
 

 

 

- 

 

 

 
                                           

 

 

 

 

 

Probability theory and mathematical statistics for IT students   

 

Dr. Mihálykóné dr. Orbán Éva 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Veszprém, 2013. január 24. 

 

 

A tananyag a TÁMOP-4.1.2.A/1-11/1-2011-0088 projekt keretében a Pannon Egyetem és a 

Miskolci Egyetem oktatói által készült.  

 
     

 

 

 

 

 

 

H-8200 Veszprém, Egyetem u. 10. 
H-8201 Veszprém, Pf. 158. 
Telefon: (+36 88) 624-911 
Fax: (+36 88) 624-751 
Internet: www.uni-pannon.hu 
 

 

 

 
 

 

 

PANNON Egyetem 
TÁMOP-4.1.2.A/1-11/1-2011-0088 

 
Magyarország a Kelet-Európai logisztika 
központja – Innovatív logisztikai képzés            
e-learning alapú fejlesztése 

 

 
 



 

 

 

Contents 

 

 

 

 

Introduction 

 

a. Basic concepts and notations 2 

b. Probability 10 

c. Conditional probability and independence 31 

d. Random variables 45 

e. Numerical characteristics of random variables 69 

f. Frequently used discrete distributions 89 

g. Frequently used continuous distributions 111 

h. Law of large numbers 140 

i. Central limit theorem 156 

j. Basic concepts of mathematical statistics 177 

References 205 

Tables 206 

 

 

 



 

 

 

Introduction 

 

 

The aim of this booklet is to introduce the students to the world of random phenomena. 

The real world is plenty of random things. Without striving to be complete, for example, think 

of the waiting time in the post office, the working time of a machine, the cost of the repair of an 

instrument, the event of insurance, stock market and rate of exchange, damages caused by 

computer viruses and so on. It is obvious that these random phenomena have economic 

significance as well; consequently their random behaviour has to be handled. The method is 

served by probability theory. 

The concept of probability has been developingfor centuries. It originated in gambles, for 

example playing cards, games with dice but the idea and the methods developed can be applied 

to economic phenomena, as well. Since the medieval ages people realized that random 

phenomena have a certain type of regularity. Roughly spoken, although one can not predict 

what happens during one experiment but it can be predicted what happens during many 

experiments. The mentioned regularities are investigated and formed by formal mathematical 

apparatus. The axiomatic foundation of probability was published by Kolmogorov in 1933 and 

since then the theory of probability, as a branch of mathematics, has been growing incredibly. 

Nevertheless there are problems which are very simple to understand but very difficult to solve. 

Solving techniques require lots of mathematical knowledge in analysis, combinatorics, 

differential and integral equations. On the other hand computer technique is developing very 

quickly, as well; hence a large amount of random experiments can be performed. The 

behaviour of stochastic phenomena can be investigated experimentally, as well. Moreover, 

difficult probabilistic problems can be solved easily by simulation after performing a great 

amount of computations. 

This booklet introduces the main definitions connected to randomness, highlights the 

concept of distribution, density function, expectation and dispersion. It investigates the most 

important discrete and continuous distributions and shows the connections among them. It 

leads the students from the properties of probability to the central limit theorem. Finally it ends 

with fundamentals of statistics preparing the reader for further statistical studies. 
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 a. Basic concepts and notations 

 

 

The aim of this chapter 

 

The aim of this chapter is getting the reader acquainted with the concept of 

the outcome of an experiment, events, occurrence of an event, operations on 

events. We also introduce the   algebra of events.  

 

 

Preliminary knowledge 

 

The applied mathematical apparatus: sets and set operations. 

 

Content 

 

a.1. Experiments, possible outcome, sample space, events 

 

a.2. Operations on events 

 

a.3.  algebra of events 
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a.1. Experiments, possible outcome, sample space, events  

 

The fundamental concept of probability theory is the experiment. 

The experiment is the observation of a phenomenon. 

This phenomenon can be an artificial one (caused by people) or natural phenomenon, as well. 

We do not care whether the experiment originates from man made or natural circumstances. 

We require that the observation could be repeated many times. 

Now we list some experiments: 

 Measuring the water level of a river. 

 Measuring air pollution in a town. 

 Measuring the falling time of a stone from a tower to the ground. 

 Measuring the waiting time at an office. 

 Measuring the amount of rainfall at a certain place. 

 Counting the number of failures of a machine during a time period. 

 Counting the number of complains connected to a certain product of a factory. 

 Counting the infected files on a computer at a time dot. 

 Counting the number of falling stars at night in August. 

 Counting the number of heads if you flip 100 coins. 

 Investigaing the result of flipping a coin. 

 Investigating if there is an odd number among three rolls of dice. 

 Investigating the energy consumption of a factory during a time period. 

 Investigating the demand of circulation of banknotes at a bank machine. 

 Investigating the working time of a part of a machine. 

 Investigating the cost of the treatment of a patient in a hospital. 

 Summing the daily income of a supermarket. 

 Summing the amount of claims at an insurance company during a year. 

 Listing the winning numbers of the lottery. 

 

If one “measures”, “counts”, “investigates”, “sums” and so on, one observes a phenomenon. In 

some cases the result of the observation is unique. These experiments are called deterministic 

experiment. In other cases the observation may end in more than one result. These experiments 

are called stochastic or random experiments. Probability theory deals with stochastic 

experiments. 

 

If one performs an experiment (trial), he can consider what may happen. The possible results 

are called possible outcomes, or, in other words, elementary events. The set of possible 

outcomes will be called the sample space.  

We denote a possible outcome by , and the sample space by Ω . 

What is considered as a “possible outcome” of an experiment? It is optional. First, it depends 

on what we are interested in. If we flip a coin, we are interested if the result is head (H) or tail 

(T) but usually we are not interested in the number of turnings. We can also decide whether the 

result of a measurement should be an integer or a real number. What should be the unit of 

measurement? If you investigate the water level of a river, usually the most important thing is 

the danger of flood. Consequently low-medium-high might be enough as possible outcomes. 

But possible outcomes are influenced by the things that are worth investigating to have such 

cases which are simple to handle. If we are interested in the number of heads during 100 flips, 

we have to decide whether we consider the order of heads and tails or it is unnecessary. 

Therefore, during a probabilistic problem the first task is to formulate possible outcomes and 

determine their set. 

In the examples of the previous list, if we measure something, a possible result may be a 

nonnegative real number, therefore 
 0RΩ . If we count something, possible outcomes are 

nonnegative integers, therefore NΩ  . If we investigate the result of a flip, the possible 
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outcomes are head and tail, so  T,HΩ  .This set does not contain numbers. The sample 

space may be an abstract set. If we list the winning numbers of the lottery (5 numbers are 

drawn out of 90), a possible outcome is  5,4,3,2,11  , and another one 

is  90,80,50,20,102  . Possible outcomes are sets themselves. Consequently, the sample 

space is a set of sets, which is an abstract set again.  

If an experiment is performed, then one of its possible outcomes will be realized. If we repeat 

the experiment, the result of the observation is a possible outcome which might be different 

from the previous one. This is due to the random behaviour. After performing the trial we know 

its result, but before making the trial we are only able to consider the possible results. 

 

In practice events are investigated: they either occur or not. 

Events are considered as subsets of the sample space. That means, certain possible outcomes 

are contained in a fixed event, others are not in it. We say that the event A occurs during an 

experiment if the outcome in which the trial results is the element of the set A. If the outcome 

observed during the actual experiment is not in A, we say that A does not occur during the 

actual experiment. If the observed outcomes differ during the experiments, the event A may 

occur in one experiment and may not in another one. 

This meaning coincides with the common meaning of occurrence. Let us consider some very 

simple examples. 

E1. Roll a single six-sided dice. The possible outcomes are: 1 dot is on the upper 

face, 2 dots are on the upper face, ..., 6 dots are on the upper face. Briefly,  6,5,4,3,2,1Ω  . 

i=1,2,3,4,5,6 indicates the possible outcomes by the number of dots. Let ΩA  . The elements 

of A are the odd dots on the face. If the result of the roll is 11  , then A1 . We say that A 

occurs during this experiment. On the other side, in common parlance we usually say that the 

result of the roll is an odd number. If the result of the experiment is 66  , then A6  , A 

does not occur during this experiment. The result of roll is not odd. Although A is a set, A 

expresses the “sentence” that the result of the trial is odd. If the trial ends in showing up 

66  , we say shortly that the result of the roll is “six”. 

E2. Measure the level of a river. 
 0RΩ . Suppose that if the level of the river is 

more than 800 cm, then there is a danger of flood. The sentence “there is a danger of flood” can 

be expressed by the event (set)   Ωx800:RxA 0  
. If the result of the measurement 

is =805 cm, then A . A occurs, and indeed, there is a danger of flood. If the result is the 

measurement is  650 cm, then A . We say A does not occur, and really, there is no 

danger of flood in that case. 

E3. Count complains connected to a certain type of product. Now NΩ  . If “too 

much problems” means that the number of complains reaches a level, for example 100, then the 

sentence “too much problem” is the set  n100:NnA  . If the number of complaints is 

 160, then A .The event A occurs and there are too much complains. If the number of 

complains is 86 , then A . A does not occur, and indeed, the result of the trial does not 

mean too much problems. 

 

The event Ω  is called certain event. It occurs for sure, as whatever the outcome of the 

experiment is, it is included in Ω  , therefore Ω  occurs. 

The event   (empty set) is called impossible event. It can not occur, since whatever the 

outcome of the experiment is, it is not the element of  . 

 

Further examples of events: 
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E4. Flip a coin twice. Consider the order of the results of the two flips. 

Now         T,T,H,T,T,H,H,HΩ  , where the outcome )T,H( represents that the 

first flip is head, the second one is tail. 

The event “there is at least one head among the flips” is the set       .H,T(,T,H,H,HA   

The event “there is at most one head among the flips” is the set       T,T,H,T,T,HB  . 

The event “there is no head among the flips” is the set   T,TC  . 

The event “there is no tail among the flips” is the set   H,HD  .The event “the first flip is 

tail” is the set     T,T,H,TE  . 

The event “the flips are different” is the set     H,T,T,HF  . 

The event “the flips are the same” is the set     T,T,H,HG  . 

 

We note that the number of subsets of sample space Ω  is 1624  , consequently there are 16 

events in this example including the certain and the impossible event as well. 

 

E5. Roll a die twice. Take into consideration the order of the rolls. In that case 

                                   
                                   











6,6,5,6,4,6,3,6,2,6,1,6,6,5,5,5,4,5,3,5,2,5,1,5,6,4,5,4,4,4,3,4,2,4,1,4

,6,3,5,3,4,3,3,3,2,3,1,3,6,2,5,2,4,2,3,2,2,2,1,2,6,1,5,1,4,1,3,1,2,1,1,1

 

The event “there is no 6 among the rolls” is  

                5,5,...,1,5),....5,2(,...,1,2,5,1,4,1,3,1,2,1,1,1A  . 

The event “the sum of the rolls is 6” is           1,5,2,4,3,3,4,2,5,1B  . 

The event “ the maximum of the rolls is 3” is           1,3,2,3,3,3,3,2,3,1C  . 

The event “the minimum of the rolls is at most 5” is         6,6,5,6,6,5,5,5D  . 

 

As the number of possible outcomes is 3666  , therefore the number of events is 
1036 108762  . . 

 

E6. Pick one card from a deck of Hungarian “seasons” cards containing 32 playing 

cards. A deck of Hungarian cards contains 32 playing cards, 8 of them are reds, greens, 

pamkins and bells. The figures are ace, king, knight and knave, furthermore seven, eight, nine 

and ten. For example a playing card is ace of red, another one is ten of bells (see Fig a1).  

 

Now, 









reds,... ofseven  reds, often reds,...., of kingreds,..., ofknight 

reds,...., of knave,pamkins of ace,nuts of ace,greens of ace,reds of ace
. 

 

The event “the picked card is a red” is 










reds ofseven  reds, ofeight  reds, of ninereds, often 

reds, of kingreds, of knavereds, of knight,reds of ace
A . 

 

The event “the picked card is ace” is 

 pumkins of ace,nuts of ace,greens of ace,reds of aceB  . 

The event “the picked card is ace and red” is  reds of aceC  . 
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Figure a1 Some cards from a deck of Hungarian “seasons” cards 

http://www.wopc.co.uk/hungary/seasons.html 

 

 

E7. Pick two cards from a deck of Hungarian “seasons” cards without replacing the 

chosen card. Do not take into consideration the order of the cards.  

In this case the sample space is  

   
  









,.....pamkins often nuts, ofn seve

,....,greens ofknight reds, of ace,greens of acereds, of ace
, 

containing all the sets of two different elements of cards. 

The event “both cards are ace” is  

http://www.wopc.co.uk/hungary/seasons.html
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   
   
   
















nuts of acepamkins, of ace,pamkins of acegreens, of ace

,nuts of acegreens, of ace,pamkins of acereds, of ace

,pamkins of acereds, of ace,greens of ace reds, of ace

A . 

The event” both cards are reds” is 

    ,....reds ofknight reds, of ace,reds of kingreds, of aceB  . 

If we want to express the event the “first card is a red”, it can not be expressed actually, 

because we do not consider the order of cards. If we want to express this event, we have to 

modify the sample space as follows:  

    ,....reds of acegreens, of ace,greens of acereds, of acemod  . 

The outcome  greens of acereds, of ace  means that the first card is the ace of reds; the second 

one is the ace of greens. The outcome  reds of acegreens, of ace  means that the first card is 

the ace of greens; the second one is the ace of reds. To clarify the difference, we emphasize that 

outcome  greens of ace reds, of ace  means that one of the picked playing cards is the ace of 

reds, the other one is the ace of leaves. In the sample space modΩ , the event “first card is red” 

can be written easily. This is an example in which the formulation of the sample space depends 

on the question of the problem, not only on the trial. 

E8. Choose a number from the interval  1,0 . In that case  1,0Ω  . 

The event “ the first digit of the number is 6” is  7.0,6.0A  . 

The event “ the second digit is zero” is  

       91.0,9.0...21.0,2.011.0,1.001.0,0C  . The event “all the digitls of the number 

are the same” is 









...

.,...,.,., 9020100B . 

In this example the number of all possible outcomes and the number of events are infinity. 

 

a.2. Operations on events 

 

As events are sets, the operations with events mean operations on sets. In this subsection we 

interpret the set operations by the terminology of events. 

 

 Union (or sum) of events 

First recall that the union of two or more sets contains all the elements of all the sets.  

Let A and B be events, that is ΩA   and ΩB . Then ΩBA   holds as well. BA  

occurs if BA   holds, consequently A  or B . If A , then A occurs, if B , 

then B occurs. Summarizing, the occurrence of BA  means that either A or B occurs. At 

least one of them must occur. That means either A or B or both events occur. We emphasize 

that „OR” is not an exclusive choice but a concessive one. The union of events can be 

expressed by the word OR. 

 Intersection (or product) of events 

First recall that the intersection of two or more sets contains all the common elements of the 

sets.  

Let A and B be events, that is ΩA   and ΩB . Now ΩBA   holds, as well. BA  

occurs if BA   holds, consequently A  and B . If A , then A occurs, if B  

then B occurs. Summarizing, occurrence of BA  means that both A and B occur. The 

intersection of events can be expressed by the word AND. 

Two events are called mutually exclusive if their intersection is the impossible event. That is if 

either of them holds the other one can not occur. 

 Difference of two events 

First recall that the difference of the sets A and B contains all of elements of A which are not 

contained by B.  
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Let A and B be events, that is ΩA   and ΩB . Then ΩB\A   holds as well. B\A  occurs 

if B\A  holds, consequently A  and B . If A  then A occurs. If B  then B 

does not occur. Summarizing, occurrence of B\A  means that A occurs but B does not. 

 Complement of an event 
Note that the complement of a set A is the set of all the elements in Ω  which are not in A. We 

denote it by A . 

Let A be an event, that is ΩA  . Then ΩA  holds, as well. A  holds, if A . If 

A , then A does not occur. Consequently, A  can be expressed by the word NOT A. 

 

Remarks 

 

 Operations on events have all the properties of operations on sets: the union and 

intersection are commutative, associative, the union and intersection is distributive. 

 Further often used equality is the following one: 

BAB\A  , and the de Morgan identities: 

BABA  , and for infinitly many sets 









1i

i

1i

i AA  

BABA  , and for infinitely many sets 









1i

i

1i

i AA . 

 

Now we present some examples how to express complicated events by the help of simple ones 

and operations. 

 

E1. Choose one from the students of Pannon University. Let A be the event that the 

student is a student of economics and let B be the event that the student lives in a student 

hostel. In this case the sample space is the set of all the students of the university, one of its 

subsets is the set of those students who are students of economics; another of its subsets is 

formed by the students living in a student hostel. If the chosen student belongs to the subset 

mentioned first, then the event A occurs. Actually, for example, the following events can be 

described by A, B and operations: 

The chosen student is a student of economics but does not live in a student 

hostel: B\ABA  . 

He/she is not a student of economics and he does not live in a student hostel: BA  . 

He/she is not a student of economics or does not live in a student hostel: BA  . 

He/she is a student of economics or does not live in a student hostel: BA  . 

He/she is not a student of economics and he/she lives in a student hostel or he/she is a student 

of economics and does not live in a student hostel: A)\B()B\A(  . 

He/she is a student of economics and he/she lives in a student hostel or he/she is not a student 

of economics and he/she does not live in a student hostel:    BABA  . 

 

E2. In a machine two parts may fail: part x and part y. Let A be the event that part x 

fails, let B be the event that part y fails.  

If both parts fail, then BA  holds. 

At least one of them fails: BA  holds. 

Part x fails but part y does not: B\A  holds. 

One of them fails:    A\BB\A   holds. 

Neither of them fails: BA   holds. 

At least of them does not fail: BA   holds. 
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We note that in this case the sample space can be defined as follows: 

Ω        n,n,f,nn,f,f,f , and possible outcome  n,f  represents that part x fails and part y 

does not. 

E3. Let us investigate the arrival time of a person to a meeting. Let us suppose that the 

arrival time is a point in ]15,5[ . (-1 represents that he arrives 1 minute earlier than the 

scheduled time, 5 represents that he arrives 5 minutes late). Let A be the event that he is late, B 

the event that the difference of the scheduled time of meeting and the arrival time is less than 2 

minutes (briefly “small difference”). Now A= ]15,0( , )2,2(B  . 

The event that he is late but small difference is BA . 

He is not late or not small difference is: BA  . 

Both events or neither of them hold:    BABA  . 

He is late but not small difference is: BA  . 

 

a.3. The   algebra of events 

 

Definition Let the set of all possible outcomes be fixed and denoted by Ω . The set A  

containing some of the subsets of Ω is called a   algebra, if the following properties hold: 

1. AΩ . 

2. If AA , then AA  holds, as well. 

3. If AiA , ....3,2,1i  , then A





1i

iA  holds as well. 

Remarks 

   A  as Ω  and Ω  A . 

 Applying the properties of operations one can see that if AiA , then A





1i

iA . For 

the proof, note that if AiA , then AiA , consequently A





1i

iA . Therefore, 

A













1i

i

1i

i

1i

i AAA . 

 If AA  and AB , then A \ AB  holds as well. For the proof, note that 

BAB\A  . If AB , then AB holds as well, and A BA  is also satisfied. 

 

Strictly speaking, the elements of the   algebra A  are called events. The above properties 

express that if some sets are events, then their union, intersection, difference and complement 

are events, as well. 

In probability theory we would like to determine the probability of events which characterize 

the relative frequency of their occurrence during many experiments. 
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b. Probability 

 

 

The aim of this chapter 

 

The aim of this chapter is getting the reader acquainted with the basic 

properties of probability. We present the relative frequency, introduce the 

axioms of probability and we derive the consequences of the axioms. 

Classical and geometric probability are also introduced and applied for 

sampling problems. 

 

Preliminary knowledge 

 

The applied mathematical apparatus: sets and set operations. Combinatorial 

counting problems. Co-ordinate geometry. Basic knowledge in any computer 

program language. 

 

 

Content 

 

b.1. Frequency, relative frequency 

 

b.2. Axioms of probability 

 

b.3. Consequences of axioms 

 

b.4. Classical probability 

 

b.5. Geometric probability 
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b.1. Frequency, relative frequency 

 

The aim of probability theory is to characterize an event by a number which expresses its 

relative frequency. More precisely, let the events which occur frequently during many 

experiments be characterized by a “large” number. Moreover, let the events which are rare be 

characterized by a small number. If one performs n experiments and counts how many times 

the event A occurs, one gets the frequency of A denoted by )n(k A . It is obvious, that 

nk0 A  . We are interested in the proportion of occurrences of A to the number of trials, so 

we have to divide )n(k A  by n, that is to take the relative frequency, 
n

)n(k A . It is easy to see 

that 1
n

)n(k 
0 A  . 

Moreover, n)n(kΩ  , therefore 1
n

)n(k Ω  . If A and B are events for which BA , then 

)n(k)n(k)n(k BABA  , consequently 
n

)n(k

n

)n(k

n

)n(k BABA  . The value of relative 

frequency depends on the actual series of experiments, hence it changes if we repeat the series 

of experiments again. During the centuries, people recognized that the relative frequency has a 

kind of stability. As if it had a limit. To present this phenomenon let us consider the following 

example. 

 

Let the experiment be flipping a coin many times. Let A be the event that the result is a head 

during one flip. 

In Table b.1, one can see the frequency and relative frequency of the event A as the function of 

the number of experiments (n). 

 

Result 

of the 

trial 

 

T 

 

T 

 

T 

 

H 

 

T 

 

T 

 

H 

 

T 

 

H 

 

H 

(n)k A  0 0 0 1 1 1 2 2 3 4 

n 1 2 3 4 5 6 7 8 9 10 

n

(n)k A  
0 0 0 0.25 0.2 0.17 0.27 0.25 0.33 0.4 

Table b.1 Frequency and relative frequency of heads as the function of the number of 

experiences 

 

Draw the graph of relative frequency 
n

(n)k A  as the function of n. We can see the graph in the 

following figures: Fig.b.1, Fig.b.2, Fig.b.3 show oscillations. On the top of all, if we performed 

the series of experiments once again, we presumably would get other results for relative 

frequencies. If we increase the number of experiments the graph changes. Although there are 

fluctuations at the beginning of the graph, later they disappear, the graph looks almost constant. 
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Fig.b.1 Relative frequency of heads as the function of the number of experiences (n=10) 

 

 

 

Fig.b.2 Relative frequency of heads as the function of the number of experiences 

(n=1000) 

 

The mentioned phenomenon becomes more and more expressive if we increase the number of 

experiments, as Fig. b.3 shows, as well. 
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Fig.b.3 Relative frequency of heads as the function of the number of experiences 

(n=10000) 

 

If we look at Fig.b.3 thoroughly, we can realize that for large values of experiments, the 

relative frequency is almost a constant function. Although fluctuations in the number of heads 

exist, they are small compared to the number of experiments. This phenomenon was mentioned 

during the centuries by the statement “relative frequency has a kind of stability”. This 

phenomenon is expressed mathematically by the “law of large numbers”. 

 

b.2. Axioms of probability 

 

If we would like to characterize the relative frequency by the probability, then the probability 

should have the same properties as the relative frequency. Therefore, we require the properties 

for probability presented previously for the relative frequency. 

 

Definition Let A  be a   algebra. The function R:P A  is called a probability measure if 

the following three requirements (axioms) hold: 

 

I) )A(P0  . 

II) 1)Ω(P  . 

III)  If AiA , ,...3,2,1i  for which  ji AA  ji  , then  























1i

i

1i

i APAP  . 

 

Remarks  

 The above axioms I), II) and III) are called Kolmogorov’s axioms of probability and 

were published in 1933. 
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 Probability measure maps the  algebra of events to the set of real numbers. The 

elements of A  (events) have probability. As P maps to R , )A(P  is a real number. The 

number )A(P  is called the probability of the event A.  

 We define the probability by its properties. It means that every function is a probability 

measure that satisfies I), II) and III). 

 Properties I), II) and III) correspond to the properties of relative frequency. The property 

1)A(P   is not a requirement; it can be proved from the axioms. Additive property is presented 

for two events in the case of relative frequency, but it is required for countably infinitely many 

events in axiom III) in case of probability. 

 Property I) expresses that the probability of any event is a nonnegative number. 

 Property II) expresses that the probability of the certain event equals 1. 

 Property III) expresses the additive property of the probability for countably infinitely 

many mutually exclusive events. 

 As A  is a   algebra, property III) is well defined. If AiA , ,...3,2,1i  hold, then 

A












 




1i

iA  is also satisfied, consequently it has a probability. 

