E) = Ix-f(x)dx:J.X-Fdx:Z-_!.Fdx:Z-[—;l :2((1@00-;)—(—1)]:2(0“):2

—0 1

. Consequently, E(&) exists, but D(&) does not.

Example
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El.

dispersion of &. First we have to determine the distribution of &.

Roll a die twice. Let & be the maximum of the results. Compute the

It is easy to see that

1 2 3 4 5 6
e~ 3 5 7 9 1

3% 36 36 36 36 36
E(i)=1-i+2-1+3~£+4~l+5-i+6-—1=4.472.

36 36 36 36 36 36
E(g2)=12.i+22-3+32-3+42-1+52-3+62-£=ﬁ=21.972.
36 36 36 36 36 36 36

Applying the above theorem,
D(&) =\/E(§2)—(E(a))2 =~21.972 - 4.4722 = J1.973=1.405

E2. Choose two numbers from the interval [0,1] independently by geometrical
probability. Let & be the difference of the two numbers. Compute the dispersion of &.

Recall from E8. in subsection d3 that the probability density function of & is

£x) = 2-2x if0<x<1
()= 0 otherwise '
We need E(&) and E(&?).
F h 23T 1
= . = . — = 2 _2 =_
E(a)_ij f(x)dx !x (2 - 2x)dx {x : L 5

, 2x®  2x* 1_1
E(g)—jx F(x)dx = jx (2- 2x)dx_{T——L_g.

4
D(&) = ]} \/7 0.236 .

Now we list the most important properties of the variance and the dispersion. As variance

and dispersion are in close connection, we deal with their properties together.

Properties of the variance and dispersion

Let £ and n be random variables with dispersion D(§) and D(n), respectively, and let a,
b, ¢ be constant values.

1. If £=c, then D?(£)=D(&)=0. It is obvious, as E(&)=c, (E-E(£)) =0, and
E(0)=0.
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2. If D(g)=0, then P(§=c)=1. Consequently, dispersion being zero characterizes
the constant random variable.

3. D?*(at+b)=a’D?(&) and D(a&+b)=[a|D(&).
Consider, that E(a& + b)=aE(§) + b,

E((ag + b—(aE(2) + b))?) = E(a® (£ - E())*) =a’E((E — E(&)))=a’D?(2).

D(a& +b) =/a’D? (&) =[a|D(&).

4. Let & be a random variable with dispersion D(&). Now the value of
9(c) =E((&—c)) is minimal if c=E(). Consider that
g(c)zE((a—c)Z) =c2—2cE(<E_\)+(E(<:))2 is a quadratic polynomial of c. Moreover, the
coefficient of c¢? is positive, therefore the function has a minimum value. If we take its

derivative, g'(c)=-2c+2E(&). It is zero if and only if c=E(E) which implies our

statement.

5. If & isarandom variable for which a <& <b holds, then its dispersion exists. If it

is denoted by D(), then D(&) < b ; a

If & is discrete, then E(&Z):ix?pi Smax{az,bz}-zoolpi =max{a2,b2}<oo. If & is

i=1 i=1

continuous, then E(&?) = Ixzf(x)dx < max{az,bz}. If(x)dx = max{az,b2 }< o , which

—00 —00

proves the existence of dispersion. Applying the properties of expectation we can write for

any value of xeR,
D? (&) =E((6-E(©)*) <E((E-x)*) <(@—x)*P(E<x)+(b-x)*P(§>X) =
=(@a-x)2—(@-x)?PE=x)+(b-x)?P(E=x)=(a—x)* + (b—a)(b+a—2x)P(>X).

Substituting x= a+b

2
, b+a-2x=0, (a—x)zz(%j. We get that

2
(b-2) , therefore D(&) < b-a

D*(¢) <

} a b
. We note that in case of &~ \
0.5 05

D(§) = %. Consequently, the inequality can not be sharpened.

6. If & and n are independent, then D?(&+mn)=D?(&)+D?*(n) and

D(&+mn)=/D*(§) +D*(n) .
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D?(&+1) =E((& +n—E(©) - EM)") =E((& - E©)*) + E(n - EM)?) +2-E(E ~E(©) - (n—EW)))
Recall that if ¢ and n are independent then E(§-m)=E(E)E(n), therefore
E((& - E(€)-(n—E(m))=E((& - E(&)) - E((n—Em)) =0.
We would like to emphasize that the dispersions can not be summed, only the variances.
Namely, it is important to remember, that D(§+n) = D(E) + D(n). This fact has very
important consequences when taking the average of random variables.

7. Let & i=1, 2, ..., n be independent identically distributed random variables with
dispersion D(&)=o. Then D?(} ¢)=n-c® and D(Zéi)zx/ﬁ-c. This is the

i=1 i=1

straightforward consequence of the above properties, namely
n n

D2(Z§i):ZD2(§i):n ‘ol
i=1 i=1

8. Let &; i=1,2,....,n be independent identically distributed random variables with

Z&i 02 Zé,
dispersion D(&;)=o. Then DZ(%):7 and D( .:1n )=

(¢

Jn

. This is again the

straightforward consequence of properties 3 and 7.

e.3. Mode

Expectation is the weighted average of the possible values and it may not be the element of

the set of possible values. A very simple example is the random variable taking values 0 and

0 1
1 with probabilities 0.5. In that case the distribution of & is given by §~(05 05)

E(E)=0-05+1-0.5=0.5, and 0.5 is not among the possible values of &. Mode is in the

set of the possible values and the most probable value among them.

Definition Let & be a discrete random variable with  distribution

X; X, .. Xy . . .
&~ . The mode of & is x,, if p; <p,, 1=123,....
Pr P2 - Pno

Definition Let & be a continuous random variable with probability density function f(x).

The mode of § isx if f has its local maximum at x, and the maximum value is not zero.

Remark
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e The mode of a discrete random variable exists. If it has finitely many values then the
maximum of a finite set exists. If it has infinitely many values, then only 0 may have
infinitely many probabilities in its neighbourhood. The remaining part of the probabilities is
a finite set, it must have a maximum value, and the index belonging to it defines the mode.

e The mode of a discrete random variable may not be unique. For example, consider

0 1
&~ (0 5 0 SJ . Now both possible values have equal likelihood.

e The mode of a continuous random variable is a more complicated case, as the
probability density functions may be changed at any point and the distribution of the random
variable does not change. Consequently we usually only deal with the mode of such
continuous random variables which have a continuous probability function on finitely many
subintervals. We consider the maximum of these functions in the inner parts of the
subintervals, and they are the modes. Consequently, mode of a continuous random variable
may not exist, see for example the following probability density function:

f(x) ={§ 'f0<<xo' It has its maximum value at zero, at the endpoint of the interval [0, )
if x <

and no other maximum value exists.

08

0.6

()
°

0.2

Figure e.1. Probability density function without a local maximum

e The mode of a continuous random variable may be unique, see for example

e X +x%* .
T e if 0<x .

0if x<0

The graph of this probability density function can be seen in Fig.e.2.
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Figure e.2. Probability density function with a unique local maximum

The maximum can be determined by taking the derivative of f(x) and finding where the
derivative equals zero. Namely,

F(x) = A/7)-(—e " +3x%e* —x% ™) if 0<x
0if x<0

f'(x)=0 implies —e ™ +3x%* —x%* =0 which means that —1+3x*> —x*=0.lt is
satisfied at x=2.8794 and x=0.6527. At x=0.6527 the function takes its minimum, at x=2.

8794 the function takes its maximum. Consequently, the mode is 2.8794.

° The mode of a continuous random variable may not be unique. If the probability
1 x> —(x-5)2
density function of the random variable is f(x)= (e? +e 2 ), it has two
2\2n

maximum values, one of them is about zero, the other one is about 5. Consequently, two

modes exist.

Figure e.3. Probability density function with two local maximums
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e.4. Median

The mode is the most likely value of the random variable, the median is the middle one.
Namely, the random variable takes values with equal chance under and below the median.
More precisely, the probability of taking values at most the median and at least the median,
both are at least 0.5.

Definition & is a random variable. The median of & is the value y, if 0.5<P(§<y) and
0.5<P(y<g).
Remark

e If & is a continuous random variable with cumulative distribution function F(x),
then the median of & is the value y for which F(y)=0.5 holds. The inequality
0.5<P(y<&)=1-F(y) implies F(y)<0.5. Taking into account that & is a continuous
random variable, P(§<y)=P(§<y)=0.5, therefore 0.5<P(§<y)=F(y). Consequently,
F(y)=0.5. As the function F is continuous, and it tends to O if x tends to —oo and it tends
to 1 if x tends to infinity, the median of a continuous random variable exists, but may not
be unique.

e Let & be a discrete random variable. The median of & is the value y for which
F(y)<05 and 05.<F(y+) 05<P(y<&)=1-F(y) implies F(y)<05, and

0.5<P(E<y)= lim F(a)=F(y+) is the second inequality.
a—>y+

Examples
E1l. Consider a random variable with cumulative distribution function
0 if x<0

F(x)=41-(1-x)* if 0<x<1.
1 ifl<x

Determine the median of the random variable.

We have to find the cross point of F(x) and y=0.5. As the function takes the value 0.5
when its argument is in [0,1], we have to solve the equation 1— (1—x)?=0.5. It implies the

equality 2x —x? =0.5, therefore x, =0.293, and x, =1.707 . This last number is not in the

interval  [01], consequently the median is 0.293. As a checking,

F(0.293) =1— (1-0.293) =0.5001 .
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0.6

: . : :
0.5 1 15 2
x

Figure e.5. The cross point of the cumulative distribution function and the line

y=0.5
01 5
E2. Let & be a discrete random variable with distribution £~|1 1 1},
3 3 3

Determine the median of €.
0 hax<0

E ha0<x<1
3

F(x) = > :
— hal<x<5
3

1 hab<x

Now F(x)=0.5. P(&,gl):%, P(1s§):§, both of them are greater than 0.5. No other

value of x satisfies this property. Consequently the unique median is 1.

08F

06

02r

Figure e.6. The cumulative distribution function of the random variable & and

the line y=0.5
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Median equals the argument when the cumulative distribution function jumps the level 0.5.

E3. Let & be a discrete random variable with distribution §~[i i}
2 2
Determine the median of €.
0if x<2
Now F(x)= % if 2<x<5,and F(x) takes value 0.5 in the interval (2,5]. P(§<2)=0.5,
1if 5<x
P(§>2)=0.5, consequently x=2 is a median. Moreover, P(§ <x)=P(§>x)=0.5 holds
for any value of [2,5). Therefore, they are all medians. Usually the middle of the interval

(actually 3.5) is used for the value of the median.

0.8F

0.6

02F

Figure e.7. The cumulative distribution function of the random variable & and

the line y=0.5
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f. Frequently used discrete distributions

The aim of this chapter

In the previous chapters we have got acquainted with the concept of
random variables. Now we investigate some frequently used types. We
compute their numerical characteristics, and study their main properties
as well. We highlight their relationships.

Preliminary knowledge

Random variables and their numerical characteristics. Computing

numerical series and integrals. Sampling.

Content

f.1. Characteristically distributed random variables.

f.2. Uniformly distributed discrete random variables.

f.3. Binomially distributed random variables.

f.4. Hypergeometrically distributed random variables.

f.5. Poisson distributed random variables.

f.6. Geometrically distributed random variables.
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f.1. Characteristically distributed random variables

First we deal with a very simple random variable. It is usually used as a tool in solving
problems. Let Q, A, and P be given.

Definition The random variable & is called a characteristically distributed random
variable with parameter 0<p <1, if it takes only two values, namely 0 and 1, furthermore

P(E=1)=p and P(§=0)=1—p. Briefly written, §~( 0 1].

1-p p
Example
El. Let AeA, P(A)=p. Let us define &:Q—>R as follows:
1 if A
&(m):{o 'rwaA' Now & is a characteristically distributed random variable with
(O]

parameter p.
In terms of event, & equals 1 if A occurs and & equals zero if it does not. Therefore §

characterizes the occurrence of event A. It is frequently called an indicator random variable
of the event A, and denoted by 1, .

Numerical characteristics of characteristically distributed random variables:

Expectation
2
E(€) =p, which is a straightforward consequence of E(&) = in pi=1-p+0-1-p)=p.

Dispersion )
D(E) =+/p- (L—p) . As a proof, recall that D (2) = E(£?)— (E(®))?

2
EE€?) =Y x?-p,=1*-p+0?-(1-p)=p, consequently, D?(&)=p-p”=p(d-p). This

i=1

implies the formulaD(§) = /p(1—p) .

Mode
There are two possible values, namely 0 and 1. The most likely of themis 1, if 0.5<p, 0, if

p <0.5 and both of them, if p=0.5.

Median
If p<0.5, then 0.5<P(E<0)=1-p and 0.5<P(0<&)=1. Consequently, the median

equals 0.
If 0.5<p,then 0.5<P({<1)=1 and 0.5<P(1<&)=p. Consequently, the median equals

1.
If p=0.5, then P(§<x)=0.5 and P(§>x)=0.5 for any value of (0,\1). Moreover,

P(E<0)=0.5, P(>0)=1, and P((<1)=1 and P(§>1)=0.5. This means that any point
of [0,1] is a median.
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Theorem If A and B are independent events, then 1, and 1, are independent random
variables.

Proof P(1, =1n1; =1)=P(ANB)=P(A)-P(B)=P(1, =1)-P(1; =1).

P, =11, =0)=P(ANB)=P(A)-P(B)=P(1, =1)-P(15 =0).

P, =0N1; =1)=P(ANB)=P(A)-P(B)=P(1, =0)-P(1; =1).

P(l, =0n1, =0)=P(ANB)=P(A)-P(B)=P(1, =0)-P(1; =0).

f.2. Uniformly distributed discrete random variables

The second type of discrete random variables applied frequently is a uniformly distributed
random variable. In this subsection we deal with discrete ones.

Definition The discrete random variable & is called a uniformly distributed random
variable, if it takes finitely many values, and the probabilities belonging to the possible

. Xy Xy, .o X,
values are equal. Shortly written, &~ ,
pl p2 . . pn
pi:pj,i=1,2,...,n, j=12...,n.
Remarks
n 1 X, X, . . X,
o Asl=>'p;=np,, py=p,=..=p,==.&=(1 1 1.
= " n n n

e There is no uniformly distributed discrete random variable if the set of possible
values contains infinitely many elements. This is the straightforward consequence

of the condition 1= p; . With notation P(¢=x;)=p, if p=0 then » 0=0, if

i=1 i=1

O<p, ip:oo.
i=1

Numerical characteristics of uniformly distributed random variables:

Expectation

n
1 —

E@©)=) X, ==X.

it N
Dispersion

n n 2
2X | 2
DE)= [ —-| = , Which can be computed by substituting into the formula
n n

concerning the dispersion.
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Mode
All of the possible values have the same chance, all of them are modes.
Median
X, +X,
- - 5 7+1 - -
X .., if n isodd, and —2—2— if n is even.
> 2
Example

El. Throw a die, and let & be the square of the result. Actually,

1 4 9 16 25 36
E~/1 1 1 1 1 1| As all possible values have the same chance, £ is a

6 6 6 6 6 6
uniformly distributed random variable. Note that there is no requirement for the possible
values.

f.3. Binomially distributed random variables

After the above simple distributions we consider a more complicated one.

Definition The random variable & is called a binomially distributed random variable
with parameters 2<n and O<p<1, if its possible values are 012,..,n and

PE=k)= (EJ p“1-p)"™, k=012,...,n.

Remark

n
. It is obvious that OsP(&,:k):(k)pk(l—p)“k. Furthermore, the binomial

theorem  implies  that ZP(&:k):Z(EJ-pk(l—p)”‘k:1. Recalling  that
k=0 k=0

2(n
(a+b) =Z(kja"b”"‘, and substituting a=p and b=1-p,weget a+b=p+1—p=1.
k=0

Theorem If &; i=12,...,n are independent characteristically distributed random variables

with parameter 0<p<1, then n =Zai is a binomially distributed random variable with
i=1
parameters n and p.

0 1
Proof Recall that &; ~ (1 J . Their sum can take any integer from 0 to n.

P(Y & =0)=P(&, =01 &, =0...A &, =0)=P(&, =0)-P(2, =0) .- P(&, =0) =(L— p)"

i=1
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P& =D=nP(E& =1nE, =0M..NE, =0) =P(& =1)-P(&, =0)..- P&, =0)=n-p- (L—p)"

The factor n is included because the event A can occur at any experiment, not only at the
first one.

PE, =1n¢&, =1Nn..n§ =1n¢§ ,=0n..nE, =0)=

P& =1)-P(E, =1) ... P& =1) - P(. =0)-...- P&, =0) =p* - (L—p)"™"

If the event A occurs k times, then the indices of experiments when A occurs can be chosen

. (n d n o
in (kJ ways, consequently, P(Zéi = k)=[k)p" S@-p)" k.

i=1

Theorem Repeat a trial n times, independently of each other. Let A be an event with
probability P(A)=p, 0<p<1. Let & be the number of times the event A occurs during the

n independent experiments. Then & is a binomially distributed random variable with
parameters nand p.
Proof:

Let1,’ ={

Considering that the experiments are independent, so are 1Ai ,i=1,2,....n.

1 if A occurs at the ith exp eriment
0 if Adoes not occur at the ith exp eriment

n -
As = ZlA' , & is the sum of n independent indicator random variables, consequently, &
i=1

is binomially distributed random variable.

Examples
El. Throw a fair die n times. Let & be the number of “6”-s. Then & is a

binomially distributed random variable with parameters n and p =% :

E2.Flip a coin n times. Let & be the number of heads. Then & is binomially

distributed random variable with parameters n and p =% .

E3. Throw a fair die n times. Let & be the number of even numbers. Then § is a

. . _ . . 1
binomially distributed random variable with parameters n and ng. We note that the

random variable being in this example is identically distributed with the random variable
presented in E2.

E4. Draw 10 cards with replacement from a pack of French cards. Let & be the
number of diamonds among the picked cards. Then & is a binomially distributed random
13

variable with parameters n=10, p= =
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E5. Draw 10 cards with replacement from a pack of French cards. Let & be the
number of aces among the picked cards. Then & is a binomially distributed random variable
with parameters n=10, p= 5i2 .

E6. There are N balls in an urn, M of them are red, N-M are white. Pick n with
replacement from them. Let & be the number of red balls among the chosen ones. & is a

binomially distributed random variable with parameters n and pz%.(ZSN, 1<M,

1<N-M, 2<n)

Numerical characteristics of binomially distributed random variables

Expectation

EE)=np, which is a straightforward consequence of
E(€)=E(Q 1a)= D E(1x) =D p=np.

i=1 i=1 i=1
Dispersion

D(&)=+/np-(L-p).

As an explanation consider that, as 1iA (i=12,..,n) are independent,

D?(€)=D?(D 1,)=nD?*(1;) =n-p. This implies D(g)=+/np - (1—p) .
i=1
Mode
If (n+2)p is integer, then there are two modes, namely (n+1)-p and (n+21)p—1.

If (n+1)p is not integer, then there is a unique mode, namely [(n +1) - p].
As an explanation, investigate the ratio of probability of consecutive possible values.

ny oy n—k n!
(1=
Pe=k) _ (k]p d=p) _ Kin—k)  p _n-k+1 p
P(E=k-1) n ) n-(k-1 n! 1-p k 1-p’
(k—l}pk @R oy ke

k=12,...,n.

) % implies that P(¢ =k —1) <P(§ =K), that is the probabilities are growing.

% <1 implies that P(§ =k) <P(§ =k —1), that is the probabilities are decreasing.

_PE=k) =1, then P(¢=k)=P(£=k-1).

PE=k-D
1< MK P s, it only if k<(n+np. 2K P9 hotds, if and only if
k 1-p k 1-p

N=K+1 P _1 holds if and only if k=(n-1)-p. This is satisfied

1-p
only in the case if (n+21)p is an integer. Therefore, if (n+21)p is not integer, then, up to
k=[(n +1)p], the probabilities are growing, after that the probabilities are decreasing.

(n+1)-p<k, and
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Consequently, the most probable value is [(n +1)p]. If (n+1)p is an integer, then
P(¢ =k) =P(£ =k —1), consequently there are two modes, namely (n +1)pand (n+1)p—1.

pk)

Figure f.1. Probabilities of possible values of a binomially distributed random variable with
parameters n=10 and p=0.2

Without proof we can state the following theorem:

Theorem
If & is a binomially distributed random variable with parameters n, and p, &, is a

binomially distributed random variable with parameters n, and p, furthermore they are
independent, then &; + &, is also binomially distributed with parameters n, +n, and p.

As an illustration, if &, is the number of “six”-es if we throw a fair die repeatedlyn, times,
&, is the number of “six” -es if we throw a fair die n, times, then &, + &, is the number of
“six” -es if we throw a fair die n, +n, times, which is also binomially distributed random
variable.

Theorem

If &, is a sequence of binomially distributed random variables with parameters n and q,,,

furthermore n-g,==~, and k is a fixed value, then
n k

P(ey == -, s e i

Proof

Substitute q, =%,

R O e e

T Kn—K)! nk

n
n(n—l)(n—2)....(n—k+1)( xjkxk[ xj”
-2 212
n n k! n

Separating the factors,
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nn-)(n-2)...n—-k+1) n-1 n-2 n-k+1
n* n n  n

to 1, and k is fixed.

—1,if n—> o0, as each factor tends

-k
Similarly, (1—&j —-1,if n> oo,
n

n

n
Since (1+ ij —e” if n— o, consequently, (1—&J —>etifnow.
n n

k

Summarizing, P(¢, =k) =(Ej(qn)k 1-q,)"™ —>%e‘x supposing N — oo .

Example

E7. There are 10 balls and 5 boxes. We put the balls into the boxes, one after the
other. We suppose that all the balls fall into any box with equal chance, independently of the
other balls. Compute the probability that there is no ball in the first box. Compute the
probability that there is one ball in the first box. Compute the probability that there are two
balls in the first box. Compute the probability that there are at most two balls in the first
box. Compute the probability that there are at least two balls in the first box. Compute the
expectation of the balls in the first box. How many balls are in the first box most likely?

Let n be the number of balls in the first box. n is a binomially distributed random variable

. 1 . . .
with parameters n=10 and p = c We can give an explanation of this statement as follows:

we repeat 10 times the experiment that we put a ball into a box. We consider whether the
ball falls into the first box or not. If n is the number of balls in the first box, then n is the

number of occurrences of the event A ="actual ball has fallen into the first box”. It is easy

1 .
to see that P(A)=g. Therefore, the possible values of n are 0,1,2,...,10, and the

10 k 10-k
probabilities are P(n =k) :[k j@j [1—%] , k=0212,..10.

If we calculate the probabilities, we get

P(=0)= (ﬂ@j [1— %) =0.1074 ,P(n=1) = GO](S (1— 3 =0.2684 ,

2 8 3 7
P(n=2)=(120J[%j (1-%) ~0.3020 , P(n=3)=[;OJ&j (1—%] ~0.2013 ...,
P<n=10)=ﬁgj@j (1-%) 107,

(0 1 2 3 4 5 6 7 8 9 10
1 01074 0.2884 03020 02013 008808 00264 00055 00007 10 10> 107"/

Returning to our questions, the probability that there is no ball in the first box is

0 10
P(=0)= @0}@) [1— é} =0.1074 .
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The probability that there is one ball in the first box equals

10 1 1 1 9

The  probability that there are two balls in the first box is

Pm=2) =(120](%j (1—%) =0.3020 .

The probability that there are at most two balls in the first box is
PM<2)=P(n=0)+P(n=1)+P(n=2)=0.1074 + 0.2684 +0.3020 =0.6778 .

The probability that there are at least two balls in the first box can be computed as
P2<n)=PM=2)+PM=3)+...+ P(M=10) = 0.3020 +0.2013 + 0.0088 +...+10 " =0.6242,

or in a simpler way,
P(2<1n)=1-(P(n=0)+P(n=1))=1-(0.1074 + 0.2684) =1—0.3758 = 0.6242 .

The expectation of the number of balls in the first box is E(n) =10- % =2, which coincides

with the mode, [(n +1)p]= [11 - ﬂ _2.

E8. There are 10 bhalls and 5 boxes, 100 balls and 50 boxes, 1000 balls and 500
boxes, 10" balls and 10" /2 boxes, n=1,2,3,.... Balls are put into the boxes and all the balls
fall into any box with equal probability. Let us denote by &, =mn, . the number of balls in
the first box. Let k be fixed and investigate the probabilities P(&, = k). Compute the limit

of these probabilities.
Referring to the previous example, &, is a binomially distributed random variable with

parameters 10" and qg(n) =10in. The product of the two parameters equals 10" 'loi”zz

k
always, consequently, P(&, =Kk) —>%e2 ,if n—>oo.

In details,
1 1 1 1 L] ok i
E.>1 (10, 5) E.~2 (1001 50) &3 (1000, 500 ) ‘23 (10000, 5000 ) Ee
k=0 0.1074 0.1326 0.1351 0.1353 .| .| 0.1353
k=1 0.2684 0.2706 0.2707 0.2707 .| .| 0.2707
k=2 0.3020 0.2734 0.2709 0.2707 .| .| 0.2707
k=3 0.2013 0.1823 0.1806 0.1805 .| .| 0.1804

Table f.1. The probabilities of being k balls in a box in case of different parameters of total
number of balls and boxes

We can see that the probabilities computed by the binomial formula are close to their limits,

if the number of experiments is large (for example 10000). Consequently, the probabilities
k

of binomially distributed random variables can be approximated by the formula %ek,

called Poisson probabilities.



Probability theory and math. statistics— Frequently used discrete distributions 98

f.4. Hypergometrically distributed random variables

After sampling with replacement, we deal with sampling without replacement, as well. The
random variable which handles the number of specified elements in the sample if the
sampling has been performed without replacement is a hypergeometrically distributed
random variable.

Definition The random variable & is called a hypergeometrically distributed random
variable with parameters 2<N, 1<S<N-1 and 1<n, n<S, n<N-S integers, if its

(Sj (N_SJ
. k) {n-k
possible values are 0,1,2,...,n and P((=k)=—=——% k=012,...,n.

N
n
Example
E1. We have N products, S of them have a special property, N—S have not.
We choose nones from them without replacement. Let & be the number of products with

the special property in the sample. Then, the possible values of & are 0,1,2,3,...,n, and the
probabilities  (referring to the subsection of classical probability) are

)

e The previous example shows that the sum of the probabilities

P(E=K)=

Remarks
S)(N-S
ity
N
)
The events ,.there are k products with the special property in the sample” k=0,1,2,...n form a
partition of the sample space, consequently the sum of their probabilities equals 1.

equals 1.