 

If a function P satisfies axioms I), II) and III), then it satisfies many other properties, as well. 

These properties are called the consequences of axioms.  

 

b3. Consequences of the axioms 

 

We list the consequences of the axioms and we present their proofs. During this we do not use 

any heuristic evidences, we insist on strict mathematical inferences. 

 

C1. .0)(P   

  and  . That means that the impossible event can be written as 

the union of infinitely many pair-wise mutually exclusive events. Consequently, axiom III) can 

be applied and .)(P)(P
1i






  Recalling that 








n

1i

i

1i
n

i xlimx , we can conclude that 

)(Pnlim)(P)(P
n

1i








 . If )(P0   holds, then the limit is infinite, which is a 

contradiction, as )(P   is a real number. If 0)(P  , then 0)(Pn   also holds for any 

value of n, therefore the limit is 0. In that case 0)(P)(P0
1i

 




 holds, as well. Finally, 

)(P   can not be negative, remember axiom I). Hence 0)(P   must be satisfied. 

 

C2. (finite additive property) If AiA , n,,2,1i   and  ji AA , ji  , then  

)A(P)A(P)A(P)AA(P n1

n

1i

in1  


 . 

We trace this property to axiom III). Let 1nA , 2nA ,. Now we have infinitely 

many events and  ji AA , ,2,1i  , ,2,1j , .ji  If ni   and nj , this is our 

assumption, if in   or jn   holds, then iA  or jA , consequently their intersection is 
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the impossible event. Now axiom III) can be applied and 

  










)(P)(P)A(P)A(P)A(P)A(P
n

1i

i

1i

i

1i

i

n

1i

i  

As 0)(P  , we get 



n

1i

i

n

1i

i )A(P)A(P   and the proof is completed. 

 

C3. Let AA  and AB . If BA , then )B(P)A(P)BA(P  . 

This is the previous property for 2n   with notation AA1   and BA 2  . We emphasize it 

because the additive property is frequently used in this form. 

 

C4. Let AA . )A(P1)A(P   

This connection is really very simple and it is frequently applied in the real world. 

It can be proved as follows: AAΩ  , and  AA . Applying C3 we can see, that 

)A(P)A(P)Ω(P  . Taking into consideration axiom II) 1)Ω(P  , we get )A(P)A(P1  . 

Rearranging the equality, it is easy to get C4. We mention that A  is   algebra, consequently 

if AA  then AA , which means that A  also has a probability. 

 

C5. Let AA  and AB . If AB , then )B(P)A(P)B\A(P  .  

This formula expresses the probability of the difference of A and B with the help of the 

probabilities of A and B. 

Note that AB  implies the equality   BB\AA  , moreover    BB \A . 

Consequently C3 can be applied and results in      BPB\APAP  . Rearranging the 

formula we get C5. 

 

C6. Let AA  and AB . If AB , then )A(P)B(P  . 

Recall C5, and take into consideration axiom I). These formulas imply 

).B(P)A(P)B\A(P0   Non-negativity of )B(P)A(P   means C6. 

 

C7. Let AB . 1)B(P  . 

This inequality is straightforward consequence of C6 with ΩA  . 

The formula expresses that the probability of any event is less than or equal to 1. This property 

coincides with the property of relative frequency 1
n

)n(k A  . 

 

C8. Let AA  and AB . )BA(P)A(P)B\A(P  . 

It is obvious that    BAB\AA   and      BAB\A . 

Using C3 they imply      BAPB\APAP  . Subtracting  BAP   from both sides we 

get C8. 

We emphasize that in this formula there is no extra condition on the events A and B, but C5 

contains the condition AB . Consequently C8 is a more general statement than C5. We 

mention that if AB , then BBA  , therefore in this case C5 coincides with C8. 

 

C9. Let AA  and AB . )BA(P)B(P)A(P)BA(P  . 

This formula expresses the probability of the union with the help of the probabilities of the 

events and the probability of their intersection. 

To prove it, consider the identity   BB\ABA  . Now    BB\A . Applying C3 we 

get    B(PB\AP)BA(P  . Now C8 implies the identity  

  )B(PBA(P)AP)BA(P   and the proof is completed. 
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We note that C9 does not require any assumption on the events A and B. C3 holds only for 

mutually exclusive events. If BA , then 0)BA(P   and 

)B(P)A(P)BA(P)B(P)A(P)BA(P   coinciding with C3. 

We emphasize that the probability is not an additive function. It is additive only in the case of 

mutually exclusive events. 

 

C10. Let AA  and AB . )B(P)A(P)BA(P  . 

This formula is a straightforward consequence of C9 taking into account that )BA(P0  . If 

we do not subtract the nonnegative quantity )BA(P   from )B(P)A(P  , we increase it, 

consequently C10 holds. We note that C10 is not an equality, it only gives an inequality for the 

probability of the union. 

 

C11. Let AA , AB  and AC . 

Then, 

)CBA(P)CB(P)CA(P)BA(P)C(P)B(P)A(P)CBA(P  .

This formula is generalization of C9 for three events. 

It can be proved as follows. Let BAX   and CY  . Now YXCBA  . Applying 

three times C9, first for X and Y, secondly for BA  thirdly for  CA   and CB  we get 

      C)BA(P)C(P)BA(P)YX(P)Y(P)X(PYXPCBAP

      )BA(P)C(P)B(P)A(PCBCAP)C(P)BA(P)B(P)A(P

    )CA(P)BA(P)C(P)B(P)A(P)CBCA(P)CB(PCAP

)CBA(P)CB(P  . 

We note that if  CACBBA , then  CBA , and  

  0)CBCA(P)CB(PCAP)BA(P  . Hence in this case C11 is 

simplified to )C(P)B(P)A(P)CBA(P   coinciding with C2. 

 

C12. Let ,n,2,1iA i   A, . 

  )AA(P1)AAA(P)AA(P)A(PAP n1

1n

nkji1

kji

nji1

ji

n

1i

i

n

1i

i 












 



 

The formula can be proved by mathematical induction following the steps of the proof of C11 

but we omit it. 

It states that the probability of the union can be determined with the help of the probabilities of 

the events, the probabilities of the intersections of two, three,…., and all the events. 

 

The relevance of the consequences is the following: if we check that the axioms are satisfied 

then we can use the formulas C1-C12, as well. With the help of them we can express the 

probabilities of “composite” events if we determine the probabilities of the “simple” events. 

 

Now we present examples how to apply C1-C12, if we know the probability of some events. 

Further examples will be listed in the next subsection as well. 

 

E1. In a factory two types of products are manufactured: Type I and Type II. 

Choosing one product, let A be the event that it is of Type I. According to quality, the products 

are divided into two groups: standard and substandard. Let B be the event that the chosen 

product is of standard quality. If we suppose that 7.0)A(P  , 9.0)B(P   and 

65.0)BA(P  , give the probability of the following events: 

The chosen product is of Type II.: 3.0)A(P1)A(P  . (apply C4) 

The chosen product is of substandard quality: 1.0)B(P1)B(P  .(apply C4) 
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The chosen product is of Type I and it is of substandard quality: 

05.065.07.0)BA(P)A(P)B\A(P)BA(P  . (apply C8) 

The chosen product is of Type II and it is of standard quality: 

0.250.65-0.9B)P(A-P(B)A)\B(P)AB(P  . (apply C8) 

The chosen product is of Type I or it is of standard quality: 

.95.065.09.07.0)BA(P)B(P)A(P)BA(P   (apply C10) 

The chosen product is of Type II or it is of substandard quality:  

35.065.01)BA(P1)BA(P)BA(P  .(apply de Morgan’s identity and C4) 

The chosen product is of Type II and it is of substandard quality: 

05.095.01)BA(P1)BA(P)BA(P  . (apply de Morgan identity and C4) 

The chosen product is of Type I and of standard quality or it is of Type II and of substandard 

quality. 

             )BABA(PBAPBAP)BABA(P 7.0005.065.0  . 

(apply C10, and C1 as      BABA ).  

The chosen product is of Type I and of substandard quality or it is of Type II and of standard 

quality. 

             )BABA(PBAPBAP)BABA(P A)\P(BB)\A(P  =

 )BA(P)B(P)BA(P)A(P 3.065.09.065.07.0  . (apply C10, C8 and C1 

taking into account that      BABA .) 

 

E2. Choose a person from the population of a town. Let A be the event that the chosen 

person is unemployed, let B be the event that the chosen person can speak English fluently. If 

09.0)A(P  , 25.0)B(P   and 02.0)BA(P  , then determine the probability of the 

following events: 

The chosen person is not unemployed: 91.0)A(P  . (apply C4) 

The chosen person can not speak English fluently and he is unemployed: 

0.070.02-0.09B)P(A)A(PB)\A(P)AB(P  . (apply C8) 

The chosen person can speak English fluently and he is not unemployed: 

23.002.025.0)AB(P)B(P)AB(P  . (apply C8) 

The chosen person can not speak English fluently or he is unemployed: 

77.007.009.025.01)AB(P)A(P)B(P)AB(P   (apply C10 and C8) 

The chosen person can speak English fluently or he is not unemployed: 

93.023.025.009.01)BA(P)B(P)A(P)BA(P   (apply C10 and C8) 

The chosen person is not unemployed or can not speak English fluently : 

98.002.01)BA(P1)BA(P)BA(P   (apply de Morgan identity and C4) 

The chosen person is not unemployed and can not speak English fluently: 

  )BA(P)B(P)A(P1)BA(P1)BA(P)BA(P  

  68.002.025.009.01   (apply de Morgan identity and C4 and C10) 

 

E3. Gamble two types of races. Let A be the event that you win on the 1st race, let B be the 

event that you win on the 2nd race. Suppose 01.0)A(P  , P(B)=0.03, 002.0)BA(P  . 

Determine the probability of the following events: 

You win on the race of at least one type: 

038.0002.003.001.0)BA(P)B(P)A(P)BA(P   (apply C10) 

You win on neither of them: 

  962.0038.01)BA(P)B(P)A(P1)BA(P)BA(P   (apply C4 and C10) 

You do not win on at least one of them: 
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998.0002.01)BA(P1)BA(P)BA(P   (apply de Morgan identity and C4) 

You win on the 1st  race but do not win on the 2nd  race: 

008.0002.001.0)BA(P)A(P)BA(P  . (apply C8) 

You win on 1st  race or do not win on the 2nd  race: 

    978.0002.001.003.0101.0)BA(P)B(P)A(P)BA(P  .(Apply C10, 

C4 and C8) 

You win on both of them or you win on neither of them: 

     )BABA(P)BA(P)BA(P)BABA(P  

964.00962.0002.0  . (apply C10 and de Morgan identity) 

You win on one of them but not on the other one: 

           )A\BB\AP(-A)\B(PB\A(P)A\BB\A(P  

036.0002.003.0002.001.0)BA(P)B(P)BA(P)A(P   (apply C10) 

b.4. Classical probability 

 

In this subsection we present the often used classical probability. We prove that it satisfies 

axioms I), II) and III). 

 

Definition Let Ω  be a finite, nonempty set,  .nΩ  Let 
Ω2A , the set of all the subsets of 

Ω . The classical probability is defined as follows:
Ω

A
:)A(P  . 

 

Theorem Classical probability satisfies axioms I), II) and III). 

Proof First we note that A  is a   algebra, consequently P maps the elements of a   algebra to 

the set of real numbers. Since A0   and nΩ  , 0
Ω

A
:)A(P   is satisfied, as well. 

1
Ω

Ω
:)Ω(P  . 

Finally, if ΩA i  , 1,2,i with  ji AA , ji  , then iA  except for finitely many 

indices i , as Ω  has only finitely many different subsets. If iA  k,...,2,1i  , and 

 ji AA  ji  , then 



k

1i

i

k

1i

i AA , therefore 
Ω

A

Ω

A
k

1i

i

k

1i

i 





. We can conclude 

that 









n

1i

i

k

1i

i

k

1i

ik

1i

i )A(P
Ω

A

Ω

A

)A(P


 . If we supplement the events iA  by empty sets, 

neither the union nor the sum of the elements of the sets change. This means that axiom III) 

holds, as well. 

Remarks 

 In the case of classical probability  
 

n

1

Ω
)(P 


 , for any Ω . This formula 

expresses that all outcomes have the same probability. Conversely, if    xP  , for any Ω , 

then xn)(P)(P1
n

1i

i 


 , which implies 
n

1
x  . Furthermore, 
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  .
Ω

A

n

1
)(P)(P)A(P

AAA

 


  Consequently, if all the outcomes are equally 

probable, we can use the classical probability. 

 In many cases, the number of elements of Ω  and A  can be determined by 

combinatorial methods. 

 

Examples 

E1. Roll a fair die once. Compute the probability that the result is odd, even, prime, 

can be divided by 3, prime and odd, prime or odd, prime but not odd. 

A fair die is one for which each face appears with equal likelihood. The assumption “fair” 

contains the information that each outcome has the same chance, consequently we can apply 

classical probability. We usually suppose that the die is fair. If we do not assume it, we will 

emphasize it. 

Returning to our example,  6,5,4,3,2,1Ω  . 6Ω  . 
6

1
)i(P  , i=1,2,3,4,5,6. 

A=the result is odd = 5,3,1 , 3A  , 5.0
6

3

Ω

A
)A(P  . 

B=the result is even= 6,4,2 , 3B  , 5.0
6

3

Ω

B
)B(P  . 

C=the result is prime= 5,3,2 , 3C  , 5.0
6

3

Ω

C
)C(P  . 

D=the result can be divided by 3= 6,3 , 2D  , 333.0
6

2

Ω

D
)D(P  . 

E=the result is prime and odd = 5,3 , 2E  , 333.0
6

2
)E(P  . 

F=the result is prime or odd = 5,3,2,1 , 4F  , 667.0
6

4
)F(P  . 

G= the result is prime but not odd = 2 , 1G  , 167.0
6

1
)G(P  . 

We draw the attention that P(F) can be computed also in the following way: ACF  , 

consequently 
6

4

6

2

6

3

6

3
)AC(P)PA)C(P)F(P  . 

Similarly, A\CACG  , 
6

1

6

2

6

3
C)P(A-P(C)A)\C(P  . 

 

We note that these latest computations are unnecessary in this very simple example but can be 

very useful in complicated examples. 

 

E2. Roll a fair die twice. Compute the probability of the following events: there is no six 

among the rolls, there is at least one six among the rolls, there is one six among the rolls, 

the sum of the rolls is 5, the difference of the rolls is 4, the two rolls are different. 

  egersintj,i,6j1,6i1:j,i  . The outcome (i,j) can be interpreted as the result of 

the first roll and the result of the second roll. For example (1,1) denotes the outcome, when the 

first roll is 1, and the second roll is also 1. (3,1) denotes the outcome that the first roll is 3, the 

second one is 1. (1,3) means that the first roll is 1, and the second roll is 3, which differs from 

(3,1). If the die is fair, then (i,j) has the same probability as any other pair, whatever the values 

of i and j are (integers from 1 to 6). Consequently, each outcome has equal probability. 

66Ω  . 
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A=there is no “six” among the rolls =     )5,5),...(2,5(),1,5),.....((5,2(),...,1,2(),5,1,....(2,1,1,1 . 

2555A  , 
36

25
)A(P  . 

B= there is at least one „six” among the rolls  

=                       6,6,5,6,4,6,3,6,2,6,1,6,6,5,6,4,6,3,6,2,6,1 . 11B  , 
36

11
)B(P  . 

Another way for solving this exercise if we realize that AB  . Therefore, 

36

11

36

25
1)A(P1)B(P  . 

C= there is one „six” among the rolls  

                    5,6,4,6,3,6,2,6,1,6,6,5,6,4,6,3,6,2,6,1 . 10C  , 278.0
36

10
)C(P  . 

D=the sum of the rolls is 5 =         1,4,2,3,3,2,4,1 . 4D  , 111.0
9

1

36

4
)D(P  . 

E=the difference between the two rolls is 4=         1,5,2,6,6,2,5,1 . 4E  , 
36

4
)E(P  

.111.0  

F=the results of the rolls are different =         6,5,5,6,....1,2,2,1 . F 30, 833.0
36

30
)F(P  . 

 

Roughly spoken, the key of the solution is that we are able to list all the elements of the events 

and we can count them one by one. 

Of course, if the number of possible outcomes is large, this way is impracticable.  

 

E3. Roll a fair die repeatedly five times. Compute the probability of the following 

events: there is no „six” among the rolls, there is at least one „six” among the rolls,  there is one 

„six” among the rolls, all the rolls are different, all the rolls are different and there is at least 

one „six” among the rolls, there is at least one „six” or all the rolls are different, there is at least 

one „six” and there are equal rolls. 

 5,4,3,2,1j,egersint,6i1:)i,i,i,i,i(Ω j54321  . Now 1i  denotes the result of the first 

roll, ji  denotes the result of the jth roll. If the die is fair, then all the outcomes are equally 

likely. 7776666666Ω 5  .  

A=there is no “„six”” among the rolls =  5,4,3,2,1j,egersint,5i1:)i,i,i,i,i( j54321  . 

31255A 5  . 402.0
7776

3125
)A(P  . 

B=there is at least one „six” among the rolls = A . 598.0402.01)A(P1)B(P  . 

C=there is exactly one “six” among the rolls =     )5,5,5,5,6(,...,6,2,1,1,1,.6,1,1,1,1 . 

312555551
1

5
C 








 . 402.0

7776

3125
)C(P  . 

D=all the rolls are different =       2,3,4,5,6,...,6,4,3,2,1,5,4,3,2,1 . 72023456D  , 

093.0
7776

720
)D(P  . 

E= all the rolls are different and there is at least one “six” among the rolls = A\DAD  . 

)DA(P)D(P)E(P  . As we need the value of )AD(P  , we have to compute it now. The 

set AD  contains all the elements of Ω  in which there is no “six” and the rolls are different. 
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12012345DA  , 015.0
7776

120
)DA(P  . Finally, 

078.0015.0093.0)DA(P)D(P)E(P  . 

F= there is at least one “six” or all the rolls are different = DA . 

Applying )DA(P)D(P)A(P)DA(P   we get  

  613.0015.0402.01)AD(P)D(P)D(P)A(P1)DA(P)F(P  . 

G=there is at least one “six” and there are equal rolls= DADA  . 

 
  .520.0480.01015.0093.0402.01

)DA(P)D(P)A(P1)DA(P1)DA(P)G(P




 

 

E4. Choose two numbers without replacement from a box containing the integer numbers 

1,2,3,4,5,6,7,8,9. Compute the probability that both of them are odd, both of them are even, the 

sum of them is at least 15, one of them is less then 4 and the other is greater then 7, the 

difference of the numbers is 3. 

If we take into consideration  the order of drawn numbers, then the possible outcomes are 

 21 i,i  21 ii  , 9i1 1  , 9i1 2  ,  21 i,i  are integers. 

  egersint,9i1,9i1,ii:i,iΩ 212121  . .7289Ω   If we draw each number in the 

box with equal probability, all possible outcomes have the same chance. Consequently, 

classical probability can be applied. Now contract those outcomes which differ only in the 

order. For example,  2,1  and  1,2  can be contracted to  2,1 . 

Actually,   egersint,9ii1:i,i*Ω 2121  . As two possible outcomes were contracted, 

consequently each possible outcome (without order) has equal chance in this model as well. 

Roughly spoken, one can decide whether he/she wants to consider the order or not, classical 

probability can be applied in both cases. 36
2

89

!7!2

!9

2

9
*Ω 














 . 

Consider the event: both of them are even: 

If we consider the order, then  

A=                         6,8,4,8,2,8,8,6,4,6,2,6,8,4,6,4,2,4,8,2,6,2,4,2(  

1234A  , 167.0
72

12
)A(P  . 

If we do not consider the order, then 

            6,8,4,8,4,6,2,8,2,6,2,4A* . 6
2

4
*A 








 , 167.0

36

6
*)A(P  . 

Finally, we can realize that we get the same result in both cases. 

Both of them are odd:  

            7,9,...,1,3,9,1,7,1,5,1,3,1B  , 2045B  , 278.0
72

20
)B(P  . 

      7,9,...,1,5,1,3*B  , 10
2

5
*B 








 , 278.0

36

10
*)B(P  . 

The sum of them is at least 15: 

                8,9,7,9,6,9,9,8,7,8,9,7,8,7,9,6C  , 8C  , 111.0
72

8
)C(P  . 

        9,8,9,7,7,8,6,9*C  , 4*C  , 111.0
36

4
*)C(P  . 

One of them is less than 4 and the other one is greater than 7: 

                        3,9,9,3,3,8,8,3,2,9,9,2(,2,8,8,2,1,9,9,1,1,8,8,1D  , 23212D  ,  
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167.0
72

12
)D(P  . 

  egersint,9i8,3i1:i,i*D 2121  . 623*D  , 167.0
36

6
*)D(P  . 

The difference of the numbers is 3: 

                        9,6,6,9,5,8,8,5,4,7,7,4,3,6,6,3,2,5,5,2,1,4,4,1E  , 12E  ,  

167.0
72

12
)E(P  . 

            6,9,5,8,4,7,3,6,2,5,1,4*E  , 6*E  , 167.0
36

6
)*E(P  . 

 

E5. Pick 4 cards without replacement from a pack of French cards containing 13 of each of  

clubs (♣), diamonds (♦), hearts (♥) and spades (♠). Compute the probability that there is at least 

one spade or there is at least one heart, there is no spade or there is no heart, there is at least one 

spade but there is no heart, there are 2 spades, 1 heart and 1 other, there are more hearts than 

spades. 

If we do not take into consideration the order of the cards picked, then 

  ,......spades of 8 spades, of king diamonds, of 7 hearts, of ace* . 270725
4

52
*Ω 








 . 

Actually the appropriate possible outcomes can not be listed and it is difficult to count them. 

The operations on the events and the consequences of axioms help us to answer the questions. 

Let *X be the event that there is no spade, *Y  the event that there is no heart among the 

picked cards. Now, *Y82251
4

39
*X 








 , 304.0

270725

82251
)*Y(P)*X(P  . 

A= there is at least one spade or there is at least one heart: 

*Y*X*Y*XA  , consequently Y*)*X(P1)A(P  . We need the value of 

Y*)*X(P  . *Y*X   means that there is no spade and at the same time there is no heart, 

therefore all of the cards picked are diamonds or clubs. 14950
4

26
*Y*X 








 , 

055.0
270725

14950
Y*)*X(P  , 945.0055.01)A(P  . 

B=there is no spade or there is no heart: 

** YXB  , 

  553.0055.0304.0304.0Y*)*XP(-P(Y*)*)XP(Y*)*X(P)B(P  . 

There is at least one spade but there is no heart: 

C= * X\*YY**X  , 249.0055.0304.0)*Y*X(P)*Y(P)C(P  . 

D= there are 2 spades, 1 hearts and 1 other card. 

26364
1

26

1

13

2

13
D 

























 , 097.0

270725

26364
)D(P  . 

E=there are more spades than hearts = there is one of spade and there is no heart or there are 2 

spades and 0 or 1 hearts or there are 3 spades and 0 or 1 heart or each card is a spade. These 

events are mutually exclusive therefore their probabilities can be summed up. 































































































































































































4

52

4

13

4

52

0

26

1

13

1

26

0

13

3

13

4

52

1

26

1

13

2

26

0

13

2

13

4

52

2

26

0

13

1

13

)E(P

. 
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The reader is kindly asked to compute it numerically. 

 

b.5. Geometric probability 

 

In this subsection we deal with geometric probability. It is important for understanding the 

concept of continuous random variable. 

 

Definition Let Ω be a subset of R , 2R , 3R  or nR , n4  , and let   be the usual measure on the 

line, plane, space,… Let us assume that 0)Ω(  , and  )Ω( . Let A  be those subsets of 

Ω that have measure. Now the geometric probability is defined by 
)Ω(

)A(
:)A(P



 . 

 

Remarks 

 Axiom I) holds as )A(0  , and )Ω(0  .  

 Axiom II) is the consequence of the definition 1
)Ω(

)Ω(
:)Ω(P 



 . 

 Axiom III) follows from the measure-property of  . For measures it holds that 












1i

i

1i

i )A()A(  supposing ji,AA ji  . Therefore, under the same assumption 


 



































1i

i

1i

i1i

i

1i

i

1i

i )A(P
)Ω(

)A(

)Ω(

)A(

)Ω(

)A(

)A(P


 . 

 The usual measure on R , 2R , 3R  is the length, area and volume, respectively. Their 

concept can be generalized. Further knowledge on measures can be found in the book of 

Halmos. 

 The definition 
)Ω(

)A(
)A(P




  expresses that the probability of an event is proportional to 

its measure. In the case of classical probability the “measure” is the number of the elements of 
Ω . Now the number of elements of Ω  is infinity. 