° Similarly to the binomially distributed random variable, actually, ¢ can also be

written as a sum of indicator random variables, but these random variables are not
independent.

Numerical characteristics of hypergeometrically distributed random variables:

Expectation
E()= n% . This formula can be computed using the definition of expectation as follows:
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ity

E@_gk__ﬁq_“

n

S(S-1(S-2)..(S—k+1) (N=5)-(N-S-1)-..-(N-S—(n—k)+1)
s ki (n—K)! _
= N

nI(N —n)!
S(S-1)(S-2)..(S—k+1) (N=5)-(N=S-1)-...(N-S—(n-K)+1)

n — 1)1 — |
g; (k—1)! _ (n—K)! _
. nI(N —n)!

S-1}N-1-(S-1) S-1\N-1-(S-1)
n nﬁ(k—l](n—l—(k—l)} ZE né(k—l}(n—l—(k—l)lz
N N-1 S N N-1
(n—l} (n—lj
S-1}(N-1-(S-2)
(o)
N-1
)
(S—lj(N—l—(S—l)j
Taking into account that ni J n-1-]

= N-1
n-1

>
LN

n

Z|lwn

T
o

=1, we get the closed form for the

expectation presented.

Dispersion

D(g)z\/n%-(l—%)(l— El_llj . We do not prove this formula, because it requires too

much computation.

Mode

E+Dn+D) if G+Dn+1) is not an integer and there are two modes, namely
N+2 N+2

C+DO+Y g DD 5 G+DO+D G integer.
N+2 N +2 N+2

Similarly to the way applied to the binomially distributed random variable we investigate
PE=K)

the ratio )
PE=k-1)

Writing it explicitly and  simplifying we get
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o)
P(E=Kk) _ n _S—k#l  n-K+1 0 order to know for which
PE=k-1) (S N-S K N-S-n+Kk

k-1) {n-k+1

N
)
indices the probabilities are growing and or decreasing we have solve to the inequalities
S-k+1 n-k+1 S-k+1 n-k+1 1 S—k+1'N—S—n+k+1:L

1< . , . <1,
k N-S-n+k k N-S—-n+Kk k n-k+1
After some computations we get that
1 SZKRHL oKL s if and only if k< SED(OHD
k N-S-n+k N+ 2
S-ktl =K+l 4 hoidsifand only if SFDOED
k N-S-n+k N+ 2
1o S=k+l n-K+l o oids if and only if k= DO+ i equality can be
k N-S—-n+k N +2
satisfied if S+Hn+) is an integer. Consequently, the mode is unique and it equals
G+ +1) , if G+Dn+1) is not an integer and there are two modes, namely
N+2 N +
(S+D(n+2) and (S+D(n+12) _1if (S+D(n+1) is an integer.
N+2 N+ 2 N+2
Theorem

Let N—>owo, S— o0, %:p , and let k ,n be fixed integer values.

G

o)
k)\n-k) S(S-1)..S-k+1) (N-S)(N-S-1)..(N-S-n+k+1) n!
(N] B k! (n—k)! N(N-1)..(N-n+1)

Proof

n

The number of factors in the numerator is k+n—k=n and so is in the denominator.
S 1

| n _ NN
Taking into account that SEL ,and E:p, E: N N —>pif No>w,
ki(n-k)! (k N N-1 1_i

N
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S_k. 1 1-5
S_k+1=N N N—)pifN—>oo,furthermore N_Sz—N—>1—p,
N-k+1 k 1 N -k k

1-—+— 1-—

N N N
(N=S-n+k+l) = N N N N_,5_;if No>ow.
N-n+1 1 n 1
_7+7
N N

The number of factors tending to p equals k, the number of multipliers tending to 1-p equals

W)
n-k, consequently \k)j\n-k) - (Ejpk @-p)"~.

N
n
Remark

e The meaning of the previous theorem is the following: if the number of elements is
large and we choose a sample of a few elements, then the probabilities of having k elements
with a special property in the sample is approximately the same if we take the sample with
or without replacement.

Example

E1. There are 100 products, 60 of them are of first quality, 40 of them are
substandard. Choose 10 of them with/ without replacement. Let & be the number of

substandard products in the sample if we take the sample with replacement. Let n be the

number of substandard products in the sample if we take the sample without replacement.
Determine the distribution, expectation, dispersion, and mode of both random variables.

¢ is a binomially distributed random variable with parameters n=10, p:%. This

10
means, that the possible values of & are 0,1,2,3,...,10, and P(§ =k) = (k ]0.4"0.6lOk . is
a hypergeometrically distributed random variable with parameters N=100, S=40, n=10.
40) ( 60
k 10 -k
—~ 2. To
100
10
compare the probabilities in case of choosing with and without replacement we write them
in the following Table f.2.

Therefore the possible values of n are 0,1,2,3,..,10 and P(n=Kk)=

0 1 2 3 4 5 6 7 8 9 10

k
P(E=k) | 0.006 | 0.040 | 0121 | 0.215 | 0.251 | 0.201 | 0.111 | 0.042 | 0.010 | 0.001 | 0.0001

P(n=k) | 0.004 | 0.0034 | 0.115 | 0.220 | 0.264 | 0.208 | 0.108 | 0.037 | 0.008 | 0.001 | 0.00004
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Table f.2.Probabilities of the numbers of substandard products in the sample in case of
sampling with and without replacement

It can be seen that there are very small differences between the appropriate probabilities,
therefore it is almost the same if we take the sample with or without replacement.

40
E(¢)=10-04=4, E(n)=10-—=4.
(©) () =10-755

D(¢)=+/10-0.4-0.6 =155, D(n):\/lo.“_o.ﬂ.(l_ij 148
The mode of & and n are the same values, namely 4, as it can be seen in the Table f.1., or

applying the formula [(n+1)-p]=[11-0.4]=4, or {(S+1)(n+1)}:[41-11}:[4.42]:4’

N+2 102
respectively.

E2. There are N balls in a box, S are red, N-S are white. Choose 10 from them
without replacement. Compute the probability that there are 4 red balls in the sample if the
total number of balls are N, =10, N, =100, N, =1000, N, =10000 , N, =100000 , and

S;=4,S,=40, S, =400, S, =4000, S; =40000 . Notice that %: p=0.4 is constant.

N 10 100 1000 10000 100000 | limit

Py =4) 1 0.26431 0.25209 0.25095 0.25084 | 0.25082

Table f.3. Probabilities of 4 red balls in the sample in case of different numbers of total balls

One can follow the convergence in Table f.3. very easily on the basis of the computed
probabilities. We emphasize that both of the values n and k are fixed.

f.5. Poisson distributed random variables

After investigating sampling without replacement, we return to the limit of probabilities of
binomially distributed random variables.

Definition The random variable & is called a Poisson distributed random variable with

k
parameter 0 <X, if its possible values are 0,1,2,...., and P(§ =k) = %e* ,k=0,1,2,...

Remarks
k

k
e 0< % e~ holds obviously, furthermore
- k

) ) k
P -Z}”—ze’x et =1,
= K! oo K!
e The last theorem of subsection f.3. states that the limit of the distribution of
binomially distributed random variables is a Poisson distribution.

Numerical characteristics of Poisson distributed random variables

Expectation
E(&) =A . This formula can be proved as follows:
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JEI Y TR SRS S Iy
= K = (k=-D! = (k=D! = I
Dispersion
D(£) = /A . Recall that D2(£) =E(£2) — (E(8))*.
E(é) ikz AX e iKZ,ﬁe—k—ik. A i A
2t TE Kyt T =i w o

o B TS ) e A S B
{Zkk )w n';;w DJ e M e
e -A%-e"+et-n-e* =2 +A. Therefore D?(E)=E(E?)—(EE)) =1* +A-22=A.

Finally, D(¢) =/D2(&) =/ .

Mode
There is a unique mode, namely [1] if & is not an integer and there are two modes, namely

A and A —1if A isan integer.
Similarly to the way applied in the previous subsections, we investigate the ratio

e

—e
P(E=Kk) e . e Kl A . .
—== 7 Writing it explicitly and simplifying we get —~——— =—" The inequalit
PE—k_1) g it explicitly plifying we g = X quality

(k —1)!

<%, holds if and only if k<A, the inequality %<1, holds if and only if A<k, and

1:%, holds if and only if k=2X. This can be achieved only in the case if A is integer.

Summarizing, for the values of k which are less than A the probabilities are growing, for
the values of k greater than A the probabilities are decreasing, consequently the mode is
[k]. The same probability appears at A —1, if A is an integer.

Examples
E1. The number of faults in some material is supposed to be a Poisson

distributed random variable. In a unit volume material there are 2.3 faults on average.

Compute the probability that there are at most 3 faults in a unit volume material. How much

volume contains at least 1 fault with probability 0.99?

Let &, be the number of faults in a unit volume of material. Now the possible values of &,
k

are 012,..,k,... and P(g, =k)=%ek. The parameter A equals the expectation, hence

k
H@=M=%§eZ?quwgsa=wg=m+wa=n+wg=a+wa=a=

0 1 2 3
2.(;’: 023 25 e23 2-23: e23 +%e =0.799 .
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Compute the probability that there are at least 3 faults in a unit volume material.
0 1 2
P(E, 29)=1- (P61 =0) + P&, =D + P&y =2) =1- (e 2 + 202 20 e2%) 0404,

How many faults are most likely in a unit volume material?
A = 2.3 is not integer, consequently there is a unique mode, namely [2.3]: 2.
The probabilities are included in the following Table f.5. and can be seen in Fig.f.2.

k 0 1 2 3 4 5 6 7 8 9

P(¢, =k) | 0.100 | 0.230 | 0.203 | 0.117 | 0.0538 | 0.0206 | 0.0068 | 0.0019 | 0.0005 | 0.0001

Table f.5. Probabilities belonging to the possible values in case of Poisson distribution with
parameter A =2.3

0.35

0.3

0.25-

0.2 *

p(k)

0.15

0.1%

0.05 *

Figure f.2. Probabilities belonging to the possible values in case of Poisson distribution
with parameter A =2.3

How many faults are most likely in a 10 unit volume material?

Let &,, be the number of faults in a 10 unit volume. &, is also a Poisson distributed
random variable with parameter A*=10-2.3=23. As A* is integer, two modes exist,
namely A*=23 and A*-1=22. It is easy to see that

(n *)22 L (23)22 _» (23)23 2
P(¢.. =22)= e = e =" e =P, =23).
(1o ) 22! 22! 23! (1o )
How much volume contains at least one fault with probability 0.99?

Let x denote the unknown volume and &, the number of faults in the material of volume x.
We want to know x if we know that P(1<&,)=0.99. Taking into account that
PA<g,)=1-P(E,=0), P1<E,)=0.99 implies P, =0)=0.01. &, is a Poisson
distributed  random  variable  with  parameter A, =%X-2.3,  consequently

0
b ;3) e 2% =0.01. As (x-2.3)" =1, 0!=1, we get e>* =0.01. Taking the logarithm

In 0.01

of both sides, we get —2.3x=1In 0.1, therefore x = 3 =2.003~2.
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E2. The number of viruses arriving to a computer is a Poisson distributed
random variable. The probability that there is no file with viruses for 10 minutes equals 0.7.
How many viruses arrive to the computer during 12 hours most likely?
Let &,, be the number of viruses arriving to our computer during a 10 minutes period. We

do not know the parameter of &,,, but we know that P(¢,, =0)=0.7. Since &,, is a
0

Poisson distributed random variable with parameter A, therefore P(&,, =0) :%ek =0.7.

This implies A=-In0.7=0.357 .

If &,,, Iisthe number of viruses arriving to the computer during 12 hours, &-,, is also a

Poisson distributed random variable with parameter A*=12-6-0.357 = 25.68 , consequently

there is a unique mode, [25.68]=25.

Theorem If & is a Poisson distributed random variable with parameter A,, n is a Poisson
distributed random variable with parameter A, furthermore they are independent, then
&+ is also a Poisson distributed random variable with parameter A, +X,.

Proof
As & is a Poisson distributed random variable with parameter A,, the possible values of &

i
are 01,23,... and P(&= i):@e‘h. As 1 is a Poisson distributed random variable with
il

j
parameter A,, the possible values of n are 01,23,... and P(nzj)z(xle)e“. It is
i

obvious that the possible values of &+mn are 0123... We prove that
k
w@mzmzﬁﬁgiwuwﬁ

First, investigate P(§+n=0).

PE+n=0)=P(=0nn=0)=P(E=0)-P(n=0)=

()’ e . (,)° o2 —a-(tth) _ (g +2,)° a-0+25)
o o o
Similarly,
PE+n=)=P(E=1rM=0)+P(E=0n=1)=P(=1)-P(n=0)+P(E=0)-P(n=1) =
) e 4 (kl)o e (7“2)1 o2 (7“1 +7b2)1 o-(at1s)
1 o o! u il
requirement.
In general,

coinciding with the

k . L : Lo ) ()T
Pe+n=k)=D PE=inn=k-i)=3 PE=0)-Plh=k-i)=3 A

o012 iz:: (7vi|')i ((7;(2_)k|): _ e(t;M g(:(j(k' Y, ) = e(t;kz) (0 +2,)

E3. The number of people served in an office is a Poisson distributed random variable.
There are two attendants in the office and the number of people served by the first one and
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the second one are independent random variables. The average number served by them
during an hour is 3 and 2.5, respectively. Compute the probability that together they serve
more than 4 people during an hour.

Let & and &,be the numbers of people served by the attendants, respectively. &, is a

Poisson distributed random variable with parameter A, =3, &, is a Poisson distributed
random variable with parameter A, =2.5, and according to the assumption, they are
independent. The total number of people served by them is &; + &, . Applying the previous
theorem, &, +&, is also a Poisson distributed random variable with parameter
A=A +A,=55 Consequently,
P(4<g, +€.~2):1_(P(E.~1 +8,=0)+P(§ +& =1 +P(§ +&,=2)+P(§; +&, =3) + P(§, + &, :4)):

0 1 2 3 4

1—(—5'5 e85 4 20 o85O0 55 OO 65 OO e‘S'SJ:1—0.358 =0.642 .
0o! 1 2! 3 41

Given that they serve 5 people together, compute the probability that the first attendant

serves 3 and the second one serves two clients.

The second question can be written as follows: P(§, =3n§, =2|&, +&, =5)=?

Recall that the conditional probability is given by P(A|B)=%. Consequently,
P((&,=3n&, =2) N (&, +&, =5))

P& =31, =2)I(¢, +&, =5))= e .
1 2=

The event {¢,+&,=5} is the consequence of {& =3n¢&, =2}, therefore their
intersection is the event {&, =3n¢&,=2}. Now, taking into consideration the
independence of the random variables &, and &, we get
ge—s ) 2.5° 025
P((&,=3n¢&, =2)|(5, +&, =5))= P(El =50% :2)= P&, =2)-PlE, =2) = 5 Z
(& +&,=9) P& +&, =9) 5.5” 55
5!

f.6. Geometrically distributed random variables

At the end of this section we deal with geometrically distributed random variables.

In this case we perform independent experiments until a fixed event occurs. We finish the
experiments when the event occurs first. Actually we do not know the number of
experiments in advance.

Definition The random variable & is called a geometrically distributed random variable

with parameter 0<p <1, if its possible values are 1,2,3...,k,.... and P(§=k)=p(1-p)*?,
k=1,2,3,...



Probability theory and math. statistics— Frequently used discrete distributions 107

Remarks
e The above probabilities are really nonnegative, and their sum equals 1. It can be
seen easily if we apply the formula concerning the sum of infinite geometric series, namely

ZX =T % ,if |x|<1 holds.

P =k) = ZP(& K)= Zp(l p) ‘1—p2(1 P)“—pz(l P =P (1l D)

e The quantities p(1—p)*™ form a geometric series, this is the reason of the name.

e Do not confuse this discrete random variable with the geometric probability
presented in the first chapter.

Theorem We repeat an experiment until a fixed event A occurs, 0<P(A) <1. Suppose that
the experiments are independent. Let & be the number of necessary experiments. Then, & is
a geometrically distributed random variable with parameter p=P(A) .

Proof Let A; denote that the event A occurs at the ith experiment. Now, the values of &
can be 1,2,3,... any positive integer. £=1 means that the event A occurs at the first
experiment, therefore P(£=1)=P(A,;)=p. &=2 means that the event A does not occur at
the  first experiment but it does at the second experiment, that is
P=2)= P(A NA,)= P(Al) P(A,) = ( )p, which meets the requirements. In
general, £=k means, that the event A does not occur at the 1st, 2nd, ...,(k-1)th
experiments, but it occurs at the kth one. Hence

P(A, N A, NN A NA) =P(A)P(AL)P(A). P(A, )P(A,) = (A-p)* ™ -p, which
is the statement needed to be proved.

Numerical characteristics of geometrically distributed random variables

Expectation
E(E)= l. This formula can be proved as follows:
p

E®) =Y xp; =) k-p-p)**=p> k@-p)**. k{l—p) is similar to derivative. If
i= =1 k=1

we investigate  the  function ) kx**  for  values |x/<1, then

kx"’lzw x<) = wx" =[ X jz ! . Substituting x=1-p, we get
Z( ) (Z J 1-x (l—X)2 9 Y g

k=1
1 1 1 . o
kQ-p)" =—— = This implies the formula
= L-@-p) »

EQ=pYka-p* = Be
k=1
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Dispersion

i

D(§) =———. We do not prove this formula. It can be proved similarly to the previous
p
statement, but it requires more computation.

Mode
There is a unique mode, namely it is always 1. This is the straightforward consequence of

PE=k) _pl-p)*
PE=k-1) pL-p)*
This implies that the probabilities are decreasing, therefore the first one is the greatest.

the fact that the ratio of consecutive probabilities is

=1-p<l1.

Example

E1l. We throw a die until we succeed in “six”. Compute the probability that at
most 6 throws are needed.
Let & be the number of necessary throws. & is a geometrically distributed random variable

. 1 . .
with parameter . This means that the possible values of ¢ are 1,2,3,... and

wen-(3 )

reso-Seemn=¢-(F[3)- () (R (GG (1) _%@:

In general, P(§<n) =~ =

6 5 , 6

1@11—1@-

(o3}

Compute the probability that more than 10 throws are needed.

10
According to the previous formula, P(§ >10) = (gj =0.1615 .

At most how many throws are needed with probability 0.9?

n
The question is to find the value of n for which P(§<n)=0.9. As P(§<n) :1_(3 we

have to solve the equality 1—(%) =0.9. This implies [%) =0.1, thatis n In(%) =In0.1.
Computing the value of n we get n :In% =12.63 . But we expect an integer value for n,

In —
6

hence we have to decide whether n=12 or n=13 is appropriate.
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5

12
P(é§12)=1—(gj =0.888, which is less than the required probability 0.9.

5

13
P(E<13) =1—(gj =0.907 , which is larger than the requirement. Exactly 0.9 can not be

achieved, the series skip over this level, as it can be seen in Fig. f.3.

Figure £.3. The probabilities P(§ <k) and the level y=0.9
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The probabilities P(k) = P(§ =k) are presented in Fig.f.4.

P(k)

0.18

0.14 -

0.12-

0.1

0.08

0.06 -

0.04 -

0.02 -

15

Figure f.4. The probabilities P(§ =Kk)

20

Which is the most probable value of the throws? The most probable value of & equals 1, the

probability belonging to them is % All of the probabilities belonging to other value are

smaller than % We draw the attention to P(Eﬂ:l):%, which is much more than the

probability belonging to the value 1.
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Theorem If & is a geometrically distributed random variable, then for any nonnegative
integer values of n and m the following equality holds: P(§ >m+n|§>n)=P(§>m).

Proof Recall that P(¢>k)=(1-p)*. Applying the definition of conditional probability,

P(<§>m+n|§>n)=P((é>n;g1>)r:;(§>n)). {¢>m+n} implies {£>n}, consequently

the intersection is {& > m + n}. Therefore
Pe>m+n) _(1-p)""
PE>n)  (-p)

PE>m+n|E>n)= =(1—p)™, which coincides with P(&>m).

Remarks

e The property P(>m+n|E>n)=P(E>m) is the so called forever young
property. If we do not succeed until n, the probability that we will not succeed until further
m experiments is the same that the probability that we do not succeed until m. Everything
begins as if we were at the starting point.

e One can also prove that the forever young property implies the geometric
distribution in the set of positive integer valued random variables. Consequently, this
property is a pivotal property.

e PE>m+n|E>n)=P(E>m) implies the formula P(E<m+n|&>n)=P(E<m)

as well. As an explanation recall that P(A|B)=1-P(A|B).
PE<m+n|E>n)=1-PE>m+n|E>n) =1-P(E>m)=P(<m).

Example
E2. At an exam there are 10 tests. The candidate gives it back if the test is not from the

first three tests. Compute the probability that the candidate will succeed in 4 experiments.
Let & be the number of bids. & is a geometrically distributed random variable with

parameter p = 3
10

P(E<4)=P(E=D+P(E=2)+P(E=3)+P(E=4)=

0.3+0.3-0.7+0.3-0.7 +0.3-0.7° =1-0.7* = 0.760

At most how many bids does he need with probability 0.95?

n=? P(<n)=0.95. P(§<n)=1-0.7"=0.95, which implies n=8.4. Consequently, the
candidate needs at most 9 bids until the hit.

If he does not succeed up to the 5" experiment, compute the probability that he succeeds

until the 8" one.
The question can be easily answered by applying the forever young property as follows:

P(t<8|£>5)=P(£<3)=P(E=1)+P(E=2)+P(£=3)=0.3+0.3-0.7+0.3-0.72 = 0.657 .
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g. Frequently used continuous distributions

The aim of this chapter

In chapter d. we have dealt with continuous random variables. Now we
investigate some frequently used types. We compute their numerical
characteristics, study their main properties and we present their relationships
with some discrete distributions, as well. We derive new random variables
from normally distributed random variables. These are often used in

statistics.

Preliminary knowledge

Random variables and their numerical characteristics. Probability density

function. Partial integration.

Content

g.1. Uniformly distributed random variables.

g.2. Exponentially distributed random variables.

g.3. Normally distributed random variables.

g.4. Further random variables derived from normally distributed ones.
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g.1. Uniformly distributed random variables

In this chapter we deal with some frequently used continuous random variable. We defined
them with the help of their probability density function.

First we deal with a very simple continuous random variable. Let Q, ‘A, and P be given and

& be arandom variable.

Definition The random variable & is called a uniformly distributed random variable with
arameters a, b (a<b), if its probability density function is f(x) = ¢ ifasxsb
i | P y Y |0 otherwise

Remarks

e As the area under the probability density function equals 1, C:b_la' This value is

positive, consequently all the values of the probability density function are nonnegative.
o The constant value of the probability density function express that all the values of the
interval [a,b] are equally probable.

e A uniformly distributed random variable with parameter a, b (a<b) is often called a
uniformly distributed random variable in [a, b]

e The graph of the probability density function of the uniformly distributed random
variable with parameters a=-1, b=5 can be seen in Fig.g.1.

2 -1 [ 1 2 3 4 5 6

Figure g.1. The probability density function of a uniformly distributed random variable
with parameters a=-1, b=5

Theorem
The cumulative distribution function of a uniformly distributed random variable in [a,b] is

0 if x<a
Fo)=12=2 ifa<x<b.

b-a

1 ifb<x
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Proof
Recall the relationship F(x) = _[ f(t)dt between the probability density function and the
cumulative distribution function presented in section d.

If x<a,then F(x)= jf(t)dt: detzo.

X a X
If a<x<b,then F(X):If(t)dt:JOdt+Jb1alt:oerla'[t];:E_:-
et e "

X a b X
Finally, if b<x, then F(x) = jf(t)dt: j0dt+jbidt+j0dt=0+1+ozl.
—a
—o —0 a b

The graph of the cumulative distribution function of a uniformly distributed random
variable with parameters a=-1 and b=5 is presented in Fig.g.2.

0.9F

Fix)

031

0.2

0.1f

Figure g.2. The cumulative distribution function of the uniformly distributed random
variable with parameters a=-1, b=5

Remarks
o Let & be a uniformly distributed random variable in the interval [a,b] and

a<c<d<b.Then P(c<&<d)=F(d)—F()=d=2_¢-a_d=¢c
b-a b-a b-a

of & in the interval (c,d) is proportional to the length of the interval (c,d).
e Choose a number from the interval [a,b] with geometric probability. Let & be the

chosen number. Then & is a uniformly distributed random variable in the interval [a,b].

As justification consider that P(§ <x)=P(©)=0, if x<a, P(E<x)= P(asE_,<x)=z—_:, if

. The probability the value

a<x<band P(E<x)=P(Q)=1, if b<x. F(x)=P(g<Xx), and

f(x):F‘(x)zb—la if a<x<b,and 0 if x<a or b<x. At the endpoints x=a and x=Db
the cumulative distribution function is not differentiable, we can define the probability density
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function in anyway. Defining f(a)=ﬁ=f(b), f equals to the density function in the

definition.
e The random number generator of computers usually generates approximately
uniformly distributed random variables in [0,1] .

Numerical characteristics of uniformly distributed random variables:

Expectation

EE)= % which is a straightforward consequence of
T ; 1 1 7 1 [x27 _b’-a’® b+a

E()= [x - fx)d =[x ———dx = [xix = | % . Note that
. - b-a b-a- b-a| 2| 2(b-a) 2

this value is the midpoint of the interval [a, b].

Dispersion

D(a)z%.Asaproof, recall that D? (&) = E(F,z) (E®))
E(éz):_]ixzf(x)dx !x b—dx _ bia{g} _ 5(1—_23) _b? +a3b+a2
0*(@) - Ele?)- (B = X (a;bf:bz""lazb”z _boaf
Consequently, D(&) = (b Iza)z =|ti/;_2a| - kz/;_;‘_

Mode
All of the values of the interval [a, b] have the same chance, consequently, all the points of

(a,b) are modes.

Median
a+b . We have to find the value of y for which F(y)=0.5. As neither 0 nor 1 equal 0.5, the
following equality has to hold: ﬁ =0.5. This implies y —a=0.5(b —a) . After rearranging
it, we get y= b+a

2
Example

E1l. Let & be uniformly distributed random variable in [2,10]. Compute the
probability that the value of the random variable is between 5 and 8.
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0 ifx<2

The cumulative distribution function of & is given by F(x) = X if 2<x<10,
1 if10<x

which is a useful tool to compute probabilities.