 If 1)Ω(  , then )A()A(P  . The consequences of the axioms are the frequently used 

properties of measure. See for example C8 and C9. 

 The proof of the fact that the set of those subsets of Ω  that have measure is a   algebra 

requires lots of mathematical knowledge, we do not deal with it actually. 

 Random numbers on computers are numbers chosen from the interval [0,1] by geometric 

probability approximately. That is, the probability that the number is situated in a subset of 

]1,0[  is proportional to the length of the subset. As the length of the interval ]1,0[  equals 1, the 

probability coincides with the length of the set itself. 

 

Examples 

E1. Choose a point from the interval  ,0  with geometric probability. Compute the 

probability that the second digit of the point equals 4. 

  ,0Ω , lenght  is abbreviated by  .  )Ω( . 

A= the second digit is 4 =       ,14.3...15.0,14.005.0,04.0 . 

3116.014.301.031)A(  , 0992.0
)A(

)A(P 



 . 
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E2. Shot on a circle with radius R. The probability that the hit is situated in a subset 

of the circle is proportional to the area of the subset. Compute the probability that we have 10, 

9 scores. 

Ω  is the circle with radius R.  2R)Ω()Ω(area . Let A be the event that the hit is 10 

scores. 10 scores means that the hit is inside the inner circle lined black, which is a circle with 

radius 
10

R
. Consequently, 










2

10

R
)A( , 

100

1

R

10

R

)A(P
2

2













 . 

 
Fig.b.4 Events A and B 

 

Let B be the event that the hit is 9 scores. It means that the hit is not in the inner part but in the 

following annulus. As the hits are between concentric circles, 




















100

R3

10

R

10

R2
)B(

222

. Consequently, 
100

3
)B(P  . 

Compute the probability that the distance of the hit and the centre of the circle equals 
2

R
. 

Let C be the event that the distance between the hit and centre of the circle equals 
2

R
. The 

points whose distance from the centre equals 
2

R
 are situated on the graph of the circle of radius 

2

R
 drawn by red in Fig.b.5.The area of the curve is zero, as it can be covered by the annulus 

which is the difference of the open circle with radius RΔ
2

R
 , and the open circle with radius 

2

R
, for any positive value of RΔ . 
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Fig.b.5 Event 2/RC  and event 








 RΔ
2

R
)0,(d

2

R
:  

Consequently,   


















2

22

RΔRΔR
2

R
RΔ

2

R
)C( , which tends to zero if 

RΔ  tends to zero. That implies that 0)C(  . Therefore, 0
R

)C(
)C(P

2





 .  

We draw the attention to the fact that despite even though C , 0)C(P   holds. Moreover, if 

we use the notation  x)O,Q(d:QC x  , then 0)C(P x  , for any value of Rx0  . Now 


Rx0

xCΩ


 holds. Moreover, if yx  , then  yx CC . 1)Ω(P   but  )C(P)Ω(P x . 

The reason of this paradox is that the set  Rx0:x   is not finite and is not countable. This 

is a very important thing in order to understand the concept of continuous random variables. 

 

E3. Choose two numbers independently of each other from the interval  1,1  with 

geometric probability. Compute the probability that the sum of the numbers is between 0.5 and 

1.5.  

To choose two numbers from the interval  1,1  with geometric probability independently of 

each other means to choose one point in the Cartesian coordinate system, namely from the 

square    1,1x1,1   with geometric probability. If the first number equals x, the second number 

equals y, then let the two dimensional point be denoted by )y,x(Q . Roughly spoken, let the 

first number be put on the x axis, the second number be put on y axis. Now    1,1x1,1Ω  , 

4)Ω(  . Let A be the event that the sum of the numbers is between 0.5 and 1.5. We seek the 

points )y,x(Q  for which 5.1yx5.0  . 
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Fig.b.6. The set of all possible outcomes Ω  and the set of appropriate points 

 

These points are in the section between the red lines given by 5.0yx   and 5.1yx   

presented in Fig.b.6. 

1
2

2

1

2

2

3

)A(

22























 , 
4

1
)A(P  . 

Compute the probability that the sum of the numbers equals 1. 

Let B be the event that the sum of numbers equals 1. The points of B are the points of the line 

given by 1yx   (see Fig.b.7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.b.7. The set of points given by the equation 1yx   

 

0)B(  , consequently, 0)B(P  . 

 

E4. Choose two numbers independently from each other with geometric probability 

from the interval ]1,0[ . Compute the probability that the square of the second number is less 

than the first one or the square of the first one is greater than the second one. 

   1,0x1,0Ω  , 1)Ω(  . We seek those points )y,x(Q  for which 2xy   or 2yx  , that is 

yx  . The appropriate points are bellow the curve given by 2xy  , furthermore above the 

curve given by xy   (see Figure b.8.) 
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Fig.b.8. Those points for which 2xy   or 2yx   holds 

 

 

If A is the set of appropriate points, then  

  667.0
3

2

3

2
1

3

1

2

3

x
x

3

x
dxx1dxx)A(

1

0

3
1

0

31

0

1

0

2 



























   and  

667.0
1

667.0
)A(P  . 

 

E5. Use the random number generator of your computer and generate N=1000, 

N=10000, N=100000, N=1000000 random numbers. Divide the interval ]1,0[  into 10 equal 

parts, and count the ratio of the random numbers situated in the sub-intervals 






 

10

1i
,

10

i
, 

i=0,1,2,…,9. Draw the figures! 

 

Relative frequencies of random numbers being in the above intervals are shown in Figs.b.9. 

b.10. b11. and b.12. for the simulated random numbers N=1000, 10000, 100000, 1000000, 

respectively. The pictures show that by increasing the number of simulations, the relative 

frequencies become more and more similar, the random numbers are situated more and more 

uniformly. If the probability of being in the interval is really 
10

1
, then relative frequencies are 

closer and closer to this probability. 
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Figure b.9. Relative frequencies of random numbers in case of N=1000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure b.10 Relative frequencies of random numbers in case of N=10000 
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Figure b.11. Relative frequencies of random numbers in case of N=100000 
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Figure b.12. Relative frequencies of random numbers in case of N=1000000 

 

 

E6. Approximate the probability of event A in E3) by the relative frequency of the 

event A applying N=1000, 10000, 100000, 1000000 simulations. Give the difference between 

the approximate values and the exact probability. 

First we mention that if a number is chosen from [0,1] with geometric probability, then its 

double is chosen from [0,2] with geometric probability and the double and minus 1 is chosen 

from the interval [-1,1] with geometric probability. 

 

The relative frequencies of A and their differences from the exact probability 0.25 can be seen 

in Table b.2. One can realize that if the number of simulations increases, the difference 

decreases. 

 

 N=1000 N=10000 N=100000 N=1000000 

Relative 

frequency 

0.2670 0.2584 0.2517 0.2502 

Difference  0.0170 0.0084 0.0017 0.0002 

 

Table b.2. Relative frequencies of the event and their differences from the exact probability 

 

The relative frequencies of the event that the sum is in 






 


5

1i
2,

5

i
2 , 19,...,0i   can be 

seen in Figs.b.13,b.14. One can see that the shapes of the graphs are getting more and more 

similar to a roof. 
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Fig.b.13. The relative frequencies of the event that the sum is in 
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i
2 ,  

19,...,0i   for N=1000 and 10000 
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Fig.b.14. The relative frequencies of the event that the sum is in 
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c. Conditional probability and independence 

 

 

The aim of this chapter 

 

The aim of this chapter is to get the reader acquainted with the concept of 

conditional probability and its properties. We present the possibilities for 

computing non-conditional probabilities applying conditional ones. We also 

define the independence of events. 

 

Preliminary knowledge 

 

Properties of probability. 

 

Content 

 

c.1. Conditional probability. 

 

c.2. Theorem of total probability and Bayes’ theorem. 

 

c.3. Independence of events 
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c.1. Conditional probability 

 

In many practical cases we have some information. We would like to know the probability of 

an event and we know something. This “knowledge” has an effect on the probability of the 

event; it may increase or decrease the probability of its occurrence. 

What is the essence of conditional probability? How can we express that we have some 

information? 

Let Ω  be the set of possible outcomes, A  the set of events, let P  be the probability. Let 

AB,A . If we know that B occurs (this is our extra information), then the outcome which is 

the result of our experiment is an element of B . Our word is restricted to B. If A  occurs, then 

the outcome is a common element of A  and B , therefore it is in BA . The probability of the 

intersection should be compared to the “measure” of the condition, i.e. )B(P . Naturally, 

)B(P0  has to be satisfied. 

Definition The conditional probability of the event A given B is defined as 

)B(P

)BA(P
:B)|A(P


 , if )B(P0 . 

 

Remarks 

 Notice that the definition of conditional probability implies the form 

)B(P)B|A(P)BA(P  , called multiplicative formula. 

 The generalization of the above form is the following statement: if 

)AA...A(P0 n1n1    holds, then 

)A...A|A(P...)AA|A(P)A|A(P)A(P)A...AA(P 1n1n213121n21  . 

It can be easily seen if we notice that )AA(P)A|A(P)A(P 21121  ,  

)AAA(P)AA(P)AA|A(P 32121213  , and finally,  

)AA...A(P)A...A(P)A...A|A(P n1n11n11n1n   . 

 If we apply classical probability, then  

B

BA

Ω

B

Ω

BA

)B(P

)BA(P
)B|A(P









 . Roughly spoken: there are some elements in B, 

these are our “new (restricted) world”. Some of them are in A, as well. The ratio of the number 

of elements of A in our “new world” and the number of elements of the “new world” is the 

conditional probability of A. 

 

Theorem Let the event B be fixed with )B(P0 . The conditional probability given B satisfies 

the axioms of probability I), II), III). 

Proof: 

I) )B|A(P0  , as )BA(P0  , and )B(P0 . 

II) ,1)B|Ω(P   as 1
)B(P

)B(P

)B(P

)BΩ(P
:B)|Ω(P 


 . 

III) If ,...3,2,1i,A i A  ji AA , ji  , then 









1i

i

1i

i )B|A(P)B|A(P  . 

The proof can be performed in the following way: notice that if  ji AA , then 

     BABA ji  holds as well. Now 
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 

.)B|A(P
)B(P

)BA(P

)B(P

)BA(P

)B(P

BAP

)B(P

BAP

)B|A(P
1i

i

1i

i1i

i
1i

i

1i

i

1i

i 
 


















































































 

This theorem assures that we can conclude all of the consequences of axioms.We can state the 

following consequences corresponding to C1,…, C12 without any further proof. 

 0)B|(P  . 

 If n,...,2,1i,A i A  for which  ji AA , ji  , then 



n

1i

i

n

1i

i )B|A(P)B|A(P  . 

 If AC , then )B|A(P)B|C(P   

 1ΒΑP  . 

 )B|A(P1)B|A(P  . 

 B)|CP(AB|P(AB)|C\A(P  .  

 )B|CA(P)B|C(P)B|A(P)B|CA(P  . 

 ))B|C(P)B|A(P)B|CA(P  . 

  )B|D(P)B|C(P)B|A(P)B|DCA(P  

)B|DCA(P)B|DA(P)B|CD(P)B|CA(P  . 

 















 nji1

ji

n

1i

i

n

1i

i )B|AA(P)B|A(PB|AP   

  )B|AA(P1)B|AAA(P n1

1n

nkji1

kji 




  . 

 

These formulas help us to compute conditional probabilities of “composite” events using the 

conditional probabilities of “simple” events. 

 

Examples 

E1. Roll a fair die twice. Given that there is at least one “six” among the results, 

compute the probability that the difference of the results equals 3.  

Let A be the event that the difference is 3, B the event that there is at least one “six”. 

The first question is the conditional probability )A|B(P . By definition, 
)A(P

)BA(P
)A|B(P


 . 

 )6,3(),3,6(BA  , 
36

2
)BA(P  ,  

                      5,6,4,6,3,6,2,6,1,6,6,6,6,5,6,4,6,3,,6,2,6,1A  , 
36

11
)A(P  . 

.
11

2

36

11
36

2

)A(P

)BA(P
)A|B(P 


  Roughly spoken, our world is restricted to A, it contains 11 

elements. Two of them have difference 3. If all possible elements are equally probable in the 

entire set Ω , then all possible outcomes are equally probable in A, as well. Consequently, the 

conditional probability is 
11

2
. 

Given that the difference of the results is 3, compute the probability that there is at least one 

“six”.  
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The second question is the conditional probability )B|A(P . By definition, 

)B(P

)BA(P
)B|A(P


 .  )3,6(),6,3(),2,5(),5,2(),1,4(),4,1(B  , 

36

6
)B(P  . 

Consequently, 
3

1

36

6
36

2

)B(P

)BA(P
)B|A(P 


 . 

Roughly spoken, our world is restricted to the set B. Two elements are appropriate among 

them. If all possible elements are equally probable in the entire set Ω , then all possible 

outcomes are equally probable in B, as well. Consequently the classical probability can be 

applied, which concludes that the conditional probability equals 
3

1

6

2
 . 

 

E2. Roll a fair die 10 times, repeatedly. Given that there is at least one “six”, 

compute the probability that there is at least one “one”. 

Let A be the event that there is no “six” among the results, and B the event that there is no 

“one” among the results. The question is the conditional probability )A|B(P . 

 
)A(P1

BA(P)B(P)A(P1

)A(P1

)BA(P1

)A(P

)BA(P

)A(P

)BA(P
)A|B(P















 . 

Now we can see that we have to compute the values ),A(P )B(P  and )BA(P  . 

161.0
6

5
)A(P

10

10

 , 161.0
6

5
)B(P

10

10

 , 017.0
6

4
)BA(P

10

10

 . 

   
828.0

839.0

695.0

161.01

017.0161.0161.01

)A(P1

BA(P)B(P)A(P1
)A|B(P 









 . 

E3. Choose two numbers independently in the interval [0,1] by geometrical 

probability. Given that the difference of the numbers is less than 0.3, compute the probability 

that the sum of the numbers is at least 1.5. 

Let A be the event that the difference of the numbers is less than 0.3. The appropriate points in 

the square ]1,0[x]1,0[  are situated between the straight lines given by the equation 3.0yx   

and 3.0xy  . It is easy to see that 51.07.01)A(P 2  . BA  contains those points of A 

which are above the straight line given by x+y=1.5. This part is denoted by horizontal lines in 

Fig.c.1. The cross-points are )9.0,6.0(Q1  and )6.0,9.0(Q2 . The area of the appropriate points 

is 105.0045.006.0
2

3.0
1.01.03.03.0)A(

2
2222 




 





  , 105.0)BA(P  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.c.1. The points satisfying conditions yx5.1   and 3.0yx   

0 1
0

1

x-y=0.3

y-x=0.3

x+y=1.5
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206.0
51.0

105.0

)A(P

)BA(P
)A|B(P 


 . 

 

E4. Order the numbers of the set  10,...,4,3,2,1  and suppose that all arrangements 

are equally probable. Given that the number “1” is not on its proper place, compute the 

probability that the number 10 is on its proper place. 

Let iA  be the event that the number “i” is in its proper place. The question is the conditional 

probability )A|A(P 110 . Now  

)A(P1

)AA(P)A(P

)A(P

)A\A(P

)A(P

)AA(P
)A|A(P

1

11010

1

110

1

110
110







 .  

We can see that we need the values )A(P 1 , )A(P 10  and )AA(P 110  . 

 kjifii,10,...,2,1j,egersint,10i1:)i,...,i,i(Ω kjj1021  , for example  

 10,9,8,7,6,5,4,3,2,1 , )7,1,8,10,9,7,4,3,2,5(  and so on. 3628800!10Ω  . 

  kjifii,10,...,2j,egersint,10i2:i,....,i,1A kjj1021  , !9A1  , 1.0
!10

!9
)A(P 1  . 

Similarly, 1.0
!10

!9
)A(P 10  . 

  kjifii,9,...,2j,egersint,10i1:10,....,i,1AA kjj2101  , !8AA 101   as the 

numbers 1 and 10 have to be on their proper places, 011.0
910

1

!10

!8
)AA(P 101 


 . 

Therefore, 099.0
81

8

10

9
910

8

10

9
910

1

10

1

)A(P1

)AA(P)A(P
)A|A(P

1

11010
110 







 . 

 

E5. Order the numbers of the set  10,...,4,3,2,1  and suppose that all arrangements are 

equally probable. Given that the number “1” is not on its proper place, compute the probability 

that the number “10” or the number “5” is on its proper place. 

Let iA  the event that the number “i” is on its proper place. The question is the conditional 

probability )A|AA(P 1510  . Recall the properties of conditional probability, namely 

)A|AA(P)A|A(P)A|A(P)A|AA(P 1510151101510  . 

We can realize that the conditional probabilities )A|A(P 110 , )A|A(P 15  and 

)A|AA(P 1510   are needed. )A|A(P 110  was computed in the previous example, and 

)A|A(P 15  can be computed in the same way. 

)A(P1

)AAA(P)AA(P

)A(P

)AAA(P
)A|AA(P

1

1510510

1

1510
1510







 . 

 


















kjifii,9,8,7,6,4,3,2j,egersint

,9i6,4i2:10,i,i,i,i,5,i,i,i,1
AAA

kj

jj9876432

1510  

!7AAA 1510   as the numbers „1”, „10” and „5” are on their proper places. 

Consequently, 001.0
8910

1

!10

!7
)AAA(P 1510 


 , and  
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












10

9
8910

7

10

1
1

8910

1

910

1

)A(P1

)AAA(P)AA(P
)A|AA(P

1

1510510
1510  

011.0
881

7



 . 

Now 

.187.0
881

121

881

7

81

8

81

8
)A|AA(P)A|A(P)A|A(P)A|AA(P 1510151101510 







 

E6. Pick 4 cards without replacement from a package containing 52 cards. Given 

that there are no hearts or there are no spades, compute the probability that there are no hearts 

and there are no spades. 

Let A be the event that there are no hearts, B the event that there are no spades. The question is 

the conditional probability )BA|BA(P  . 

   
)BA(P

)BA(P

)BA(P

)BABA(P
)BA|BA(P









 , as    BABA  . 

We have to compute the probabilities )BA(P   and  BAP  . This latter one requires )A(P , 

)B(P  and )BA(P  . As the sampling is performed without replacement we do not have to 

consider the order of the cards.  

  kjifdifferentare4,3,2,1ji,packagethefromcardsthearei:i,i,i,iΩ jj4321  . 











4

52
Ω , 










4

39
BA , 










4

26
BA ,  

304.0)B(P

4

52

4

39

)A(P 



















 , 055.0

4

52

4

26

)BA(P 



















 , 

553.0)BA(P)B(P)A(P)BA(P  . 

099.0
553.0

055.0

)BA(P

)BA(P
)BA|BA(P 




 . 

E7. Pick 4 cards without replacement from a package containing 52 cards. 

Compute the probability that the first card is a heart, the second and the third cards are 

diamonds and the fourth one is a spade. 

Let A be the event that the first card is a heart, B the event that the second one is a diamond, C 

the event that the third card is a diamond and D the event that the last one is a spade. The 

question is )DCBA(P  . Applying the generalized form of the multiplicative rule, we 

can write that )CBA|D(P)BA|C(P)A|B(P)A(P)DCBA(P  . Notice 

that the conditional probabilities )A|B(P , )BA|C(P  , )CBA|D(P   can be computed 

by the following arguments. If we know that the first card is a heart, then the package contains 

at the 2nd draw 51 cards and 13 are diamonds of them. The third and last ones can be any cards, 

consequently 
51

13
)A|B(P  . If we know that the first card is a heart and the second one is a 

diamond, then the package contains 50 cards at the third draw and 12 are diamonds of them. 

The last one can be any card, consequently 
50

12
)BA|C(P  . 
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Finally, if we know that the first card is a heart, the second and third ones are diamonds, then 

the package contains 49 cards at the last picking and 13 are spades among them. Consequently, 

49

13
)CBA|D(P  . As 

52

13
)A(P  , 004.0

49

13

50

12

51

13

52

13
)DCBA(P  . 

We present the following “simple” solution as well. As the question is connected to the order of 

pickings, we have to consider the order of the picked cards. 

  kjifdifferentare4,3,2,1ji,packagethefromcardsthearei:i,i,i,iΩ jj4321  . 

49505152Ω  . If the first draw is a heart, then we have 13 possibilities at the first draw. If 

the second card is a diamond, then we have 13 possibilities at the second picking. If the third 

card is a diamond again we have only 12 possibilities at the third picking, as the previous draw 

eliminates one of the diamond cards. Finally, if the last card is a spade, we have 13 possibilities 

at the last picking. Consequently, 13121313DCBA  ,  

49505152

13121313
)DCBA(P




 , which is exactly the same as we have got by applying the 

multiplicative rule. 

 

c.2. Theorem of total probability, Bayes’ theorem 

 

In the examples of the previous section the conditional probabilities were computed from 

unconditional ones. The last example was solved by two methods. One of them has applied 

conditional probabilities for determining an unconditional one. The law of total probability 

applies conditional probabilities for computing unconditional (total) probabilities. To do this, 

we need a partition of the sample space Ω . 

Suppose that Ω , A , and P are given. 

Definition The set of events An21 B,...,B,B  is called a partition of Ω , if 
n

1i

iBΩ


  and 

 ji BB , ji  , ni1  , nj1  . 

 

We note that a partition cuts the set of possible outcomes into some mutually exclusive events. 

Every possible outcome belongs to an event and none of them can belong to two events. 

 

Theorem (Law of total probability) Let An21 B,...,B,B  be a partition of Ω , and assume that 

)B(P0 i , .n,...,2,1i   Then for any event AA  the following equality holds 





n

1i

ii )B(P)B|A(P)A(P . 

Proof: As )B(P0 i , the conditional probabilities are well defined.  

 

































n

1i

i

n

1i

i BAP)BA(P)ΩA(P)A(P . 

Notice that if  ji BB , then      ji BABA . Therefore the unioned events are 

mutually exclusive and the probability of the union is the sum of the probabilities. 

  


















n

1i

i

n

1i

i )BA(PBAP  . 

Recalling the multiplicative rule )B(P)B|A(P)BA(P iii   we get 





n

1i

ii )B(P)B|A(P)A(P . 
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An inverse question can be asked in the following way: if we know that A occurs, compute the 

probability that iB  occurs. The answer can be given by Bayes’ theorem as follows: 

Theorem (Bayes’ theorem) Let An21 B,...,B,B  be a partition of Ω , and assume )B(P0 i , 

.n,...,2,1i   Then for any event AA  with )A(P0  , the following holds: 










n

1i

ii

iiii
i

)B(P)B|A(P

)B(P)B|A(P

)A(P

)B(P)B|A(P
)A|B(P , n,...,2,1i  . 

Proof 













n

1i

ii

iiiii
i

)B(P)B|A(P

)B(P)B|A(P

)A(P

)B(P)B|A(P

)A(P

)AB(P
)A|B(P . 

Remarks 

 Notice that the unconditional probability is the weighted sum of the conditional 

probabilities. 

 The law of total probability is worth applying when it is easy to compute conditional 

probabilities. 

 The construction of the partition is sometimes easy, in other cases it can be difficult. 

The main point is to be able to compute conditional probabilities. 

 The theorem can be proved for countably many sets iB , ,...2,1i  , as well. 

 Bayes’ theorem can be interpreted as the probability of „reasons”. If A occurs, what is 

the probability that its „reason” is iB , ,...3,2,1i   

 

Examples 

E1. In a factory, there are three shifts. 45% of all products are manufactured by the 

morning shift, 35% of all products are manufactured by the afternoon shift, 20% are 

manufactured by the evening shift. A product manufactured by the morning shift is substandard 

with probability 0.04, a product manufactured by the afternoon shift is substandard with 

probability 0.06, and a product manufactured by the evening shift is substandard with 

probability 0.08. Choose a product from the entire set of products. Compute the probability that 

the chosen product is substandard. 

Let 1B  be the event that the chosen product was produced by the morning shift, let 2B  be the 

event that the chosen product was produced by the afternoon shift and let 3B  be the event that 

the chosen product was produced by the evening shift. ,B1 2B , 3B  is a partition of the entire set 

of all products. Let S be the event that the chosen product is substandard. Now, 

0.04)B|P(S 1  , 0.06)B|P(S 2  , 08.0)B|P(S 3  . Furthermore,  

,45.0)B(P 1  35.0)B(P 2  , 2.0)B(P 3  . Applying the law of total probability we get 

 )B(P)B|S(P)B(P)B|S(P)B(P)B|S(P)S(P 332211

0.055 0.20.080.350.060.450.04  . 