P(5<&<8)=F(@8) - F(5)_%—STZ= ;’ =0.375.

Compute the probability that the value of the random variable is less than 5.

P(5<5)=F(5) === 2 =0375.
Compute the probability that the value of the random variable is greater than 8.

P@B<&)=1-F(8)= 1—%:2_0.25.

Compute the probability that the value of the random variable is greater than the half of its
expectation and less than the double of the expectation.

2 +10 3-2 7
E() =

=6, P(3<£<12)=F(12) - F(3) = l_T:_'
At most how much is the value of the random variable with probability 0.9?

8

x=? for which P(§<x)=0.9. P(§<x)=F(x), we have to solve XT_2=0.9. This implies

x=9.2.
At least how much is the value of the random variable with probability 0.9?

x=? for which P(§>x)=0.9. P(x<&)=1-F(x), we have to solve 1_XT_2:O'9' This

implies x =2.8.
Given that the value of the random variable is more than 5, compute the probability that it is
less than 8.

8-2 5-2

p(<g|e>5)~ P(E<B)N(E=5) PE<£<8) F(©)-F()_ 8_28=§=O_6.
1-

P(¢>5) ~ P(£25) 1-F() 5 5

8
Notice that this conditional probability is proportional to the length of the interval [5,8) if the

number is from [5,10].

Theorem If £ is a uniformly distributed random variable in [0,1]], O<c and deR, then
=c&+d is uniformly distributed random variable in [d,c +d].
Proof Investigate the cumulative distribution function of n, then take its derivative.
) . (x dj
c

x-d

Fn(x)=P(n<x):P(c§+d<x):P(<:<

0 if <0
0 if x<0 d d
Recalling that F,(x)={x if 0<x<1, F,(x)={>— if 0<2—"<1.
C C
1 ifl<x ¥ —d
1 ifl<
C
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0 if x<d

X_

Summarizing, F, (x)= if d<x<c+d.

1 ifc+d<x
. _— 1 if d<x<c+d
Taking the derivative of F, (x), f, (X)=1¢c .
0 otherwise

Remarks

e Ifcisnegative, then n=c&+d is a uniformly distributed random variable in [c +d,d].

e Using the random number generator, we can get a uniformly distributed random
variable in [a,b] by multiplying the generated random number by b —a and adding a.

e If & isa uniformly distributed random variable in [0,1], then so is n=1-§. To justify
it, first take into consideration that all of values of & are in [0,1], hence so are the values of
n=1-¢&. Moreover,
F,(X)=P(n<x)=P(l-£<Xx)=P(l-x<§)=1-F.(1-x)=1-(1-x)=x, if 0<x<l.
Therefore f, (x)=F', (x)=1, if 0<x <1 and zero outside [0,1].

Theorem
Let ¢ be a uniformly distributed random variable in [0,1]. Let F be a continuous cumulative

distribution function in R. Let 1={xeR:F(x)=0,F(x) =1} and suppose that F is strictly

monotone in I. Then n=F (&) is a random variable those cumulative distribution function is

F.
Proof

F1:(01)—1, P(E=0)=0, P(¢=1)=0.n=F"(&) is well defined. Take any value x 1, and
investigate the cumulative distribution function of n at x. Taking into account that

0 if x<0
F.(x)=1x if 0<x<1.
1 if 1<x

F,(x) =P <x)=P(F(&) <x).

As F is monotone increasing, {F’l ()< x}: {F(F’l (&) < F(x)}: {& < F(x)}.Consequently,
P(F™(&) <x) =P(& <F(x)) =F (x) = F(x) .

If x<inf I, then F(x)=0 and F, (x) =P(n<x)= P(F’1 ()< x): 0.

If supl<x,then F(x)=1and F, (x)=P(n<x)= P(F‘1 (&)< x):l.

Consequently, the cumulative distribution function of F (&) is F(x).

Remark

e The previous statement gives us the possibility to generate random variables with
cumulative distribution function F.

Example
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E2. Generate random variables with cumulative distribution function

0 if x<1
F(x) = :
9 1—i if 1<X
X

Apply the previous statement. F is a strictly monotone increasing function in the interval

(1,00), Fl(y)zﬁ, 0<y<1. Consequently, if & is uniformly distributed in [0,1], then

F(¢) is a random variable with cumulative distribution function F. Consequently,

substituting the random number generated by the computer into F™* we get a random variable
with cumulative distribution function F. The relative frequencies of the random numbers and

the probability density function f(x) =F'(x) = iz , 1<x, can be seen in Fig.g.3.
X

f(x)

0 2 4 6 8 10 12 14 16 lé
X

Figure g.3. The relative frequencies of random numbers F(&) situated in different
subintervals and the probability density function

g.2. Exponentially distributed random variables

In this subsection we deal a frequently used continuous distribution, namely the exponential
one.

Definition: The random variable & is an exponentially distributed random variable with
0 if x<0

parameter 0 <2, if its probability density functionis f(x)=4¢_ .
e if 0<x
Remarks
o 0<f(x) isobvious, furthermore,

—AX

If(x)dx =I re " dx :{k e—k } = XIimo(— e ™ )— (—e°)=0+1=1. These properties imply that
—® 0 0

f(x) is a probability density function. The graphs of probability density functions of
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exponentially distributed random variables belonging to different parameters are presented in
Fig.g.4.

f(x)

Figure g.4. The probability density functions of exponentially distributed random variables
with parameters A =1 (black), A =0.5 (red) and A =2 (blue)

o An exponentially distributed random variable takes its values with large probability around
zero, whatever the parameter is. All of its values are nonnegative.

Theorem The cumulative distribution function of an exponentially distributed random variable

. i 0 if x<0
with parameter 0 <A is F(X) = w .
1-e™ if 0<x
Proof

F(X) = jf(t)dt =j0dx -0, if x<0.

X X -t %
FOO) = [f(tydt=[2e ™o {e_—l} —e™ —(-D)=1-e7,if 0<x.
0 0

The graphs of the cumulative distributions function belonging to the previous probability
density functions are presented in Fig.g.5.

1

09k
08l >
07l -
06f

Z osf
04l
03f
02}

o1/

Figure g.5. The cumulative distribution functions of exponentially distributed random variables
with parameters A =1 (black), A =0.5 (blue) and A =2 (red)
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Remark

. A simple way to generate an exponentially distributed random variable to substitute the
In(1-vy)
A

uniformly distributed random variable into F(y)= . The relative frequencies of

exponentially distributed random variables situated in the interval [0,5] are presented in

Fig.g.6. One can notice that the relative frequencies follow the probability density function
drawn by red line.

Figure g.6. The relative frequencies of random numbers —In(1—&) situated in different
subintervals and the exponential probability density function with parameter A =1

Numerical characteristics of exponentially distributed random variables:

Expectation
E(E) =% . It follows from

© © » 0 _ax ]* 1
E®) = [x-F(dx = [x-re™dx =fx - (e ™)} - [-e™dx =0—| 2 ==,
(é)_j@() ! b ( )]ol =] -3
Taking the average of random numbers generated previously in the presented way, for A =1,
the results are in Table g.1. Differences from the exact expectation 1 are also presented:

N= 1000 10000 100000 1000000 10000000
Average 0.9796 1.0083 1.0015 1.0005 0.9996
Difference 0.0204 0.0083 0.0015 0.0005 0.0004

Table g.1. The average of the values of the random variable —In(1-§), if & is a uniformly
distributed random variable in [0,1] in case of different numbers of simulations N
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Dispersion
D(&)z%. As a proof, recall that D2(§)=E(§2)—(E(§))Z. Integrating twice by parts,

2y _ T 2 _ 2 2 _ 2) 2 2 B 1 _ 1
E( >—ij f(gdx =, D ®)=E(z?)- (E©) SETRETRTE
Mode
There is no mode.

Median
In0.5

. We have to find the value x for which F(x) =0.5.In order to do this, we have to solve
the following equation 1-e ™ =0.5. This implies e =0.5. Taking the logarithm of both

sides, we get —Ax=1In 0.5, finally x = In 07;5 :

Example
E1. The lifetime of a bulb is supposed to be an exponentially distributed random

variable with expectation 1000 hours. Compute the probability that the bulb breaks down
before 500 hours.
Let & denote the lifetime of a bulb. As & is an exponentially distributed random variable, its

cumulative distribution function is F(x)=1—e™,x>0. As E(&) = % =1000 , A =0.001.

500
P(§ <500) =F(500) =1—e 1000 =0.393 .
Compute the probability that the bulb goes broke between 1000 and 2000 hours.

2000 1000
P(1000 < & < 2000) = F(2000) — F(1000) = {1— e 1000 ] - (1— e 1000 j ~0.233.

At most how many hours is the lifetime of a bulb with probability 0.98?

X X
x=?, P(<x)=0.98. P({<x)=F(x)=1-e 1900 =0.98, consequently, e 1 =0.02, and
x =-1000 - In 0.02 =3912.
At least how many hours is the lifetime of a bulb with probability 0.98?

X X

x=?, P(§>x)=0.98. P(§>x)=1-F(x)=1-¢ %000 =0.98, consequently, e 0% =0.98, and
Xx=-1000 -In0.98=20.2.

Compute the probability that, out of 10 bulbs, having independent exponentially distributed
lifetimes with expectation 1000 hours, 7 go broke before 1000 hours and 3 operate after 1000
hours.

Let &; denote the lifetime of the ith bulb. They are independent random variables and

1000
P(&; <1000) =F(1000) =1—e 100 =0.632, P(&; >1000) =0.368 . If 1 is the number of bulbs

going broke until 1000 hours, n is a binomially distributed random variable with parameters

10
n=10 and p=P(&; <1000) . Therefore P(n=7) =(7 j-0.6327 -0.368°% =0.241 .

Now we present the characteristic feature of exponentially distributed random variables.
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Theorem If & is an exponentially distributed random variable, then for any 0<x,0<y the
following property holds: P(E>X+Yy|E=X)=P(§>Yy).

Proof

Recall that P(§>a)=1—F(a)=1— (1—-e ™) =e™,

Moreover,

P(E> X 1 y[E>X) = PE2x+ynE2X) _PE2x+y) _ e M)

P(&>X) P(&>x) e

=e™ =P(E2y).

Remark

e The previous property can be written in the form P(E <x +y|E=>X)=P(§<y), as well.
Consider that
PE<x+Yy|E2X)=1-P(E2x+Yy|E2X)=1-P(E2y)=P(<y).

e As exponentially distributed random variables are continuous random variables, then we
do not bother if the strict inequality (>) or > holds. We can also write
PE>x+Yy|E>X)=P(§>Yy), which coincides with the property stated for geometrically

distributed random variables.

e The property can be interpreted as the forever young property. If & is the lifetime of an
appliance, then & is the time point when it goes broke it does not go broke until x, the
probability that it will not go broke until further y units of time is the same that it does not go
broke until y from the beginning. This is the reason for the name of the property.

e The forever young property is valid only for the exponentially distributed random
variable in the set of continuous random variables.

Theorem Let & be a continuous random variable with nonnegative values, suppose that its
cumulative distribution function is differentiable and lim F(x) =X, 0<A . Moreover, for any

X—0+

0<x,y P(E=>x+Yy|E=x)=P(E>y) holds. Then & is an exponentially distributed random
variable with parameter A .

Proof Let G(x)=1-F(x). As & is nonnegative, F(0)=0, G(0)=1. As the conditional
probability  exists, 0<P(E>=x), consequently  G(x)<1. Let O<y=Ax,
PE=x+Y|E=2X)=P(E>Y) has the form P(E> X+ AX|E>X) =P(§>AX).
P(E=X+AX) G(X+AX)

PE2x) G

G(X+AX)=G(AX)G(x).  Subtracting G(x) and using G(0)=1 we get
G(X + AX) — G(X) = G(X)(G(AX) — G(0)) . Dividing by Ax and taking the limit of both sides if
0<AXx—0 we arrive at G'(x)=G'(0+)G(x). F(0+)=A implies G'(0+)=-A, therefore
G'(x) =—AG(x) . This is an ordinary differential equation which is easy to solve. Dividing by
G(x) =0, % =-X, consequently In|G(x)|=-Ax+c. G(x) is nonnegative, hence
ING(X)=-Ax+c and G(x)=e ™*°. G(0)=e =1 implies c=0 and G(x)=e ™.

Finally, 1-F(x)=e™, F(x)=1—e™ and f(x) =F'(x) =Ae ™.

PE>Xx+AX|E>X) = =G(Ax). This implies the equation

Remarks
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e The assumptions of the previous statement can be slightly relaxed.

e The forever young property can be assumed of the lifetime of appliances when the fault
is not caused by age. For example, if & is the age of a person, then
P(€>100|&>90) = P(€>10). In other words, if he survives 90 years, the probability that he
survives 10 more years is obviously less than the probability of surviving 10 years from the
birth. Examples of exponentially distributed random variables are punctures. Punctures are
usually caused by a pin. I we do not run into a pin until x, then the wheel do not remember the
previous passage.

e The forever young property of the exponentially and geometrically distributed random
variables indicates that the geometrical distributed random variable is the discrete counterpart
of the exponentially distributed random variable. This is also supported by the formulas

E(E) = 1 and E(&) =% , respectively.
p

Example

E2. The distances between the consecutive punctures are independent exponentially
distributed random variables. The probability that there is no puncture until 20000 km equals
0.6. Compute the probability that there is no puncture until 50000 km.

Let &, be the distance until the first puncture. Because of the forever young property, we can

suppose that the distance begins at 0. Actually we do not know the expectation and the value of
the parameter, but we know that P(&, <20000) =0.6, This is suitable for determining the value
of the parameter A as follows. P(&; <20000) = F(20000)=1—e *?®® =0,6. ¢ =0.4,
In0.4
— 20000
P(¢, >50000) =1— ﬁ— e*4-58'1°’5'5°°°°)= 0.101.
Compute the expectation of the distance between consecutive punctures.

E(&,) = % = 21827 .

=458-107°. Returning to the question,

which implies A=

Given that the first puncture does not happen until 50000 km, compute the probability that it
happens within 70000 km.

P(&, <70000 | &, >50000)=P(&, <2000) =F(2000) =1—e*>* =0.6.

Given that the first puncture happens within 50000 km, compute the probability that it is until
10000 km.

P2, <10000 |, <50000) = - (o1 <10000 N&, <50000) _ P(&, <10000) _ F(10000)

= = =0.408 .
P(&, <50000) P(&, <50000) F(50000)

Theorem (Relationship between exponentially distributed random variables and Poisson
distributed random variables)
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Let &;, 1=123,... be independent exponentially distributed random variables with parameter

0 if T<g,
1 if & <T<g,
2 0§ +8,<T<E +8&,+&;

A, 0<T fixed and n; =1.

k+1

k if zklaidsz:gi

Then, n is a Poisson distributed random variable with parameter A*=A-T.

The proof of this statement is omitted as it requires the knowledge of the distribution of the
sum of exponentially distributed random variables.

E3. Returning to Example E2, compute the probability that until 200000 km there
are at most 2 punctures.
Denote the number of punctures within T (km) by n,. Applying the previous statement 140000
is a Poisson distributed random variable with parameter
A *=100000 - =100000 - 4.58-10° = 4.58.
Consequently, P(M100000 < 2) = P(M100000 = 0) + P(Ma0000 =1) + P(M0000 = 2) =

0 1 2

%6—4.58 n %e—ms " %6—4.58
How many punctures happen until 200000 km most likely?
MNoooooo 1S also a  Poisson  distributed random  variable  with  parameter

A **=200000 -4.58-10° =9.16. As the parameter A** is not an integer, there is a unique
mode, namely [A**]=[9.16]=9.

=0.165.

Theorem
If & is an exponentially distributed random variable with parameter A, then n=[E]+1 is

geometrically distributed random variable with parameter p=1—¢™".
Proof As 0< &, [&] takes nonnegative integer values, and n takes positive integer values.

Pm=1)=P(e]+1=1)=P(g]=0)=P(0<E<1)=F1) - F(0)=1-e ™ -0=p.
Pn=2)=P(e]+1-2) =P(E]-1) ~P< <) =F(@) - F) = .- e7?)- [L—e ™)
et —e? =e*l-e")=pl-p).

In general,

P(n=k)=P([e]+1=k) =P(e]=k ~1) =P(k ~1< £ <k) = F(k) — F(k 1) = (L—e ™ ) [1—e **D )=

—e kD)= (e’x )k_l (1-e™)=(1-p)“"-p, which is the formula to be proved.
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Example

E4. Telecommunication companies invoice the fee of calls on the basis of minutes.
It means that all minutes which have been begun have to be paid completely. If the duration of
a call is an exponentially distributed random variable with expectation 2 minutes, how much is
the expectation of its fee if every minute costs 25HUF.
Let ¢ denote the duration of a call. The minutes invoiced are n=[§]+1. The previous
statement states that m is a geometrically distributed random variable with parameter

p=1-e =1-¢%° =0.393. Consequently, E(n)= 1 @ =2.54. The expectation of the
p O.

fee of acall is E(25-m)=25-E(n)=25-2.54 =63.54 .

g.3. Normally distributed random variables

In this subsection we deal with the most important continuous distribution, namely the normal
distribution. First of all we investigate the standard normal one.

Definition The continuous random variable ¢ is a standard normally distributed random

x2

variable, if its probability density function is f(x)=——e 2 , x<R.

J2n

Remarks
e The inequality 0<f(x) holds for any value of xeR, and it can be proved that
2 2

o =X o] —X

J.erx =+/2n . Consequently, ILerx =1. This means that f(x) is really a
., 2 en
probability density function.

e The above function is often called as the Gauss curve and is denoted by ¢(x).

e The function ¢(x) is obviously symmetric to the axis x.

e Standard normally distributed random variables can take any value.

0.4
035
03f
025
¥ o2-
015
0.1

0.05~

Figure g.7. The probability density function of a standard normally distributed random
variable
o The graph of the probability density function can be seen in Fig.g.7.
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e The cumulative distribution function of a standard normally distributed random
2

X X t
variable is F(x) = '[f(t)dt :I e 2dt, which is the area under the Gauss-curve presented

1
Jon
in Fig.g.8.

0.4

0.35~

0.3

0.25f

f(x)

0.2

0.15f

0.1r

0.05~

Figure g.8. The value of the cumulative distribution function as the area under the
probability density function

e The cumulative distribution function of standard normally distributed random variables
is denoted by @(x) (capital F in Greek alphabet). Its graph can be seen in Fig.g.9.

1

0.9

0.8

0.7

0.6

0.5

F(x)

0.4

0.3r

0.2

0.1

0 : T c c c r r
-4 -3 -2 -1 0 1 2 3 4
X

Figure g.9. The cumulative distribution function of standard normally distributed random
variables

e We use the following notation: &~ N(0,1) . N refers the name “normal”, the numbers 0

and 1 are parameters whose meanings will be explained later.
e The function @ can not be written in a closed form, its values are computed numerically
and are included in a table (see Table 1 at the end of the booklet and Table g.2.)
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X D(X)
0 05
1 0.8413
2 0.9773
3 0.9986

Table g.2. Some values of the cumulative distribution function of standard normally distributed
random variables

Data from this table can be read out as follows: ®(0)=0.5, ®(1)=0.8413, ®(2)=0.9773 ,
®(3) =0.9986 .

Remarks

e The tables do not contain arguments greater than 3.8. As the cumulative distribution
function is monotone increasing and it takes values at most 1, furthermore ®(3.8) =0.99993 ,

0.9999 < ®(X) <1 holds in case of 3.8 < x.We use ®(x)~1 for 3.8<x.

e The tables do not contain arguments less than 0, because the values at negative
arguments can be computed as follows.

Theorem
If 0<x,then ®(—x)=1-D(X).
Proof The proof is based on the symmetry of the probability density function.

(- x)_j—e 2dt_1 er 2dt—1 D(X).
7T

Expresswely, stripped areas of the Fig.g.9. are equal.

Figure g.9. Equal areas under the standard normal probability density function due to its
symmetry

Obviously, ®(—x) =1-®(x) holds for any value of x.

Theorem
If £~ N(0),then —&~ N(0,2) holds, as well.
Proof Let n=-&.
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F,(X)=P(n<x)=P(-£<x) =P(0<&+X) =P(-Xx <€) =1-0(-x) =1- (1 - D(X)) = D(X).

X2
Now f, (x)=F,'(x)=®'(x) = e 2 , which proves the statement.

1
Jon

Numerical characteristics of standard normally distributed random variables:

Expectation

2 XZ

E(£)=0. It follows from the fact that [x-e 2dx=-e 2 and

2 XZ XZ

1 1 - . 1 =
E@) =[x f(x)dx=[ x-—=—e 2dx=lim-——=—e 2 —lim-——e 2 =0.
©= I ) I J2n x>0 2n x> 21

Dispersion
D(&) =1. As a proof, recall that D? (&) = E(&Z)— (E(Ev,))2 . Applying partially integration

X2 2 2

2y_ [x2 Cx? e T [ XX _
E(&)_:[Ox f(x)dx__[ox ﬂe 2dx_:[ox xﬂe 2 dx [X\/Z_ 2] jme 2 dx

Recalling L’ Hopital’s rule we get

x? x? x?2 Xz

-1 -1 - - 1 :
limx——e 2 =1lim x——e 2 =0. Moreover, e 2dx=1, as ——e 2 is a
xon Jon xo o I Vor
probability density function. Consequently, D?(&) = E(g )—(E(&)) =1-0? =1, which proves
the statement.

Mode
Local maximum of ¢ isat x =0, consequently the mode is zero.

Median
me =0. We have to find the value x for which ®(x)=0.5. Using the table of cumulative

distribution function of standard normal distribution, we get x =0.

Example
E1. Let & be a standard normally distributed random variable. Compute the probability

that & is less than 2.5.

P(£<25)=d(2.5)=0.9938 .

Compute the probability that & is greater than -1.2.

P(-1.2<&)=1-d(-1.2)=1-(1- ®(1.2)) =D(1.2) =0.8849 .

Compute the probability that & is between -0.5 and 0.5.

P(-0.5<&<0.5) = ®(0.5) — d(-0.5) = ®(0.5) — (1 - ®(0.5))= 2d(0.5) —1=2-0.6915 —1=0.3830.
At most how much is & with probability 0.9?

x=? P(<x)=0.9. P(§<x)=®(x)=0.9. We have to find the value 0.9 in the columns of @,

as the value of the function equals 0.9. Therefore, x =1.28.
At least how much is & with probability 0.95?
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x=? P(E=2x)=0.95. 1-®(x)=0.95=D(x)=0.05. As ®(x)<0.5 and @ is monotone
increasing function, x<0. If we denote x=-a , O0<a and ®(x)=d(-a)=1-P(a)=0.05.
This implies ®(a) =0.95 and a =1.645 .Finally, we end in x =—-1.645.

Determine an interval which is symmetric to 0 and in which the values of ¢ are situated with
probability 0.99.

X=? P(-x<&<x)=0.99. P(-x <& < X)=D(X) — D(—Xx) =20(x) —1=0.99 . This implies
®(x)=0.995 and x=2.58. The interval is (—2.58, 2.58)

Now we turn to the general form of normal distribution.

Definition Let & be a standard normally distributed random variable, meR and O<o. The
random variable n=c&+m is called a normally distributed random variable with
parameters m and o . We use the notation n~ N(m, o).

Remarks
e With m=0 and =1, n=c§+m=¢§ is a standard normally distributed random

variable. It fits with the notation & ~ N(0,1) .

e 1 isalinear transformation of a standard normally distributed random variable.

e If a<0 and meR, then n=a§+ m=(-a)(-&) + m. Recall that —& ~ N(0,1) holds as
well, furthermore O<-a, consequently n is a normally distributed random variable with
parameters m and —a .

Theorem Let & be a standard normally distributed random variable, meR and O<o. The

X—m

cumulative distribution function of the random variable n=cf+m is F (x)=®( ) and

(¢

l - 262
e (e}
\2no

Proof Fn(x):P(csE_,+m<x):p(§<X;m):q)(x:ym).

the probability density function of n is f, (x) =

X—m l_ 1 -

c 2nc

fn(x>=Fn'(x)=(cD(X‘m)] ‘-§=<p(

(e

The graph of the cumulative distribution functions can be seen in Fig.g.10. In all cases m=0,
the red line is for o =1, the yellow line is for o =2, the blue line is for c =4 and the green
lineisfor c=05.
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Figure g.10. The cumulative distribution functions for normally distributed random variables
for different values of o

The graph of the probability density functions be seen in Fig.g.11. In all cases m =0, the red

line is for o =1, the yellow line is for 6 =2, the blue line is for c =4 and the green line is for
c=05.

16

1.4r

121

0.8

f(x)

0.6

0.4 P Ny

Figure g.10. The probability density functions for normally distributed random variables for
different values of o

One can natice that if the value of o is large, then the curve is flat, if the value of o is small,
then the curve is peaky. It is the obvious consequence of the fact that the peak is at height of
1

216
If we want to present the role of the parameter m, then we can notice that the probability
density function is symmetric to m. In Fig.g.11., the parameter o equals 1, red line is for
m =0, blue line is for m=1 and green line is for m=-1.
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)
o
N

Figure g.11. The probability density functions for normally distributed random variables for
different values of m

Numerical characteristics of normally distributed random variables:

Expectation
If n~N(m,o), then E(m)=m. It follows from the fact that

EM)=E(c-&+m)=cE()+m=c-0+m=m.

Dispersion
If m~N(m,o), then D(Mm)=c. To prove it, take into consideration that

D(n)=D(c-£+m)=0cD(§)=0c-1=0c.
Summarizing, the first parameter is the expectation, the second one is the dispersion.

Mode
Local maximum of f (x) isat x =m, consequently the mode is m.

Median

me =m. We have to find the value x for which F (x)=0.5.This means d)(ﬂ) =05. It
(e}

X—m

implies =0=Xx=m.

Example
E2. Let n~ N(5,2) . Compute the probability that n is less than 0.

PMm<0)=F (x)= @(0—;5’) =®(-2.5)=1-d(2.5) =1-0.9938 = 0.0062 .
Compute the probability that the value of n is between 0 and 6.
6 ; 5) - <1>(0 ; 5) = ®(0.5) — ®(—2.5) = 0.6915 — 0.0062 = 0.6853.

Compute the probability that the value of n is greater than 6.