If the chosen product is substandard, compute the probability that it was produced by the 

morning shift. If the chosen product is substandard, which shift produced it most probably? 

327.0
055.0

45.004.0

)S(P

)B(P)B|S(P
)S|B(P 11

1 





 . 

382.0
055.0

35.006.0

)S(P

)B(P)B|S(P
)S|B(P 22

2 





 . 

291.0
055.0

2.008.0

)S(P

)B(P)B|S(P
)S|B(P 33

3 





 . 

If the chosen product is substandard, the second shift is the most probable, as a „reason”. 
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This example draws the attention to the differences between the conditional probabilities 

)B|S(P 1 and )S|B(P 1 , )B|S(P 2 and )S|B(P 2 , )B|S(P 3 and )S|B(P 3 . Although the maximal 

value among )B|S(P 1 , )B|S(P 2 and )B|S(P 3 is the first conditional probability, the maximal 

value among )S|B(P 1 , )S|B(P 2  and )S|B(P 3  is the second one. )B|S(P 1  is the ratio of the 

substandard products among the products produced by the morning shift, )S|B(P 1  is the ratio 

of the products produced by morning shift among all substandard products. These ratios have to 

be strictly distinguished. 

 

E2. People are divided into three groups on the basis of their qualification: people 

with higher, intermediate and elementary degree. We investigate the adults. 25% of all adults 

have elementary, 40% of all adults have intermediate and the rest of people have higher degree. 

A person having elementary degree is unemployed with probability 0.18, a person having 

intermediate degree is unemployed with probability 0.12 and a person having higher degree is 

unemployed with probability 0.05. Choose a person from the adults. Compute the probability 

that he/she is unemployed.  

Let 1B  be the event that the chosen person has elementary degree, 2B  be the event that the 

chosen person has intermediate degree, 3B  be the event that the chosen person has higher 

degree. 321 B,B,B  is a partition of the entire set of Ω . Let E be the event that the chosen 

person is unemployed. 25.0)B(P 1  , 4.0)B(P 2   and 35.0)B(P 3  , furthermore 

18.0)B|E(P 1  , 12.0)B|E(P 2  , 05.0)B|E(P 3  . Applying the law of total probability we 

get  )B(P)B|E(P)B(P)B|E(P)B(P)B|E(P)E(P 332211  

1105.035.005.04.012.025.018.0  . 

If the chosen person is not unemployed compute the probability that he has 

elementary/intermediate/ higher degree. 

 
230.0

1105.01

25.082.0

)E(P1

)B(P)B|E(P1

)E(P

)B(P)B|E(P
)E|B(P 1111

1 











 . 

 
396.0

1105.01

4.088.0

)E(P1

)B(P)B|E(P1

)E(P

)B(P)B|E(P
)E|B(P 2222

2 











 . 

 
374.0

1105.01

35.095.0

)E(P1

)B(P)B|E(P1

)E(P

)B(P)B|E(P
)E|B(P 3333

3 











 . 

We draw the attention to the fact that )B|E(P1)B|E(P 11   according to the properties of 

conditional probability. 

 

E3. Pick two cards without replacement from a package of cards containing 52 

cards. Compute the probability that the second card is a heart. 

If we knew that the first card is a heart or not, the conditional probabilities of the event “second 

draw is a heart” could be easily computed. Consequently the unconditional probability can be 

also computed with the help of the conditional probabilities. 

Let 1B  be the event that the first card is a heart and 12 BB  . Now 1B  and 2B  form a partition 

of the entire set of Ω . Let A be the event that the second draw is a heart. Now, 
51

12
)B|A(P 1  , 

51

13
)B|A(P 2  , furthermore 

52

13
)B(P 1  , 

52

39
)B(P 2  . Applying the law of total probability 

we get 

 
25.0

52

13

5251

391213

52

39

51

13

52

13

51

12
)B(P)B|A(P)B(P)B|A(P)A(P 2211 




 . 
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Given that the second draw is a heart compute the probability that the first one is not a heart. 

51

39

25.0

4

3

51

13

)A(P

)B(P)B|A(P
)A|B(P 22

2 






 . 

Given that the second draw is not a heart compute the probability that the first one is a heart. 

51

13

4

3
4

1

51

39

)A(P

)B(P)B|A(P
)A|B(P 11

1 






 , taking into account that )B|A(P1)B|A(P 11  . 

 

c3. Independence of events 

 

The conditional probability of an event may differ from the unconditional one. It may be 

greater or smaller than the unconditional probability, and in some cases they can be equal, as 

well. Let us consider the following very simple examples. 

Roll two fair dies. Let A be the event that the sum of the rolls is 7, let B be the event that the 

difference of the rolls is at least 4, let be C the event that the difference of the rolls is 0, finally 

let D be the event that the first roll is 1. Now 
36

6
)A(P  , 

36

6
)B(P  , 

36

6
)C(P  , 

36

6
)D(P  . 

One can easily see that )B(P
3

1

36

6
36

2

)A(P

)AB(P
)A|B(P 


 ,  

)C(P0

6

1

)(P

)A(P

)AC(P
)A|C(P 





 , )D(P

6

1
36

1

)A(P

)AD(P
)A|D(P 


 . This latter case is 

the case when the information contained in A does not change the chance of D. It can be 

checked that )A(P
6

1

)D(P

)DA(P
)D|A(P 


  also holds, which means that the information in 

D does not change the chance of A either. The relation is symmetric. Similarly, 

)A(P
3

1

)B(P

)AB(P
)B|A(P 


  and )A(P0

)C(P

)CA(P
)C|A(P 


 . 

 

Definition The events AB,A  are called independent if )B(P)A(P)BA(P  . 

 

Now we prove that this definition is a generalization of the previous concept. 

 

Theorem Let A and B be events for which )A(P0   and )B(P0 . Then A and B are 

independent if and only if )A(P)B|A(P   and/or )B(P)A|B(P  . 

Proof Recalling the definition of conditional probability, we can write that 

)B(P

)BA(P
)B|A(P


  and 

)A(P

)AB(P
)A|B(P


 . If A and B are independent, then, by 

definition, )B(P)A(P)BA(P  . Dividing by P(A) and P(B) we get the equalities 
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)B(P
)A(P

)BA(P



 and )A(P

)B(P

)BA(P



, respectively. Conversely, )B(P

)A(P

)BA(P



 implies 

)B(P)A(P)BA(P  , and so does )A(P
)B(P

)BA(P



. 

Remarks 

 The definition of independence is symmetric. 

 The definition of independence is valid even in the case of )A(P0   or 0)B(P  . 

 If )A(P0   or 0)B(P  , then A  and B are independent. Take into consideration that 

)A(P)BA(P  , )B(P)BA(P  , consequently 0))B(P),A(Pmin()BA(P  . 

Therefore, )B(P)A(P0)BA(P  . 

 Independent events are strongly different from mutually exclusive events. If A and B 

are mutually exclusive, then BA , 0)BA(P  . 0)B(P)A(P   implies 0)A(P   or 

0)B(P  . If A and B are mutually exclusive and )B(P0)A(P   holds, then A and B can 

not be independent. Roughly spoken, if A and B are mutually exclusive and one of them 

occurs, the other one can not occur. Occurrence of A is a very important piece of information 

with respect to B. 

 In the example presented at the beginning of the subsection the events A and D are 

independent but the events A and B are not. Neither are A and C. 

 The independence of A and B means that the “weight” of A in the entire set equals the 

“weight” of A in B. 

 

Examples 

E1. Roll a fair die 5 times. Let A be the event that all rolls are different let B the 

event that there is no “six” among the rolls. Are the events A and B independent? 

Applying our knowledge on sampling with replacement it is easy to see that 

093.0
6

23456
)A(P

5



 , 42.0

6

5
)B(P

5

5

 , 015.0
6

12345
)BA(P

5



 . As 

)B(P)A(P)BA(P  , A and B are not independent. If we know that there is no “six” 

among the rolls then we can “feel” that the chance that all the rolls are different has been 

decreased. We have only five numbers to roll instead of six ones. 

 

E2. There are N balls in a box, M of them are white, N-M are red. Pick n balls from 

the urn with replacement. Let A be the event that the first one is red, let B the event that the last 

one is white. Are the events A and B independent? 

Recalling the results in connection with sampling with replacement, 

 
N

M
1

N

MN

N

NMN
)A(P

n

1n










, 
N

M

N

MN
)B(P

n

1n







,  

 
N

M

N

M
1

N

M)MN(

N

MNMN
)BA(P

2n

2n



















. As )B(P)A(P)BA(P  , A 

and B are independent. 

Roughly spoken, the result of the first picking does not effect the result of the last picking, it 

does not increase and does not decrease the chance of picking a white ball. 

 

E3. There are N balls in an urn, M of them are white N-M are red. Pick 2 balls from 

the urn without replacement. Let A be the event that the first one is red, let B the event that the 

second one is white. Are the event A and B independent? 

Recalling the results in connection with sampling without replacement, we can write 

 
)1N(N

MMN
)BA(P




 , 

   
N

MN

)1N(N

)1N(MN
)A(P







 . )B(P  can be computed by the 
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help of the theorem of total probability as follows: 

 
 


















N1N

1MMNM

N

M

1N

1M

N

MN

1N

M
)A(P)A|B(P)A(P)A|B(P)B(P  

N

M
. As )B(P)A(P)BA(P  , A and B are not independent.  

Roughly spoken, if we know that the first draw is red, the chance of the second one being white 

has been increased. The reason is that the relative number of white balls in the urn has 

increased. 

 

E4. People are grouped into three groups on the basis of their qualification: people 

with higher, intermediate and elementary degree. We investigate the adults. 25% of all adults 

have elementary, 40% of all adults have intermediate and the rest of people have higher degree. 

A person having elementary degree is unemployed with probability 0.18, a person having 

intermediate degree is unemployed with probability 0.12 and a person having higher degree is 

unemployed with probability 0.05. Choose a person from the adults. Are the events A=“the 

chosen person is unemployed” and 1B ”the chosen person has higher degree” independent? 

Recalling the law of total probability we get 1105.0)A(P  , but 05.0)B|A(P 1  . As 

)E(P)B|A(P 1  , A and 1B  are not independent. If somebody has higher degree, the 

probability of the event that he is unemployed has decreased. The ratio of the unemployed 

people in the whole population is higher than the ration of the unemployed among people 

having higher degree. 

E5. Roll a fair die 3 times. Let A be the event that the sum of the rolls is at least 17, 

and let B be the event that all the rolls are the same. Are A and B independent? 

Taking the condition into account, the sum of the rolls can be 17 and 18. If the sum is 17 then 

we roll two “six”s and one “five”. if the sum is 18, then we have three “six”-s. 

333 6

4

6

1

6

1113
)A(P 


 . There are four elements in A. One of them satisfies that all of the 

rolls are the same, consequently
4

1
)A|B(P  . Finally, 

36

1

6

116
)B(P

3



 . Now we can see 

that )B(P)A|B(P  , therefore A and B are not independent. 

 

Theorem If the events A and B are independent, then A  and B , furthermore A  and B  are 

independent, as well. 

Proof

)BP(P(A)P(B))1)(A(PP(B)P(A)-P(A)B)P(A-P(A)B)\A(P)BA(P  . 

  )BA(P)B(P)A(P1)BA(P1)BA(P)BA(P  

    )B(P1)A(P1)B(P)A(P)B(P)A(P1  . 

 

Now let us consider the independency of more than two events.  

Definition The events iA  Ii  are called pairwise independent if any two of them are 

independent, that is )A(P)A(P)AA(P kjkj  kj,Ik,j  . 

Definition The events iA  Ii are called independent, if for any finite set of different indices 

 n21 i,...,i,i  the equality )A(P)A(P)A(P)A...AA(P in2i1iin2i1i    holds. 

 

Remarks 

 If the number of elements of the set of indices equals 2, the above property expresses 

the pairwise independence. 

 Pairwise independence of events does not imply independence of the events. We 

construct the following example in which pairwise independence holds but 
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)C(P)B(P)A(P)CBA(P  . Let  4,3,2,1Ω  , 
4

1
)i(P  , 4,3,2,1i  . Let 

 2,1A  ,  3,1B  ,  4,1C  . Now 5.0
4

2
)C(P)B(P)A(P  ,  

 1CACBBA  ,   25.0
4

1
)1(P)CA(P)CB(P)BA(P  .  

Consequently, )B(P)A(P)BA(P  , )C(P)A(P)CA(P  , )C(P)B(P)CB(P  . It 

means that A, B and C are pairwise independent. But 

 
8

1
)C(P)B(P)A(P25.0)1(P)CBA(P  . 

 

Definition Experiments are called independent if the events connected to them are 

independent. In more detail for two experiments: if 1A  is the set of events connected to an 

experiment, 2A  is the set of events connected to another experiment, then for any 1A A  and 

2B A  the events A and B are independent. The experiments characterized by the set of 

events iA , Ii  are independent if for any iiA A  the events iA  are independent. 

 

Remarks 

 Sampling with replacement can be considered as a sequence of independent 

experiments. If the first draw is the first experiment, the second draw is the second experiment 

and so on, the events connected to different draws are independent. 

 If we do sampling without replacement, then the consecutive draws are not independent 

experiments, as E3) in the previous subsection illustrates. 

 

Examples 

E6. Fill two lotteries (90/5) independently. Compute the probability that at least 

one of them is bull’s-eye. 

Let A be the event that the first lottery is bull’s-eye, let B the event that the second one is 

bull’s-eye. The question is )BA(P  . 











5

90

1
)A(P , 











5

90

1
)B(P , 





















5

90

1

5

90

1
)B(P)A(P)BA(P . Applying )BA(P)B(P)A(P)BA(P   we get 

8106.4

5

90

1

5

90

1

5

90

2
)BA(P 





























 . 

 

E7. Fill 10 million lotteries independently. Compute the probability that at least one 

of them is bull’s-eye. 

Let iA  be the event that the ith experiment is bull’s-eye. The question is )A...A(P 7101  . 

Instead of it, let us first consider its complement. 

)A...AA(P)A...A(P 77 1021101  . As the experiments are independent, the 

probability of the intersection of the events connected to them is the product of the 

probabilities. Therefore  
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796.0

5

90

1
1)A(P...)A(P)A...AA(P

7

77

10

1011021 





























 . 

Consequently, 204.0796.01)A...A(P 7101  . 

 

E8. How many lotteries are filled independently, if the probability that there is at 

least one bull’s-eye among them equals 0.5? 

Let iA  n,...,2,1i  be the event that the ith experiment is bull’s-eye. The question is the value 

of n if 5.0)A...A(P n1  . Following the argument of the previous example E7 

 )A...AA(P)A...A(P n21n1 5.05.01

5

90

1
1

n































 . 

Taking the logarithm of both sides, we get  

5.0log)

5

90

1
1log(n 









 , 30463322

)

5

90

1
1log(

5.0log
n 











 , which is much more than the half of 

possible fillings. But if you fill 30 million lotteries the probability that there are identical 

fillings is almost 1. If you fill them independently, it may happen that the first one and the 

second one contain the same numbers crossed. 
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d. Random variable 

 

The aim of this chapter 

 

This chapter aims to get the reader acquainted with the concept of random 

variables as random valued functions. We introduce the concept of 

distribution, cumulative distribution function and probability density 

function. We present how to the use cumulative distribution function to 

express probabilities. We introduce the concept of independent random 

variables. 

 

Preliminary knowledge 

 

Properties of probability. Analysis, taking derivative and integrate. 

 

Content 

 

d.1. Random variables as random valued functions. 

 

d.2. Cumulative distribution function. 

 

d.3. Continuous random variable. 

 

d.4. Independent random variables. 
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d.1. Random variables as random valued functions 

 

In this section we introduce the concept of random variables as random valued functions. 

We suppose that Ω , A  and P are given. 

First we introduce a simple definition and later, after presenting lots of examples, we make 

it mathematically exact. 

Definition The function RΩ:   is called a random variable.  

Remarks 

 Random variables map the set of possible outcomes to the set of real numbers. The 

values of random variables are numbers. If we know the result of the experiment, we know 

the actual value of the random variable. Before we perform the experiment, we do not know 

the actual outcome; hence we do not know the value of the function. “Randomness” is 

hidden in the outcome. 

 Although we do not know the value of the function, we know the possible outcomes 

and the values assigned to them. In analysis, these values are called the image of the 

function. We will call them possible values of the random variable. 

 If we know the possible values of the function, we can presumably compute the 

probabilities belonging to these possible values. That is we can compute the probability that 

the function takes this value. Additional refinement is needed to enable us to do this in all 

cases. 

 As the elements of Ω are not real numbers in some cases, the function   may not be 

drawn in a usual Cartesian frame. 

 

Examples 

E1. Flip a coin. If the result is heads we gain 10 HUF, if the result is tail we pay 

5 HUF. Let   be the money we get/pay during a game. 

 T,HΩ  , 
Ω2A , P  is the classical probability. RΩ:  , 10)H(  , 5)T(  . The 

possible values of   are 10 and -5, and   5.0)H(P)10(P  ,   5.0)T(P)5(P  . 

Before performing the experiment we do not know the value of our gain, but we can state 

that it can be 10 or -5 and both values are taken with probability 0.5. 

E2. Roll a fair die. We gain the square of the result. Let   be the gain playing one 

game.  
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 6,5,4,3,2,1Ω  , Ω2A , P is the classical probability. RΩ:  , 2i)i(  . ,11)1( 2   

,42)2( 2   ,93)3( 2  ,164)4( 2   ,255)5( 2   .366)6( 2   Moreover, 


6

1
)i(P)i(P 2  . Summarizing, the possible values of   are 1,4,9,16,25,36, and the 

probabilities belonging to them are 
6

1
. Before we roll the die we do not know how much 

money we gain, but we can state that it may be 1,4,9,16,25 or 36, and all of them have 

probability 
6

1
. 

E3. Roll a fair die twice. Let   be the sum of the rolls. 

 )6,6),.....(2,1(),1,1(Ω  , 
Ω2A , P is the classical probability. RΩ:  , ji))j,i((  . 

For example, 2))1,1((  , ,7))5,2((   12))6,6((  . The possible values of   are 

2,3,4,5,6,7,8,9,10,11,12. 

  
36

1
)1,1(P)2(P  , 

 
36

2
))1,2(),2,1((P)3(P  ,   ,

36

3
))2,2(),1,3(),3,1((P)4(P   

  ,
36

4
))1,4(),2,3(),3,2(),4,1((P)5(P    ,

36

5
))1,5(),2,4(),3,3(),4,2(),5,1((P)6(P   

  ,
36

6
))1,6(),2,5(),3,4(),4,3(),5,2(),6,1((P)7(P 

  ,
36

5
))2,6(),3,5(),4,4(),5,3(,6,2((P)8(P    ,

36

4
))3,6(),4,5(),5,4(),6,3((P)9(P 

  ,
36

3
))4,6(),5,5(),6,4((P)10(P    ,

36

2
))5,6(),6,5((P)11(P 

  .
36

1
))6,6((P)12(P   

We mention that the sets  i)(:Bi   12,...,3,2i   are mutually exclusive and the 

union of them is Ω . They form a partition. Consequently, the sum of the probabilities 

belonging to the possible values equals 1. 

E4. Choose two numbers without replacement from the set  4,3,2,1,0 . Let   be 

the minimum of the chosen numbers.  

Actually,   egersint,4ii0:i,iΩ 2121  , RΩ:  ,    2121 i,imin)i,i(  , 

10
2

5
Ω 








 .   0)4,0(  ,   2)3,2(   and so on. The possible values of   are 0,1,2,3 
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and        
10

4
)4,0,3,0,2,0,1,0(P)0(P  ,      

10

3
)4,1,3,1,2,1(P)1(P  , 

   
10

2
)4,2,3,2(P)2(P  ,  

10

1
)4,3(P)3(P  . 

E5. Pick two numbers with replacement from the set  4,3,2,1,0 . Let   be the 

minimum of the picked numbers.  

Actually,   egersint,4i,i0:i,iΩ 2121  , RΩ:  ,    2121 i,imin)i,i(  , 

2555Ω  .   0)4,0(  ,   3)3,3(   and so on. The possible values of   are 0,1,2,3,4 

and  
25

9
))0,4(),0,3(),0,2(),0,1(),4,0(),3,0(),2,0(),1,0(),0,0((P)0(P  ,  

25

7
))3,4(),2,4(),1,4(),4,1(),3,1(),2,1(),1,1((P)1(P  , 

25

5
))2,4(),2,3(),4,2(),3,2(),2,2((P)2(P  ,

25

3
))3,4(),4,3(),3,3((P)3(P  , 

25

1
))4,4((P)4(P  . 

E6. Choose two numbers with replacement of the set  4,3,2,1,0 . Let  be their 

difference. 

Actually, the elements of the sample space are as in the previous example, but the mappings 

differ. ,0))1,1((   3))1,4((  , and so on. The possible values of   are 0,1,2,3,4 and 

 
25

5
))4,4(),3,3(),2,2)(1,1(),0,0((P)0(P  , 

 
25

8
))3,4(),4,3(),3,2(),2,3(),2,1(),1,2)(0,1(),1,0((P)1(P  ,

 
25

6
))4,2(),2,4(),3,1(),1,3)(0,2(),2,0((P)2(P  ,

 
25

4
))1,4(),4,1(),0,3(),3,0((P)3(P  ,  

25

2
))0,4(),4,0((P)4(P  . 

E7. Fire into a circle with radius R and suppose that the probability that the hit 

is situated in a subset of the circle is proportional to the area of the subset. Let   be the 

distance of the hit from the centre of the circle.  

Actually, Ω  is the circle and A  are those subsets of the circle which have area. If Q is a 

point of the circle, then )Q,O(d)Q(  . Possible values of   are the points of the interval 

 R,0 .   .0
R

)O(
)O(P)0(P

2












2

R

R
)R(P , where R  is the area of the 

boundary of the circle with radius R, which equals 0. .0)R(P   If  Rx0  , then 
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




2

x

R
)x(P , where x  is the area of the boundary of the circle with radius x, which 

equals 0, as well. Consequently, all possible values have probability 0. 

E8. Choose two numbers independently from the interval ]1,0[  by geometric 

probability. Let   be their difference. 

Now,   ]1,0[x1,0Ω  , which is a square. 1)Ω(  . The possible values of   are the points of 

 1,0 . Actually, 
 

.
1

)Ωyx:)y,x(Q(
)0(P


  The area of the line given by the 

equation yx   in the square equals 0, consequently, 0)0(P  . 

 
.0

1

))1,0(),0,1((
)1(P 


  Generally, If 2u0  , then 

 
1

)Ωuyx:)y,x(Q(t
)u(P


 . The set  uyx:)y,x(Q   consists of the points 

of the lines given by x-y=u and y-x=u, and the area of the two lines equals 0. Therefore 

0)u(P  . 

 

Remarks 

 The common feature of E1, E2,…,E6 is that the set of the possible values are finite.  

 Another common feature of E1, E2,…,E6 is that if ix  is a possible value of  , then 

0)x(P i  . 

 If the possible values of   are denoted by n1 x,...,x , then the sets 

 ii x)(:B   form a partition of Ω . Consequently, 

1)Ω(P)B(P)x(P
n

1i

i

n

1i

i  


. 

 The common feature of E7 and E8 is that the set of possible values is uncountably 

infinite and if x is a possible value then 0)x(P  . Nevertheless,  )x)(:(P  =1. If 

 x)(:Bx  , and  y)(:By  , then  yx BB , if yx  . If the set of 

possible values were countable, then     0)x)(:(P)x)(:(P i

1i1i

i  








  would 

hold. 

 In E7 and E8 the probabilities P(ξ<x)  are worth investigating instead of )x(P  , if 

the set  x)(:   has probability, i.e.   A x)(: . This requirement is 

included in the mathematically correct definition of random variables. 
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Definition The function RΩ:   is called a random variable, if for any Rx  

  A x)(: . 

Definition The function RΩ:   is called a discrete random variable, if the set )Im(  is 

finite or countably infinite. Those values in Im  for which 0)x(P  , are the called the 

possible values. 

Definition The distribution of the discrete random variable   is the set of the possible 

values together with the probabilities belonging to them. We denote it by 











n21

n21

p..,p,p

x..,x,x
~  or in the infinite case 










...,p,p

...,x,x
~

21

21
 with 

).x(Pp ii   

Remarks 

 The definition of a discrete random variable can be more general as well. In many 

cases   is called a discrete random variable, if there is countable subset C of Im , for 

which 1)x(P
Cx




. This means that the set Im  may be uncountable, but the values 

outside C have probability zero together, that is   0)x)(:(P
Cx




 . 

 If   A x)(: , then   














1n

n

1
x)(x: x)(:   

  























1n

x)(:\
n

1
x)(: A , as A  is   algebra. Consequently, 

 )x)(:(P   is well defined. 

 In examples E1.,…, E6. in the previous subsection, the distributions of random 

variables   are given, namely: 

In E1. 






 


5.0,5.0

5,10
~ . 

In E2. 















6

1

6

1

6

1

6

1

6

1

6

1
362516941

~ . 

In E3. 















36

1

36

2

36

3

36

4

36

5

36

6

36

5

36

4

36

3

36

2

36

1
12111098765432

. 

In E4. 









1.02.03.04.0

3210
~ . 
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In E5. 









04.012.02.028.036.0

43210
~  

In E6. 









08.016.024.032.02.0

43210
~ . 

 The examples in E7. and E8. are not discrete random variables even in the 

generalized sense of definition. 

 

d.2. Cumulative distribution function 

 

As the probabilities )x(P   are not always appropriate for characterizing random 

variables, the probability )x(P   is investigated. This probability depends on the value of 

x . If we consider this probability as the function of x , we get a real-real function. This 

function is called the cumulative distribution function. 

Definition Let   be a random variable. The cumulative distribution function of   is 

defined as RR:F   x)(:(P)x(P)x(F  ). 

Remarks 

 If the random variable   is fixed, then the index is omitted. 

 As F  is a real-real function, it can be represented in the usual Cartesian frame. 

 

Examples 

Determine the cumulative distribution functions of the random variables in E1, E2, E6, E7, 

and E8 in subsection d.1. 

E1. 






 


5.0,5.0

5,10
~ . 

It can be seen easily that if 5x  , then 0)(P)x(P  . 

If 10x5  , then   5.0)T(P)5(P)x(P  . 

If x10  , then 1)Ω(P)x(P  . 

Summarizing 
















x10if1

10x5if5.0

5xif0

)x(P)x(F . 

The graph of this function can be seen in Fig. d.1. 
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Figure d.1. The cumulative distribution function of the random variable 






 


5.0,5.0

5,10
~  

E2. 















6

1

6

1

6

1

6

1

6

1

6

1
362516941

~ . 
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



























































x36if1

36x25if
6

5

25x16if
6

4

16x9if
6

3

9x4if
6

2

4x1if
6

1

1xif0

)x(F  

 

E6. 









08.016.024.032.02.0

43210
~  













































x4if1

4x3if92.0

3x2if76.0

2x1if52.0

1x0if2.0

0xif0

)x(F  
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E7. If Rx0  ,  

then  
2

2

2

2

2 R

x

R

x

R

)x(
)x)Q,O(d:ΩQ(P)x(P)x(F 









 , where )x(  is the area 

of the circle with radius x. Of course, if 0x  , then  0)(P)x(P  , and if xR  , 

then 1)Ω(P)x(P  . Summarizing,  





















xRif1

Rx0if
R

x

0xif0

)x(F
2

2

. 

which can be seen in Fig.d.2. 

 

 

 

 

 

 

 

 

 

 

Figure d.2. The cumulative distribution function of the random variable presented in E7 

 

E8.  )uyx:)y,x(Q(P)u(P)u(F   if 1u0  . 

Recall that uyx   means, that yux   if xy  , and uxy   if yx  .  

Those points for which uyx   are situated between the straight lines given by the 

equations uxy   and uyx  .The area of the appropriate points can be computed by 

subtracting the area of the two triangles from the area of the square. The area of a triangle is 

2

)u1( 2
. Consequently, 2)u1(1)u(P   if 1u0  . It is obvious that if 0u  , then 

0)(P)uyx(P  , and if u1 , then 1)Ω(P)uyx(P  . 
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x
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Figure d.3. Appropriate points for the uyx   with 35.0u   

 

Summarizing, 
















u1if1

1u0if)u1(1

0uif0

)u(F 2 . 

The graph of the cumulative distribution function cumulative can be seen in Fig. d.4. 

 

 

 

 

 

 

 

 

 

 

Figure d.4. The cumulative distribution function of the random variable presented in E8 

 

The graphs of the cumulative distribution functions presented have common features and 

differences, as well. The most conspicuous difference is in continuity, namely the 

cumulative distribution functions of E1, E2, E6 have discontinuity in jumps, while the 
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cumulative distribution functions of E7. and E8. are continuous. The common features are 

that they are all increasing functions with values between 0 and 1. 

Let us first consider the property of cumulative distribution functions. First we note that 

1)x(F0   for any Rx , as )x(F  is a probability. 

 

Theorem Let   be a random variable and let RR:F  be its cumulative distribution 

function. Then F satisfies the followings: 

A) F is a monotone increasing function, that is, in case of yx  ).y(F)x(F   

B) 0)x(Flim
x




and 1)x(Flim
x




. 

C) F is continuous function from the left. 

 

Remark 

 The proof of the previous properties can be executed on the basis of the properties 

of probabilities but we omit it.  

 

The above properties characterize cumulative distribution functions, namely 

 

Theorem If the function RR:F   satisfies the properties A) B) and C), then there exist a 

sample space Ω , a  σ algebra A  and a probability measure P, furthermore a random 

variable   whose cumulative distribution function is the function F . 

 

Cumulative distribution functions are suitable for expressing the probability that the value of 

the random variable   is situated in a fixed interval. We list these probabilities with 

explanation in the following theorem: 

 

Theorem 

a) )a(F)a(P))a,((P   by the definition of cumulative distribution 

function. 

b) )a(F1)a(P)),a[(P  . 

  )a(F1)a)(:(P)a(P)a(P)),a[(P  . 

 

c) )a(P)a(F)a(P])a,((P   

       )a)(:(P)a)(:(P)a)(:a)(:(P)a(P   

)a(P)a(F  . 
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d) )a(P)a(F1)a(P)),a((P  . 

      )a(P)a(F1)a)(:(P)a)(:(P)a)(:(P)a(P  . 

 

e) )a(F)b(F)ba(P))b,a[(P   

)ba(P))b,a[(P  =     )a(F)b(Fa)(:(P)b)(:(P  . 

Note that    b)(:a)(:  , consequently the probability of the difference is the 

difference of probabilities. 

f) )b(P)a(F)b(F)ba(P])b,a[(P   

       )b)(:(P)b)(a:(P)b)(:b)(a:(P)ba(P 

)b(P)a(F)b(F  . We note that      b)(:b)(a: , consequently 

the probability of the union equals the sum of the probabilities. 

g) )a(P)a(F)b(F)ba(P))b,a((P   

     )a)(:(P)a(F)b(F)a)(:\b)(a:(P)ba(P  . 

h) )b(P)a(P)a(F)b(F)ba(P])b,a((P  - 

     )b)(:b)(a:(P)ba(P  

    )b(P)a(P)a(F)b(F)b)(:(P)b)(a:(P  . 

i) )a(F)aΔa(Flim)a(P
0aΔ




. 



































)a(F)
n

1
a(Flim)

n

1
a)(a:(Plim)

n

1
a)(a:(P)a(P

nn
1n



 )a(F)
n

1
a(Flim

n












. 

 

Remarks 

 )a(F)
n

1
a(Flim

n












 is the value of the jump of the cumulative distribution 

function at „a”. 

 If F is continuous at “a”, then )a(F)aΔa(Flim
0aΔ




, consequently 0)a(P  . 

 If F is continuous on R , then 0)x(P   for any Rx . Examples for this case 

were presented in E7 and E8. Further examples can be given with the help of 

geometric probability. 

 

Examples 
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E9. Let the lifetime of a machine be a random variable which has cumulative 

distribution function 





















x0if,
ee

ee

0xif,0

)x(F

xx

xx . 

Prove that )x(F  is a cumulative distribution function. 

To prove that )x(F  is a cumulative distribution function it is necessary and sufficient to 

check the properties A), B) and C). 

A) For checking the monotone increasing property, take the derivative. 

       
   

0
ee

4

ee

e)1(eeeee)e(e
)x('F

2xx2xx

xxxxxxxx














 if x0  , 

consequently the function F is monotone increasing for positive values. As at x=0 the 

function is continuous and it is constant for negative values, then it is increasing for all 

values of x. 

B) 00lim)x(Flim
xx




and 1)x(Flim
x




. .1
e1

e1
lim

ee

ee
lim

x2

x2

xxx

xx

x



















 

C) 0lim0
1

0

ee

ee
lim

0xxx

xx

0x 









, consequently F is continuous at 0x  , and it is 

continuous at any point x. Therefore F is continuous from the left. 

 

Compute the probability that the lifetime of the machine is less than 1 unit. 

762.0
ee

ee
)1(F)1(P

11

11











. 

Compute the probability that the lifetime of the machine is between 1 and 2 unit. 

202.0762.0964.0
ee

ee

ee

ee
)1(F)2(F)21(P

11

11

22

22




















 

Compute the probability that the lifetime is between 2 and 3 unit. 

031.0964.0995.0
ee

ee

ee

ee
)2(F)3(F)32(P

22

22

33

33




















 

Compute the probability that the lifetime is at least 3 unit. 

005.0
ee

ee
1)3(F1)3(P

33

33











. 

Compute the probability that the lifetime of the machine equals 3. 

 )x(P 0, as the cumulative distribution function of the lifetime is continuous at 3x  . 

At least how much time is the lifetime of the machine with probability 0.9? 

?x   9.0)x(P  . 1.0)x(F9.0)x(F1  . 
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1.0
ee

ee
xx

xx









. Substitute ye x  , we have to find the solution of the following equation: 

1.0

y

1
y

y

1
y







. 1.1y9.01.0
1y

1y 2

2

2





. Consequently, 222.1

9.0

1.1
y 2  , 

105.1222.1y  . As xey  , y0  holds. 105.1e x   implies 100.0105.1lnx  . 

Finally, at most how much time is the lifetime of the machine with probability 0.9? 

?x   9.0)x(P  . 9.0)x(F)x(P)x(P)x(P  . Substitute ye x  , we 

have to find the solution of the following equation: 9.0

y

1
y

y

1
y







. Following the above steps 

we get 
1.0

9.1
y  , and 472.1

1.0

9.1
lnx  . 

 

Definition: The random variables   and   are called identically distributed if 

)x(F)x(F    holds for any value Rx . 

 

Example 

E10.  T,HΩ1  , 1A Ω2 , P  is the classical probability, 1)H(  , 

1)T(  . 

 6,5,4,3,2,1Ω 2  , 2A Ω2 , P  is the classical probability, 1)i(   if i is odd, 1)i(   if 

i is even. Now,   and   are identically distributed random variables, as 















 

x1if1

1x1if5.0

1xif0

)x(F)x(F . 

We draw the attention to the fact that the distribution functions may be equal even if the 

mappings are different. 

 

Theorem If   and   are discrete and identically distributed then they have common 

possible values and )x(P)x(P ii  , ,...3,2,1i   

Proof If the random variables have common distribution functions, then the jumps of the 

cumulative distribution functions are at the same places. This concludes in common possible 

values. Furthermore, the values of the jumps are equal, as well. Recalling that the jump 
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equals the probability belonging to the possible value, this means that the random variables 

take the possible value with the same probability. Consequently, they have the same 

distribution. 

 

d.3. Continuous random variable 

 

Now we turn our attention to those random variables which have continuous cumulative 

distribution function. 

Definition The random variable   is called a continuous random variable if its cumulative 

distribution function is the integral function of a piecewise continuous function, that is there 

exists a RR:f   piecewise continuous (continuous except from finitely many points) for 

which 




x

dt)t(f)x(F . The function f  is called the probability density function of  . 

Remarks 

 The integral is a Riemann integral. 

 It is a well-known fact in analysis that the integral function is continuous at any 

point, and at the points where f is continuous F  is differentiable and )x(f)x('F  . 

 If f is changed at a point, its integral function does not change. Consequently the 

probability density function of a random variable is not unique. Consequently, we can 

define it at some points arbitrarily. It is typically the case at the endpoints of intervals when 

f has discontinuity. 

 The name “probability density function” can be explained by the followings: 

aΔ

)aΔaa(P 
 expresses the probability that   is situated in the neighbourhood of the 

point “a” relative to the length of the interval. It is a kind of density of being at the 

neighbourhood of “a”. As  

)a(F)aΔa(F)aΔaa(P  , 
aΔ

)a(F)aΔa(F

aΔ

)aΔaa(P 



. 

If 0aΔ0  , then )a(f)a('F
a

)a(F)aa(F
lim

a

)aaa(P
lim

0a0a












, 

supposing that the limit exists. 

 aΔ)a(faΔ)a('F)a(F)aΔa(F  , therefore where the probability density 

function has large values there the random variable takes its values with high probability, if 
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the length of the interval is fixed. If the probability density function is zero in the interval 

]b,a[ , then the random variable takes its values in ]b,a[  with probability zero. 

 If the cumulative distribution function is a jump function, then at the points of 

jumps the derivatives do not exist. On the open intervals, when the cumulative distribution 

function is constant, the derivative takes value zero, consequently there is no sense to take 

the derivative of the cumulative distribution function. 

 We note that there exist random variables which are neither discrete nor continuous. 

They can be a “mix” of discrete and continuous random variables, their cumulative 

distribution function is strictly monotone increasing continuous function in some intervals 

and has jumps at some points. These random variables are out of the frame of this booklet. 

 

Examples 

E1. In the example given in E7 in subsection d.1., the probability density function 

is the following: 












otherwise0

Rx0if
R

x2

)x('F)x(f 2 . 

We note that at 0x   the function F is differentiable, and the derivative equals 0.At Rx   

the function F is not differentiable. The graph of the probability density function for 

1R  can be seen in Fig. d.5. 

 

 

 

 

 

 

 

 

 

 

 

Figure d.5. The probability density function of the random variable given in E7. 

 

E2. The probability density function of E8. in subsection d.1. is 



 


otherwise0

1u0ifu22
)u('F)u(f . 
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The graph of )u(f  can be seen in Fig.d.6. 

 

 

 

 

 

 

 

 

 

Figure d.6. The probability density function of the random variable given in E8. 

 

E3. The probability density function of E9. in the previous subsection 

 









 

otherwise0

x0if,
ee

4

)x('F)x(f
2xx . 

 

This function can be seen in Fig.d.7. 

 

 

 

 

 

 

 

 

 

 

Figure d.7. The probability density function of the random variable given in E9. 

 

The above probability density function takes large values in the interval ]1,0[  and small 

values in ]3,2[  and indeed, 031.0)32(P762.0)10(P  . 

 

Now let us investigate the general properties of density functions. 

 

-1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

u

f(
u)

-1 -0.5 0 0.5 1 1.5 2 2.5 3

x

f(
x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



Probability theory and mathematical statistics–Random variable 

 

62 

Theorem If   is a continuous random variable, with probability density function f, then  

D) )x(f0   except from “some” points and  

E) 1dx)x(f




 . 

Proof  F is a monotone increasing function, consequently, its derivative is nonnegative, 

when the derivative exists. If we choose the values of f to be negative when the derivative 

does not exist, these points can belong to the set of exceptions. Usually we choose the 

values of f at these points to be zero. On the other hand, by the definition of the improper 

integral 01)x(Flim)x(Flimdx)x(f
xx







 . 

 

The properties D) and E) characterize the probability density functions, namely  

Theorem If the function RR:f   satisfies properties D) and E) then there exist a sample 

space Ω , a  σ algebra A   and a probability measure P, furthermore a continuous random 

variable   whose probability density function is the function f. 

 

Remarks 

 If the random variables   and   have the same probability density functions, then 

they have the same cumulative distribution functions as well, therefore they are identically 

distributed. 

 If the random variables   and   have the same cumulative distribution functions, 

then there derivatives also are equal at the points when the derivatives exist. At the points 

when the derivatives do not exist we can define the probability density functions arbitrarily, 

but only some points have this property. Consequently, if the continuous random variables 

  and   are identically distributed, then they essentially have the same probability density 

functions. 

 If we would like to express the probability that the continuous random variable   

takes its values in an interval, we can write the following: 

)x(F)x(P)x(P  ,  

)x(F1)x(P)x(P  , 

)a(F)b(F)ba(P)ba(P)ba(P)ba(P  . 

The reason for this is the fact that the cumulative distribution function of a continuous 

random variable is continuous at any point, consequently it takes any (given) value with 

probability 0. Hence we do not have to consider the endpoints of the interval. 
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Now, we can express the probability of taking values in an interval with the help of the 

probability density function. 

 

Theorem If the continuous random variable   has probability density function f , then 



b

a

dt)t(f)ba(P . 

Proof Applying the formula concerning the cumulative distribution function and the 

properties of integrals we get  

 



b

a

ab

dt)t(fdt)t(fdt)t(f)a(F)b(F)ba(P . 

Remarks 

 As the integral of a nonnegative function equals the area under the function, the 

above formula states that the probability of taking values in the interval ]b,a[  equals the 

area under the probability density function in ]b,a[ . For example, in the case of the random 

variable given by the probability density function 


 


otherwise0

x0ifxsin5.0
)x(f , the 

probability of taking values between 
6


 and 

6

5
 can be seen in Fig.d.8. It is the area 

between the two red lines. 

 

 

 

 

 

 

 

 

 

 

Figure d.8. Probability expressed by the area between the two read lines 
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E4. Let the error of a measurement be a random variable   with probability 

density function 











 x0ife5.0

0xife5.0
)x(f

x

x

. 

The graph of this function can be seen in Fig.d.9. 

 

 

 

 

 

 

 

 

 

 

 

Figure d.9. The probability density function given by f 

 

Prove that f  is probability density function. 

To do this, check properties D) and E). As exponential functions take only positive values, 

the inequality )x(f0   holds. Moreover, 

     
















x

x
0

x0x

0

x

0

x elim15.0e5.0e5.0dxe5.0dxe5.0dx)x(f  

  15.05.0)1(elim5.0 x

x
 


. 

Determine the cumulative distribution function of  . 















x

x

x

x0ife5.01

0xife5.0
dt)t(f)x(F . 

The detailed computations are the following: 

If 0x  , then   xxx

x

x

x
xtt

x

e5.00e5.0e5.0lime5.0e5.0dte5.0dt)t(f 








 . 

If x0  , then  

    ))5.0(e5.0(5.0)e(5.0e5.0dte5.0dte5.0dt)t(f x

x

0

0

x0t

x

0

tt

x

 










 

xe5.01  . 
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Compute the probability that the error of the measurement is less than -2. 

068.0e5.0)2(F)2(P 2   . 

Compute the probability that the error of the measurement is less than 1. 

816.0e5.01)1(F)1(P 1   . 

Compute the probability that the error of the measurement is between -1 and 3. 

791.0184.0975.0e5.0e5.01)1(F)3(F)31(P 13   . 

Compute the probability that the error of the measurement is more than 1.5. 

  112.0e5.011)5.1(F1)5.1(P 5.1   . 

Now we ask the inverse question: at most how much is the error with probability 0.9? 

We want to find the value x for which 9.0)x(P  .  

Taking into account that )x(F)x(P)x(P  , we seek the value x  for which 

9.0)x(F  . Namely, we would like to determine the cross point of the function F and the 

line 9.0y  , as shown in Fig.d.10. 

 

 

 

 

 

 

 

 

 

 

Figure d.10.The cumulative distribution function of   and the level 0.9 

 

,5.0)0(F   consequently x  is positive. For positive values of x xe5.01)x(F  . 

Consequently, 9.0e5.01 x  
. This implies 1.0e5.0 x  

, 2.0e x 
, 61.12.0lnx  . 

Give an interval symmetric to 0 in which the value of the error is situated with probability 

0.9. 

Now we have to determine the value x for which 9.0)xx(P  . This means that 

.9.0)x(F)x(F   Substituting the formula concerning )x(F  we get 

9.0e1e5.0e5.01 xxx  
. This equality implies 1.0e x 

, 3.21.0lnx  . 

In Fig.d.11, the area between the two red lines equals 0.9. 
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d.11. The probability expressed by the area between the two read lines 

 

At least how much is the error of the measurement with probability 0.99? 

Now we would like to determine the value x for which 99.0)x(P  . 

)x(F1)x(P  , therefore 01.0)x(F  . As 5.0)0(F  , x  is negative. Now we can write 

the equality 01.0e5.0 x  , 91.3
5.0

01.0
lnx  . As Fig.d.12. shows, the area under the 

density function from the red line to infinity equals 0.99. 

 

 

 

 

 

 

 

 

 

 

d.12.The probability expressed by the area above the red line 
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d.4. Independent random variables 

 

In this subsection we define independence of random variables. 

Definition The random variables   and   are called independent, if for any values of 

Rx  and Ry  the events  x  and  y  are independent, that is 

)y(P)x(P)yx(P  . For more than two variables, the random variables 

,i ,...,2,1i  are called independent, if for any value of j, any indices 

 ,...3,2,1i,...,i,i j21   and any value of 
kix , j,..,2,1k    

)x(P...)x(P)x(P)x...x(P
jiji2i2ili1ijijili1i

 . 

The independence of random variables is defined by the independence of events connected 

to them. 

The following theorems can be stated: 

Theorem If   and   are discrete random variables, the distributions of them are 











...pp

...xx
~

2l

21
 and 










...qq

...yy
~

2l

21
, then   and   are independent if and 

only if for any ,.2,1i   and ..2,1j  the equality 

jijiji qp)y(P)x(P)yx(P   holds. 

Theorem Let   and   be continuous random variables with probability density functions 

)x(f  and )y(g , respectively.   and   are independent if and only if for any Rx  and 

Ry  where the )yx(P   is differentiable, there the following equality holds: 

)y(g)x(f
yx

)y,x(P2





. 

Examples 

E1. Flip a coin twice. Let   be the number of heads, and let   be the difference 

between the number of head and tails. Now,         T,T,H,T,T,H,H,HΩ  .    ,2H,H   

   0T,T  ,    1T,H  ,    1H,T  . Therefore, 









25.05.025.0

210
~ . Moreover, 

     T,T2H,H  , and      H,T0T,H  .  











5.05.0

20
~ . 125.0)0(P)0(P0)(P)00(P  . consequently   

and   are not independent. 
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E2. Choose one point Q from the circle with radius 1 by geometric probability. 

Put the circle into the Cartesian frame and let the centre be the point O(0,0). Let   be the 

distance of the point Q from the centre O(0,0) of the circle, and   be the angle of the vector 



OQ . Now, 10  ,  20 . 2
2

x
x

)x(P 



 , if 1x0  . 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

 

Figure d.13. Appropriate points for  x  and for  y  
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, if 1x0  ,  2y0 .  

 

 

 

 

 

 

 

 

 

 

Figure d.14. Appropriate points for    y  x   

These together imply that )y(P)x(P)yx(P  , if 1x0  ,  2y0 . 

For the values outside ]2,0[x]1,0[   one can check the equality easily, consequently   and   

are independent. 
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e. Numerical characteristics of random variables 

 

The aim of this chapter 

 

In the previous chapter random variables were characterized by functions, 

such as the cumulative distribution function or the probability density 

function. This chapter aims to get the reader acquainted with the 

numerical characteristics of random variables. These numbers contain less 

information than cumulative distribution functions do but they are easier 

to be interpreted. We introduce the expectation, dispersion, mode and 

median. Beside the definitions, main properties are also presented. 

 

Preliminary knowledge 

 

Random variables, computing series and integrals. Improper integral. 

 

Content 

 

e.1. Expectation. 

 

e.2. Dispersion and variance. 

 

e.3. Mode. 

 

e.4. Median. 
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e.1. Expectation 

 

The cumulative distribution function of a random variable contains all the information about 

the random variable but it is not easy to know and handle it. This information can be 

condensed more or less into some numbers. Although we lose information during this 

concentration, these numbers carry important information about the random variable, 

consequently they are worth dealing with. 

First of all we present a motivational example. Let us imagine the following gamble: we 

throw a die once and we gain the square of the result (dots on the surface). How much 

money is worth paying for a gamble, if after many rounds we would like get more money 

than we have paid. About some values one can easily decide: for example 1 is worth paying 

but 40 is not. Other values, for example 13, are not obvious. Let us follow a heuristic train 

of thought. Let the price of a round be denoted by x , and let the number of rounds be n . 

Now, the frequency of “one”, “two”, “three”, “four”, “five”, “six” are 1k , 2k ,…, 6k , 

respectively. The money we get together equals  

6
2

5
2

4
2

3
2

2
2

1
2 k6k5k4k3k2k1  . 