P(0<n<6)=F, (6) - F, (0) = &(
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P(6<n)=1-F,(6)=1- @(6—;5) =1-®(0.5)=1—-0.6915 = 0.3085 .

At most how much is the value of n with probability 0.8?

x=? P(n<x)=0.8. CD(XT_S) =0.8. Since ®(0.84) ~0.8, therefore XT_S =0.84 . This implies
Xx=5+0.84-2=6.68.

At least how much is the value of n with probability 0.98?

X=? P(x<n)=0.98. P(x<n)=1- <I>(XT_5) =0.98 . @(XT_S) =0.02. If we introduce the new

variable ysz_5 , we reduce our task to determine the solution of ®(y)=0.02. This type of
problem was previously solved. We can first realize that y is negative and if y=-a, then
®(a) =0.98. Consequently, a=2.06, y=-2.06, that is XT_E’=—2.06. Finally, arranging the

equation we get x=5-2.06-2=0.88 .
Compute the value of the probability density function at 6.

1 -(6-5)?
f (6)=——e 22° =0.352.
5 \2m

Theorem (k times o rule) If n~ N(m,o), then P(m — ko <n<m + ko) =2d(k) —1.
Proof  The proof is very simple, just compute the probability.

P(m—kcs<n<m+kcs):Fn(m+k<5)_Fn(m_kc):q)(erkG—m) (D(m—kc_m):
) (o]

D(K) — O(—K) = D(K) — (L — D(K)) = 2d(K) —1.

Remarks

e Substituting the values k=0,1,2,3 into the previous formula, we get
PM-oc<n<m+o)=20()-1=2-0.8413 —-1=0.6826 ,
P(M—2c<n<m+2c)=20(2)-1=2-0.9772 -1=0.9544 ,
P(M-3c<n<m+30)=20(3)-1=2-0.9987 —1=0.9974 .

e The last equality states that a normally distributed random variable takes its values in the
interval which is symmetric to the expectation and has radius 3 times dispersion with
probability almost 1.

e The probability density function with parameters m=1 and o =1, for k=1,2 present
the k times o rule (see Fig.g.12.).
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Figure g.12.The areas under the probability density function

Example

E3. Let n~ N(312). Determine an interval, symmetric to 3, in which the values of
n are situated with probability 0.99!

Apply the “k times o rule”. As the required probability equals 0.99, consequently,
20(k) —1=0.99. This implies ®(k)=0.995, and as a consequence, k =2.58. Therefore the

interval has the form (m—ko,m+ko)=(3-12-2.58, 3+12-2.58)=(-27.96, 33.96).Itis
also presented in Fig.g.13.

0.035
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0.025

0.02

f(x)
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0.01-

0.005

X

Figure g.13. The area 0.99 under the probability density function

Theorem If n is a normally distributed random variable, then so is its linear transformation.
Namely, if n~N(m,c), a#0, then 6=an+b~N(a-m+b,a|-c).

Proof

Recall the definition of the normally distributed random variable, n=c-&+m with
E~N(0]. 6=an+b=a(c-E+m)+b=acE+am+b. If O0<a, then 6~ N(am+b,ac), if
a<0, then 6~ N(am+b,—ac). Summarizing these formulas we get the statement to be
proved.
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Theorem If n, ~N(m,,5,), n, ~N(m,,c,) furthermore n, and n, are independent, then
N, +n, ~N(m, +m,, /o] +03).

Remarks

e Although we can not prove the previous statement, notice, that the parameters are
calculated according to the properties of expectation and variance. The first parameter is the
expectation. Expectation of the sum is the sum of expectations. The second parameter is the

dispersion. Dispersions can not be given, but variances can. D?(n, +1,)=D?(n,) + D*(n,),

therefore D(n, +M,) =+/0> +G5).

e As a consequence of the previous statement we emphasize the following: If  &;
i=123,...,n are independent identically distributed random variables, &; ~ N(m,o), then

Zn“apN(n-m,c-\/ﬁ).

o |f & 1=123..,n are independent identically distributed random variables,
iZ—ll(ii G
& ~ N(m,o), then 7n ~ N(m,ﬁ],
Example

E4. The weights of adults are normally distributed random variables with
expectation 75 kg and dispersion 10 kg. The weights of 5 year old children are also normally
distributed random variables with expectation 18 kg and dispersion 3 kg. Compute the
probability that the average weight of 20 adults is less than 70 kg.

zga,i 10

£, ~N(75,10), &. ~ N(18,2). i:lT~ N(75,—),

V20
20
2.5 70-75
P(—— <70)=F,  (70)=( ) = (~-2.236) =1~ ©(2.236) =1 0.9873 = 0.0127 .
20 YEai 2.236

i=1
20
Give an interval symmetric to 75 kg in which the average weight of 10 adults is with

probability 0.9.
2

0
Z <t:a,i 10
=~ N(75,—=) . To answer the question apply the “k times o rule” with expectation 75

10 J10
and dispersion 10/410. 20(k) —1=0.9 implies k =1.645, therefore the required interval has
the form (75-1.645-3.16, 75+1.645-3.16)=(69.8, 80.2).
At most how much is the total weight of 6 adults in the elevator with probability 0.98?

6 6
x=2 P&, <x)=098. >&,~N(6756-10). It means that @, (x)=0.98.
i=1 i=1 Elga,i

X~ 450) =0.98 . Consequently, X =450
24. 495 24. 495

D( =2.06, finally
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X =450 + 24.495 - 2.06 =500.46kg ~ 500k .

Compute the probability that the total weight of an adult and a 5 year old child is more than 100
kg, if their weights are independent.

£, +&. ~ N(75+18,/10% +3?),

P(].OO < éa —+ éc) =1- F§a+<§c (100) =1— q)(lOO -903

10.44

)=1-0.7486 =0.2514 .

E5. The daily return of a shop is a normally distributed random variable with expectation 1
million HUF and dispersion 0.2 million HUF. Suppose that the returns belonging to different
days are independent random variables. Compute the probability that there is at most 0.1
million HUF difference between the returns of two different days.

Let &, denote the return of the first day, &, denote the return of the second day. &, ~ N(1,0.2),

&, ~N(1,0.2). The questionis P(&, —&,|<0.1).

P(|E¢,l - §2| <0.D)=P(-01<g, -&,<0)=F, ., (0)-F, . (-0.).

If we knew the cumulative distribution function of &, — &, , then we could substitute 0.1 and -
0.1linto it.

As & —&,=& +(=&,), furthermore —&,~N(-1,02), & —&,~N(@1-1+0.2% +0.2%).

.. . x-0
Consequently, &, —&, ~ N(0,0.283) . Thisimplies F. . (X)=® )
quently, & —&, ~ N( ) p 2z, (X) (0_283)
. 0.1 -0.1 0.1
Finally, P - <01)=d - =20 —-1=2-0.6381 -1=0.2762 .
o P51 =8| <0 (0.283) (0.283) (0.283)

Compute the probability that the return of a fixed day is less than the 80% of the return of
another day.

P(§; <0.8-&,)=? P(§,<0.8-&,)=P(§; —0.8-§, <0)=F,, g, (0).

If we knew the cumulative distribution function of &, —0.8%,, then we could substitute 0 into
it.

&, ~N(0.8-1,0.8-0.2), —-&, ~N(-0.8-1,0.8-0.2) .

£, —0.8-5, ~N(L—0.8,0.22 +(0.8-0.2)° ). Consequently, & —0.8-&, ~ N(0.2, 0.256).
Now we can finish the computations as follows:

P(g,<0.8-&,)=F. 0 =0(2=%2) _ p(-0.78) = 0.2173 .

1<08%, 0.256

g.4. Further random variables derived from normally distributed ones

In statistics, there are many other distributions which originate from normal ones. Actually we
investigate the chi-square and Student’s t distributions. We will use them in chapter j, as well.

Definition Let &~ N(0.1). Then 8=¢ is called a chi-squared distributed random variable
with degree of freedom 1 and it is denoted by 6 ~ 2

0 if x<0

Theorem The cumulative distribution function of 8 =£2 is Fo(X) = ) .
20(v/x) -1 if 0<x
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0 if x<0
The probability density functionof n is f (X)=< 1 =X 1 .
0 —e? . — 0<x
\2m Jx

Proof
All of the values of y? are nonnegative, consequently, sz (x)=0, if x<0. For positive x
1

values,
F () =P(0<x)=P(E? <x) =P(—/x <& <vx) =F. (x) — F. (-v/x) = ®(/x) - ®(~Vx)
=20(v/x) -1.

0if x<0
f,00=(F) ()= 1 F . X

' o Lt g L 2 if0<x
2.0 (Jx) - (Vx) =2 0t et o

The graph of the above cumulative distribution function and the probability density function
can be seen in Fig. g.14.
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Figure g.14. The graphs of the cumulative distribution function and the probability

density function of 32 distributed random variables

Numerical characteristics of chi-squared distributed random variables with
degree of freedom 1:

Expectation
E(6) =1, which is a straightforward consequence of E(£2) = D?(€) + (E(€))* =1+0=1.

Dispersion
D(6) = V2, which can be computed by partial integration.

Mode
There is no local maximum for the probability density function.

Median
me =0.675. We have to solve the equation 2(1)(\/;)—1=0.5, that is @(&):0.75. It is

satisfied by v/x =0.675 , x=0.456.
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Definition Let & ~ N(0,1),i=123,..,n, and let &, be independent. Then 9=Z<‘,i2 is called a
i=1
chi-squared distributed random variable with degree of freedom n and is denoted by

0~%2

Theorem
The probability density function of a y2 distributed random variable is
X %" if o<x
fe(x)= 251"(2)
2
0 otherwise

The function T is the generalization of the factorial for non-integer values. F(O.5)=\/E,
furthermore T'(x +1) =x-T'(X) .

The graph of the probability density function of a y2 distributed random variable with degree
of freedom n=5 can be seen in Fig.g.15.
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Figure g.15. The graph of the probability density function of a 2 distributed random
variables

Remarks

e For n=2, the probability density function coincides with that of an exponentially
distributed random variable with parameter A =0.5.

e For general values of n, the explicit form of the cumulative distribution function of
x2 is quite complicated, it is not used usually. The values for which the cumulative

distribution function reaches certain levels are included in tables used in statistics. These tables
are used in chapter j, as well. For example, if we seek the value x for which

P(x2 < x) =0.95 holds, we get x =11.07 (see Table 3 at the end of the booklet).
Usually, the real number x for which P(@<x)=a holds, can be found in tables and is

denoted by Xﬁ,a (see Table 2 at the end of the booklet).
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Figure g.15. The value exceeded with probability 0.05 in case of y 2

Numerical characteristics of chi-squared distributed random variables:

EXxpectation
E(6) =n, which is a straightforward consequence of E(Z £2) = Z E(€%)=n.
-1 =
Dispersion
D(6) =+v/2n , which follows from D?(}.£2)=> D?(g?)=2-n.
i=L i=1

Mode
Thereisnomode if n<2,anditis n—2,if 2<n.

Median

. . 2
It can not be expressed explicitly, it is about n(1 - %)3

Definition Let &,,&,,..,&, and n be independent standard normally distributed random
N

n

&

variable with degree of freedom n and is denoted by 6 ~ 1, .

variables. The random variable 0= is called a Student’s t distributed random

Theorem
The probability density function of a Student’s t distributed random variable with degree of
r (n + 1) " n7+1
freedom n is fn(x)z—zn[1+—] :
Jnr - I, .

Remarks
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(n-12)(n-3)..5-3

,if nis odd, then it
2Jn (n=2)(n—-4)..4-2

e Ifnis even, then the normalising factor is

1 (n-D(n-3)..4-2
w/n (n=2)(n-4)..5-3"

e If n=1, then f,(x)=>. >
T 1+X
function is called a Cauchy distributed random variable.

n+1

>~ The random variable with this probability density

it 2 2
x2\ 2 =x 1
o If n—>o0, then |1+— —e 2, consequently f (x) >——=e 2 =¢(x) for
[ . quently f, (x) T o(x)
any values of x.
e The probability density functions of t

Fig.g.16.

distributed random variable can be seen in

n

fn(x)

Figure g.16. The probability density functions of <, distributed random variable for
n =1(black),n =5 (red) and n =100 (blue)

e The closed form of the cumulative distribution functions do not exist. The values for
which the cumulative distribution function reach different levels are included in tables used in
statistics (see Table 2 at the end of the booklet). These tables are used in chapter j, as well.

Supposing 6~ t,, the value, for which P(-x<6<x)=1-a and P(x<|8))=a is usually
denoted by t, .. For example, if a=0.2 and n=5, t;,, =1.476. It is also presented in Fig.
g.17.
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Figure g.17. The bounds for t. distributed random variables with probability 0.8
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Numerical characteristics of Student’s t distributed random variable:

Expectation

If 6~1,,then E(6)=0, if 1<n. Itis the straightforward consequence of the symmetry of the
probability density function. If n =1, expectation does not exist.

Dispersion
D(6) = vyh-2
Jn

Mode

It is always zero.

Median

It is always zero, due to the symmetry of the probability density function.

, iIf 2<n, otherwise it does not exist. It can be computed by partial integration.
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h. The law of large numbers

The aim of this chapter

In this chapter we present asymptotical theorems which characterize the
behaviour of the average of many independent identically distributed
random variables. We return to the relative frequency, as well, and we
prove that it is about the probability of the event. These theorems are the

theoretical basis of the polls and computer simulations.

Preliminary knowledge

Expectation, dispersion and their properties. Binomially distributed

random variables.

Content

h.1. Markov’s and Chebisev’s inequalities.

h.2. The law of large numbers.

h.3. Bernoulli’s theorem.
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h.1. Markov and Chebisev’s inequalities

First we provide estimations for certain probabilities. Although these estimations are quite
rough, they are appropriate to be applied for proving asymptotical statements. Their main
advantage is that they do not require the knowledge of the distribution of the random
variable, they use only the expectation and dispersion.

Theorem (Markov’s inequality)
Let & be a random variable all of whose values are nonnegative and E(§) exists. Then, for

any 0<e¢ the following inequality holds: P(§>¢) < @

€

Proof
1 if A holds
The proof is based on the following: ¢-1,,. <&.Recall that 1, = . :
- 0 if Adoes not hold
1 if £>¢holds
This implies 1., =4 . c2¢ .
- 0 if £<eholds
. g if &>¢holds .
Multiplying by & we get -1, = . . Taking into account the non-
0 if £<e¢holds

negativity of &, this means that ¢-1.,, <&. Applying the property of expectation that if
n; <7, then E(ny) <E(m,), we can see that E(s-1...) =¢-E(1.,) <E(§). Recalling that

E(1,)=P(A)and dividing both sides by O<e the inequality becomes P(%ZS)S@.

€
This is the statement to be proved.

Theorem (Chebisev’s inequality)
Let n be a random variable those dispersion exists. Then for any 0<2A, the following

2
inequality is satisfied: P(in—E(n)|> ) < D}éﬂ) .

Proof Note that n—E(m)[=A holds if and only if (n-E(n))®>A%. Consequently,
P(n—EM)|=1)=P(M—-EMm))*=2%). Apply Markov’s inequality with &=(n-E(n))’

and £=2%. The non-negativity obviously holds, and E(£)=E((n-E(n))’)=D?*(n).
2
Therefore, P(|n—E(n))|2x)=P(§28)£@=Dx—(n), and this is the statement to be
e

2

proved.

Remark
o Chebisev’s inequality can be also written in the following form:

2
P(|n—E(n)|<X)21—DT§m. {IH—E(TI)|<7»)} is the complement of the event

{n—EM)|22}. If P(A)<x, then P(A) =1-P(A)>1-x , which implies the statement.
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o Chebisev’s inequality can be also written as follows: P(|n - E(n)| >kD(n)) Sk—lz
and P(n—E(n)|<kD(n))>1- kiz . Substitute A =kD(n) . This can be done with k = % :
n

supposing D(n)=#0. If D(n)=0, then on the basis of the property of dispersion,
P(M=E(n)) =1, therefore P(n—E(n)[)>kD(n))=0 which is less than k_12 for any value

of k.

e The inequality P(|n—E(n)|sz(n))ski2 expresses that the random variable n
takes its values outside the neighbourhood with radius kD(n) of its expectation with

probability not larger than kiz . Large deviation is with small probability.

e The inequality P(n—E(n)|< kD(n))zl—k—l2 states that a random variable n takes
its values in the neighbourhood with radius kD(n) of its expectation with probability no
smaller than 1- kiz Small deviation is with large probability.

e The proofs do not use the distribution of the random variable.
e If we know the distribution of n, the probabilities P(n—E(n)|>=kD(n)) and

P(n - E(m)| < kD(n)) can be computed explicitly.

Example

E1l. Let n be a Poisson distributed random variable with parameter A =2.
Compute the probability that the values of n are in the neighbourhood with radius D(n) of
its expectation.
E(m)=A=2, D) =vA =+2=1.41. In—Em)| <Dn) means that
E(n) - D(n) <n<EM)+D(n). Explicitly, 2—+v2<n<2++/2, that is 0.59 <n<3.41.

1 2 3

Now P(0.59 <1 <3.41)=P(n=1)+P(n=2) +P(n=3) =21—'e-2 +%e‘2 +%e‘2 =0.722 .

E2. Let m be a uniformly distributed random variable in [-12]=[a,b].
Compute the probability that n takes its value in the in the neighbourhood with radius
1.5-D(n) of its expectation.

a+b -1+2 b-a 2-(-2) 3
Em)=——= =05. D(n)= = = =0.866. 1.5-D(n)=1.299.
2 2 VIR T 2 20

The interval is (0.5-1.2999, 0.5+1.299) =(-0.799, 1.799). The question can be written
as P(ne(-0.799,1.799)) =P(-0.799 <n<1.799) = F(1.799) — F(-0.799) . Recalling that

0 if x<a=-1
Fo)= X2 X g acx<bo2,
b-a 3

1 if b=2<x
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we get P(~0.799 <1 <1.799) = 1'7929 *1 2079+ g6

3
We note that one can check that the result ends in the same probability independently of the
endpoints of the interval [a,b].

E3. Let n be an exponentially distributed random variable. Determine the
interval symmetric to expectation of m in which the values of n are situated with
probability 0.99.

Let the radius of the interval be kD(n). Since E(n):%zD(n), the interval looks like

S |
Ao A
K-

11 1 1011 1) 1 1. 1 1
Pmel Lok 2, ik h=p 2ok tenctiktorE ik —FE -k D).
(ne(x 2 xj) (x ALY x] Gk -FG k)

if x<0 YEITE

Recalling that F(x) = 0 F(1+k-1)=1—e A L
1-e™ ifO0<x A A

The value of F(%—k-%) depends on the sign of its argument. One can notice that

L kloo if 1<k and 0<i-k-l if Kk<l. If k=1, then
AR TR

111 1 20 2 . L
P ——1- - —4+1-2)=PO0<n<=)=F(=)-0=1-e"°=0.865<0.99 . This implies
(TIE( o x)) (O<n X) (x) p

1< k. Therefore, F(l -k- %) =0. Consequently,

P(ne (——kll -lj)zl—e(“”:o.gg, e ™ =001, 1+k=-In0.01=4.605,
A A

k=3.605. As a check, P(%—3.605%<n<%+3.605 %)zl—e-“-605 -0=1-0.01=0.99,

which was the requirement.
We note that the value of k is independent of the value of the parameter A .

E4. We do not know the distribution of a random variable n, but we know its
expectation and dispersion, E(n) =200 and D(n)=10. Construct an interval in which the
values of n are situated with probability at least 0.95!

According to the Chebisev’s inequality. If 1_k_12 =0.95, then k=4.472, and the interval

looks like (200 —10-4.472, 200 +10-4.472)=(155.28, 244.72).
E5. Let n beabinomially distributed random variable with expectation 200 and

dispersion 10. Compute the probability that values of n are situated in the neighbourhood
of its expectation with radius 4.472 - D(n)) .
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As n is binomially distributed with parameters n and p, E(m)=n-p=200,
D(n)=+/np(1—p) =10, consequently 1-p= % =0.5, which implies p=0.5 and
n =400 . The question is P(200 — 4.472 -10 <m < 200 + 4.472 -10)

=P(155.28<n<244.72). mn takes only nonnegative integer values, hence
P(55.28 <N <244.72) =P(n=156) + P(n=157) +...+ P(n=244). As n is a binomially

400
distributed ~ random  variable,  P(n=k) :(EJp" (a-p)* :(k )0.5k .0.5400°K

400

400
P(155.28 <1 < 244.72) = 0.5'°°.0.5%001¢ 4
156 157

0517 .0 5400-157 | 400 0.524 . (), 5400-244
=0.99999 .

E6. Let m be a random variable with expectation 200 and dispersion 10.
Determine the probability that the values of n are situated in the interval (175,225) .
As we do not know the distribution of n, we can not determine the required probability
exactly, but we can give an estimation for it. The interval (175,225) is symmetric to the
expectation 200, it can be written as
(200 —2.5-10, 200 +2.5-10)=(E(n) —k-D(n), E(n)+k-D(n)) with k=25.

P(n—E(m)|<kD(n)) 21—% implies P(175 <1 < 225) 21—% =0.84.

E7. Let n be binomially distributed random variable with expectation 200 and
dispersion 10. Compute the probability that the values of rn are situated in the interval
(175, 225) .

P@A75 <n<225)=P(M=176) + P =177) +...+ P(n=224) =
(40())0.5”60.5224 + (400]0.5”70.5223 +ot (40()}0.52240.5”6 =0.9858 , which is much
176 177 224

more than the estimation 0.84 given by Chebisev’s inequality. We point out that actually we
know the distribution of the random variable, and it is an extra information to E6.

E8. Let n be a normally distributed random variable with expectation 200 and
dispersion 10. Compute the probability that the values of rn are situated in the interval
@75, 225) .

X —200

10
- @(2251‘0 200y _ @(1751‘0200) — ®(2.5)— D(-2.5)= 2 B(2.5)—1=0.9876 . We note that
this probability is also much more than the estimation given by Chebisev’s inequality due to
the extra information of distribution. Furthermore it is close to the probability computed in
the previous example. The reason of this latter phenomenon will be given in the next section

Now, m~N(200,10), and F(x)=d( ). Now P(175 <1 < 225) = F(225) — F(175) =
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h.2. The law of large numbers

In this subsection we provide a form the law of large humbers which is easy to prove and
which can give estimations for the probability of large deviations. This statement is the basis
of computer simulations. One can state stronger forms of the law of large numbers and one
also can give statements under weaker assumptions, as well.

Theorem Let &,,¢&,,....,&,,...be independent identically distributed random variables with
E(§;)=m and D(§;)=c.Then, forany O<eg,

n
2
Pl l—-m|<e|—>1,if n—> o,
n
and
n
2.6
Pl -—-m[>¢|—>0if n>oo.
n
Proof
n n n
Py p3 2& |
Let n, = <==—. Now E(-X—)=m and D| = |=— . Apply Chevisev’ inequality for
n n n Jn

n
D*(n,) 2.5 o’
——-=, which implies P = m|>e <—. As

n, . This gives us P(]nn —m|>s)s - - —

2
e and o are fixed, 0—2—>0, if n— oo, which coincides with the second part of the

ne
n
py i
statement. The formula P||l-=—-m|<g|>1-—-—1-0 is the first part of the
n ne

statement.
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Example

ELl. Let &, ,...&4 be independent uniformly distributed random variable in
1000

D,

[0,1] . Give an estimation for the probability P ‘1:500 —-0.5/>0.05 |.

n

Z‘ii 2

Apply the above inequality P| [-=2— —m|>¢ |< -
ne
1 .
Now E(;)=05=m, D(§;)=—==0.2887 =0. Substitute €=0.05,
2

o? 1

- = > =0.033.
ne~ 12-1000 -0.05

1000

D&

Consequently, P| [-=~— —0.5/>0.05 |<0.033.
1000

At most how much is the difference between the average and 0.5 with probability 0.95?

D&
The question is the value of ¢, for which P % —m|<e |=0.95. As we do not know the

n

g

exact distribution of =L —  we can not compute the exact probability, but we are able to
n

Z‘:i 2 2
estimate the probability. P| [t —-m|<eg 21—0—2, if 1—6—2=0.95, then
n ne ne
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n

D 2
Pl "L ——m| <& |>095 holds. 1->_ =095 implies

1 , consequently
n ne 12 -1000 - 0.05

£2=1.6667 x102, £=0.041.

How many random variables have to be averaged in order to assure that the difference
between the average and 0.5 should be at most 0.01 with probability 0.98?

p3

The question is the value of n for which P| |-=—— —m|<0.01 |=0.98. Applying the formula
n

Zai 2 2

= —mi<eg 21—6—2 again,  substitute 1—6—2:0.98 and e=0.01.
ne ne

P

o’ 1

5 = > =n, h=41667 .
¢-001 12-0.01°.0.02

How many random variables have to be averaged in order to assure that the difference

between the average and 0.5 should be at most 0.005 with probability 0.98?

If £¢=0.005, then, n=1.6667x10%, which is four times larger than the previous number of

experiments. If we want to increase the accuracy to the half, we need 2% times more
experiments.

Remark

n

Zéi o2

o If we fix the accuracy ¢, and the value of n , then P = _mi<eg 21——2
n ne

gives us an estimation for the probability that the maximal difference between the average
and the expectation exceeds the accuracy.
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2

* If we fix the probability 1 a. (reliability) and the value of n, then 1~ > >1- o
ne

2
implies sg,/ °_. Consequently, the accuracy is proportional to the square root of the
n-o

reciprocal of the number of experiments.
2

e If we fix the probability 1— o (reliability) and the accuracy ¢, then 1— G—Z <l-a
ne
2

implies Gz—s n. This means that the number of experiments is proportional to the square
e A

of reciprocal of the accuracy.
e As an illustration of the law of large numbers, we present Table h.1. The random
variables were uniformly distributed in [0,1], the reliability level was fixed as 1— o =0.95

and 1-a=0.99. The table shows that the difference between the average and the
expectation is getting smaller and smaller as the number of simulations was increased. The

2
(e}

total requested time was less than 1 minute. The theoretical accuracy &= 005 and
g= . %2.01 were computed for the reliability levels 0.95 and 0.99, respectively.
n n n 2 2

iZ:l:éi .Z;_é 05 n -(:).05 n .(:).01

n n

10 0.432756065694353 | 0.067243934305647 | 0.11785 0.2635
100 0.530898496906201 | 0.030898496906201 | 0.03 7268 0.0833
1000 0.506786612848606 | 0.006786612848606 | 0.011785 0.02635
10000 0.496156685345852 | 0.003843314654148 | 0.003 7268 0.00833
100000 0.500349684591498 | 0.000349684591498 | 0.0011785 0.002635
1000000 0.500158856526807 | 0.000158856526807 | 0.0003 7268 | 0.000833
10000000 0.499726933610529 | 0.000273066389471 | 0.00011785 0.0002635
100000000 0.499951340487525 | 0.000048659512475 | 0.000037268 | 0.0000833
1000000000 | 0.499985939301628 | 0.000014060698372 | ¢ 000011785 | 0-00002635

Table h.1. The averages and their differences from the expectation in case of uniformly

distributed random numbers
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Secondly, the random variables were exponentially distributed with expectation 0.1 and 10.
Table h.2. shows that the difference between the average and the expectation depends on the
value of the parameter. The parameter is the reciprocal of the dispersion, consequently, the

larger the dispersion, the larger the difference.

A=0.1 A=0.1 A =10 A =10
N n n n n

D e, D DE,

i=1 i=1 _10 i=1 i=1 _ O
n n n n

10

6.2277618964331 | 3.7722381035668 | 0.09447373893621 | 0.055276
100 11.756814668520 | 1.7568146685202 | 0.10392000570707 | 0.00392
1000 9.5670585169631 | 0.4329414830368 | 0.09696619091756 | 0.00304
10000 9.9932193771582 | 0.0067806228417 | 0.100150679660307 | 0.00015
100000 9.9708942677258 | 0.0291057322741 | 0.100629035751288 | 0.00063
1000000 9.9943200370807 | 0.0056799629192 | 0.100039656754390 | 0.00004
10000000 | 10.003113268035 | 0.0031132680354 | 0.099950954820648 | 0.00004
100000000 | 9.9994289522126 | 0.00057104778736 | 0.100000507690485 | 0.00000005
100000000 | 10.000097147933 | 0.00009714793369 | 0.100000729791939 | 0.00000007

Table h.2. The averages and their differences from the expectation in case of exponentially
distributed random numbers

e The law of large numbers is expressed by the sentence that the expectation is about
the average of many values of random variable. Not exactly the same, but it is not far from
it.

e As the expectation is an integral, the law of large numbers provides the possibility
to compute integrals numerically as follows: Let g:H—>R, HcR, [a,b]cH, suppose

that g is continuous in [a, b]. Taking into account the properties of the expectation,

b b
| = jg(x)dx:(b—a)jg(x)-b—fadx:(b—a)-E(g(n)), where  n is a uniformly

distributed random variable in [a,b]. E(g(n)) is about the average of many values of g(n).
n can be constructed as a linear transformation of a uniformly distributed random variable
in [0,1]. Consequently, the algorithm of computing the approximate value of the integral

b
Ig(x)dx is the following: generate a random number, multiply it by b—a and add “a”, then

a
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substitute this value into the function g. Substitution can be made as the all the values we
get are in the domain of g. Repeat the process n times and take the average of the values.

Multiplying the average by b—awe get the approximate value of the integral. The
necessary number of simulations can be determined as follows:

> g(n,) I g(x)dx Zg(n )

P(jg(x)dx (b—a)- = - <g)=P(* TR =L - <b_a)z
D?(g(n;
21_(b_a)2%=1_
max g(x) — mln g(x)
As 7, isin [ab], D(g(n;)) < 2= . :
29(11) Qmaxg(x) min g(x))2
l1-a= P(Ig(x)dx (b-a)- ,1n le)>1-(b—a)? 22xb y n<X;b . which
. .8

<x<b

(Bmax g(x) — min g(x))2
implies (b—a)?- asxs<b <n

4o, - g2

Example

1
E2. Compute %dx by random simulation.
+ X
0

1
Notice that J.de :E(L) where & is a uniformly distributed random variable in
o 1+ X 1+¢§

[0,1]. Consequently, generate random numbers with the computer, add 1, and take the

reciprocal. This process has to be repeated many times. Take the average of the numbers
you get, and this average is the approximate value of the integral. As &e([01],

2
cl05,1, D (—)< 0-5% _0.0625 . If we fix the reliability level 1— o =0.99, the
. .. 0.0625 . .
necessary number of simulation is — 001 <n. If we would like to compute the integral
e U

with difference less than 0.01, then we have to make 0.0625 -10° =62500 <n simulations.

1
As J.lidx =[In(1+x)]5 =In2-I1=In2, we can follow the difference between the
+X
0

exact value and the approximate value of the integral in Table h.3.

( max g(x) — min g(x)

a<x<b

2 ] 00625
n-o 0.01-n

¢ is computed as
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N average Difference €
62 0.702627791231423 | 0.009480610671478 0.3175
625 0.694214696993436 | 0.001067516433491 0.1
6250 0.695502819777260 | 0.002355639217315 0.03175
62500 0.693417064411419 | 0.000269883851474 0.01
625000 0.693095119363388 | 0.000052061196558 0.003175
6250000 0.693134534818101 | 0.000012645741844 0.001
62500000 0.693167969772721 | 0.000020789212776 0.0003175
625000000 0.693142704368027 | 0.000004476191918 0.0001

Table h.3. The averages and their differences from the expectation in case of transformed
random variables

For all the simulations, the elapsed time was 42.9 seconds.

3
E3. Compute the value of the integral Isin ldx with accuracy 0.01.
X
1

3 3
Note, that Isinldx=2'jsin£ldx=2'E(n), where nzsin(l) and & is uniformly
T X T X 2 £
2
distributed random variable in [13]. —1£sin£sl, Dz(sini)swzl,
X n
51
. N 2 1 1 1
p2. =" '—jsin—dx <g)21-4-—. 1-4.——-=099 and £=001 implies
n T X ne ne

n = 4000000 .We can follow the average and the theoretical accuracy as the function of the
number of simulations in Table g.4. Elapsed time, together for all simulations, was 36.82

seconds.

n average €

40 4.044413814196310 3.162
400 3.124480498240279 1

4000 3.266154820794264 0.3162
40000 3.241221397791890 0.1
400000 3.252187207202902 0.03162
4000000 3.251025444611742 0.01
40000000 3.251126290354754 0. 003162
400000000 3.250561315440294 0.001

Table g.4. Averages of random variables given by n = sin(é) and the theoretical accuracy

We note that better estimations for the variance can be also given, we used —1<sin y <1 for

the sake of simplicity.

E4.

100 -x?2

Compute Jerx by random simulation.

-100
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100 —x? -&
Note that J- e 2 dx=200-E(e 2 )where & is a uniformly distributed random variable in

-100
2 g2

- -
[-100,100]. As 0<e 2 <1 D?(e 2 )g%,
n —lei
Ze 2 100 -x? 1 1
P(200 2 Ie 2 dx|<g)>1— 2002 . 1-10000 ~20.99  implies
n 300 4n-¢ 4n-¢

n > 25000000 . Since from the standard normal probability density function we know that

100 -x* w

[ezdx~[e?dx=~ V2 , comparing the average to +/2r we get Table h.5.:

-100 -0

n average Difference €

25 8.323342326487701 5.816714051856701 | 10

250 3.015562934762770 0.508934660131769 | 3.16227
2500 2.264787314861209 0.241840959769791 | 1

25000 2.441972159407621 0.064656115223379 | 0.316227
250000 2.451752388622218 0.054875886008782 | 0.1
2500000 2.511696184700974 0.005067910069974 | 0.0316227
25000000 2.508097777785709 0.001469503154709 | 0.01
250000000 2.504753761626246 0.001874513004754 | 0.00316227

Table h.5. Averages of the transformed random variable and their differences
from /27 in case of different numbers of simulations

We can see that the actual difference is always smaller than the theoretical accuracy.

h.3. Bernoulli’s theorem

In this subsection we apply the law of large numbers to characteristically distributed random
variables and we get a statement for relative frequencies. This statement tells us that the
relative frequency of an event A is close to the probability of A.

Theorem (Bernoulli’s theorem) Let A be an event, and K, (n) be the frequency of the event

ka(N)
A p(A)

>g) >0 if

performing n independent experiments. Then, for any O<g, P(

n—o and P(w—P(A) <g) —>1supposing n — .
n

Proof Recall that k,(n) is a binomially distributed random variable with parameters n and
p=P(A), and k, (n) can be written as a sum of n independent characteristically distributed

EL))=p=P(A), D*(L))=+p-p),

random variables 1) with parameter p.
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consequently,  P(

M—P(A)‘<a)21—Io(l—_zp)—>1—O supposing n—o  and
n ne

P(

ka(n)
e P(A)

ZS)Sp(l—_zp)—)O supposing n — oo .
ne

Remarks
e The above statement tells us that large difference between the relative frequency and
the probability occurs with small probability, small difference occurs with large probability.
¢ Roughly spoken, the relative frequency is about the probability, if the number of
simulations is large. This is the theoretical background of computer simulations and pools.

* Oﬁp(l—p)S%, consequently P(M_p(A)
n

<s)21—i2. This inequality
4dne

provides the possibility to estimate the necessary number of simulations.

o If we fix the number of simulations and the accuracy (&), we can estimate the
probability that the difference between the relative frequency and the probability exceeds
the accuracy ¢ .

o |f we fix the number of simulations and the reliability (1— o), we can compute the

1
Va4no .

o If we fix the reliability (1—a) and the accuracy &, we can determine the necessary

accuracy ¢ by 1— >1-a, e<

ng?

1 <
2_n.

number of simulations by
doe

Examples
El. To illustrate the above statement we present the following simulation example: flip

a fair coin four times and determine the probability that there are both heads and tails among
the results.

Of course our computer can not flip a coin but it can generate a random number uniformly
distributed on [0,1] . Imagine that if the result (random number) is less than 0.5, then we get

a head, in the opposite case we get a tail. Repeat it four times and decide whether the results

of flips are the same in all cases or there are at least one head and at least one tail. Repeat

the composite experiment n times and compute how many times you get both heads and

tails. The relative frequency is about the probability. If we would like to approximate the

probability of the event “you get both heads and tails “ with accuracy £=0.01 with
1

robability 0.99, we need =
P y 4oe®  4-0.01-0.012

= 250000 <n experiments. The relative

. . . . - A
frequencies arising from simulations and their differences from the exact probability % can

be seen in Table h.6. One can notice that the real difference is much smaller than the
accuracy showing that the estimation is not sharp. We can see better estimations in the next
chapter.
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n Relative frequency Difference €

25 0.960000000000000 0.085000000000000 1

250 0.892000000000000 0.017000000000000 0.3162
2500 0.874800000000000 0.000200000000000 0.1
25000 0.873840000000000 0.001160000000000 0.03162
250000 0.875000000000000 0 0.01
2500000 0.875041600000000 0.000041600000000 0.003162
25000000 0.875081200000000 0.000081200000000 0.001
250000000 0.874980140000000 0.000019860000000 0.003162

Table h.6. Relative frequencies and their differences from the exact probability

The computer program is very simple and the elapsed time is small. The program for
simulation was written in MatLab and it can be seen as follows:

function sziml6

format long

tic

er=zeros (8,

for 3=1:1:8
jo=0;

1)

for i=1:1:(2

head=0;

.5%10%9) ;

for k=1:1:4
vel=rand (1) ;
if vel<0.5
head=head+1;

end
end

if O<head & head<4

jo=jo+1;
end
end

szim=jo/(2.5*10"7) ;

er(j,1l)=szim;
end
toc
er

kul=abs (er-14/16)

The relative frequencies and their differences from the exact probability are plotted in

Fig.h.1. and Fig.h.2.

with n=2.5-10%.
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Figure h.1. Relative frequencies as a function of the number of simulations on logarithmic
scale
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Figure h.2. Differences of the relative frequencies and the probability as a function of the
number of simulations on logarithmic scale

Of course, it is easy to find events whose probability is complicated to compute but a
computer program for the simulation is easy to elaborate. In those cases the approximation
of the probability by relative frequencies is a useful tool for people who are able to apply
informatics.
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i. Central limit theorem

The aim of this chapter

In this chapter we present asymptotical theorems about the distribution of
the sum and the average of many independent identically distributed
random variables. We will approximate the cumulative distribution
functions and probability density functions with the help of those of

normal distributions.

Preliminary knowledge

Convergence of functions. Cumulative distribution function, normal

distribution, properties of expectation, dispersion.

Content

i.1. Central limit theorem for the sum of independent identically distributed random

variables.

i.2. Moivre-Laplace formula.

i.3. Central limit theorem for the average of independent identically distributed random

variables.

i.4. Central limit theorem for relative frequency.
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i.1. Central limit theorem for the sum of independent identically distributed

random variables

In the previous section we have dealt with the difference of the average of many
independent identically distributed random variables and their expectation. We have proved
that the difference is small with large probability, if the number of random variables is large.
In this chapter we deal with the distribution of the sum and the average of many independent
random variables. We state that they are approximately normally distributed. We use this
theorem for computations, as well.

Theorem (Central limit theorem) Let &,,&,,...,&, ... be independent identically distributed
random variables with expectation E(&;)=m and dispersion D(&;)=0o, i=12,... Then,

znléi —nm
lim P

n—o0 G\/ﬁ

The proof of the theorem requires additional tools in probability theory and analysis,
consequently we omit it.

<x)=®(x) forany xeR.

Remarks

Zn:éi —nm
° P i=1
S

anii —nm

i=1

svn

<X) is the value of the cumulative distribution function of the

random variable at the point x.

(¢

Zé‘_nm 1 n 1 n ovn
e ID(ZémJTD[ZéJT’l

n
D g —mm
e The random variable ==~——— is usually called as the standardized sum.

svn

e The central limit theorem states that the limit of the cumulative distribution function

n
Z‘z:i —hm
of the random variables = equals the cumulative distribution function of standard

ovn

normally distributed random variables. Consequently, for large values of n, the cumulative
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distribution function of the standardized sum is approximately the function ®. It can be
written in the form F (X) = (X).
nm

i=1 "
ovn
e The distribution of &; can be arbitrary. In practice, the approximation is good for

100 <n, and many times for 30 <n.

e The relative frequencies of the standardized sums can be seen in the following
Figs.i.1, i.2. and i.3., if we sum up n=1, n=2, n=5, n=10, n=30, n=100 independent
random variables. The random variables were uniformly distributed in [0,1]. The red line is

the graph of the probability density function of standard normal distribution. One can see
that the shape of histogram follows more and more the shape of the Gauss curve.

Figure i.1. The relative frequencies of the values of the standardized sums if we sum up
n=1 and n=2 random variables

Figure i.2. The relative frequencies of the values of the standardized sums if we sum up
n=5 and n=10 random variables

Figure i.3. The relative frequencies of the values of the standardized sums if we sum up
n=30 and n=100 random variables
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e The distribution of &; can be arbitrary. In Figs. i.4., i.5. and i.6. the relative
frequencies of the standardized sum of n exponentially distributed random variables with

expectation E(ai)=1=% (n=1,2,5,10, 30,100) are presented. One can realize that the

shape of the Gauss curve appears for larger values of n than previously, due to the
asymmetry of the exponential probability density function.

1 T T T T T T T T 0.7

0.9
0.6

0.8

0.5~

071

0.4

0.3

0.2

0.1

0

Figure i.4. The relative frequencies of the values of the standardized sums of
exponentially distributed random variables, if we sum up n=1 and n=2 random variables

Figure i.5. The relative frequencies of the values of the standardized sums of
exponentially distributed random variables, if we sum up n=5 and n=10 random
variables

Figure i.6. The relative frequencies of the values of the standardized sums of
exponentially distributed random variables, if we sum up n=30 and n=100 random
variables
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o Finally we illustrate the central limit theorem in the case when 6; ~ N(0,1), and

n
g, =07, that is zcii ~ 2 . The standardized sums are approximately normally distributed
i=1
random variables. We note that many program languages have a random number generator
which provides normally distributed random variables, as well.

25 T T T T T T T T 1
0.9
0.8
0.7

0.6

f(x)

0.5

f(x)

0.4

0.3

0.2

0.1

-4 -3 2 -1 0 1 2 3 4 5 -4

Figure i.7. The relative frequencies of the values of chi-squared distributed random
variables with degree of freedom n=1 and n=2

Figure i.8. The relative frequencies of the values of chi-squared distributed random
variables with degree of freedom n=5 and n=10

0.45 3 T T T T T 3 T 0.45

f(x)
f(x)

Figure i.9. The relative frequencies of the values chi-squared distributed random
variables with degree of freedom n=30 and n=100
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After the illustrations we consider what can be stated about the distribution function of the
sums, without standardization.

Remark

n
e The cumulative distribution function of the sum Zai is about that of the normal
i=1
distribution function with expectation n-m and dispersion cJvn, that s

Fn ()= o \/—

i:l

) This can be proved as follows:

zgl—nm y—nm

Fo, 0)= P(Z§.<y) JE ~n yG \/_) <o), which coincides with the

cumulative distribution function of n~ N(nm, c\/ﬁ) . We emphasize that E(znlé,i) =nm and
i=1

i:l

D(x&)=oVn.

Examples

El. Flip a fair coin. If the result is a head, then you gain 10 HUF, if the result
is a tail, you pay 8 HUF. Applying the central limit theorem, compute the probability that
after 100 games you are in loss. Determine the same probability by computer simulation.

8 10
Let &; be the gain during the ith game. &; ~ (O - SJ i=12,...100. &; are independent,

identically  distributed random variables. Moreover, E(&i)=—8é+10-%=1,

100
D(&i)z\/( -8)2. +102 %—12 =9. The question is the probability P(D & <0). Recall

i=1
100

that P(Z“§i<0)=F100 (0). According to the central limit theorem,
i1 2 &

i=1

x—100 -1
10(1 X) = O(—— \/_) , consequently,
Foo (0)= @(w) =®(-1.111) =1— ®(1.111) = 0.1336 .
3 9-4/100

In order to approximate the probability by relative frequency with accuracy 0.001, according
to the previous section, we need 25000000 simulations. After making the required number

ka(n)
n

of simulations, we get =0.13568732 which is quite close to the approximate value

obtained by the central limit theorem.

E2. Supposing the previous game, how many games have to be played in order
not to be in negative with probability 0.99?
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n

Our question is the value of n for which P(Zai >0)=0.99. This question can be
i=1

expressed with the cumulative distribution function of the sum as follows: n=?

1-F, (0)=0.99. As F, (x)z(l)(x_n'l), we have to solve the equation
Eléi El&i 9-\/ﬁ
cD(O_\/E)zo.Ol. This was detailed in the subsection of normally distributed random
9-vn
variables in subsection g.3. ®(y)=0.01 implies y=-2.3263 , therefore 09_3_'1:2. 3263,
-A/n

n=438.35, that is n=439. As a control, performing the simulation 25000000 times, the
relative frequency was 0.98914.

E3. The accounts in the shops are rounded to 0 or 5. If the finial digit of the
account equals 0, 1, 2, 8, or 9 than the money to be paid ends in 0. If the finial digit of the
account equals 3, 4, 5, 6, or 7, then the money to be paid ends in 5. Suppose that all final
digits are equally probable and they are independent during different payments. Applying
the central limit theorem, determine the probability that the loss of the shop due to 300
payments is at least -30 and less than 30!

Let the &, 1=123..300 be the loss of the shop during the ith payment.

-2 -1 0 1 2
& ~ , Which are independent identically distributed random
02 02 02 02 02
300
variables. The total loss during 300 payments equals Z&i. The question is
i=1
300
P(—30£Zé;i <30) which can be expressed with the cumulative distribution function of
i=1
100 300

D¢ as follows: P(-30<) &, <30)=Fy (30)—Fy (-30). According to the central
i=1 i=1 Eléi Ef;i
limit theorem, Fy, (x)zd)(m),where

L& /300

i=1

m=E(&)=-2-02-01.02+0-0.2+1-0.2+2-0.2=0 and
5=D()=y(=2)* 02+ (-1)2-0.2+0%-0.2+2% -02+12-02-0% =+/2.

30-0
Consequently, Fy, (30) = ®(————) =0.88966 ,
Ty V2300

i=1

~30-0
Fyp (~30) ~ O(—~—)=1-0.88966 =0.11034 and
P V2300
300
P(-30<) & <30) =Fy, (30)—Fy (~30)~0.88966 —0.11034 =0.77932 ~0.8.
=1 Ef’i Eléi

Give an interval in which the loss is situated with probability 0.99.

The interval in which a normally distributed random variable with parameters m= 0 and
c=+/600 takes its values with probability 0.99 is (-63.1,63.1). Therefore the loss is
between -63.1 and 63.1 with probability 0.99. Notice that the loss may be -300, it is in a
loose interval with large probability. This fact is appropriate for checking based on random
phenomenon.
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E4. Throw a fair die 1000 times. At least how much is the sum of the results with
probability 0.95?
Let the result of the ith throw be denoted by ¢&;, i=1,2,...,1000. Now

11111 1}, which are independent identically distributed random

variables with expectation E(E_,i)=1%+2%+3%+4%+5%+6%=3.5=m and

dispersion  D(;) = \/12 Lipliel pl el el 35 _170m-0.
6 6 6 6 6 6
X—n-3.5

The central limit theorem states that F (x) O(———=
1.7078/n

) . The question is the value of

1000

x for which P(Z§,>x) 0.95, that is 1-F, (x)=0.95. Solving the equation
i=1 z&al

1- (X100 35 ) 95 x=3411.2 . Summarizing, the sum of 1000 throws is at least

1.7078 - +/1000

3412 with probability 0.95. Although we do not know what happens during one experiment,
the sum of 1000 experiments can be well predicted.

i.2. Moivre-Laplace formula

The Moivre-Laplace formula is a special form of the central limit theorem, the form applied
to the cumulative distribution function of binomially distributed random variables.

Theorem (Moivre-Laplace formula) Let k,(n) be the frequency of the event A
(P(A)=p, O0<p<1) during 2<n independent experiments, that is k, (n) is binomially
distributed random variable with parameters n and p. Then, for any xeR,

im P2 = ).
"= ynpl-p)

n
Proof Recallthat k,(n)=> 1) with
i=1
i |1 if Aoccurs during the ith exp eriments
A 10 if Adoes not occur during the ith exp eriments

1% i=12,... are independent, characteristically distributed random variables with

parameter p, E(14)=p, D(1,)=+/p(L-p) . Applying the central limit theorem we get the
statement to be proved.

Remarks
e P(m<x) equals the cumulative distribution function of k , (n) at point x.

e E(ka(n)=np, D(ka(n))=ynp—-p).
e The Moivre-Laplace formula states that Fy, ), (X) = @(X) .
Vnp(1-p)
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X —np

Vnp(—p

o R, (X)=0( ), which can be proved as follows:

ka(M)=np  y—np y-np
- P(k = = '
Y R ey L et e
e Forany a<b,
b-np a-np

Pla<ka(n) <b)=F, @ b)—F, @m(@) ~®(m)) (m) :
e The approximation is good if 100 <n and 10<np.

e P(ka(n)=Kk)=P(k<k,(n)<k+1)=F, m((k+D)-F, K=

(k+1)—np _ )

Jnp(-p)

k—-np
Jp(L-p)

::(I)(

n
Consequently, P(k,(n)=k) =[kjpk(1— p)”"‘ can be approximated with the help of the

cumulative distribution function of a normally distributed random variable. The differences
between the exact and the approximate values can be seen in Fig.i.10. The values of
parameters are n=100 and p=0.1. Largest difference between the exact and the

approximate values is less then 0.01.

0.14

0.12

o1 |

008 | |

p(k)
Difference

0.06[ +#

0.04

e : :
90 100 [¢] 5 15

k k

5060 70

20

Figure i.10. The exact and the approximate probabilities and their differences in

case of binomial distribution

n
e P(k,(n)=k) :(ka"(l— p)"™ can be also approximated with the help of

the probability density function of normally distributed random variables. From analysis one

can recall that if the function G

is continuously differentiable in [a,b], then

G(b)-G(a)=G'(c)(b—a) , for some ce(a,b). Applying this theorem for a=k and

b=k+1 weget P(k<k,(n)<k+D=F , k+1)-F, K=
o o k—np c—np 1

)=( )
Jnp@-p) Jmp(-p)” Jnpd-p)

2

1
— e ,
\2T

K+l-np,

)
Vnp(d-p)

(k+1-K).

As @'(x) =
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{zaits)
c—np 1 1 o) 1

( ) - S S
Jop@-p)" Jmp-p) V2n Jnp-p)

which coincides with the probability density function of a normally distributed random

1
Vnp(L-p)

variable with expectation m=np and dispersion o= at some point

ce(k,k+1).
If we choose the middle of he interval, that is c=k+0.5 we get P(k,(n)=k)~
1 k+05-np

). The exact and the approximate probabilities and their

¢
Jmp-p) " \np(t-p)
differences are plotted in Fig.i.11. One can see that the largest difference between the
approximate and exact probability is less than 0.01.
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Figure i.11. The exact and the approximate probabilities and their differences in
case of binomial distribution

Example
E1. In an airport, the number of tickets sold for a flight is 500. Suppose that all

of the ticket holders come to the check in with probability 0.95 independently of each other.
Compute the probability that the number of people come to the check in is at least 490.
Let n denote the number of people coming to the check in. n is a binomially distributed

random variable with parameters n=500 and p=0.95. The question is P(n>490). Now
P(=>490) =P(M=490) + P(n=491) + PM=492) + PM =493) +...+ P(n=500) =

500 500 500
0.95%°.0.05% + 0.95%1.0.05° +...+ 0.95°°.0.05° =0.00046 .
490 491 500

If one applies the Moivre-Laplace formula,

P(n>490) =1-F, (490) ~1—@( 490 ~ 500 -0.95

v/500 -0.95-0.05
between the exact and approximate probabilities is less than 0.001. One can conclude that
that the probability of having at least 490 passengers on the flight is very small. More than
500 tickets may be sold, if the number of places is 500 and we would like to have less than
0.01 probability for overfilling.