The money we pay for gambling is xn  . We get more money than we pay if the following 

inequality holds: 6
2

5
2

4
2

3
2

2
2

1
2 k6k5k4k3k2k1xn  . Dividing by n, 

we get 
n

k
6

n

k
5

n

k
4

n

k
3

n

k
2

n

k
1x 625242322212  . 

n

k i  i=1,2,…,6 

expresses the relative frequency of the result "i" . If they were about the probabilities of the 

result "i" , then 
6

1

n

k i   and the right hand side of the previous inequality equals 

6

1
15

6

91

6

1
6

6

1
5

6

1
4

6

1
3

6

1
2

6

1
1 222222  . Therefore, if 

6

1
15x   then the 

money we get after many rounds is more than what we paid, in the opposite case it is less 

than we what paid. The heuristic is 
6

1

n

k i  , which has not been proved yet in this booklet, 

but it will be done in the chapter h.  

How can the value 
6

91
 be interpreted? If we define the random variable   as the gain 

during one round, then   is a discrete random variable with the following distribution: 
















6

1

6

1

6

1

6

1

6

1

6

1
362516941

~ . The right hand side of the inequality for x is the weighted 
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sum of the possible values of   and the weights are the probabilities belonging to the 

possible values. This motivates the following definition: 

 

Definition Let   be a discrete random variable with finitely many possible values. Let the 

distribution of ξ be 









n21

n21

p..pp

x..xx
~ . Then the expectation of   is defined as 





n

1i

ii px)(E .   

Let   be a discrete random variable with infinitely many possible values. Let 











...pp

...xx
~

21

21
. Then the expectation of   is defined as 






1i

ii px)(E , if the 

series is absolutely  convergent, that is 


1i

ii px . 

Let   be a continuous random variable with probability density function f . Then the 

expectation of   is defined as 




 dx)x(fx)(E  supposing that the improper integral is 

absolutely convergent, that is 




dx)x(fx . 

 

Remarks 

 If the discrete random variable has only finitely many values, then its expectation 

exists. 

 If 


1i

ii px  or 




dx)x(fx , then, by definition, the expectation does not 

exist. 

 


1i

ii px  implies 


1i

ii px . Similarly, 




dx)x(fx  implies 






dx)x(fx .  

 The expectation of a random variable is finite, if it exists. 

 





1i

ii px  can be convergent even if it is not absolutely convergent. But in this case 

if the series is rearranged, the sum can change. Therefore the value of the sum may depend 
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on the order of the members, which is undesirable. This can not happen, if the series is 

absolutely convergent. 

 The expectation may not be an element of the set of possible values. For example, if 

the random variable takes values 1  and 1  with probability 0.5 and 0.5, then expectation is 

05.015.01  . 

 

Examples 

E1. We gamble. We roll a die twice and we gain the difference of the results. 

Compute the expectation of the gain. 

Let   be the difference of the results. The distribution of   can be given as follows: 
















36

2

36

4

36

6

36

8

36

10

36

6
543210

~ . 

Now 94.1
36

2
5

36

4
4

36

6
3

36

8
2

36

10
1

36

6
0px)(E

6

1i

ii  


. 

 

E2. We gamble. We roll a die n times and we gain the maximum of the results. 

Compute the expectation of the gain. 

Let   be the maximum of the results. The distribution of   can be given as follows: 

Possible values are 1,2,3,4,5,6. and 

n

6

1
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
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E3. Flip a coin repeatedly. The gain is 
n10  if a head appears first at the nth 

game. Compute the expectation of the gain. 
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Let   be the gain. Now the possible values of   are 10, 100, 1000,…. and 

n

n

2

1
)10(P 








 . 








 











 1i

i

1i

i

i

1i

ii 5
2

1
10px)(E , consequently the  

expectation does not exist. 

E4. Flip a coin repeatedly. The gain is n10  if a head appears first at the nth 

game supposing mn   and m10 , if the we do not get a head until the mth game.(The bank 

is able to pay at most a given sum, which is a reasonable assumption.) Compute the 

expectation of the gain.  

Let   be the gain. Now the possible values of   are 10, 100, 1000,…., m10 . 

n

n

2

1
)10(P 








 , if mn   and 
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



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10px)(E  

25.1525.11510
4

15
5 1m1m

1m




 


, consequently the expectation exists. 

E5. We compare the expectation of a random variable and the average of the 

results of many experiences. We make computer simulations, we generate random numbers 

in the interval ]1,0[  by geometric probability. Let the random number be denoted by  . Let 

  16  . Now the possible values of   are 1,2,3,4,5,6,7 and 

 
6

1
)

6

1
0(P)06(P)1(P  ,  

6

1
)

6

2

6

1
(P)16(P)2(P  , …, 

 
6

1
)1

6

5
(P)56(P)6(P  , finally,   0)1(P)66(P)7(P  . 

Therefore, the distribution of   equals the distribution of the random variable which is 

equal to the number of dots on the surface of a fair die. If we take the square of this random 

variable, we get our motivating example presented at the beginning of this subsection. 

Now repeating the process many times, and taking the average of the numbers 1,4,…,36 , 

we get the following results in Table e.1. Recall that the expectation of the gain equals 

15.1667. The larger the number of simulations, the smaller the difference between the 

average and the expectation. 

 

Numbers of 

simulations 

100 1000 10000 100000 100000 10000000 

Average  13.94 15.130 15.0723 15.1779 15.1702 15.1646 
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Difference 1.2267 0.0367 0.0944 0.0112 0.0035 0.0021 

Table e.1. Averages and their differences from the expectation in case of simulation 

numbers 710,...,100n   

E6. Recall the example presented in E7. in subsection d.1. Compute the 

expectation of the distance between the chosen point and the centre of the circle. 

Let   be the distance. The probability density function of  , as presented in subsection d.3. 

is the following: 











otherwise0

Rx0
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x2

)x(f 2 . 
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



. 

E7. Recall the example presented in E8. in subsection d.1. Compute the 

expectation of the distance between the chosen points.  

The probability density function of   as presented in subsection d.3. is the following: 

 



 


otherwise0

10xifx12
)x(f . 
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




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



. 

 

E8. Compute the approximate value of the above expectation. Generate two 

random numbers in ]1,0[  by geometric probability, compute their difference and take the 

average of all differences. Repeating this process many times, we get the following results: 

 

Numbers of 

simulations 

100 1000 10000 100000 100000 10000000 

Average  0.3507 0.3325 0.3323 0.3328 0.3331 0.3333 

Difference 0.0174 0.0008 0.0010 0.0005 0.0002 0.00007 

Table e.2. Differences of the approximate and the exact expectation in case of different 

numbers of simulations 

 

E9. Choose two numbers in the interval  1,0  independently by geometric 

probability. Let   be the sum of them. Now one can prove that the probability density 

function is  
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x
dxx2xdxxxdx)x(fx)(E

2

1

3
2

1

0

1

0

31

0


















  





. 

It is also possible to solve this problem by simulation. Generating two random numbers, 

summing them up and averaging the sums one can see the following:  

Numbers of 

simulations 

100 1000 10000 100000 100000 10000000 

Average  0.9761 1.0026 0.99995 1.0001 0.9999 1 

Difference 0.0239 0.0026 0.00005 0.0001 0.0001 0.00001 

 

Table e.3. Differences of the approximate and the exact expectation in case of different 

numbers of simulations 

 

Properties of the expectation 

 

Now we list some important properties of the expectation. When it is easy to do, we give 

some explanation, as well. Let   and   be random variables, and suppose that )(E   and 

)(E   exist. Let Rc,b,a  . 

1. If   and   are identically distributed, then )(E)(E  .  

If   and   are discrete, then they have common possible values and )x(P)x(P ii  , 

consequently the weighted sums are equal, as well. If   and   are continuous random 

variables, then they have common probability density function, consequently the improper 

integrals are equal. 

2. If  c  or 1)c(P  , then 11c)(E  . 

3. If 0 , then )(E0   holds.  

If   is discrete, then all the possible values of   are nonnegative, therefore so is the 

weighted sum, as well. If   is a continuous random variable, then 0  implies that its 

probability density function is zero for negative x values. Consequently, 








0

dx)x(fxdx)x(fx)(E , which must be nonnegative. 
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4. )(E)(E)(E  .  

The additive property is difficult to prove using elementary analysis, but it follows from 

the general properties of integral. 

5. b)(Ea)ba(E  . 

 If   is discrete, then the possible values of ba   are „a” times the possible values of 

  plus b, therefore so is their weighted sum. If   is continuous, then 

)
a

bx
(F)

a

bx
(P)xba(P)x(F ba





  supposing a0  . Taking the derivative 

)
a

bx
(f

a

1
)x(f ba


 , 

 


















 


 dy)y(f)bay(dx)
a

bx
(f

a

1
xdx)x(fxdx)x(fx)ba(E baba  

b)(aEdy)y(fbdy)y(fya  








. A similar argument can be given for negative 

value of “a” as well. If 0a   holds, then .b)(aEb)ba(E   

6. If ba  , then b)(Ea  .  

As a , a0   holds, therefore a)(E)a(E0  , which implies )(Ea  . A 

similar argument can be given for the upper bound. 

7. If  , that is )()(   for any Ω , then )(E)(E  .  

Consider that   implies 0 , consequently 

)(E)(E)(E)(E)(E0  . We point out that it is not enough that the 

possible values of   are less than the possible values of  , respectively. For example, 











9.01.0

41
~ , 










2.08.0

52
~ . Now 7.39.041.01)(E  , 

6.32.058.02)(E  , that is )(E)(E  . 

8. Let i  i=1,2,…, n be independent identically distributed random variables with 

expectation m)(E i  . Then mn)(E
n

1i

i 


.  

This is the straightforward consequence of the above properties, namely 





n

1i

i

n

1i

i mn)(E)(E . 
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9. Let i  i=1,2,…,n be independent identically distributed random variables with 

expectation m)(E i  . Then m
n

E

n

1i

i
























 .  

It follows from 




 


n

1i

i

n

1i

i

n

1

n
. 

10. If   and   are independent random variables and )(E   exists, then 

)(E)(E)(E  . The proof of this statement is outside this booklet. 

11. If   is a discrete random variable with distribution 









...pp

...xx
~

21

21
, 

RI:g   is a function for which   I,....x,x 21  , furthermore 





1i

ii p)x(g , then 







1i

ii p)x(g))(g(E . 

 Now RΩ:)(g   is a random variable and its possible values are )x(g i , and 

i

)x(g)x(g:j

ji qp))x(g))(g(P

ij

 


. This implies the equality 







1i

ii p)x(g))(g(E .Especially, if 2x)x(g  , then 





1i

i

2

i
2 px)(E . 

12. If   is a continuous random variable with probability density function f, RI:g   

for which I)Im(   and 




dx)x(f)x(g , then 




 dx)x(f)x(g )(g(E . Especially, if 

2x)x(g  , then 




 dx)x(fx)(E))(g(E 22 . 

Examples 

E9. The latest property provides a possibility for computing integrals by 

computer simulation. Since the expectation is an integral, and the expectation is around the 

average of many values of the random variables, we can compute the average and it can be 

used for the approximation of the integral. For example, if we want compute the integral 

,dxxsin

1

0

  then it can be interpreted as an expectation. Namely, let   be a random variable 
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with probability density function 


 


.otherwise0

1x0if1
)x(f , and 

 





1

0

.xdxsindx)x(fxsin)(sinE  If   is a random number chosen by geometric 

probability, then 
















x1if1

1x0ifx

0xif0

)x(P)x(F ,  and 


 


otherwise0

1x0if1
)x('F)x(f . 

Consequently, generating random numbers, substituting them into the function sinx, and 

taking their average we get an approximate value for the integral. This is a simple algorithm. 

We point out that the statement that expectation is about the average of many experiments 

has not been proved yet in this booklet. It will be done using the law of large numbers in 

chapter h. The following Table e.4. presents some results: 

 

Numbers of 

simulations 

100 1000 10000 100000 100000 10000000 

Averages  0.4643 0.4548 0.4588 0.4586 0.4596 0.4597 

Difference 0.0046 0.0049 0.001 0.0011 0.0011 0.00002 

Table e.4. Differences of the approximate and the exact value of the integral in case of 

different numbers of simulations 

 

E10. The additive property of the expectation helps us to simplify computations. 

For example, consider the following example. Roll a die twice. Let    be the sum 

of the results. Now, one can check that 







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1i
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36

1
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36
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11

36

3
10  . Another method is the following: 21   where 1  is the 

result of the first throw and 2  is the result of the second throw. Now  1  and 2  are 

identically distributed random variables and 














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1
1px)(E 2

6

1i

ii1  


, 



Probability theory and math. statistics–Numerical char.  of random variables 

 

79  

consequently, 75.32)(E 2121  . 

e.2. Dispersion and variance 

The expectation is a kind of average. It is easy to construct two different random variables 

which have the same expectation. For example, 






 


5.05.0

11
~1  and 








 


125.025.0225.03.01.0

21012
~2 . They both have the same expectation, namely zero. 

The measure of the average distance from the expectation can be an important information, 

as well. As 0))(E(E)(E))(E(E  , therefore it is not appropriate to characterize 

the distance from the average. The reason is that the negative and positive differences 

balance out. This phenomenon disappears if we take ))(E(E  .  But if we use the square 

instead of absolute value, the signs disappear again and, on the top of all the small 

differences become smaller, large differences become larger. Squaring punishes large 

differences but does not punish small ones. Consequently, it is worth investigating 

  2
)(EE   instead of ))(E(E  , if it exists. 

Definition Let   be a random variable with expectation )(E  . The variance of   is defined 

as   )(D))(E(E 222  , if it exists. 

Definition Let   be a random variable with expectation )(E  . The dispersion of   is 

defined as )(D)(D 2  , if )(D2   exists.  

Remarks 

 As  2
)(E0  , so is its expectation. Therefore its square root is well-defined. 

 By definition, dispersion of a random variable is a nonnegative number. It is the 

square root of the averaged square differences. 

 It is easy to construct such a random variable which has expectation but does not 

have dispersion. We will do it in this subsection, after proving the rule for its 

calculation. 

 Another name of the dispersion is the standard deviation. 

 

Theorem If   is a random variable with expectation )(E  , and )(E 2  exists, then 

 222 )(E)(E)(D  . 

Proof Applying the properties of expectation  
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      ))(E(E)(E)(E2)(E))(E)(E2(E))(E(E)(D
222222   

     22222 )(E)(E)(E)(E2)(E  . 

 

Remarks 

 

2
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2 pxpx)(D 
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
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







 if  ξ is discrete, and 

2

22 dx)x(xfdx)x(fx)(D













 









 if  ξ  is a continuous random variable. 

 If   and   are identically distributed random variables, then )(D)(D   

 In case of a discrete random variable with infinitely many possible values, 







1i

i

2

i
2 px)(E . If the series is not (absolutely) convergent, then 



1i

i

2

i px .  

 In case of a continuous random variable with probability density function f, 






 dx)x(fx)(E 22 . If the improper integral is not (absolutely) convergent, then 






dx)x(fx 2 .  

 If )(E 2  does not exist, neither does )(D2  . 


1i

i

2

i px  implies 




1i

i
2

i p)cx(  and 




dx)x(fx 2  implies 




dx)x(f)cx( 2  for any value of c. 

 It can be proved that if )(E 2  exists, then so does )(E  . 

 Let   be a continuous random variable with probability density function 














x1if

x

2

1xif0

)x(f

3

. Then the expectation of the random variable is  

  2102)1(
x

1
lim2

x

1
2dx

x

1
2dx

x

2
xdx)x(fx)(E

x
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




































. 

 . Consequently, )(E   exists, but )(D   does not. 

Example 
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E1. Roll a die twice. Let   be the maximum of the results. Compute the 

dispersion of  . First we have to determine the distribution of  . It is easy to see that 





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
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Applying the above theorem, 

  405.1973.1472.4972.21)(E)(E)(D 222   

E2. Choose two numbers from the interval [0,1] independently by geometrical 

probability. Let   be the difference of the two numbers. Compute the dispersion of  . 

Recall from E8. in subsection d3 that the probability density function of   is 



 


otherwise0

1x0ifx22
)x(f .  

We need )(E   and )(E 2 . 
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Now we list the most important properties of the variance and the dispersion. As variance 

and dispersion are in close connection, we deal with their properties together. 

 

Properties of the variance and dispersion 

Let   and   be random variables with dispersion )(D   and )(D  , respectively, and let a, 

b, c be constant values. 

1. If c , then 0)(D)(D2  . It is obvious, as c)(E  ,   0)(E
2
 , and 

0)0(E  . 
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2. If 0)(D  , then 1)c(P  . Consequently, dispersion being zero characterizes 

the constant random variable.  

3.   222 Da)ba(D  and )(Da)ba(D  .  

Consider, that b)(aE)ba(E  ,  

     )(Da))(E(Ea)))(E(a(E)b)(aEba(E 2222222
 .

)(Da)(Da)ba(D 22  . 

4. Let   be a random variable with dispersion )(D  . Now the value of 

  )c(E)c(g
2

  is minimal if )(Ec  . Consider that 

  )c(E)c(g
2

  22 )(E)(cE2c   is a quadratic polynomial of c. Moreover, the 

coefficient of 2c  is positive, therefore the function has a minimum value. If we take its 

derivative, )(E2c2)c('g  . It is zero if and only if )(Ec   which implies our 

statement. 

5. If   is a random variable for which ba   holds, then its dispersion exists.  If it 

is denoted by )(D  , then 
2

ab
)(D


 .  

If   is discrete, then      
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2 b,amaxpb,amaxpx)(E . If   is 

continuous, then      








222222 b,amaxdx)x(fb,amaxdx)x(fx)(E , which 

proves the existence of dispersion. Applying the properties of expectation we can write for 

any value of Rx , 

)x(P)xb()x(P)xa())x((E)))(E((E)(D 22222  = 

)x(P)x2ab)(ab()xa()x(P)xb()x(P)xa()xa( 2222  . 

Substituting 
2

ba
x


  , 0x2ab  , 

2

2

2

ab
)xa( 







 
 . We get that 

4

)ab(
)(D

2
2 

 , therefore 
2

ab
)(D


 . We note that in case of  










5.05.0

ba
~  , 

.
2

ab
)(D


 Consequently, the inequality can not be sharpened.  

6. If   and   are independent, then )(D)(D)(D 222   and 

)(D)(D)(D 22  . 
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    )(E)(E(E2)))(E((E)))(E((E))(E)(E(E)(D 2222 

Recall that if   and   are independent then )(E)(E)(E  , therefore 

  0))(E((E))(E((E)(E()(E(E  . 

We would like to emphasize that the dispersions can not be summed, only the variances. 

Namely, it is important to remember, that )(D)(D)(D  . This fact has very 

important consequences when taking the average of random variables. 

7. Let i  i=1, 2, …, n be independent identically distributed random variables with 

dispersion  )(D i . Then 2
n

1i

i
2 n)(D 



 and 


n)(D
n

1i

i . This is the 

straightforward consequence of the above properties, namely 





n

1i

2
i

2
n

1i

i
2 n)(D)(D . 

8. Let i  i=1,2,,…,n be independent identically distributed random variables with 

dispersion  )(D i . Then 
n

)
n

(D
2

n

1i

i

2 



  and 

n
)

n
(D

n

1i

i





 . This is again the 

straightforward consequence of properties 3 and 7. 

 

e.3. Mode 

Expectation is the weighted average of the possible values and it may not be the element of 

the set of possible values. A very simple example is the random variable taking values 0 and 

1 with probabilities 0.5. In that case the distribution of   is given by 









5.05.0

10
~ , 

5.05.015.00)(E  , and 0.5 is not among the possible values of  . Mode is in the 

set of the possible values and the most probable value among them. 

Definition Let   be a discrete random variable with distribution 











..p..pp

..x..xx
~

n2l

n21
. The mode of   is kx , if ki pp  , ,...3,2,1i   .  

 

Definition Let   be a continuous random variable with probability density function )x(f . 

The mode of   is x if f has its local maximum at x, and the maximum value is not zero. 

 

Remark 
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 The mode of a discrete random variable exists. If it has finitely many values then the 

maximum of a finite set exists. If it has infinitely many values, then only 0 may have 

infinitely many probabilities in its neighbourhood. The remaining part of the probabilities is 

a finite set, it must have a maximum value, and the index belonging to it defines the mode. 

 The mode of a discrete random variable may not be unique. For example, consider 











5.05.0

10
~ . Now both possible values have equal likelihood. 

 The mode of a continuous random variable is a more complicated case, as the 

probability density functions may be changed at any point and the distribution of the random 

variable does not change. Consequently we usually only deal with the mode of such 

continuous random variables which have a continuous probability function on finitely many 

subintervals. We consider the maximum of these functions in the inner parts of the 

subintervals, and they are the modes. Consequently, mode of a continuous random variable 

may not exist, see for example the following probability density function: 












0xif0

x0e
)x(f

x

. It has its maximum value at zero, at the endpoint of the interval ),0[   

and no other maximum value exists. 

 

 

 

 

 

 

 

 

 

 

Figure e.1. Probability density function without a local maximum 

 

 The mode of a continuous random variable may be unique, see for example  


















0xif0

x0if
7

exe

)x(f

x3x

. 

The graph of this probability density function can be seen in Fig.e.2. 
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Figure e.2. Probability density function with a unique local maximum 

 

The maximum can be determined by taking the derivative of )x(f  and finding where the 

derivative equals zero. Namely, 












0xif0

x0if)exex3e()7/1(
)x('f

x3x2x

. 

0)x('f   implies 0exex3e x3x2x  
 which means that 0xx31 32  .It is 

satisfied at x=2.8794 and x=0.6527. At x=0.6527 the function takes its minimum, at x=2. 

8794 the function takes its maximum. Consequently, the mode is 2.8794. 

 The mode of a continuous random variable may not be unique. If the probability 

density function of the random variable is )ee(
22

1
)x(f 2

)5x(

2

x 22 




 , it has two 

maximum values, one of them is about zero, the other one is about 5. Consequently, two 

modes exist. 

 

 

 

 

 

 

 

 

 

 

Figure e.3. Probability density function with two local maximums 
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e.4. Median 

The mode is the most likely value of the random variable, the median is the middle one. 

Namely, the random variable takes values with equal chance under and below the median. 

More precisely, the probability of taking values at most the median and at least the median, 

both are at least 0.5. 

Definition   is a random variable. The median of   is the value y, if )y(P5.0   and 

)y(P5.0  . 

Remark 

 If   is a continuous random variable with cumulative distribution function )x(F , 

then the median of   is the value y for which 5.0)y(F   holds. The inequality 

)y(F1)y(P5.0   implies 5.0)y(F  . Taking into account that   is a continuous 

random variable, 5.0)y(P)y(P  , therefore )y(F)y(P5.0  . Consequently, 

5.0)y(F  . As the function F  is continuous, and it tends to 0 if x  tends to   and it tends 

to 1 if x  tends to infinity, the median of a continuous random variable exists, but may not 

be unique. 

 Let   be a discrete random variable. The median of   is the value y for which 

5.0)y(F   and )y(F.5.0   )y(F1)y(P5.0   implies 5.0)y(F  , and 

)y(F)a(Flim)y(P5.0
ya




 is the second inequality. 

Examples 

E1. Consider a random variable with cumulative distribution function 

















x1if1

1x0if)x1(1

0xif0

)x(F 2 . 

Determine the median of the random variable. 

We have to find the cross point of )x(F  and 5.0y  . As the function takes the value 0.5 

when its argument is in ]1,0[ , we have to solve the equation 2)x1(1  =0.5. It implies the 

equality ,5.0xx2 2   therefore ,293.0x1   and 707.1x 2  . This last number is not in the 

interval ]1,0[ , consequently the median is 293.0 . As a checking, 

5001.0)293.01(1)293.0(F 2  . 
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Figure e.5. The cross point of the cumulative distribution function and the line 

5.0y   

E2. Let   be a discrete random variable with distribution 















3

1

3

1

3

1
510

~ . 

Determine the median of  . 

























x5ha1

5x1ha
3

2

1x0ha
3

1

0xha0

)x(F . 

Now 5.0)x(F  . 
3

2
)1(P  , 

3

2
)1(P  , both of them are greater than 0.5. No other 

value of x  satisfies this property. Consequently the unique median is 1. 

 

 

 

 

 

 

 

 

 

Figure e.6. The cumulative distribution function of the random variable   and  

the line 5.0y   
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Median equals the argument when the cumulative distribution function jumps the level 0.5. 

E3. Let   be a discrete random variable with distribution 















2

1

2

1
52

~ . 

Determine the median of  .  

Now 





















x5if1

5x2if
2

1

2xif0

)x(F , and )x(F  takes value 0.5 in the interval ]5,2(̇ . 5.0)2(P  , 

5.0)2(P  , consequently 2x   is a median. Moreover, 5.0)x(P)x(P   holds 

for any value of )5,2[ . Therefore, they are all medians. Usually the middle of the interval 

(actually 3.5) is used for the value of the median. 

 

 

 

 

 

 

 

 

 

 

 

Figure e.7. The cumulative distribution function of the random variable   and  

the line 5.0y   
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f. Frequently used discrete distributions 

 

The aim of this chapter 

 

In the previous chapters we have got acquainted with the concept of 

random variables. Now we investigate some frequently used types. We 

compute their numerical characteristics, and study their main properties 

as well. We highlight their relationships. 

 

Preliminary knowledge 

 

Random variables and their numerical characteristics. Computing 

numerical series and integrals. Sampling. 

 

Content 

 

f.1. Characteristically distributed random variables. 

 

f.2. Uniformly distributed discrete random variables. 

 
f.3. Binomially distributed random variables. 

 

f.4. Hypergeometrically distributed random variables. 

 

f.5. Poisson distributed random variables. 

 

f.6. Geometrically distributed random variables. 
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f.1. Characteristically distributed random variables 

First we deal with a very simple random variable. It is usually used as a tool in solving 

problems. Let Ω , A , and P be given. 

 

Definition The random variable   is called a characteristically distributed random 

variable with parameter 1p0  , if it takes only two values, namely 0 and 1, furthermore 

p)1(P   and p1)0(P  . Briefly written, 











pp1

10
~ . 

 

Example  

E1. Let AA , p)A(P  . Let us define RΩ:   as follows: 










Aif0

Aif1
)( . Now   is a characteristically distributed random variable with 

parameter p . 

In terms of event,   equals 1 if A occurs and   equals zero if it does not. Therefore   

characterizes the occurrence of event A. It is frequently called an indicator random variable 

of  the event A, and denoted by A1 . 

 

Numerical characteristics of characteristically distributed random variables: 

 

Expectation 

p)(E  , which is a straightforward consequence of p)p1(0p1px)(E
2

1i

ii  


. 

Dispersion 

)p1(p)(D  . As a proof, recall that    222 )(EE)(D  . 

p)p1(0p1px)(E 22
i

2

1i

2
i

2  


, consequently, )p1(ppp)(D 22  . This 

implies the formula )p1(p)(D  . 

 

Mode 

There are two possible values, namely 0 and 1. The most likely of them is 1, if p50 . , 0, if 

50p .  and both of them, if 50p . . 

 

Median 

If 50p . , then p1)0(P5.0   and 1)0(P5.0  . Consequently, the median 

equals 0. 

If p5.0  , then 1)1(P5.0  and p)1(P5.0  . Consequently, the median equals 

1. 

If 50p . , then 5.0)x(P   and 5.0)x(P   for any value of )1,0( . Moreover, 

5.0)0(P  , 1)0(P  , and 1)1(P   and 5.0)1(P  . This means that any point 

of ]1,0[  is a median.  
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Theorem If A and B are independent events, then A1  and B1  are independent random 

variables. 

Proof )1(P)1(P)B(P)A(P)BA(P)11(P  BABA 1111 . 

)0(P)1(P)B(P)A(P)BA(P)01(P  BABA 1111 . 

)1(P)0(P)B(P)A(P)BA(P)10(P  BABA 1111 . 

)0(P)0(P)B(P)A(P)BA(P)00(P  BABA 1111 . 

 

f.2. Uniformly distributed discrete random variables 

 

The second type of discrete random variables applied frequently is a uniformly distributed 

random variable. In this subsection we deal with discrete ones. 

 

Definition The discrete random variable   is called a uniformly distributed random 

variable, if it takes finitely many values, and the probabilities belonging to the possible 

values are equal. Shortly written, 









n21

n21

p..pp

x..xx
~ , 

.n,...,2,1j,n,...,2,1i,pp ji   

 

Remarks 

 As 1

n

1i

i npp1 


, 
n

1
p...pp n21  . 
















n

1
..

n

1

n

1

x..xx n21

. 

 There is no uniformly distributed discrete random variable if the set of possible 

values contains infinitely many elements. This is the straightforward consequence 

of the  condition 





1i

ip1 . With notation p)x(P i  , if 0p   then 00
1i






, if 

p0   , 


1i

p . 

 

Numerical characteristics of uniformly distributed random variables: 

 

Expectation 

x
n

1
x)(E

n

1i

i  


. 

 

Dispersion 

2
n

1i

i

n

1i

2
i

n

x

n

x

)(D
























 , which can be computed by substituting into the formula 

concerning the dispersion. 
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Mode 

All of the possible values have the same chance, all of them are modes. 

 

Median 

2

1nx   if n  is odd, and 
2

xx
1

2

n

2

n




 if n  is even. 

 

 

Example 

E1. Throw a die, and let   be the square of the result. Actually, 
















6

1

6

1

6

1

6

1

6

1

6

1
362516941

~ . As all possible values have the same chance,   is a 

uniformly distributed random variable. Note that there is no requirement for the possible 

values. 

 

 

f.3. Binomially distributed random variables 

After the above simple distributions we consider a more complicated one. 

 

Definition The random variable   is called a binomially distributed random variable 

with parameters n2  and 1p0  , if its possible values are n,...,2,1,0  and 

  knk p1p
k

n
)k(P











 , n,...,2,1,0k  . 

 

Remark 

 It is obvious that   knk p1p
k

n
)k(P0











 . Furthermore, the binomial 

theorem implies that  
















n

0k

knk
n

0k

1p1p
k

n
)k(P . Recalling that 

  knk
n

0k

n
ba

k

n
ba 



 







 , and substituting pa   and p1b  , we get 1p1pba  . 

 

Theorem If i  n,...,2,1i   are independent characteristically distributed random variables 

with parameter 1p0  , then 



n

1i

i  is a binomially distributed random variable with 

parameters n and p. 

Proof Recall that 











pp1

10
~i . Their sum can take any integer from 0 to n. 

 n

n21n21

n

1i

i p1)0(P...)0(P)0(P)0...00(P)0(P 

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  1n

n21n21

n

1i

i p1pn)0(P...)0(P)1(P)0...01(Pn)1(P






. 

The factor n is included because the event A can occur at any experiment, not only at the 

first one. 

  )0...01...11(P n1kk21  

  knk
n1kk21 p1p)0(P...)0(P)1(P...)1(P)1(P



   

If the event A occurs k times, then the indices of experiments when A occurs can be chosen 

in 








k

n
 ways, consequently, knk

n

1i

i )p1(p
k

n
)k(P 











 . 

 

Theorem Repeat a trial n times, independently of each other. Let A be an event with 

probability ,p)A(P   1p0  . Let   be the number of times the event A occurs during the 

n independent experiments. Then   is a binomially distributed random variable with 

parameters n and p . 

Proof: 

Let 





erimentexpiththeatoccurnotdoesAif0

erimentexpiththeatoccursAif1
1

i

A . 

Considering that the experiments are independent, so are 
i

A1 , i=1,2,…,n.  

As 



n

1i

i

A1 ,   is the sum of n independent indicator random variables, consequently,   

is binomially distributed random variable.  

 

Examples 

 

E1. Throw a fair die n times. Let   be the number of “6”-s. Then   is a 

binomially distributed random variable with parameters n and 
6

1
p  . 

E2. Flip a coin n times. Let   be the number of heads. Then   is binomially 

distributed random variable with parameters n and 
2

1
p  . 

E3. Throw a fair die n times. Let   be the number of even numbers. Then   is a 

binomially distributed random variable with parameters n and 
2

1
p  . We note that the 

random variable being in this example is identically distributed with the random variable 

presented in E2. 

 

E4. Draw 10 cards with replacement from a pack of French cards. Let   be the 

number of diamonds among the picked cards. Then   is a binomially distributed random 

variable with parameters 10n  , 
52

13
p  . 
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E5. Draw 10 cards with replacement from a pack of French cards. Let   be the 

number of aces among the picked cards. Then   is a binomially distributed random variable 

with parameters 10n  , 
52

4
p  . 

E6. There are N balls in an urn, M of them are red, N-M are white. Pick n with 

replacement from them. Let   be the number of red balls among the chosen ones.   is a 

binomially distributed random variable with parameters n  and 
N

M
p  . N2(  , M1 , 

MN1  , n2 ) 

 

Numerical characteristics of binomially distributed random variables 

 

Expectation 

np)(E  , which is a straightforward consequence of 

 


)(E)(E
n

1i

i
A1 



n

1i

E ( )i
A1 npp

n

1i




. 

Dispersion 

)p1(np)(D  .  

As an explanation consider that, as i
A1  )n,...,2,1i(   are independent,  

pn)1(nD)(D)(D i
2

n

1i

22  


i1 . This implies )p1(np)(D  . 

Mode 

If p)1n(   is integer, then there are two modes, namely p)1n(   and 1p)1n(  . 

If p)1n(   is not integer, then there is a unique mode, namely  p)1n(  . 

As an explanation, investigate the ratio of probability of consecutive possible values. 

 

   
p1

p

k

1kn

p1

p

!1kn!1k

!n

!kn!k

!n

)p1(p
1k

n

)p1(p
k

n

)1k(P

)k(P

)1k(n1k

knk












































, 

n,...,2,1k  . 

)1k(P

)k(P
1




  implies that )k(P)1k(P  , that is the probabilities are growing. 

1
)1k(P

)k(P





 implies that )1k(P)k(P  , that is the probabilities are decreasing. 

1
)1k(P

)k(P





, then )1k(P)k(P  .  

p1

p

k

1kn
1





  holds, if only if p)1n(k  . 1

p1

p

k

1kn






 holds, if and only if 

kp)1n(  , and 1
p1

p

k

1kn






 holds if and only if p)1n(k  . This is satisfied 

only in the case if p)1n(   is an integer. Therefore, if p)1n(   is not integer, then, up to 

 p)1n(k  , the probabilities are growing, after that the probabilities are decreasing. 
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Consequently, the most probable value is  p)1n(  . If p)1n(   is an integer, then 

)1k(P)k(P  , consequently there are two modes, namely  p1n  and 1p)1n(  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure f.1. Probabilities of possible values of a binomially distributed random variable with 

parameters 10n   and 2.0p   

 

Without proof we can state the following theorem: 

 

Theorem 

If 1  is a binomially distributed random variable with parameters 1n  and p , 2  is a 

binomially distributed random variable with parameters 2n  and p , furthermore they are 

independent, then 21   is also binomially distributed with parameters 21 nn   and p. 

 

As an illustration, if 1  is the number of “six”-es if we throw a fair die repeatedly 1n  times, 

2  is the number of “six” -es if we throw a fair die 2n  times, then 21   is the number of 

“six” -es if we throw a fair die 21 nn   times, which is also binomially distributed random 

variable. 

 

Theorem 

If n  is a sequence of binomially distributed random variables with parameters n and nq , 

furthermore  nqn , and k is a fixed value, then 

     









 e

!k
q1q

k

n
)k(P

k
kn

n

k

nn , if n . 

Proof 

Substitute 
n

q n


 ,  

    






 




















kn

k

k
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n

k

nn
n

1
n)!kn(!k

!n
q1q

k

n
)k(P  

nkk

k n
1

!kn
1

n

)1kn)....(2n)(1n(n







 










 





. 

Separating the factors,  
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1
n

1kn
...

n

2n

n

1n

n

)1kn)....(2n)(1n(n
k













, if n , as each factor tends 

to 1, and k is fixed.  

Similarly, 1
n

1

k








 




, if  n . 

Since 
x

n

e
n

x
1 








  if n , consequently, 








 
 e

n
1

n

, if n . 

Summarizing,      









 e

!k
q1q

k

n
)k(P

k
kn

n

k

nn  supposing n . 

Example 

 

E7. There are 10 balls and 5 boxes. We put the balls into the boxes, one after the 

other. We suppose that all the balls fall into any box with equal chance, independently of the 

other balls. Compute the probability that there is no ball in the first box. Compute the 

probability that there is one ball in the first box. Compute the probability that there are two 

balls in the first box. Compute the probability that there are at most two balls in the first 

box. Compute the probability that there are at least two balls in the first box. Compute the 

expectation of the balls in the first box. How many balls are in the first box most likely? 

Let   be the number of balls in the first box.   is a binomially distributed random variable 

with parameters 10n   and 
5

1
p  . We can give an explanation of this statement as follows: 

we repeat 10 times the experiment that we put a ball into a box. We consider whether the 

ball falls into the first box or not. If   is the number of balls in the first box, then   is the 

number of occurrences of the event A =”actual ball has fallen into the first box”. It is easy 

to see that 
5

1
)A(P  . Therefore, the possible values of   are 0,1,2,…,10, and the 

probabilities are 

k10k

5

1
1

5

1

k

10
)k(P




























 , 10,...,2,1,0k  . 

If we calculate the probabilities, we get  

1074.0
5

1
1

5

1

0

10
)0(P

100


























 , 2684.0

5

1
1

5

1

1

10
)1(P
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
























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3020.0
5

1
1

5

1

2

10
)2(P
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












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










 , 2013.0

5

1
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5

1

3
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)3(P
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
























 ,…,  

7

010

10
5

1
1

5

1
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)10(P 

























 .   

.
1010100007.00055.00264.008808.0 2013.03020.02884.01074.0

109876543210
~

754- 











 

Returning to our questions, the probability that there is no ball in the first box is  

1074.0
5

1
1

5

1

0

10
)0(P

100


























 .  
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The probability that there is one ball in the first box equals 

2684.0
5

1
1

5

1

1

10
)1(P

91


























 .  

The probability that there are two balls in the first box is 

3020.0
5

1
1

5

1

2

10
)2(P

82


























 .  

The probability that there are at most two balls in the first box is 

6778.03020.02684.01074.0)2(P)1(P)0(P)2(P  .  

The probability that there are at least two balls in the first box can be computed as 

,6242.010...0088.02013.03020.0)10(P...)3(P)2(P)2(P 7  

or in a simpler way,  

  6242.03758.01)2684.01074.0(1)1(P)0(P1)2(P  . 

The expectation of the number of balls in the first box is 2
5

1
10)(E  , which coincides 

with the mode,   2
5

1
11p)1n( 








 . 

 

E8. There are 10 balls and 5 boxes, 100 balls and 50 boxes, 1000 balls and 500 

boxes, 
n10  balls and 2/10 n

 boxes, ,...3,2,1n  . Balls are put into the boxes and all the balls 

fall into any box with equal probability. Let us denote by n10n   the number of balls in 

the first box. Let k  be fixed and investigate the probabilities )k(P n  . Compute the limit 

of these probabilities. 

Referring to the previous example, n  is a binomially distributed random variable with 

parameters 
n10  and 

n10

2
)n(q  . The product of the two parameters equals 2

10

2
10

n

n   

always, consequently, 2
k

n e
!k

2
)k(P  , if n . 

In details, 

 

 
1  (10, 

5

1
) 2  (100, 

50

1
) 3  (1000, 

500

1
) 3  (10000, 

5000

1
) 

. . 
e

!k

2k

 

k=0 0.1074 0.1326 0.1351 0.1353 . . 0.1353 

k=1 0.2684 0.2706 0.2707 0.2707 . . 0.2707 

k=2 0.3020 0.2734 0.2709 0.2707 . . 0.2707 

k=3 0.2013 0.1823 0.1806 0.1805 . . 0.1804 

 

Table f.1. The probabilities of being k balls in a box in case of different parameters of total 

number of balls and boxes 

 

We can see that the probabilities computed by the binomial formula are close to their limits, 

if the number of experiments is large (for example 10000). Consequently, the probabilities 

of binomially distributed random variables can be approximated by the formula 


e
!k

k

, 

called Poisson probabilities. 
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f.4. Hypergometrically distributed random variables 

 

After sampling with replacement, we deal with sampling without replacement, as well. The 

random variable which handles the number of specified elements in the sample if the 

sampling has been performed without replacement is a hypergeometrically distributed 

random variable. 

 

Definition The random variable   is called a hypergeometrically distributed random 

variable with parameters N2  , 1NS1   and n1 , ,Sn   SNn   integers, if its 

possible values are n,...,2,1,0  and 
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
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
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
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


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n

N

kn

SN

k

S

)k(P , n,...,2,1,0k  . 

Example 

E1. We have N products, S of them have a special property, SN   have not. 

We choose n ones from them without replacement. Let   be the number of products with 

the special property in the sample. Then, the possible values of   are n,...,3,2,1,0 , and the 

probabilities (referring to the subsection of classical probability) are 














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


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









n
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k

S

)k(P . 

Remarks 

 The previous example shows that the sum of the probabilities 














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
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





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



n

N

kn
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k

S

 equals 1. 

The events „there are k products with the special property in the sample” k=0,1,2,…n form a 

partition of the sample space, consequently the sum of their probabilities equals 1.  

 

 Similarly to the binomially distributed random variable, actually,   can also be 

written as a sum of indicator random variables, but these random variables are not 

independent.  

 

Numerical characteristics of hypergeometrically distributed random variables: 

 

Expectation 

N

S
n)(E  . This formula can be computed using the definition of expectation as follows:  
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Taking into account that 










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






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


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1
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j

1S

, we get the closed form for the 

expectation presented. 

 

Dispersion 















1N

1n
1)

N

S
1(

N

S
n)(D . We do not prove this formula, because it requires too 

much computation. 

 

Mode 














2N

)1n)(1S(
 if 

2N

)1n)(1S(




 is not an integer and there are two modes, namely 

2N

)1n)(1S(




 and 1

2N

)1n)(1S(





 if 

2N

)1n)(1S(




 is an integer. 

 

Similarly to the way applied to the binomially distributed random variable we investigate 

the ratio 
)1k(P

)k(P




. Writing it explicitly and simplifying we get 
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
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. In order to know for which 

indices the probabilities are growing and or decreasing we have solve to the inequalities 
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After some computations we get that 
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k
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1
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



  holds if and only if 
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)1n)(1S(
k




 . This equality can be 

satisfied if 
2N

)1n)(1S(




 is an integer. Consequently, the mode is unique and it equals 














2N

)1n)(1S(
, if 

2N
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)1n)(1S(





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


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Theorem 

Let N , S , p
N

S
 , and let k ,n be fixed integer values. 
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n

n
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The number of factors in the numerator is nknk   and so is in the denominator. 
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The number of factors tending to p equals k, the number of multipliers tending to 1-p equals 

n-k, consequently knk )p1(p
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n
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Remark 

 The meaning of the previous theorem is the following: if the number of elements is 

large and we choose a sample of a few elements, then the probabilities of having k elements 

with a special property in the sample is approximately the same if we take the sample with 

or without replacement. 

 

Example 

 

E1. There are 100 products, 60 of them are of first quality, 40 of them are 

substandard. Choose 10 of them with/ without replacement. Let   be the number of 

substandard products in the sample if we take the sample with replacement. Let   be the 

number of substandard products in the sample if we take the sample without replacement. 

Determine the distribution, expectation, dispersion, and mode of both random variables. 

  is a binomially distributed random variable with parameters 10n  , 
100

40
p  . This 

means, that the possible values of   are 0,1,2,3,…,10, and k10k 6.04.0
k

10
)k(P 









 .   is 

a hypergeometrically distributed random variable with parameters 100N  , 40S , 10n  . 

Therefore the possible values of   are 0,1,2,3,..,10 and 




















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









10

100

k10

60

k

40

)k(P . To 

compare the probabilities in case of choosing with and without replacement we write them 

in the following Table f.2. 

 

 

 
k 0 1 2 3 4 5 6 7 8 9 10 

)k(P   0.006 0.040 0.121 0.215 0.251 0.201 0.111 0.042 0.010 0.001 0.0001 

)k(P   0.004 0.0034 0.115 0.220 0.264 0.208 0.108 0.037 0.008 0.001 0.00004 
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Table f.2.Probabilities of the numbers of substandard products in the sample in case of 

sampling with and without replacement 

 

It can be seen that there are very small differences between the appropriate probabilities, 

therefore it is almost the same if we take the sample with or without replacement.  

 

44.010)(E  , .4
100

40
10)(E    

55.16.04.010)(D  , 48.1
99

9
1

100

60

100

40
10)(D 








 .  

The mode of   and   are the same values, namely 4, as it can be seen in the Table f.1., or 

applying the formula     44.011p)1n(  , or   442.4
102

1141

2N

)1n)(1S(








 













, 

respectively. 

 

E2. There are N balls in a box, S are red, N-S are white. Choose 10 from them 

without replacement. Compute the probability that there are 4 red balls in the sample if the 

total number of balls are ,10N1  ,100N 2  ,1000N3  10000N 4  , 100000N 4  , and 

4S1  , 40S2  , ,400S3   4000S4  , 40000S5  . Notice that 4.0p
N

S

i

i   is constant. 

N 10 100 1000 10000 100000 limit 

)4(P N   1 0.26431 0.25209 0.25095 0.25084 0.25082 

 

Table f.3. Probabilities of 4 red balls in the sample in case of different numbers of total balls 

 

One can follow the convergence in Table f.3. very easily on the basis of the computed 

probabilities. We emphasize that both of the values n and k are fixed. 

 

f.5. Poisson distributed random variables 

After investigating sampling without replacement, we return to the limit of probabilities of 

binomially distributed random variables. 

 

Definition The random variable   is called a Poisson distributed random variable with 

parameter 0 , if its possible values are ,....2,1,0 , and 
 e

!k
)k(P

k

, k=0,1,2,… 
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 
 e

!k
0

k

 holds obviously, furthermore 
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
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
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k
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k

1ee
!k
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!k

. 

 The last theorem of subsection f.3. states that the limit of the distribution of 

binomially distributed random variables is a Poisson distribution. 

 

Numerical characteristics of Poisson distributed random variables 

 

Expectation 

)(E . This formula can be proved as follows: 
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Dispersion 

)(D . Recall that  222 )(E)(E)(D  .  
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  22 eeee . Therefore    22222 )(E)(E)(D . 

Finally,  )(D)(D 2
. 

 

Mode 

There is a unique mode, namely     if   is not an integer and there are two modes, namely 

  and 1  if   is an integer. 

Similarly to the way applied in the previous subsections, we investigate the ratio 

)1k(P

)k(P




. Writing it explicitly and simplifying we get 

k
e

)!1k(

e
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
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






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

. The inequality 

k
1


 , holds if and only if k , the inequality 1

k



, holds if and only if k , and 

k
1


 , holds if and only if k . This can be achieved only in the case if   is integer. 

Summarizing, for the values of k which are less than   the probabilities are growing, for 

the values of k greater than   the probabilities are decreasing, consequently the mode is 

  . The same probability appears at 1 , if   is an integer. 

 

Examples 

E1. The number of faults in some material is supposed to be a Poisson 

distributed random variable. In a unit volume material there are 2.3 faults on average. 

Compute the probability that there are at most 3 faults in a unit volume material. How much 

volume contains at least 1 fault with probability 0.99? 

Let 1  be the number of faults in a unit volume of material. Now the possible values of 1  

are ,...k,...,2,1,0  and 
 e

!k
)k(P

k

1 . The parameter   equals the expectation, hence 

3.2
k

l e
!k

3.2
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Compute the probability that there are at least 3 faults in a unit volume material. 

.404.0)e
!2

3.2
e

!1

3.2
e

!0

3.2
(1))2(P)1(P)0(P(1)3(P 3.2

2
3.2

1
3.2

0

1111  

How many faults are most likely in a unit volume material?  

3.2  is not integer, consequently there is a unique mode, namely   23.2  . 

The probabilities are included in the following Table f.5. and can be seen in Fig.f.2.  

 
k  0 1 2 3 4 5 6 7 8 9 

)k(P 1   0.100 0.230 0.203 0.117 0.0538 0.0206 0.0068 0.0019 0.0005 0.0001 

Table f.5. Probabilities belonging to the possible values in case of Poisson distribution with 

parameter 3.2  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure f.2. Probabilities belonging to the possible values in case of  Poisson distribution 

with parameter 3.2  

 

How many faults are most likely in a 10 unit volume material? 

Let 10  be the number of faults in a 10 unit volume. 10  is also a Poisson distributed 

random variable with parameter 232.310*  . As *  is integer, two modes exist, 

namely 23*  and 22-1*  . It is easy to see that  
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

  . 

How much volume contains at least one fault with probability 0.99? 

Let x denote the unknown volume and x  the number of faults in the material of volume x. 

We want to know x if we know that 99.0)1(P x  . Taking into account that 

)0(P1)1(P xx  , 99.0)1(P x   implies 01.0)0(P x  . x  is a Poisson 

distributed random variable with parameter 3.2xx  , consequently 

 
01.0e
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3.2x x3.2
0


 

. As   13.2x
0
 , 1!0  , we get 01.0e x3.2 

. Taking the logarithm 

of both sides, we get 1.0lnx3.2  , therefore 2003.2
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01.0ln
x 
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 . 
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E2. The number of viruses arriving to a computer is a Poisson distributed 

random variable. The probability that there is no file with viruses for 10 minutes equals 0.7. 