)=1-0.99896 =0.00104 . The difference

E2. How many tickets may be sold in order to assure that at least 500 passengers come
to the check in?
Let n, be the number of passengers coming to the check in in case of n tickets sold. The

question is the value of n for which P(n, <500)=0.99. We require F, (501)=0.99.
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Applying the Moivre-Laplace formula, F, (x) z@(w). Solving the equation
" v/n-0.95-0.05
) M) =0.99 we get S01-Nn-0% ) 363 , which is a quadratic equation
\/n-0.95-0.05 vn-0.95-0.05
for n. Solving it, we obtain n=515. As a control,
500 515 515 (515 ) o151
P <500)=>» P =i)=1- » P =i)=1- _ 10.95'.0.05>"" =0.9926 >0.99.
(Ms1s ) iZO: (Ms15 =1) igoll (Ms1s =1) igoll(l )

E3. How many passengers come to the check in most likely? Compute/approximate the
probability belonging to the mode in case of n=515 tickets sold.
The mode of a binomially distributed random variable is
[(n+1)-p]=[516 -0.95]=[490.2]= 490 , as (n+1)-p

515
is not an integer. P(ns;5 =490) = (49()}0.95490 -0.05%° =8.0585 -102.
Approximating this value by the normal cumulative distribution function, we get
P(Msy5 =490) =P (490 <mjs <491) = Fosis (491) — F(490) ~

491 -515-0.95 )— 490 —515-0.95
v/515-0.95-0.05 v/515-0.95-0.05

If we apply approximation by probability density function, we get

P(ese = 490) = 1 0 490 —515-0.95 )=7.8125 x10°
\21+/515-.0.95-0.05 ' +/515-0.95-0.05

which is almost the same as the previous approximation.

z(l)(

) =0.63826 - 0.56026 =0.078 .

E4. Flip a fair coin 400 times. Determine approximately the probability that the
number of heads is at least 480 and less than 520.
Let m,q00 be the frequency of heads in case of 1000 flips. 1y, IS @ binomially distributed
random variable with parameters n=1000 and p=0.5. The question is

P (480 <Myq00 <520), which can be expressed with the cumulative distribution function of

Niogo 1N the following way: P(480 <myqy <520)=F, = (520)—F, . (480). Applying the
Moivre-Laplace formula, Friio0 (X) zCD(M) , and

1000 41000 -0.5-0.5

520 — 500 480 — 500
P(480 <1Myg0 <520) ~ O( ) —@( )=
1000 J250 J250
@(M) - @(M) = 2q>(ﬂ) —1=0.7941.
250 v 250 \250

Give an interval symmetric to 500 in which the number of heads is situated with probability
0.99.

If ©~N(500,/250), then P(500 —2.5758 /250 <0 <500 + 2.5758 -/250) =0.99 . That
means P(459 < 1o <541)=0.99 .

What do you think if you count 455 heads in case of 1000 flips?

If we realize that the frequency of heads is less than 459, then there are two possibilities .
The first one is that an event with very small probability occurs. The second one is that the

coin is not fair. People tend to believe the second one. This is the basic thinking of
mathematical statistics.
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At the end of this subsection we present the approximation of Poisson distribution by
normal distribution. The possibility of that is not surprising: Poisson distribution is the limit
of binomial distribution.

Theorem Let n, be a sequence of Poisson distributed random variables with parameters
N, —N
Jn
Proof n, can be written as the sum of n independent Poisson distributed random variables

with parameter A =1, consequently the central limit theorem provides the formula presented
above.

A, =n .Then lim P(

n—oo

<X)=D(x).

Remarks
e The condition A, =n is not crucial. If n is a Poisson distributed random variable
with parameter A and 10 <., then P(n<x) = q)(%) :

e The expectation of n is E(n)=A, the dispersion of n is D(n)zﬁ. Roughly

spoken, the expectations of the approximated and the approximate distributions are the same
values. The same can be stated about the dispersions.

e Similarly to the binomially distributed random variable,
AX K+1-2 k-2
Pm=k)="—e™* =P(k<n<k+1)=~d -0 .The goodness of the
(m=k) " (k<n ) = d( 7 ) —9( 7 ) g

approximation can be seen in Fig.i.12. in case of A =10 and in Fig.i.13. in case of A =50.
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Figure i.12. The exact and the approximate probabilities and their differences in
case of Poisson distribution with parameter A =10

c r L
10 15 20

x10°

18

: : : : : : :
y e
/“\r 16 A
1 +
L e
£ 14 « .

12f +

1k

eyl

. .
40 45

c c c
50 55 60 70
k

65

0.8,

0.6¢

0.4r

0.2r

Difference
*

+
 EEE
N

0
30

c
35

c c c c
40 45 50 55 60 65 70

k

Figure i.13. The exact and the approximate probabilities and their differences in
case of Poisson distribution with parameter A =50
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Example

E5. The working times of a certain part of a machine between consecutive failings are
supposed to be independent exponentially distributed random variables with expectation 24
hours. If a part goes wrong, it is changed immediately. How many spare parts should we
have in order to have enough for a time period 90 days with probability 0.99.

Let n; be denote the failings from time t=0 to T . Recall that n is a Poisson distributed

random variable with parameter A =i -T, where A is the parameter of the exponential

distribution. Actually, if the time unit is a day, then A =% =%=1, where &; 1=123,...
i
denotes the time between the (i-1)th and ith failings. Consequently, mo, is a Poisson
distributed random variable with parameter A4, =90 . The question is the value of x for
x —90
J90
X — x—-90

90 o
O(——)=0.99 we get ——— =2.3263, which implies x =90+ 2.3263-/90 =112.07.
790 V90

Consequently, we should have 113 spare parts in order not to run out them with probability

113 i
0.99. As acontrol, P(ny, <113) = Z%e‘go =0.99172 , but
i-o I

which  P(ng, <x)=0.99. P(ng, <x)=F

Moo

(X) = D( ). Solving the equation

112 i
P(Mgo sllZ):Z%ego =0.98924 . This also supports the goodness of the presented
i=0 '+

method.

i.3. Central limit theorem for the average of independent identically

distributed random variables

The central limit theorem was presented for the sum of many independent random variables.
The average can be computed as a product of the sum and a constant value, consequently,
the central limit theorem can be written for the average, as well.

Theorem Let &,,&,,...,&,... be independent identically distributed random variables with
expectation E(&;) =m and dispersion D(§;)=c, i=12,.... Then,

n

P

= _m
n

Jn

lim P

n—oo

<X |=®(x) forany xeR.

Proof Notice that
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n n
Zgi Z&;i_nm Z&i_nm n
R = i-1 ZE” —nm
Pl ex|=p| — N ox|=p| N ox|=p| T <x
o o Jn-o c-n
Jn Jn n

Therefore the statement is the straightforward consequence of the central limit theorem for
sums.

Remarks
n n
2, X5
e E(*=—)=m,D(*E—)=—.
( . ) ( . ) n
n n
PR D&
= i1 q
e PN x| isthe cumulative distribution function of —— | that is the
(e (e}
Jn Jn
standardized average.
X—m .
e F, (X)=® = | This can be proved as follows:
L& 9
D Jn
n
N &
Y& 2—m
F, (y)=P 2 —<y|=p -0 Y- M| g YT
2 & n (¢ o o
i=1 —— — -
n Jn Jn Jn
° The cumulative distribution function of the average can be approximated by the

cumulative distribution function of a normally distributed random variable. The
expectations of the approximated and the approximate distributions are the same and so are
their dispersions.

e The distribution of the averaged random variables can be arbitrary.

e The approximation can be applied if the number of random variables is at least 100.

e The fact that the average is approximately a normally distributed random variable
and data are frequently averaged in statistics, is the reason of the leading role of normal
distribution in statistics.

Example
El.Let us suppose that the lifetime of bulbs are independent exponentially

distributed random variables with expectation 1000 hours. Give and interval symmetric to

1000 in which the lifetime of one bulb is situated with probability 0.8.
2000

E(gi)=%:1000 . As P(§; <2000)=1—e7 1000 — 0,865 , consequently, the interval looks
like (1000 —x,1000 + x) with x <1000 .
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1000+x 1000-x
P(1000 - x <&; <1000 + ) = F, (1000 +x) - F, (1000 —x)=1-e 1200 — (1— e 1000 J

~ 1000-x ~ 1000+x ~1000-x 1000+
=e 1000 _g 1000 Splving the equation e 1000 —e 1000 =08 we get

X X X

el000 _g 1000 —0.8.e=2.1746 . Defining the new variable y=em we get

y—1 =2.1746 . This is a quadratic equation for the variable y . Solving it we end up with
y

X
y=-0.38993 and y=2.5645. y=e%0 can not be negative, therefore y=2.5645. This
implies x =1000 - In( 2.5645) =941. 76 .
The interval looks like (1000 —941. 76, 1000 +941. 76) =(58.24, 1941.76) .We note that

the interval is quite large, almost 1900 hours its length is.

As a control,
-1941.76 58.24

P(58.24 <&, <1941.76) =F, (1941.76) —F, (58.24)=1-¢ 100 —(l1—e 1000)=08,
Give and interval symmetric to 1000 in which the average lifetime of 200 bulbs is situated

with probability 0.8.

Turning to the average,
200

25
P| 1000 —y <= <1000 +y |=Fy, (1000 +Y)—F,, (1000 —Y) .
n Y& Y&

i=1 i=1

n n
. x —1000 .
Taking into account that F,,, (X)=~® 1000 |’ we should determine the value y for
ZEi
S 200

which @ 1000 + y —1000 o 1000 —y —1000

=0.8 holds. This implies

1000 - 1000
200 200
2.0l —Y|-1-08, thatis 2% _1.9816 , thatis y =90.623.
1000 1000
J200

The interval in which the average is situated with probability 0.8 is
(1000 —90.623, 1000 + 90.623 )= (909,1091). Notice that its length is about 182 hours,

which is much less than it was in the case of exponential distribution.

i.4. Central limit theorem for relative frequency

At the end of this chapter, we present the central limit theorem for relative frequency. As the
relative frequency is the average of independent characteristically distributed random
variable with parameter p, this form of the central limit theorem is a special case of that
concerning average.
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Theorem Let k, (n) be the frequency of the event A for which P(A)=p, 0<p<1, during

Ka(n) D
2<n independent experiments. Then, forany xeR, lim P %<x =O(X).
n—oo p _p
n
Remarks
k,(n k,(n 1-
E( A( )):p,D( A( )): p( p)
n n n
Ka(n) —p
. P(%<x) is the value of the cumulative distribution function of the
/IO -p
n
standardized relative frequency.
X-p

* Returning to the relative frequency, F, ., (X) ~ @

n p(l_ p)
V n

. This can be argued

ka(n) D
Ka(n) n y-p y—-p

by P( <y)=P < ~ O —=—

n Jpa—m Jpa—m pL-p)

n n n
p(Ka _p ey =ppoe<Xa ™ oL oyap PHEZP | g P8P |
n n p(L-p) pL-p)
n n

- ZCD(i) 1.

VP(L-p)

It provides possibility to compute
1. thereliability 1— o as the function of ¢ and n,
2. ¢ (accuracy) as the function of reliability 1— o and n
3. number of necessary experiments (n) as the function of ¢ and 1- .

e This formula can be directly applied if pis known.

Example
E1. Throw a fair die 500 times. Compute the probability that the relative

frequency of “six” is at least 0.15 and less than 0.18.
Let A be the event that the result is “six” performing one throw. The question is

k
P(0.15< % <0.18) . Recall that
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0.18 —— 0.15-—
6 6

P(0.15 < <0.18) = Fy,, 500 (0.18) — Fy, 500y (0.15) = @

500 500

_ ka(500)
500

=®(0.8) - ®(-1) =0.78814 —0.15866 =0.62948 ~0.63.
Making computer simulations, applying 10° repetitions, we get an approximate value for

P(O.15sm<0.18). This means that 500 -10° =5-10% random experiments were

performed, which required 0.31 sec. Computer simulation resulted in 0.627480.

E2. Throw a fair die 500 times. At most how much is the difference between the
exact probability and the relative frequency with reliability 0.9?

. K A (n) evn en -
Applying  P(—2% —p|<e) = 20(———r— ———=)-1=0.90 implies
: Fen e
15
1.654 - |=-—
i=1.645. Substituting n =500 and p=E we get s:¢:0.0274. It
VpA-p) 6 /500
k (500) K 5 (500)

means that P(% ~0.0274 < +0.0274) = P(0.1393 < <0.1941) ~ 0.90 .

Computer simulation resulted in 0.907078. If we would like to increase the reliability, for

example, 1-o=0.99, then 20(—— evn )-1=0.99, 8“500=2.5758, €=0.04293 .
VP(L-p) 1

6 6
Consequently, the interval is (%—0.04293,%+o.04293)=(0.12374, 0.20960) . We can

realize that the greater the reliability, the larger the interval.

E3. Throw a fair die 500 times repeatedly. How many throws should be done, if the
relative frequency of “six” is closer to the exact probability than 0.01 with reliability 0.99?

Apply the formula P( A() p<8)z2d)(\/%) 1 again with £=0.01 and
1-p
1-0=0.99. 20(——— 8\/_ )—-1=0.99 implies M):2.5758, that s
VpA-p) p-p)
2

\/_ 25758 —-E, n= @ EE =9215 instead of 500 experiments. As
001 V6 6 001 V6 6
evn . . . . L

ZCD(T) —1 is a monotone increasing function of n, if we increase the value of n, we
pLL-p

increase the reliability, as well. If we apply the estimation P(

Ka(n) p‘<8) >1-PA-P)
n ne

1

presented in the previous chapter, substituting =0.01, ng and 1—p(1—_2p)=0.99 we
ne
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15
get n 6 6 13800 which is about the 1.5 times larger than the previously

" 0.01-0.017
determined simulation number. It means that it is rather worth computing by central limit
theorem, than by the law of large numbers.

Note that if we would like to have accuracy €= 0.001, then the number of simulation has to

be 102 =100 times larger than in the case of € =0.01.

We would like to emphasize that in the previous examples the probability of the event A
was known. But in many cases it is unknown and we would like to approximate the
unknown probability by the relative frequency. In those cases we can apply upper estimation

for the probability ZQ(A) -1.
Vp-p)
en
Theorem For any value of 0<p<1, 2@(28\/5) -1<20(—) -1.

VP(-p)

Proof If O<p<1, then p@d-p)< % therefore  /p(L—p) < % . This implies
s\/ﬁs en ,thatis 2-¢ nsﬂ
1 Jpt-p) JpL-p)

2
S0 is 2d -1, therefore 2-¢ nsi implies 2<I>(2-s\/ﬁ)—132c13(i

p(L-p) VP(L-p)

which is the statement to be proved.

. Since @ is a monotone increasing function,
) _1!

Remarks

o The formula 2@(28\5 ) —1does not contain the unknown value of p, therefore the

inequality 2@(2&/5)—13 P(k—A—p <g) is suitable for estimating the accuracy, the
n

reliability and the necessary number of simulations in the case of unknown p value.

For the sake of applications, we determine the reliability as the function of n and ¢ , the
accuracy ¢ as the function of nand reliability 1—a, and the necessary number of
simulations as the function of ¢ and 1—a.

1. If nand ¢ are fixed then 2(1)(2€Jﬁ)—1§ P(

Ka _ p|<¢) supplies a direct lower
n

bound for the reliability.
2. If nand the reliability 1— o are fixed, with the choice 2@(28\/5) —-1=1-a, then

ot (1 - O‘j
2ea/n =(D‘1(1—%J and € =—2. Notice that the accuracy ¢ is proportional to the

2vn
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reciprocal of the square root of the number of simulations. We note that @1(1—%j=y

v f-3)
2 ,then 1— o <P(

2vn

e If the accuracy ¢ and the reliability 1— o are fixed, then 2@(28\/5)—1=1—oc

. k
means that ®(y) =1—% . Summarizing, if ¢ = T“—p <g).

2
q)‘{l—“j
serves again for the formula ZsJ_:Ql[l—%j and, n= 2—2 . If nincreases,
€

then the reliability increases supposing ¢ is fixed. If the reliability is fixed and n increases,
then ¢ decreases. Note that the required number of simulations is proportional to the square

2
q){l—“j
f —2 <

of the reciprocal of the accuracy. Summarizing, i 5 <n, then
€

1—0LSP(kTA—p <g).

Examples

E1l.At a survey, n=1000 people are asked about a yes/no question. The
relative frequency of the answer “yes” is 0.35. Estimate the probability that the relative
frequency is closer to the probability of the answer “yes” (p) than 0.05, that is
P(0.3<p<0.4).

Let A be the event that the answer is yes, P(A)=p is unknown. Recalling

2d(2e4/n) —1< P

Ka _ p|<e) and  substituting n=1000 and &£=0.05,
n

20(2ev/n) —1=2d(2-0.05 - 41000) —1=2-0.9992 -1=0.9984 . Therefore,
0.9984 <P(|k 5 —p| <0.05).

E2. At a survey, n=1000 people are asked about a yes/no question. How much
is the largest difference between the relative frequency and the exact probability p with

reliability 0.95?

We have a formula for the accuracy, namely e:—z. Now, 1-a=0.95,
2Jn

1—g=0.975, d)l(l—gjzl.% and 2 = 1.9 =0.031. That means
2 2 2Jn 2,/1000

k . .
0.95< P(0'35_0'031<1030 <0.35+0.031). This is the reason why surveys publish the

results with + 3% in case of 1000 people.
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E3. At a survey some people are asked about a yes/no question. If we need
accuracy ¢€=0.01 with reliability 0.95, how many people should be asked to be able to do
this?

2
q){l-“j
Apply 2—82 <n with e=0.01,1-a=0.95.

2¢ 2-0.01

2
ot1-%
2 _[ 1.96

2
j =982 =9604 .

This is the reason why 10000 people are asked to have accuracy 0.01 with reliability 0.95.

Summarizing our result, in case of 9604 <n, 0.95 <P(

Ka _ p|<0.01) =P(0.34 <p<0.35).
n

Of course, the above questions should have been asked for computer simulation as well. The
main difference between survey and computer simulation is that the number of simulation
can be easily increased but the increment of number of people asked at a survey requires lots
of money.

Finally we present Tables i.1.and i.2., which contain the required number of simulations for
given accuracy, in case of reliability levels 1—a=0.95 and 1- o =0.99 . These reliability
levels are often used in practice. In Tables i.3. and i.4., we present accuracy at given
numbers of simulation.

1-a=0.95
n €
10 0.3099
100 0.098
500 0.043827
1000 0.03099
5000 0.013859
10000 0.0098
50000 0.0043827
100000 0.003099
500000 0.0013859
1000000 0.00098
500000 0.00043827
1000000 0.0003099
5000000 0.00013859
10000000 0.000098
50000000 0.000043827
100000000 0.00003099
Table i.1.The accuracy in the function of number of simulations in case of reliability
level 0.95
1-0=0.99
n €
10 0.40727
100 0.12879
500 0.05 7597
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1000 0.040727
5000 0.018214
10000 0.012879
50000 0.005 7597
100000 0.0040727
500000 0.0018214
1000000 0.0012879
500000 0.0005 7597
1000000 0.00040727
5000000 0.00018214
10000000 0.00012879
50000000 0.00005 7597
100000000 0.000040727
Table i.2.The accuracy in the function of number of simulations in case of reliability
level 0.95
1-a=0.95
€ n
0.1 97
0.05 385
0.025 1537
0.01 9604
0.005 38416
0.0025 153660
0.001 960400
0.0005 3841600
0.00025 15366000
0.0001 96040000
Table i.3.Necessary number of simulations to a given accuracy in case of reliability
level 0.95
1-a=0.99
€ n
0.1 166
0.05 664
0.025 2654
0.01 16587
0.005 66347
0.0025 265390
0.001 1658700
0.0005 6634700
0.00025 26539000
0.0001 165870000

Table i.4.Necessary number of simulations to a given accuracy in case of reliability

level 0.99

Central limit theorem




j. Basic concepts of mathematical statistics

The aim of this chapter

In this chapter we present the basic concepts of mathematical statistics
and we sketch some branches of it. We introduce the empirical
cumulative distribution function, the empirical density function,
estimations of expectations and dispersions. We also present how to test

hypothesis in some cases.

Preliminary knowledge

Properties of average. Normal distribution. Student’s t distribution. Chi-

squared distribution.

Content

j.1. Empirical cumulative distribution functions and histogram.

j.2. Estimation of probability, expectation and variance.

j.3. Testing hypothesis.



j-1. Empirical cumulative distribution function and histogram

In the previous chapters we have dealt with probabilities. In this last section we present how
to draw conclusions from data on the basis of probabilistic arguments. As the cumulative
distribution function contains all information about the random variable, our primary aim is
to approximate it on the basis of data. Data have dual nature, before performing the
sampling they are random variables, after performing the sampling they are real numbers as
the results of observations of a random phenomenon. The statistical methods are executed
on the numbers, but they are elaborated for the random variables.

First, clarify the concept of sample.

Definition A sample is a series of independent observations concerning a random variable
& . More precisely, a sample is £=(&;,&,,....&,), where &; i=12,...,n are independent

identically distributed random variable with common distribution function F. The number
of elements of the sample equals n.

Definition Let the values of the sample be x;,X,,...,X,, X; €R,i=1,2,...,n. The empirical
cumulative distribution function belonging to the values of the sample x =(X;,X; ..., X,,)

D Ly

is defined as

(X1,X2,---%n) ‘R—>R F(xl,xz,...xn)(z) = Fe (Z) :i:lT .
Remarks
e The argument of the function is denoted by z because the letter x is related to the
sample.
*  Fiuxp..x,)(2) is briefly denoted by F,(z).

e The cumulative distribution function is the relative frequency of the event {& < z} if

zl{xi<2}

we perform independent experiments for this event. F,(z)=-"—— is a step function
n

which has jumps at z=Xx;. It is constant zero previous to the smallest element of the
sample, and it is constant 1 following the greatest one.
e The elements of the sample x; and x; may be equal.

e The function F,(z) has all the properties of cumulative distribution function.
Namely,

n n
L D 14,y <O 1,y for any values of z<y, which implies the monotone
i=1 i=1
increasing property.
Its limitis zeroat —co and 1 at .
3. It is left hand-side continuous. Consequently, it is really a cumulative
distribution function.

ns



[xl X, . . an
e The random variable 6~ 1 1 1 | has the same cumulative
n n n
distribution function if all the values x; are different i=1,2,...,n. If some values

Xx; are repeatedly in the sample, then the probability belonging to this value is
the relative frequency of this element in the sample.

Example
EL Let the elements of the sample be x, =12, x, =10, x,; =15, x, =12, x; =13.

Draw the empirical cumulative distribution function belonging to these sample elements.

0 if z<10
5 1 if 10<z<12
=31 >
L~ {xi<z} 3
Fe(Z)%Z g If12SZ<l3
g if 13< 7 <15
1 if15<z

This function can be seen in Fig.j.1.

o8k —_—

0.6 —

Fe(x)

0.4

0.2k [ ——

o

: : : : : : :
8 9 10 1 12 13 14 15

Figure j.1. The empirical distribution function belonging to the sample
elements in E.1.

Theorem If F,(z) is the empirical cumulative distribution function belonging to the sample
elements (Xj,....,X,) and F(z) is the cumulative distribution function of &;, i=123,... ,
then for any value of xeR and O<e, P(F,(2) - F(z)|<g) >1 if n >o0.

Proof Let A be the event that the random variable &* is less than z, that is A={&*<z}.
Now F,(z) is the relative frequency of A during n independent trials. Moreover,
F(z) =P(A) . The law of large numbers states that the relative frequency of an event and the

probability of that are close to each other, that is
P(F.(2) - F(z)| <) 21— F@A-F@) ;_, , supposing N — oo .
n

2
€



Remarks

e The above theorem is the consequence of the law of large numbers.

e The theorem states that the values of the cumulative distribution function can be
approximated by the empirical cumulative distribution function. The necessary number of
simulations to a given accuracy can be determined by applying the central limit theorem
presented in the previous section. For example, if €=0.01, then n=9604 , if the reliability
level is 0.95.

Example
E1l. Let &* be an exponentially distributed random variable with parameter

A =1. Take a sample of n elements independently with respect to &*. Draw the empirical

cumulative distribution function of the sample if n=10 and n=100 and n =1000 .
The empirical cumulative distribution functions together with the exact one can be seen in
Figs.j.2. and j.3.

Figure j.2. The empirical distribution function belonging to an exponentially distributed
sample of 10 and 100 elements

Fe(x)
o
@

Fe(x)

o,re O.r8 ; sz 1.r4 1.r6 1.r8 é
Figure j.3. Empirical distribution function belonging to an exponentially distributed sample

of 1000 elements and a segment of the function

One can realize that there is hardly any difference between the exact cumulative distribution
function and the empirical one if the number of sample elements is large.



E2. The exact cumulative distribution function and the empirical one is presented in Fig.

0 1
j.4.in case of &~ (O 5 0 SJ . The number of sample elements was n=10 and n=100.

Fig.j.4. The empirical cumulative distribution function (blue) and the exact one (red) in case
of 10 and 100 sample elements, respectively

One can see that if the number of elements is large, then they are close to each other.

The following statement is a stronger one than the previously proved statement. We present
it without proof.

Theorem (Glivenko)
If F,(z) is the empirical cumulative distribution function belonging to the sample elements

(Xqy..yX,) and F(z) is the cumulative distribution function of £&* and §&;, i=123,....
Then sup|Fe (2)- F(z)| — 0 if n— o with probability 1.

zeR

Remarks

e Glivenko’s theorem is often used as the fundamental theorem of mathematical
statistics.

o Its philosophical interpretation is that the world is knowable.

e The main differences of Glivenko’s theorem and the theorem presented at the
beginning of the section are that this later states uniform convergence (not for every z
separately) and states probability 1 (strong law of large numbers).

e Atest for distribution function can be given on the basis of maximal difference. It is
called Kolmogorov-Smirnov’s test, and will be presented in the last subsection.

Now we turn to the approximation of the probability density function by histogram.
Histograms are used for presentation of relative frequencies. We usually compared them to
the probability density function. We mention that relative frequency and frequency differs in
a constant multiplier, therefore the shape the figures are very similar.



Definition Let x,,X,,..., X, be the values of the sample. Let a= mzin X;, b= max x; and
i=1,2,..n i=1,2,..n

1<m fixed. Then consider the points y, =a—?, Yi=VYiu1 +i%, i=12,..m+1.

Let k;(n,m)=> 14 gy, y)» 1=12,...,m and
j=1
ki(n,m)‘ 1
fe(z): n B
m
0 otherwise

The function f,(z) is called the histogram with m equal length subintervals belonging to
the sample elements x,,X,,..., X,,.

if zely,,y;) i=12...m

Remarks

e The histogram strongly depends on the value of m. If m is too small or too large as
compared to n the shape of the graph of the histogram will not be appropriate. To see this,
we present Fig.j.5. The number of sample elements was n=100 in all cases. The sample was
uniformly distributed, m=4, m=10, m=50 and m=100. The sample elements were the same
in case of all histograms.

0.35

0.3

0.25[

0.2

fe(x)

0.15[

0.1

0.05[

0 0.2 0.4 0.6 0.8 1 12 14 ,%‘2 0 0.2 0.4 0.6 0.8 1 12
X X

Figure j.5. Histograms of a sample of 100 elements in case of 5 and 11 subintervals

0.08 T 3 T T T T 0.045

fe(x)

-0.2 0 0.2 0.4 0.6 0.8 1 12 . . . . 05 06 07 08 09 1
X X

Figure j.5. Histograms of a sample of 100 elements in case of m=50 and m=100

If the number of sample elements is 10000 and they are uniformly distributed in [0,1], then
the histograms for m=4, m=10, m=50 and m =100 look as follows:



0.12

fe(x)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 -0. 0 0.2 0.4 0.6 0.8 1 12
X X

j.5. Histograms of sample of 10000 elements in case of 5 and 11 subintervals

0.025 T T 3 3 T 0.014

0.0121~
0.02~

0.01

0.008

fe(x)

0.006

0.004

0.0051~
0.002

-0.2 0 0.2 0.4 0.6 0.8 1 12 0 0.2 0.4 0.6 0.8 1 12
X X

j.6. Histograms of sample of 10000 elements in case of 51 and 101 subintervals

The histograms belonging to m=4 and m=10 seem to be better approximations of the
probability density function of uniformly distributed random variable. The height of the first
and last rectangle is the half of the others because the smallest value of the sample is about
zero, the first subinterval is [-0.05,0.05], and P(-0.05<&£<0.05)=P(0<&<0.05)=0.05,

while P(0.05<§<0.15)=0.1. The last subinterval is (0.95,1.05], P(0.95<§£<1.05)=0.05.

o Although there are many theorems concerning the relationship of the empirical
cumulative distribution function and the real cumulative distribution function, it is difficult
to give a limit theorem concerning the histogram and the probability density function.
Roughly speaking, for appropriate fixed m values, the histogram is close the real probability
density function, if n is large. Examples were presented in section g.

j.2. Estimation of probability, expectation and variance

After approximating the cumulative distribution function and the probability density
function, we estimate the probability of an event, furthermore the expectation and the
variance of a random variable. This will be done by a function of the sample.

Definition Let £=(&,,&,,...&,) be a sample and g:H<R" — R a real valued function
with ImEcH . Then go&=g(§) is called statistics.

Remarks



e Statistics are the function of the sample. The question in which cases which function
should be applied is an important question of mathematical statistics.
e The function gemn:Q—R is a random variable, and g(x,,X,,...X,) is a real

number. The dual property appears in this case, as well.

Estimation of probability

Let £=(¢,,8,....&,) beasample, & =1,'=

1 if Aoccurs at the ith exp eriment
0 if Aoccursatthe ith exp eriment

are characteristically distributed random variables with parameter 0<p<1. Let g:R" - R

n

ZYi Zgi

be g(yllyZv"!yn): I:ln _L

considered as the relative frequency of an event A with P(A)=p. Now,
L -

E0@)-[ 2~ |- =p. Do)~

is the sample average. It can be

P(-p) — 0. Consequently, if we estimate the
n

n

2.5 A(N)

probability p=P(A) by p=1%1 = Kan , then the expectation of the estimation equals
n n

the exact probability p and the dispersion of the estimation tends to zero if n — . These
two properties imply the consistency of the estimation, which means that the estimate value
fluctuates around the value to be estimated and the fluctuation tends zero if the number of
sample elements tends to infinity.

Moreover, applying the central limit theorem, for 100 <n, 10<np, we can write that

P(p—u Jp(l A< +U ,/ ) 1-o, with ®(u,)= 1—— Arranging the

sides of both mequalltles end with (approximately)

=1-a with (D(ua)zl—%.

contains the exact probability p with probability (reliability level) 1—o. This interval is
usually called the confidence interval for the probability belonging to the reliability level
l-a.



Remarks
e We list the values u, for some frequently used reliability levels 1— o, and give

confidence intervals for the probability in case of relative frequency “=2— =0.450 and
n

n=500 in Table j.1.

1-a | u, | Confidence interval
0.9 |1.645| [0.413 0.487]
0.95 | 1.960 | [0.406, 0.493]
0.98 | 2326 [0.398, 0.502]

0.99 2575 | [0.393,0.507]

Table j.1. Values u, and confidence intervals for the probability belonging to reliability
level 1-a

e The larger the reliability, the wider the interval.
Estimation of the expectation in case of known value of dispersion

Let £=(&;,,&,..,&,) be a sample, &; are random variables with expectation m and

n

Zn:yi Zéi

dispersion . Let g:R" >R g(Y;,YprnY,)=42—. Then g(E)=12L—=¢ is the
n

_—
2.6

sample average. Now, E(g(£))=E % =%=m, D(g(m)) =

()

Jn

. Consequently, if we

n

.28

estimate the expectation by the sample average, then, with notation m="t— | E(m)=m,
n

n

and D(mj—m. This means that the sample average is a consistent estimation for the

expectation. Note that the sample average is the expectation belonging to the empirical
cumulative distribution function. Moreover, if &, ~N(m,c), or 100<n, then

P
L Nm, =

n Jn

), or this holds approximately. Applying the k.o rule with notation



D

i=1

k=u,, we get P(m—ua%< %
D D

i=1 o
—U, —<m<

(&
o \/ﬁ n o \/ﬁ

<m+u, —)=1-a. Arranging both sides of the

inequalities we end up with P(

is an interval in which the expectation m is situated with probability 1— o, It is called the
confidence interval of the expectation belonging to the reliability level 1—a..

Remarks

e The above formula can be applied in the case when the dispersion is given.
e |If we have the sample elements (x,X,,...,X,), we have to substitute these values
n n
D D5
into the formula | +=— —u_ > 1L

(e}
, +U, —
n “Jn’ n *JIn

to get the confidence interval for

the expectation belonging to the reliability level 1-a in case of 6=0.2 . For
example, if x, =1.5, x, =17, x; =14, x, =19, X5 =1.7 then
X1+ X, + X3+ X, +Xs 15+1.7+14+1.9+1.7

5 5
belonging to the reliability levels 0.9, 0.95, 0.98 and 0.99 are contained in the Table j.2.

=1.64. The confidence interval

e {1.64—u 221640 -%}
“ 5 "2

0.9 |1.645 [L.493, 1.787 ]

0.95 | 1.960 [1.465,1.815]

0.98 | 2.326 [1.432,1.848]

0.99 | 2575 [1.409,1.871]

Table j.2. Confidence intervals for the expectation in case of reliability level 1—a

o If the reliability level is increased, then the length of the interval increases, as well.

o |If the number of sample elements tends to infinity, the length of the confidence
interval tends to zero.

o |f the accuracy is given, we can compute the necessary number of sample elements
to a given reliability level. For example, if we would like to have a confidence interval to



the reliability level 0.99 with length 0.1, then u 005

o 0.1 [ua-c ?

J <n, that is .

2
(—20507: 02) =107 <n. The number of the necessary elements is proportional to the

variance and to the square of the reciprocal of the accuracy.

If the dispersion of the random variable is not known then we have to estimate it on the
basis of the sample.

Estimation of the variance and the dispersion

As the sample average is the expectation belonging to the empirical distribution function, it

is a natural idea to estimate the variance o by the variance belonging to the empirical
distribution function.

n

Sy -y

Let s?:R" >R, sz(yl,yz,...,yn)z%.Then

>le-tf Y
szogzsz(il,iz,...,gn)z%, where &= ‘Zln . s%(&,,&,,..,&,) is a random
variable.

E i=1

Zn:(gi_erm_g)z ZEE[ n

%E{Z i = —22 & —m)E-m)+n(E- m»J (Z(@—m)z]—E((é—mﬁ.
26 n (

E(E-m)?)=E i:lT—m =

—iiE( ) 1 This implies E| =+ |=6? - = 6% =—— &
2 & no n n n



S* (aYaren V) = HH = nrllsz(yl,yz,---,yn)-
2 3R D
B (61 Baren ) = B | - |- Dot o2

s*? (&,,&,,..,&,) is briefly denoted by s**. It can be proved that if E(F,i“) exists, then

D2(s** (&,,&, ... &,)) =0, if n—oo. Summarizing, s** is a consistent estimation of the
variance. Now it is worth estimating the dispersion by the statistics

S* (B, Epmrln) =S %2 (€1, EpnEy) =

Definition The statistics s* (&,,&,,...£,) = is called the corrected empirical

dispersion.

To construct confidence interval for the variance and the dispersion we state the following
theorem without proof (Fisher-Cochran’s theorem)

- S GG eEn) |2 z
Theorem If &, ~N(m,c), then (n-1) > Xny, furthermore & and
(&)
s*? (&,,&,,..6,) are independent random variables. By definition of Student’s t

distribution (see chapter g), this also implies that *é_—m\/ﬁ ~T,-
$*(81,82,-Gn)

Remarks

e y2 distributed random variables were presented in Chapter g. The explicit forms of
their cumulative distribution functions are not usually used. There are tables (see Table 3.)
which contain the real values x?2 , for which P(y 2, <0)=o supposing 6~ y?2. This means

that P(e<xﬁyq) =1-o. These values Xﬁ,a are called the critical values belonging to the
reliability level 1-o.

e By the help of the critical values belonging to l—% and % one can construct an

interval in which the values of a y?2 distributed random variable are situated with
probability 1—o . Namely, P(x?, ., <0<%2,,,). These intervals will be used to



construct such intervals in which the variance and the dispersion are situated with
probability 1—o..

n

-\
. >l -8)
S (élv‘izzv“’gn) _ = > ~ Xﬁ—l’ consequently,
G G

If & ~N(m,o),then (n—1)

*2
POl 1oz <(n _1)30_2 <y2.2)=1—a. Arranging the sides of the inequalities we end up

g *2 , *2
> <c"<(n-1)—;
Xnoi2 Xni-al2

*2 *2
P( f(n—l) 52 <o< /(n—l) 25 )=1-oa. Summarizing, supposing normally
Xn,alz Xn,— /12

distributed samples or large number of elements, the confidence interval for the variance
belonging to the reliability level 1— o looks like

{(n—l) -2 ]

Xnail2 Xni-al2

with P((n-1)

)=1-a. As a straightforward consequence,

and that for the dispersion it is

§*2 g *2
\/(n—l) > ,\/(n—l) > :
Xnal2 Ani-al2
Remarks

o Due to the central limit theorem, the assumption of normally distributed sample can
be omitted if n is large.
o If we have the value of the sample, we can construct the confidence intervals for the

variance and the dispersion by the following steps: compute the value of s*?, find the

critical value belonging to the reliability levels % and l—%, then substitute them into the

formulae in the boxes.
o For example, assuming normally distributed sample, if x, =15, x,=1.7,
5

—\2
B Z(Xi —x)
X5 =14, x, =1.9, x5 =1.7 then x=1.64 and s*? :%Z

_(15-1.64)" +(L.7-1.64)° +(1.4-1.64)" +(1L.9-164)" +(1.7-1.64)°
4

= =0.038.

Confidence intervals belonging to the reliability levels 0.9, 0.95, 0.98and 0.99 are
included in Table j.3.



1—a 2 2 2 2 2 2
X —a X o S* S* * *
41-al2 4al2 {4_ 4 } (n-1) S2 lin=1 25
Xaal2 Xa-al2 Xaoi2 Xagai2

0.711 | 9.488 [0.016, 0.214] [0.127, 0.462, |
0.9
0.95 | 0.484 | 8.496 [0.018,0.314] [0.134, 0.560]
0.98 | 0.297 |13.277 [0.011, 0.512] [0.107, 0.715]
0.99 | 0.207 | 14.86 [0.010,0.734] [0.101, 0.857]

Table j.3. Critical values and confidence intervals for the variance and dispersion in case
of reliability levels 1-a

e The greater the reliability, the larger the interval is.

Finally let us return to the estimation of the expectation in case of unknown dispersion.

Estimation of the expectation in case of unknown dispersion

Taking the sample average does not require the knowledge of the dispersion. Furthermore,

) D&

estimating the expectation by the sample average, E(m)=E(-X—)=m, and
n

e

D| -2 — | - 0 holds in the case of unknown value of o, as well.
n

Turning to the confidence interval for the expectation, apply Fisher-Cochran’ theorem and
E-m
S*
There are tables of Student’s t distribution, in which one can find the real numbers t
for which P(-t,, <t <t  )=1-o. The value t

na =

the formula Jn ~ T, in case of normally distributed samples.

na !

is called the critical value belonging

nio

to the reliability level 1-a. Now, P(-t _, < F,S—*m vn<t, ,,)=1-oa. Arranging both

. . ... . - tn—la's* < tnfl(x.s*

sides of the inequalities we end up with P(§ - —— <m<E+—)=1-a.
Jn Jn

Summarizing, the confidence interval for the expectation belonging to the reliability level
l1-ais

Remarks




¢ Note that the confidence intervals for the expectation are very similar in the cases of
known and unknown dispersion. In case of unknown dispersion, o is replaced by its
estimation, s*, and the critical value is t,_,,, instead of u,.

o The larger the reliability level, the larger the interval.

e The larger the number of elements, the smaller the critical value.

e The limit of the critical values t,, is u,, thatis limt,  =u,.This is due to the
! n—o '

statement that the cumulative function of a standard normally distributed random

variable is the limit of the cumulative distribution functions of Student’s t distributed

random variables.

e The confidence intervals belonging to a given reliability level can be constructed
after executing the following steps: compute s* on the basis of the sample, find the critical
value and substitute into the above formula. In case of a normally distributed sample and

X, =15, X,=17, X5=14, x,=19, x,=17, x=1.64 and s*=+0.038. The
confidence intervals belonging to the reliability levels 0.9, 0.95, 0.975 and 0.99 are
presented in Table j.5.

1—a | t,, LT R MR VIV i
{i‘ 5 }

09 |2132 [1.454, 1.826]

0.95 | 2.776 [1.398, 1.882]

0.975 | 3.495 [1.335, 1.945]

0.99 | 4.604 [1.239, 2.041]

Table j.5. Critical values and confidence intervals for the expectation in case of unknown
value of dispersion

j.3. Testing hypothesis

An important branch of mathematical statistics is testing hypothesis. Hypothesis is an idea
about the value of probability, expectation, dispersion, a parameter or about the cumulative
distribution function itself. We check whether the hypothesis can be true or not, more
exactly, the data contradict the hypothesis or not. The main idea of testing hypothesis is the
following: if the hypothesis holds, then a certain function of the sample has a known
distribution. This implies that one can determine an interval in which the function of the
sample is situated with a given reliability 1—a.. If the hypothesis does hold, the values of
the function (test function) are outside that interval with probability o. The mentioned
interval is called the acceptation region; its compliment is the critical region. Then, check
whether the test function is really in the acceptation region. If it is, then the data do not
contradict the hypotheses. If it is not, there are two reasons for which this may happen: the
hypothesis does not hold or the hypothesis holds and an event with small probability o
occurs. Statisticians vote for the first one, hence we do not accept the hypothesis, because
we rather trust in the alternative than in the occurrence of rare event. Of course, the decision
may be wrong.

The name of the basic idea is null hypotheses (H,), the name of the opposite is alternative

hypothesis (H,). They have to be mutually exclusive but they may not cover all the
possibilities concerning the parameter. For example, H, is that the probability of an event is
0.4, the alternative hypothesis is that the probability of the event is smaller than 0.4.



The decision, whether we accept (fail to reject) H, or reject it, may be right or wrong. The
following four cases can be distinguished:

H, is accepted H, is rejected
H, istrue Right decision Wrong decision
H, is not true Wrong decision Right decision

Table j.6. Possibilities concerning the decisions in testing a hypothesis

Decision that H, is true, although it is rejected is called as error of the first kind (type 1.
error), its probability is o . The probability of the first kind error is usually called as the
level of significance.

Decision that H,, is not true, although it is not failed to reject is called as error of the second

kind (type Il. error). Its probability depends on the value of the tested parameter, for
example. Consequences of the different kind of errors are of various severities.

Remarks

o Usually applied significance levels are o =0.05 and o =0.01.

e Some test functions are connected with the statistics presented in the previous
subsection.

o The elaborated tests can be executed as a recipe in the kitchen. Their steps are the
following:

State H, and H,, fix the level of significance.

Determine the critical region and the acceptance region.

Compute the actual value of the test function by substituting the values of the sample
elements into the test function.

Check whether the actual value of the test function is in the critical region or in the
acceptance region.

Make your decision: if the actual value of the test function is in the critical region, reject
H,, if itis in the acceptance region, accept H,.

J If H, is accepted, then H, may be untrue but the data do not contradict to this

assumption. If you doubt in H, you should take a sample of more elements.

In the latest part of this subsection we present tests for the probability, expectation, variance
and cumulative distribution function. We explain the task, present the test function, critical
and acceptance region and decision itself in all cases, separately.

Test for the probability

During this problem we have to decide about the probability of an event, whether it can be a
fixed number or not.

1 if Aoccurs at the ith exp eriment

Let £=(&,&)...E,) be the sample, & =1,'= _ :
2= (Gn5amata) Ak {0 if Aoccurs at the ith exp eriment

n
. 2E )
Now, Z‘ii =k, (n), the frequency of A, and %:AT is its relative frequency.
i=1




Let H, :P(A)=p,, H,:P(A)=p,, where p, is the idea about the probability of the event.
If 100 <n, 10<np, is satisfied, then by the central limit theorem we can state, that

ka(n)
0
_n_____ - N(0,1) supposing that H, holds. Consequently, let the test function be
Po(@—Po)
n
ka(n) _ Ka(n) _
0 0
u=—2"— . If H, holds, then P(-u,<—1——_<u )=1-o, where

/po(l_po) . Po(L—Po)
n n

@(ua)zl—%, coinciding with the previous subsection. The critical region is

(- o0,~u, )u(u,,») and the acceptance region is [-u,,u, ]. The critical value u,, and its

Ka(n) 0
0
opposite are the bounds of the critical region. If the actual value of n is in the
PoL—py)
n

interval [-u,,u,], then H, is accepted, in the opposite case H, is rejected and H, is
accepted. The level of significance equals o .

Let H,:P(A)=p, and H,:P(A)<p, a one sided alternative hypothesis. Then, if H,

ka(n) " ka(n)
0 0
holds, then —1— ~ N(0,), and P(-u,, <—0———)=1—q supposing 100 <n,
Pod—py) Pod—py)
n n
10<np,. The critical region is (-w,~u,, ), the acceptance region is [-u,,,). If the
kKa(n) 0
0
actual value of the test function —". is at least —u,,, , then we accept H,, if itis
Po(d—Py)
n

less than —u,, we reject H, and we accept H,. Then the data rather support that
P(A) < p, and they contradict to P(A)=p,.

Remarks
e The alternative hypothesis H, :p, <p can be similarly handled.
o The smaller the significance level, the larger the acceptance region.
Po(1—Py)
n
and the larger is its reciprocal. Consequently, greater difference can be accepted between the
relative frequency and the real probability in case of a small number of sample elements.
Same difference between the relative frequency and the real probability may result in
acceptance of H, for a small number of elements of the sample and in rejection of H, in
case of large number of elements of the sample.

e The larger the number of sample elements, the smaller the value of



e Same difference between the relative frequency and the real probability may result
in acceptance of H, for small number of elements of sample and in rejection of H, in case
of large number of elements of the sample.

o Acceptance of in case of two sided alternative hypothesis and rejection of in case
of one sided alternative hypothesis may happen at the same significance level. Example will
be presented later.

Example

E1. Let the relative frequency of an event A during n independent experiments be
0.35. Test the hypothesis H, :P(A)=0.4 and H, :P(A)=0.4 in the case of significance
levels a=0.1, a=0.05, a=0.01 and number of sample elements n=100, n=300,
n =600 . Results are included in Table j.7.

o,n u, Critical region Actual value of | Decision

the test function
a=0.1, 1.645 | (~0,-1.645)U (1.645,0) | -1. 0206 H, is accepted,
n=100 Hi is rejected
a=0.1, 1.645 | (—o0,~1.645) U (1.645,0) | -1.7678 H, is rejected,
n=300 H, is accepted
a=0.1, 1.645 | (—o0,—1.645) U (1.645,0) | -2.5 Ho is rejected,
n=600 H, is accepted
=005, |19 | (-x,-196)U(1.96,0) |-1.0206 H, is accepted,
n=100 H; is rejected
=005, |19 | (-,-1.96)U(1.96,00) |-1.7678 H, is accepted,
n=300 H: is rejected
=005, |19 | (-,-196)U(1.96,0) |-2.5 Ho is rejected,
n=600 H, is accepted
a=0.01, 2.576 | (—o0,—2.576)U(2.576,) | -1. 0206 H, is accepted,
n=100 H; is rejected
a=0.01, 2.576 | (~,~2.576)(2.576,) | -1. 7678 H, is accepted,
n=300 H; is rejected
a=0.01, 2.576 | (~o0,~2.576)U(2.576,0) | -2.5 H, is accepted,
n=600 H; is rejected

Table j.7. Testing hypothesis p =0.4 with two sided alternative hypothesis

E2. Let the relative frequency of an event A during n independent experiments be 0.35.
Test the hypothesis H, :P(A)=0.4 and H,:P(A)<0.4in the case of significance levels

a=0.1, a=0.05, a=0.01 and number of elements of the samples n=100, n=300,
n =600 . Results are included in Table j.8.

a,n U,, | Critical Actual value of the test | Decision
region function

a=0.1, 1.282 | (-,~1.282) | -1.0206 H, is accepted,

n=100 H; is rejected




a=0.1, 1.282 | (—0,-1.282) |-1.7678 H, is rejected, H, is
n=300 accepted
a=0.1, 1.282 | (-0,~1.282) |-2.5 H, is rejected, H, is
n=600 accepted
a=0.05, 1.645 | (—o0,-1.645) | -1.0206 H, is accepted, Hi is
n=100 rejected
a=0.05, 1.645 | (~o0,~1.645) |-1.7678 H, is rejected, H, is
n=600 accepted
a=0.05, 1.645 | (—o0,-1.645) |-2.5 H, is rejected, H, is
n=600 accepted
a=0.01, 2.326 | (~0,-2.326) |-1.0206 H, is accepted, Hi is
n=100 rejected
a=0.01, 2.326 | (-~,—2.326) | -1.7678 H, is accepted, Hi is
n=300 rejected
a=0.01, 2.326 | (-0,—2.326) |-2.5 H, is rejected, H, is
n=600 accepted

Table j.8. Testing hypothesis p =0.4 with one sided alternative hypothesis

Test for the expectation in case of known value of dispersion

Let n=(&,,&,,..,&,) be asample, &, are random variables with expectation m and with
known dispersion o. We would like to check weather H,:m=m, holds or conversely,

26

-m
H,:m=m,. If & ~N(m,o) or 100<n, then —1— ~ N(0,1). Consequently, if H,
(o)
Jn
holds, then
n
2.
i=1 mO
Pl-u,<—M—<u, |=1-a. The critical region is (-o0,~u,)uU(u,,»), the
()
Jn

acceptance region is [-u,,u, ]. Using the test function u= , if the actual value

Jn

of the test function is in the critical region then H, is rejected, if it is in the acceptance
region then H, is accepted.




acceptance region is (— u,,, ). If the actual value of the test function u =

the acceptance region then H, is accepted, if it is in the critical region then H, is rejected
and H, is accepted.

Remarks

o The alternative hypothesis H, :m, <m can be similarly handled.

. The smaller the significance level, the larger the acceptance region.

o The larger the number of elements of the sample, the smaller difference
between the average and the real expectation can be allowed if H, is accepted.

o The necessary number of elements of the sample to detect difference ¢

2
u . .
“Gj <n. It is proportional to the

between the real and the hypothetical expectation is (
€

variance and the square of the reciprocal of the difference to be detected.

. The case when H, is rejected applying two sided alternative hypothesis and
H, is accepted applying one sided alternative hypothesis may occur.

° The test function requires the knowledge of the dispersion.
Example

E3. Let & ~N(m,o). Let us assume that the dispersion of the random variable
investigated equals 1.2. The computed sample average is supposed to be 100.5. Test the
hypothesis that H,:m =100 and H,:m=100 if the level is significance is a=0.1,
a=0.05, a=0.01 and the number of sample elements are n=10, n=30, n=50.
Results are included in Table j.9.

o,n u, Critical region Actual value of | Decision

the test function
a=0.1, 1.645 | (—o0,~1.645)U(1.645,0) | 1.3176 H, is accepted
n=10
a=0.1, 1.645 | (~o0,~1.645)u (1.645,0) | 2.2822 Ho is rejected,
n=30 H, is accepted
a=0.1, 1.645 | (—o0,~1.645)U (1.645,00) | 2. 9463 H, is rejected,
n=50 H, is accepted
a=005, |19 | (-o,-1.96)U(L.96,0) |1.3176 H, is accepted
n=10
a=005, [196 | (-~o0,~1.96)U(L.96,0) |2.2822 H, is rejected,
n=30 H, is accepted
=005, [196 | (-o0,—1.96)U(1.96,00) | 2.9463 H, is rejected,
n=50 H, is accepted
=001, |2576 | (-~,~2.576)uU(2.576,) | 1.3176 H, is accepted




n=10

=001, | 2576 | (—o0,~2.576)U(2.576,x) | 2.2822 H, is accepted
n=30

=001, | 2576 | (—o0,~2.576)U(2.576,0) | 2. 9463 H, is rejected,
n=50 H, is accepted

Table j.9. Testing hypothesis m =100 with two sided alternative hypothesis

E4. Let & ~N(m,o). Let us assume that the dispersion of the random variable
investigated equals 1.2. The computed sample average is supposed to be 100.5. Test the
hypothesis that H,:m=100 and H,:100 <m, if the level is significance is a=0.1,

a=0.05, aa=0.01 and the number of sample elements are n=10, n=30,n=50.
Results are included in Table j.10.

o,n u,, | Critical Actual value of the test | Decision
region function
a=0.1, 1.282 | (1.282,) 1.3176 H, is rejected, Hi is
n=10 accepted
a=0.1, 1282 | (1.282,00) | 2.2822 H, is rejected, H, is
n=30 accepted
a=0.1, 1.282 | (1.282,) 2. 9463 H, is rejected, H, is
n=50 accepted
a=0.05, 1.645 | (1.645,0) | 1.3176 H, is accepted, H; is
n=10 rejected
a=0.05, 1.645 | (1.645,0) | 2.2822 H, is rejected, H, is
n=30 accepted
a=0.05, 1.645 | (1.645,) 2. 9463 H, is rejected, H, is
n=50 accepted
a=0.01, 2.326 | (2.326,0) | 1.3176 H, is accepted, Hi is
n=10 rejected
a=0.01, 2.326 (2.326,oo) 2.2822 H, is accepted, H; is
n=30 rejected
a=0.01, 2.326 | (2.326,00) | 2.9463 H, is rejected, H, is
n=50 accepted

Table j.10. Testing hypothesis m =100 with one sided alternative hypothesis
Test for the expectation in case of unknown value of dispersion

Let n=(&,,&,,...&,) be the sample, &; are random variables with expectation m and
dispersion o but the value of the dispersion is unknown. Let us assume that &~ N(m,c) or

the number of the elements of the sample is large. We would like to check whether
Hy,:m=m, holds or conversely, H,:m=m,. If & ~N(m,c) or 100<n, then




m
n ~N(0,)). As we do not know the value of o, we can not compute the actual
(&)
Jn
n
D&
i=1 mo
value of the above statistics. If we use s* instead of o, then —1 ~ 1, supposing
Jn

H, holds. Consequently,

Using the test function tzns—*, if the actual value of the test function is in the

Jn
critical region then H,, is rejected, if it is in the acceptance region then H, is accepted.
If the alternative hypothesis is H, :m<m,, then the critical region is (—oo,~t,,), the
n
Xj
i=1

n

-m
acceptance region is [ t,,, o). If the actual value of the test function, that is < i
Jn
is in the acceptance region, then H, is accepted, if it is in the critical region then H, is
rejected and H, is accepted.
If Hy:m=m, and H,:m<m,, then the critical region is (-e,~t,,,) and acceptance
region is [-t,,,o). If the actual value of the test function is in the acceptance region then
H, is accepted, if it is in the critical region then H, is rejected and H, is accepted.

Remarks
e The alternative hypothesis H; : m, <m can be similarly handled.
o The smaller the significance level, the larger the acceptance region.

o The larger the number of elements of the sample, the smaller difference between the
average and the real expectation can be allowed if H, is expected.



e The case when H, is rejected applying two sided alternative hypothesis and H, is

accepted applying one sided alternative hypothesis may occur.
¢ Note that test functions in case of known and unknown dispersion are very similar.

Example

E5. Let & ~ N(m,o). Let us assume that the corrected empirical dispersion computed
from the sample equals 1.2. The sample average is supposed to be 100.5. Test the
hypothesis that H,:m =100 and H,:m=100, if the level is significance are o =0.1,
a=0.05, aa=0.01 and the number of sample elements are n=10, n=30, n=50.

The results can be seen in Table j.11.

a,n t, Critical region Actual value | Decision
of the test
function
a=0.1,n=10 | 1.833 (—0,-1.833 ) (1.833,0) 1. 3176 H, is
accepted
a=0.1,n=30 | 1.697 (~0,~1.697 )U (1697 ,00) | 2. 2822 H, is
rejected, H,
is accepted
a=0.1,n=50 | 1.676 (~0,~1.676 ) (1.676,0) | 2.9463 H, is
rejected, H,
is accepted
a=0.05, 2.262 (~0,-2.262) U (2.262,0) | 1.3176 H, is
n=10 accepted, H,
is rejected
a=0.05, 2.042 (- 0,—2.042) U (2.042,00) | 2.2822 H, is
n=30 rejected, H,
is accepted
a=0.05, 2.009 (—00,—2.009 ) (2.009,0) | 2. 9463 H, is
n=50 rejected, H,
is accepted
a=0.01, 3.250 (- 0,-3.250)u(3.250,0) | 1.3176 H, is
n=10 accepted, Hi
is rejected
a=0.01, 2.750 (—o0,—2.750 ) U (2.750,0) | 2. 2822 H, is
n=30 accepted, Hi
is rejected
a=0.01, 2.678 (~0,~2.678) U (2.678,0) | 2.9463 H, is
n=50 rejected, H,
is accepted

Table j.11. Testing hypothesis m =100 in case of unknown dispersion with two sided
alternative hypothesis




E6. Let &, ~ N(m,o). Let us assume that corrected empirical dispersion computed by
the sample equals 1.2. The sample average is supposed to be 100.5. Test the hypothesis that
H, :m=100 and H, :100 <m if the level is significance are . =0.1, o =0.05, a=0.01
and the number of sample elementsare n=10, n=30, n=50.

Results can be followed in Table j.12.

o,n t,, Critical region Actual value | Decision
of the test
function
o=0.1,n=10 | 1383 (1.383,00) 1.3176 Ho is
accepted, Hs
is rejected
0=0.1,n=30 |1.310 (1.310, ) 2.2822 H, is
rejected, H, is
accepted
0=0.1,n=50 | 1.299 (1.299, ) 2. 9463 H, is
rejected, H, is
accepted
a=0.05, 1.833 (1.833,0) 1. 3176 Ho is
n=10 accepted, Hy is
rejected
a=0.05, 1.697 (1.697, ) 2.2822 H, is
n=30 rejected, H, is
accepted
a=0.05, 1.676 (1.676,0) 2.9463 Ho is
n=50 rejected, H, is
accepted
a=0.01, 2.821 (2.821,00) 1.3176 H, is
n=10 accepted, Hj is
rejected
a=0.01, 2. 462 (2. 462, ) 2.2822 Ho is
n=30 accepted,

H, is rejected
a=0.01, 2.405 (2.405,) 2. 9463 Ho is
n=50 rejected, H, is

accepted

Table j.12. Testing hypothesis m =100 in case of unknown dispersion with one sided
alternative hypothesis

Test for the value of variance

Let £=(&,&,..,E,) be a sample, &; are random variables with expectation m and

dispersion . We would like to check weather H,:c”=c) holds or conversely,

. . n —1)s*? .
H,:c® #c2. Recall that if & ~N(m,o) or nis large, then %-ﬁ(ﬁ{ supposing

Go




(n—1)s*?
2

H, holds. Consequently, P(x’_, /< <x2i./2)=1-o. The test function is

Go

x° =-—-———"_ The critical region is (O'Xﬁ—l,l—a/Z)U(X§—1,a/21oo)’ the acceptance region

is [xﬁflym,z,xﬁflya,z]. If the actual value of the test function is in the acceptance region
then H, is accepted, if it is in the critical region then H, is rejected and H, is accepted.

(n—1)s*?

2
)

If the alternative hypothesis is H,:c” <2, then P( <xiii.)=o. Now,

acceptance region is (xﬁ_lya,oo), critical region is [O,xﬁ_m_a]. If the actual value of the test
function is in the acceptance region then H, is accepted, if it is in the critical region then
H, is rejected and H, is accepted.

Finally, if the alternative  hypothesis is H,:c2<c?,  then  apply
5 ((n —133 *2

Gy

I:Xﬁ—l,ouoo)' If the actual value of the test function is in the acceptance region then H is
accepted, if it is in the critical region then H, is rejected and H, is accepted.

<y’,,)=1-a. Now, acceptance region is [O,Xﬁ_m), critical region is

E7. Let & ~ N(m,o). Let us assume that corrected empirical dispersion computed by
the sample equals s*=1.3. Test the hypothesis that H, :6=1.1 and H, :c #1.1 if the level

is significance are aa=0.1, a=0.05, a=0.01 and the number of sample elements are
n=10, n=30,n=50.

a,n Xios2 Yoo Critical region Actual Decision
value of
the  test
statistics
a=0.1, 16.919 |3.325 [0,3.325) U (16. 919, ) 12.57 H, is
n=10 accepted,
Hi is
rejected
a=0.1, 42.557 | 17.708 | [0,17.708)u (42.557, ) 40. 504 H, is
n=30 accepted,
H1 is
rejected
a=0.1, 66.339 |33.93 [0,33.93) L (66.339, ) 68. 438 H, is
n=50 rejected,
H, is
accepted
0=005, [19.023 |2.7004 | [0,2.7004)u (19.023, ) 12.57 H, s
n=10 accepted,
Hi is
rejected
a=005, |45.722 |16.047 | [0,16.047)u(45.722, ) 40. 504 H, is




n=30 accepted,
H; is
rejected
=005, |[70.222 |[31.555 | [0,31.555)u(70.222, o) 68.438 | H, s
n=50 accepted,
H; is
rejected
=001, |23.589 |1.7349 | [0,1.7349)u(23.589, ) 12.57 H, s
n=10 accepted,
H, is
rejected
=001, [52.336 |13.121 | [0,13.121)u(52.336, ) 40. 504 H,
n=30 accepted,
H, is
rejected
a=001, |[78.231 |23.983 | [0,23.983)u(78.231, =) 68.438 | H, s
n=50 accepted,
H; is
rejected

Table j.13. Testing hypothesis o =1.1 with two sided alternative hypothesis

E8. Let & ~N(m,o). Let us assume that the corrected empirical dispersion

computed from the sample equals s*=1.3. Test the hypothesis that H,:c=1.1 and
H, :1.1<c if the level is significance are aa=0.1, o =0.05, a=0.01 and the number of

sample elements are n=10, n=30, n=50.
a,n Lo Critical region Actual Decision

value  of

the  test

statistics
a=0.1, 14.684 | (14.684, =) 12.57 H, is accepted, H: is
n=10 rejected
a=0.1, 39.087 | (39.087, ) 40. 504 H, is rejected, H, is
n=30 accepted
a=0.1, 62.038 | (62.038, ) 68. 438 H, is rejected, H, is
n=50 accepted
a=005, |16.919 | (16.919, =) 12.57 H, accepted, Hi is
n=10 rejected
a=005, |[42.557 | (42.557, ») 40. 504 H, is accepted, H: is
n=30 rejected
=005, |66.339 | (66.339, ) 68. 438 H, is rejected, H, is
n=50 accepted
=001, |21.666 | (21.666,) 12.57 H, is accepted, Hi is
n=10 rejected
a=001, |49.588 | (49.588, «) 40. 504 H, is accepted, H; is
n=30

rejected




=001, |[74.919 | (74.919 «) 68. 438 H, is accepted, H; is
n=50 rejected

Table j.14. Testing hypothesis o =1.2 with one sided alternative hypothesis

Kolmogorov-Smirnov’ test for the cumulative distribution function

Finally, we present the Komogorov-Smirnov’ test to test the distribution of the sample.
Namely, the hypothesis is that the cumulative distribution function is a given function or,
alternatively data contradict to that. To do that we use the maximum difference between the
empirical distribution function constructed from the sample and the hypothetical distribution
function.

Let n=(&,,&,,..,&,) be the sample, its values are x,,X,,..,X,. Let F,(z) be the
empirical distribution function constructed on the basis of the sample. Let the null
hypothesis be H,:F=F, and let H;,:F=F,. If H, holds, then

K(y) =P(lim \/ﬁsup|Fe (z) - F(z)|<y) can be given for any value of y. The values of this

zeR
function are included in Table 4.
Therefore, if H, holds then fixing the value 1-o one can find the value k, for which

P(lim v/n sup|F, (z) - F(z)|<k,) =1-a. The critical region is (k,,), the acceptance
zeR

region is [0,k,]. Test function is +/n sup|F, (z) — F(z)|. If the actual value of the test

zeR
function is in the critical region then H, is rejected, if it is in the acceptance region then H,

is accepted. Referring to the shape of the empirical distribution function, the supremum can
be computed as the maximal difference of the cumulative distribution function and the
empirical distribution function and its right hand side limit at the points of the values of the
sample. Consequently, it is enough to compute the values of the hypothetical distribution
function at the points of the sample values, the right hand side limit of that at the same
points, furthermore the values of the empirical distribution function and their limits at these
points. Taking the differences, and their maximum we get the actual value of the test
function.

Example

EQ. Let the elements of the sample be x, =2, x, =0.5, x;=0.1, x, =0.7, Xx; =0.2.
Testthat H, :F(z)=1-e* or H, :F(z) #1—e™* holds.
First note that the basis of Kolmogorov’s test is an asymptotic theorem, hence it is not

recommended using it for a sample of 5 elements. Nevertheless, for the sake of simplicity
we do that.

0if z<0.1
0.2if 0.1<z<0.2
0.4if 0.2<2<05
0.6if 0.5<z<0.7"
0.8if 0.7<z<2
lif 2<z

The empirical cumulative distribution function is F,(z) =




X; Fe(xi) z|—|>r2+Fe(Z) I:o(xi) |Fe(xi)_Fo(Xi)| lim Fe(z)_Fo(Xi)
0.1 0 0.2 0.095 0.095 0.105
0.2 0.2 0.4 0.181 0.019 0.219
0.5 0.4 0.6 0.393 0.007 0.207
0.7 0.6 0.8 0.503 0.097 0.297
2 0.8 1 0.865 0.065 0.135

Table j.13. Testing hypothesis F(z)=1-¢e™*

One can see that max|F, (x;) — Fo (x;)|=0.097 , max| lim F,(z) — F,(x;)[=0.297 , therefore
Z—>Xj+

rnaF3<|Fe (X) — Fy (x)|=0.297 . Thus the actual value of the test function is J5-0.297=0.664.
Xe

The critical values for o =0.1, o =0.05, o=0.01 are 1.23, 1.36 and 1.63, respectively,
(see Table of Kolmogorov’s function), consequently H, is accepted in all cases of level of

significance. One can check that the hypothesis H, :F(z) =1—e " is also excepted on the

basis of this data. This means that the conclusion ,,H, is accepted” means that data do not
contradict to the hypothesis.

Of course, many other tests exist for testing hypothesis, but their presentation is out of the
frame of this booklet.
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Cumulative distribution function of standard normally distributed

random variables
O(x) =P(§ <Xx)

£~ N(0))

X .00 01 .02 .03 .04 .05 .06 .07 .08 .09

.0 1.5000 |.5040 | .5080 | .5120 | .5160 | .5199 | .5239 | .5279 | .5319 | .5359
1 ].5398 | .5438 | .5478 | .5517 | .5557 | .5596 | .5636 | .5675 | .5714 | .5753
2 | .5793 | .5832 | .5871 | .5910 | .5948 | .5987 | .6026 | .6064 | .6103 | .6141
3 | .6179 | .6217 | .6255 | .6293 | .6331 | .6368 | .6406 | .6443 | .6480 | .6517
4 ]1.6554 | .6591 | .6628 | .6664 | .6700 | .6736 | .6772 | .6808 | .6844 | .6879
5 |.6915 | .6950 | .6985 | .7019 | .7054 | .7088 | .7123 | .7157 | .7190 | .7224
6 | .7257 | .7291 | .7324 | .7357 | .7389 | .7422 | .7454 | .7486 | .7517 | .7549
| .7580 | .7611 | .7642 | .7673 | .7704 | .7734 | .7764 | .7794 | .7823 | .7852
.8 |.7881 | .7910 | .7939 | .7967 | .7995 | .8023 | .8051 | .8078 | .8106 | .8133
9 1.8159 | .8186 | .8212 | .8238 | .8264 | .8289 | .8315 | .8340 | .8365 | .8389
1.0 | .8413 | .8438 | .8461 | .8485 | .8508 | .8531 | .8554 | .8577 | .8599 | .8621
1.1 |.8643 | .8665 | .8686 | .8708 | .8729 | .8749 | .8770 | .8790 | .8810 | .8830
1.2 | .8849 | .8869 | .8888 | .8907 | .8925 | .8944 | .8962 | .8980 | .8997 | .9015
1.3 |.9032 | .9049 | .9066 | .9082 | .9099 | .9115 | .9131 | .9147 | .9162 | .9177
1.4 ]1.9192 | .9207 | .9222 | .9236 | .9251 | .9265 | .9279 | .9292 | .9306 | .9319
1.5 |.9332 | .9345 | .9357 | .9370 | .9382 | .9394 | .9406 | .9418 | .9429 | .9441
1.6 |.9452 | .9463 | .9474 | .9484 | .9495 | .9505 | .9515 | .9525 | .9535 | .9545
1.7 |.9554 | .9564 | .9573 | .9582 | .9591 | .9599 | .9608 | .9616 | .9625 | .9633
1.8 |.9641 | .9649 | .9656 | .9664 | .9671 | .9678 | .9686 | .9693 | .9699 | .9706
1.9 |.9713 | .9719 | .9726 | .9732 | .9738 | .9744 | .9750 | .9756 | .9761 | .9767
2.0 |.9772 | 9778 | .9783 | .9788 | .9793 | .9798 | .9803 | .9808 | .9812 | .9817
2.1 [.9821 | .9826 | .9830 | .9834 | .9838 | .9842 | .9846 | .9850 | .9854 | .9857
2.2 |.9861 | .9864 | .9868 | .9871 | .9875 | .9878 | .9881 | .9884 | .9887 | .9890
2.3 |.9893 | .9896 | .9898 | .9901 | .9904 | .9906 | .9909 | .9911 | .9913 | .9916
2.4 1.9918 | .9920 | .9922 | .9925 | .9927 | .9929 | .9931 | .9932 | .9934 | .9936
2.5 [.9938 | .9940 | .9941 | .9943 | .9945 | .9946 | .9948 | .9949 | .9951 | .9952
2.6 |.9953 | .9955 | .9956 | .9957 | .9959 | .9960 | .9961 | .9962 | .9963 | .9964
2.7 1.9965 | .9966 | .9967 | .9968 | .9969 | .9970 | .9971 | .9972 | .9973 | .9974
2.8 |.9974 | .9975 | .9976 | .9977 | .9977 | .9978 | .9979 | .9979 | .9980 | .9981
2.9 1.9981 | .9982 | .9982 | .9983 | .9984 | .9984 | .9985 | .9985 | .9986 | .9986
3.0 [.9987 | .9987 | .9987 | .9988 | .9988 | .9989 | .9989 | .9989 | .9990 | .9990
3.1 1.9990 |.9991 | .9991 | .9991 | .9992 | .9992 | .9992 | .9992 | .9993 | .9993
3.2 1.9993 | .9993 | .9994 | .9994 | .9994 | .9994 | .9994 | .9995 | .9995 | .9995
3.3 1.9995 | .9995 | .9995 | .9996 | .9996 | .9996 | .9996 | .9996 | .9996 | .9997
3.4 1.9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9998
3.5 [.9998 | .9998 | .9998 | .9998 | .9998 | .9998 | .9998 | .9998 | .9998 | .9998
3.6 [.9998 | .9998 | .9999 | .9999 | .9999 | .9999 | .9999 | .9999 | .9999 | .9999
3.7 1.9999 |.9999 | .9999 | .9999 | .9999 | .9999 | .9999 | .9999 | .9999 | .9999
3.8 1.9999 | .9999 | .9999 | .9999 | .9999 | .9999 | .9999 | .9999 | .9999 | .9999

Table 1. Cumulative distribution function of standard normally distributed random

variables
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Critical values of Student’s t distributed random variables

P(t, ., <[gh=o
&1,

N\ a 0.2 0.1 0.05 0.025 0.01 0.001
1 3.078 6.314 12.706 25.452 63.657 636.621
2 1.886 2.920 4.303 6.205 9.925 31.599
3 1.638 2.353 3.182 4.177 5.841 12.924
4 1.533 2.132 2.776 3.495 4.604 8.610
5 1.476 2.015 2571 3.163 4.032 6.869
6 1.440 1.943 2.447 2.969 3.707 5.959
7 1.415 1.895 2.365 2.841 3.499 5.408
8 1.397 1.860 2.306 2.752 3.355 5.041
9 1.383 1.833 2.262 2.685 3.250 4,781
10 1.372 1.812 2.228 2.634 3.169 4,587
11 1.363 1.796 2.201 2.593 3.106 4.437
12 1.356 1.782 2.179 2.560 3.055 4.318
13 1.350 1.771 2.160 2.533 3.012 4,221
14 1.345 1.761 2.145 2.510 2.977 4.140
15 1.341 1.753 2.131 2.490 2.947 4.073
16 1.337 1.746 2.120 2.473 2.921 4.015
17 1.333 1.740 2.110 2.458 2.898 3.965
18 1.330 1.734 2.101 2.445 2.878 3.922
19 1.328 1.729 2.093 2.433 2.861 3.883
20 1.325 1.725 2.086 2.423 2.845 3.850
25 1.316 1.708 2.060 2.385 2.787 3.725
30 1.310 1.697 2.042 2.360 2.750 3.646
35 1.306 1.690 2.030 2.342 2.724 3.591
40 1.303 1.684 2.021 2.329 2.704 3.551
50 1.299 1.676 2.009 2.311 2.678 3.496
60 1.296 1.671 2.000 2.299 2.660 3.460
70 1.294 1.667 1.994 2.291 2.648 3.435
80 1.292 1.664 1.990 2.284 2.639 3.416
90 1.291 1.662 1.987 2.280 2.632 3.402
100 1.290 1.660 1.984 2.276 2.626 3.390
0 1.282 1.645 1.960 2.241 2.576 3.291

Table 2. Critical values of Student’s t distributed random variables
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P(xi, <& =o

208

E~%h
Mo ] 0.999 (099 | 0975095 [090 |0.10 |005 [0.025 |001 |0.001
1 |00 |.00 |00 |00 |02 |271 |38 |502 |663 |10.83
2 |00 |.02 |.05 |.10 |.21 |461 |599 |738 |921 |13.82
3 |02 |11 |22 |35 |58 |625 |781 |935 |11.34 |16.27
4 |09 |30 |48 |71 |106 |7.78 |949 |1114 |13.28 |18.47
5 |21 |55 |.8 |115 |161 |924 |11.07 |1283 | 1509 |20.52
6 |38 |.87 |124 |164 |220 |1064 | 1259 |14.45 | 1681 | 22.46
7 | 60 |1.24 | 169 |217 |2.83 |12.02 | 1407 |16.01 | 1848 |24.32
8 |86 |165 |218 |273 |349 |1336 | 1551 |17.53 |20.09 |26.12
9 | 115 |209 | 270 |333 |417 | 1468 | 1692 |19.02 | 21.67 | 27.88
10 | 148 | 256 |325 |394 |487 |1599 |1831 |20.48 |23.21 | 29.59
11 | 183 | 305 |382 |457 |558 |17.28 |19.68 |21.92 |24.72 | 31.26
12 221 | 357 |440 |523 |630 |1855 |21.03 |23.34 | 2622 |32.91
13 262 |411 |501 |589 |7.04 |19.81 |22.36 |24.74 |27.69 | 3453
14 | 304 | 466 |563 |657 |7.79 |21.06 |23.68 |26.12 |29.14 |36.12
15 | 348 |523 | 626 |7.26 |855 |2231 |2500 |27.49 |3058 | 37.70
16 | 394 |58l |691 |7.96 |931 |2354 | 2630 |28.85 |32.00 |39.25
17 | 442 | 641 | 756 |8.67 |10.09 |24.77 | 2759 |30.19 |33.41 |40.79
18 490 |7.01 |823 |9.39 |1086 |2599 | 2887 |3153 |3481 |4231
19 |541 | 763 |891 |10.12|11.65|27.20 |30.14 |32.85 |36.19 | 43.82
20 | 5092 |826 |959 |10.85]|12.44 | 2841 | 3141 |34.17 |37.57 | 4531
25 | 865 | 1152|1312 | 14.61 | 1647 | 3438 | 37.65 | 40.65 | 44.31 | 52.62
30 | 11.59 | 14.95 | 16.79 | 18.49 | 20.60 | 40.26 | 43.77 | 46.98 | 50.89 | 59.70
35 | 14.60 | 1851 | 20.57 | 22.47 | 24.80 | 46.06 | 49.80 | 53.20 | 57.34 | 66.62
40 | 17.92 | 22.16 | 24.43 | 2651 | 29.05 | 51.81 | 55.76 | 59.34 | 63.69 | 73.40
50 | 24.67 | 29.71 | 32.36 | 34.76 | 37.69 | 63.17 | 67.50 | 71.42 | 76.15 | 86.66
60 | 31.74 | 37.48 | 40.48 | 43.19 | 46.46 | 74.40 | 79.08 | 83.30 | 88.38 | 99.61
70 | 39.04 | 45.44 | 48.76 | 51.74 | 55.33 | 8553 | 90.53 | 95.02 | 100.43 | 112.32
80 | 46.52 | 5354 | 57.15 | 60.39 | 64.28 | 96.58 | 101.88 | 106.63 | 112.33 | 124.84
90 | 54.16 | 61.75 | 65.65 | 69.13 | 73.29 | 107.57 | 113.15 | 118.14 | 124.12 | 137.21
100 | 61.92 | 70.06 | 74.22 | 77.93 | 82.36 | 118.50 | 124.34 | 129.56 | 135.81 | 149.45

Table 3.Critical values of y*distributed random variables
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Kolmogorov’s function

K(y)=P(lim Vnsup|F, (2) - F(2) <y)
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y .01 .02 .03 .04 .05 .06 .07 .08 .09
0.4 003 |.004 |.005 |.007 |.010 |.013 |.016 |.020 |.025
0.5 036 |[.043 |.050 |[.059 |[.068 |.077 |.088 |.099 |.110
0.6 136 149 |.163 |.178 | .193 | .208 |.224 |.240 | .256
0.7 289 |[.305 |.322 |.339 |[.356 [.373 |.390 |.406 | .423
0.8 456 | 472 | .488 |.504 |.519 | 535 |.550 |.565 |.579
0.9 607 |.621 |.634 |.647 |.660 |.673 |.685 |.696 |.708
1.0 730 |.741 |.751 |.761 |.770 |.780 |.789 |.798 |.806
11 822 |.830 |.837 |.845 |.81 |.858 |.864 |.871 |.877
1.2 888 [.893 |.898 |[.903 [.908 [.912 |.916 |.921 |.925
1.3 932 935 |.939 [.942 |.945 |.948 |.951 |.953 |.956
1.4 960 |.962 |.965 |.967 |[.968 |.970 |.972 |.973 |.975
15 978 979 |.980 [.981 |[.983 [.984 |.985 |.986 |.986
1.6 988 [.989 ]1.989 [.990 |.991 |.991 |.992 |.992 |.993
1.7 994 1994 995 [.995 [.995 [.996 |.996 |.996 |.996
1.8 997 1997 1997 [.998 |.998 |.998 |.998 |.998 |.998
1.9 999 [.999 [.999 [.999 [1.999 ]1.999 ].999 |.999 [.999

Table 4. Kolmogorov’s function