How many viruses arrive to the computer during 12 hours most likely? 

Let 10  be the number of viruses arriving to our computer during a 10 minutes period. We 

do not know the parameter of 10 , but we know that 7.0)0(P 10  . Since 10  is a 

Poisson distributed random variable with parameter  , therefore 7.0e
!0

)0(P
0

10 


  . 

This implies 357.07.0ln  . 

If 720   is the number of viruses arriving to the computer during 12 hours, 720  is also a 

Poisson distributed random variable with parameter 68.25357.0612*  , consequently 

there is a unique mode,   2568.25  .  

 

Theorem If   is a Poisson distributed random variable with parameter 1 ,   is a Poisson 

distributed random variable with parameter 2  furthermore they are independent, then 

  is also a Poisson distributed random variable with parameter 21  . 

Proof 

As   is a Poisson distributed random variable with parameter 1 , the possible values of   

are ,...3,2,1,0  and  
 

1e
!i

iP

i

l 
 . As   is a Poisson distributed random variable with 

parameter 2 , the possible values of   are ,...3,2,1,0  and  
 

2e
!j

jP

j

2 
 . It is 

obvious that the possible values of   are ,...3,2,1,0 . We prove that 

   21e
!k

)k(P

k

21 
 . 

First, investigate )0(P  . 

 

 )0(P)0(P)00(P)0(P

       212121 e
!0

ee
!0

e
!0

0

21)(
0
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0

l  






.  

Similarly, 

 )1(P)0(P)0(P)1(P)10(P)01(P)1(P  

       











  2121 e
!1

e
!0

e
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e
!1

1

2

0

l

0

2

1

l    21e
!1

1

21 
 coinciding with the 

requirement. 

In general, 

   
 





 


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
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
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2121

21 











 









  . 

 

E3. The number of people served in an office is a Poisson distributed random variable. 

There are two attendants in the office and the number of people served by the first one and 
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the second one are independent random variables. The average number served by them 

during an hour is 3 and 2.5, respectively. Compute the probability that together they serve 

more than 4 people during an hour.  

Let 1  and 2 be the numbers of people served by the attendants, respectively. 1  is a 

Poisson distributed random variable with parameter 31  , 2  is a Poisson distributed 

random variable with parameter 5.22  , and according to the assumption, they are 

independent. The total number of people served by them is 21  . Applying the previous 

theorem, 21   is also a Poisson distributed random variable with parameter 

5.521   Consequently, 

  )4(P)3(P)2(P)1(P)0(P1)4(P 212121212121

 

0.6420.3581e
!4

5.5
e

!3

5.5
e

!2

5.5
e

!1

5.5
e

!0

5.5
1 5.5

4
5.5

3
5.5

2
5.5

1
5.5

0














 

. 

Given that they serve 5 people together, compute the probability that the first attendant 

serves 3 and the second one serves two clients. 

The second question can be written as follows: )5|23(P 2121  =? 

Recall that the conditional probability is given by 
)B(P

)BA(P
)B|A(P


 . Consequently, 

  
 

)5(P

)5()23(P
)5(|23P

21

2121
2121




 . 

The event  521   is the consequence of  23 21  , therefore their 

intersection is the event  23 21  . Now, taking into consideration the 

independence of the random variables 1  and 2  we get 

  
     

5.5
5

5.2
2

3
3

21

21
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21
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
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3
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3

3

5
23





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



















 . 

 

f.6. Geometrically distributed random variables 

At the end of this section we deal with geometrically distributed random variables. 

In this case we perform independent experiments until a fixed event occurs. We finish the 

experiments when the event occurs first. Actually we do not know the number of 

experiments in advance. 

 

Definition The random variable   is called a geometrically distributed random variable 

with parameter 1p0  , if its possible values are ,....k,...,3,2,1  and 1k)p1(p)k(P  , 

k=1,2,3,… 
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Remarks 

 The above probabilities are really nonnegative, and their sum equals 1. It can be 

seen easily if we apply the formula concerning the sum of infinite geometric series, namely 

x1

1
x

1i

i








, if 1x   holds.  

1
)p1(1

1
p)p1(p)p1(p)p1(p)k(P)k(P

0k

k

1k

1k

1k 1k

1k 


  

















 . 

 The quantities 1k)p1(p   form a geometric series, this is the reason of the name. 

 Do not confuse this discrete random variable with the geometric probability 

presented in the first chapter. 

 

Theorem We repeat an experiment until a fixed event A occurs, 1)A(P0  . Suppose that 

the experiments are independent. Let   be the number of necessary experiments. Then,   is 

a geometrically distributed random variable with parameter )A(Pp  .  

Proof Let iA  denote that the event A  occurs at the ith experiment. Now, the values of   

can be 1,2,3,… any positive integer. 1  means that the event A occurs at the first 

experiment, therefore p)A(P)1(P 1  . 2  means that the event A does not occur at 

the first experiment, but it does at the second experiment, that is 

 pp1)A(P)A(P)AA(P)2(P 2121  , which meets the requirements. In 

general, k  means, that the event A does not occur at the 1st, 2nd, …,(k-1)th 

experiments, but it occurs at the kth one. Hence  

p)p1()A(P)A(P)...A(P)A(P)A(P)AA...AA(P 1k
k1k321k1k21  

 , which 

is the statement needed to be proved. 

 

Numerical characteristics of geometrically distributed random variables 

 

Expectation 

p

1
)(E  . This formula can be proved as follows: 

1k

1k1k

1k

1i
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p1k


  is similar to derivative. If 

we investigate the function 
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  for values 1x  , then 
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. Substituting p1x  , we get 
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 . This implies the formula 
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Dispersion 

p

p1
)(D


 . We do not prove this formula. It can be proved similarly to the previous 

statement, but it requires more computation. 

 

Mode 

There is a unique mode, namely it is always 1. This is the straightforward consequence of 

the fact that the ratio of consecutive probabilities is 
 

 
1p1

p1p

p1p

)1k(P

)k(P
2k

1k














. 

This implies that the probabilities are decreasing, therefore the first one is the greatest. 

 

Example 

 

E1. We throw a die until we succeed in “six”. Compute the probability that at 

most 6 throws are needed.  

Let   be the number of necessary throws.   is a geometrically distributed random variable 

with parameter 
6

1
. This means that the possible values of   are 1,2,3,… and 
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5
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6
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






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In general, 

n

n

6

5
1

1
6

5

1
6

5

6

1
)n(P 








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









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Compute the probability that more than 10 throws are needed.  

According to the previous formula, 1615.0
6

5
)10(P

10









 . 

At most how many throws are needed with probability 0.9?  

The question is to find the value of n  for which 9.0)n(P  . As 

n

6

5
1)n(P 








 , we 

have to solve the equality 9.0
6

5
1

n









 . This implies 1.0

6

5
n









, that is 1.0ln)

6

5
ln(n  . 

Computing the value of n we get 63.12

6

5
ln

1.0ln
n  . But we expect an integer value for n, 

hence we have to decide whether n=12 or n=13 is appropriate. 
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888.0
6

5
1)12(P

12









 , which is less than the required probability 0.9. 

907.0
6

5
1)13(P

13









 , which is larger than the requirement. Exactly 0.9 can not be 

achieved, the series skip over this level, as it can be seen in Fig. f.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure f.3. The probabilities )k(P   and the level y=0.9 

 

 

The probabilities )k(P)k(P  are presented in Fig.f.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure f.4. The probabilities )k(P    

 

Which is the most probable value of the throws? The most probable value of   equals 1, the 

probability belonging to them is 
6

1
. All of the probabilities belonging to other value are 

smaller than 
6

1
. We draw the attention to 

6

5
)1(P  , which is much more than the 

probability belonging to the value 1. 
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Theorem If   is a geometrically distributed random variable, then for any nonnegative 

integer values of n  and m  the following equality holds: )m(P)n|nm(P  . 

Proof Recall that k)p1()k(P  . Applying the definition of conditional probability, 

    
)n(P

nnmP
)n|nm(P




 .  nm   implies  n , consequently 

the intersection is  nm  . Therefore  

 

 
 m

n

nm

p1
p1

p1

)n(P

)nm(P
)n|nm(P 













, which coincides with )m(P  . 

 

Remarks 

 

 The property )m(P)n|nm(P   is the so called forever young 

property. If we do not succeed until n, the probability that we will not succeed until further 

m experiments is the same that the probability that we do not succeed until m. Everything 

begins as if we were at the starting point. 

 One can also prove that the forever young property implies the geometric 

distribution in the set of positive integer valued random variables. Consequently, this 

property is a pivotal property. 

 )m(P)n|nm(P   implies the formula )m(P)n|nm(P   

as well. As an explanation recall that )B|A(P1)B|A(P  . 

)n|nm(P1)n|nm(P   )m(P)m(P1  . 

 

Example 

E2. At an exam there are 10 tests. The candidate gives it back if the test is not from the 

first three tests. Compute the probability that the candidate will succeed in 4 experiments.  

Let   be the number of bids.   is a geometrically distributed random variable with 

parameter 
10

3
p  . 

 

 )4(P)3(P)2(P)1(P)4(P

760.07.017.03.07.03.07.03.03.0 432   

At most how many bids does he need with probability 0.95? 

n=? 95.0)n(P  . 95.07.01)n(P n  , which implies n=8.4. Consequently, the 

candidate needs at most 9 bids until the hit.  

If he does not succeed up to the 5th experiment, compute the probability that he succeeds 

until the 8th one.  

The question can be easily answered by applying the forever young property as follows: 

657.07.03.07.03.03.0)3(P)2(P)1(P)3(P)5|8(P 2  . 
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g. Frequently used continuous distributions 

 

The aim of this chapter 

 

In chapter d. we have dealt with continuous random variables. Now we 

investigate some frequently used types. We compute their numerical 

characteristics, study their main properties and we present their relationships 

with some discrete distributions, as well. We derive new random variables 

from normally distributed random variables. These are often used in 

statistics. 

 

Preliminary knowledge 

 

Random variables and their numerical characteristics. Probability density 

function. Partial integration. 

 

Content 

 

g.1. Uniformly distributed random variables. 

 
g.2. Exponentially distributed random variables. 

 

g.3. Normally distributed random variables. 

 

g.4. Further random variables derived from normally distributed ones. 



 

 

 

Probability theory and math. statistics– Frequently used continuous distributions 

 

112 

g.1. Uniformly distributed random variables 

In this chapter we deal with some frequently used continuous random variable. We defined 

them with the help of their probability density function. 

First we deal with a very simple continuous random variable. Let Ω , A , and P be given and 

  be a random variable. 

 

Definition The random variable   is called a uniformly distributed random variable with 

parameters a, b (a<b), if its probability density function is 


 


otherwise0

bxaifc
)x(f . 

 

Remarks 

 As the area under the probability density function equals 1, 
ab

1
c


 . This value is 

positive, consequently all the values of the probability density function are nonnegative.  

 The constant value of the probability density function express that all the values of the 

interval  b,a  are equally probable. 

 A uniformly distributed random variable with parameter a, b (a<b) is often called a 

uniformly distributed random variable in ]b,a[  

 The graph of the probability density function of the uniformly distributed random 

variable with parameters 1a  , 5b   can be seen in Fig.g.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure g.1. The probability density function of a uniformly distributed random variable 

with parameters a=-1, b=5 

 

Theorem 

The cumulative distribution function of a uniformly distributed random variable in ]b,a[  is 
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Proof 

Recall the relationship 




x

dt)t(f)x(F  between the probability density function and the 

cumulative distribution function presented in section d. 

If ax  , then  0dt0dt)t(f)x(F

xx

 


. 

If bxa  , then  
ab

ax
t

ab

1
0dt

ab

1
dt0dt)t(f)x(F

x

a

x

a

ax










 



. 

Finally, if xb  , then 1010dt0dt
ab

1
dt0dt)t(f)x(F

x

b

b

a

ax




 


. 

The graph of the cumulative distribution function of a uniformly distributed random 

variable with parameters a=-1 and b=5 is presented in Fig.g.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure g.2. The cumulative distribution function of the uniformly distributed random 

variable with parameters a=-1, b=5 

 

 

Remarks 

 Let   be a uniformly distributed random variable in the interval ]b,a[  and 

bdca  . Then 
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
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
 . The probability the value 

of ξ in the interval )d,c( is proportional to the length of the interval )d,c( . 

 Choose a number from the interval  b,a  with geometric probability. Let   be the 

chosen number. Then   is a uniformly distributed random variable in the interval  b,a . 

As justification consider that 0)(P)x(P  , if ax  , 
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the cumulative distribution function is not differentiable, we can define the probability density 
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function in anyway. Defining )b(f
ab

1
)a(f 


 , f equals to the density function in the 

definition. 

 The random number generator of computers usually generates approximately 

uniformly distributed random variables in ]1,0[ . 

 

Numerical characteristics of uniformly distributed random variables: 

 

Expectation 

2

ba
)(E


 , which is a straightforward consequence of  

2
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)ab(2
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2
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. Note that 

this value is the midpoint of the interval  b,a . 

 

Dispersion 

12
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)(D


 . As a proof, recall that    222 )(EE)(D  . 
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Consequently, 
 
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)(D
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 . 

 

Mode 

All of the values of the interval  b,a  have the same chance, consequently, all the points of 

 b,a  are modes. 

 

Median 

2

ba 
. We have to find the value of y for which 5.0)y(F  . As neither 0 nor 1 equal 0.5, the 

following equality has to hold: 5.0
ab

ay





. This implies )ab(5.0ay  . After rearranging 

it, we get 
2

ab
y


 . 

 

Example 

 

E1. Let   be uniformly distributed random variable in ]10,2[ . Compute the 

probability that the value of the random variable is between 5 and 8.  
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The cumulative distribution function of   is given by 






















x10if1

10x2if
8

2x

2xif0

)x(F , 

which is a useful tool to compute probabilities. 
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8

28
)5(F)8(F)85(P 





 . 

Compute the probability that the value of the random variable is less than 5. 

375.0
8

3

8
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)5(F)5(P 


 . 

Compute the probability that the value of the random variable is greater than 8. 
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
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Compute the probability that the value of the random variable is greater than the half of its 

expectation and less than the double of the expectation.  

6
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
 , 

8

7

8

23
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
 . 

At most how much is the value of the random variable with probability 0.9?  

x=? for which 9.0)x(P  . )x(F)x(P  , we have to solve 9.0
8

2x



. This implies 

2.9x  . 

At least how much is the value of the random variable with probability 0.9?  

x=? for which 9.0)x(P  . )x(F1)x(P  , we have to solve 9.0
8

2x
1 


 . This 

implies 8.2x  . 

Given that the value of the random variable is more than 5, compute the probability that it is 

less than 8. 
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Notice that this conditional probability is proportional to the length of the interval  8,5  if the 

number is from  10,5 . 

 

Theorem If   is a uniformly distributed random variable in ]1,0[ , c0   and Rd , then 

dc   is uniformly distributed random variable in  dc,d  . 

Proof Investigate the cumulative distribution function of  , then take its derivative. 
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Summarizing, d

xdcif1

cxdif
c

dx

dxif0

)x(F 












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




  .  

Taking the derivative of )x(F , 











otherwise0

dcxdif
c

1

)x(f . 

 

Remarks 

 

 If c is negative, then dc   is a uniformly distributed random variable in  d,dc  . 

 Using the random number generator, we can get a uniformly distributed random 

variable in ]b,a[  by multiplying the generated random number by ab   and adding a. 

 If   is a uniformly distributed random variable in ]1,0[ , then so is  1 . To justify 

it, first take into consideration that all of values of   are in  1,0 , hence so are the values of 

 1 . Moreover,  

x)x1(1)x1(F1)x1(P)x1(P)x(P)x(F   , if 1x0  . 

Therefore 1)x('F)x(f   , if 1x0   and zero outside  1,0 . 

 

Theorem 

Let   be a uniformly distributed random variable in [0,1]. Let F be a continuous cumulative 

distribution function in R . Let  1)x(F,0)x(F:RxI   and suppose that F  is strictly 

monotone in I. Then )(F 1    is a random variable those cumulative distribution function is 

F. 

Proof 

I)1,0(:F 1  , 0)0(P  , 0)1(P  .   1F  is well defined. Take any value Ix , and 

investigate the cumulative distribution function of   at x. Taking into account that 


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 . 

As F  is monotone increasing,      )x(F)x(F))(F(Fx)(F 11   .Consequently,  

)x(F)x(F))x(F(P)x)(F(P 1  
 . 

If Iinfx  , then 0)x(F   and   0x)(FP)x(P)x(F 1  
 . 

If xIsup  , then 1)x(F   and   1x)(FP)x(P)x(F 1  
 . 

Consequently, the cumulative distribution function of  1F  is )x(F . 

 

Remark 

 The previous statement gives us the possibility to generate random variables with 

cumulative distribution function F. 

 

Example 
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E2.  Generate random variables with cumulative distribution function 


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









x1if

x

1
1

1xif0

)x(F . 

Apply the previous statement. F  is a strictly monotone increasing function in the interval 

 ,1 , 
y1

1
)y(F 1


 , 1y0  . Consequently, if   is uniformly distributed in ]1,0[ , then 

)(F 1   is a random variable with cumulative distribution function F. Consequently, 

substituting the random number generated by the computer into 1F  we get a random variable 

with cumulative distribution function F. The relative frequencies of the random numbers and 

the probability density function 
2x

1
)x('F)x(f  , x1 , can be seen in Fig.g.3. 
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Figure g.3. The relative frequencies of random numbers )(F 1   situated in different 

subintervals and the probability density function 

 

g.2. Exponentially distributed random variables 

In this subsection we deal a frequently used continuous distribution, namely the exponential 

one.  

 

Definition: The random variable   is an exponentially distributed random variable with 

parameter 0 , if its probability density function is 
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Remarks 
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exponentially distributed random variables belonging to different parameters are presented in 

Fig.g.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure g.4. The probability density functions of exponentially distributed random variables 

with parameters 1  (black), 5.0  (red) and 2 (blue) 

 

 An exponentially distributed random variable takes its values with large probability around 

zero, whatever the parameter is. All of its values are nonnegative.  

 

Theorem The cumulative distribution function of an exponentially distributed random variable 

with parameter 0  is 

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  , if x0  . 

The graphs of the cumulative distributions function belonging to the previous probability 

density functions are presented in Fig.g.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure g.5. The cumulative distribution functions of exponentially distributed random variables 

with parameters 1  (black), 5.0  (blue) and 2 (red) 
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Remark 

 

 A simple way to generate an exponentially distributed random variable to substitute the 

uniformly distributed random variable into 



 )y1ln(

)y(F 1
. The relative frequencies of 

exponentially distributed random variables situated in the interval ]5,0[  are presented in 

Fig.g.6. One can notice that the relative frequencies follow the probability density function 

drawn by red line. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure g.6. The relative frequencies of random numbers )1ln(   situated in different 

subintervals and the exponential probability density function with parameter 1  

 

 

Numerical characteristics of exponentially distributed random variables: 

 

Expectation 
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x

0

x
.  

Taking the average of random numbers generated previously in the presented way, for 1 , 

the results are in Table g.1. Differences from the exact expectation 1 are also presented: 

 

 

N= 1000 10000 100000 1000000 10000000 

Average  0.9796 1.0083 1.0015 1.0005 0.9996 

Difference 0.0204 0.0083 0.0015 0.0005 0.0004 

 

 

Table g.1. The average of  the values of  the random variable )1ln(  , if   is a uniformly 

distributed random variable in ]1,0[  in case of different numbers of simulations N 
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Dispersion 




1
)(D . As a proof, recall that    222 )(EE)(D  . Integrating twice by parts, 

2

22 2
dx)x(fx)(E


 





,    
222

222 112
)(EE)(D








 . 

 

Mode 

There is no mode. 

 

Median 



5.0ln
. We have to find the value x for which 5.0)x(F  .In order to do this, we have to solve 

the following equation  5.0e1 x  
. This implies 5.0e x 

. Taking the logarithm of both 

sides, we get 5.0lnx  , finally 



5.0ln

x . 

 

Example 

E1. The lifetime of a bulb is supposed to be an exponentially distributed random 

variable with expectation 1000 hours. Compute the probability that the bulb breaks down 

before 500 hours. 

Let   denote the lifetime of a bulb. As   is an exponentially distributed random variable, its 

cumulative distribution function is 0x,e1)x(F x   . As 1000
1

)(E 


 , 001.0 . 

393.0e1)500(F)500(P 1000

500




. 

Compute the probability that the bulb goes broke between 1000 and 2000 hours. 
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At most how many hours is the lifetime of a bulb with probability 0.98?  

x=?, 98.0)x(P  . 98.0e1)x(F)x(P 1000

x
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

, consequently, 02.0e 1000

x


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.391202.0ln1000x   

At least how many hours is the lifetime of a bulb with probability 0.98?  
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

, consequently, 98.0e 1000

x


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, and 

2.2098.0ln1000x  . 

Compute the probability that, out of 10 bulbs, having independent exponentially distributed 

lifetimes with expectation 1000 hours, 7 go broke before 1000 hours and 3 operate after 1000 

hours. 

Let i  denote the lifetime of the ith bulb. They are independent random variables and 

632.0e1)1000(F)1000(P 1000

1000

i 


, 368.0)1000(P i  . If   is the number of bulbs 

going broke until 1000  hours,   is a binomially distributed random variable with parameters 

10n   and )1000(Pp i  . Therefore 241.0368.0632.0
7

10
)7(P 37 








 . 

 

Now we present the characteristic feature of exponentially distributed random variables. 
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Theorem If   is an exponentially distributed random variable, then for any y0,x0   the 

following property holds: )y(P)x|yx(P  . 

Proof  

Recall that aa e)e1(1)a(F1)a(P   . 

Moreover, 

)y(Pe
e

e

)x(P

)yx(P

)x(P

)xyx(P
)x|yx(P y

x

)yx(










 





. 

 

Remark  

 The previous property can be written in the form )y(P)x|yx(P  , as well.  

Consider that  

)y(P)y(P1)x|yx(P1)x|yx(P  . 

 As exponentially distributed random variables are continuous random variables, then we 

do not bother if the strict inequality (>) or   holds. We can also write 

)y(P)x|yx(P  , which coincides with the property stated for geometrically 

distributed random variables. 

 The property can be interpreted as the forever young property. If   is the lifetime of an 

appliance, then   is the time point when it goes broke it does not go broke until x , the 

probability that it will not go broke until further y  units of time is the same that it does not go 

broke until y  from the beginning. This is the reason for the name of the property. 

 The forever young property is valid only for the exponentially distributed random 

variable in the set of continuous random variables. 

 

Theorem Let   be a continuous random variable with nonnegative values, suppose that its 

cumulative distribution function is differentiable and 


)x(Flim
0x

, 0 . Moreover, for any 

y,x0  )y(P)x|yx(P   holds. Then   is an exponentially distributed random 

variable with parameter  . 

Proof Let )x(F1)x(G  . As   is nonnegative, 0)0(F  , 1)0(G  . As the conditional 

probability exists, )x(P0  , consequently 1)x(G  . Let xΔy0  , 

)y(P)x|yx(P   has the form )xΔ(P)x|xΔx(P  . 

)xΔ(G
)x(G

)xΔx(G

)x(P

)xΔx(P
)x|xΔx(P 







 . This implies the equation  

)x(G)xΔ(G)xΔx(G  . Subtracting )x(G  and using 1)0(G   we get 

))0(G)xΔ(G)(x(G)x(G)xΔx(G  . Dividing by xΔ  and taking the limit of both sides if 

0xΔ0   we arrive at )x(G)0('G)x('G  . )0('F  implies )0('G , therefore 

)x(G)x('G  . This is an ordinary differential equation which is easy to solve. Dividing by 

0)x(G  , 
)x(G

)x('G
, consequently cx)x(Gln  . )x(G  is nonnegative, hence 

cx)x(Gln   and cxe)x(G  . )0(G 1e c0 
 implies 0c   and xe)x(G  . 

Finally, xe)x(F1  , xe1)x(F   and xe)x('F)x(f  . 

 

Remarks 
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 The assumptions of the previous statement can be slightly relaxed. 

 The forever young property can be assumed of the lifetime of appliances when the fault 

is not caused by age. For example, if   is the age of a person, then 

)10(P)90|100(P  . In other words, if he survives 90 years, the probability that he 

survives 10 more years is obviously less than the probability of surviving 10 years from the 

birth. Examples of exponentially distributed random variables are punctures. Punctures are 

usually caused by a pin. I we do not run into a pin until x, then the wheel do not remember the 

previous passage. 

 The forever young property of the exponentially and geometrically distributed random 

variables indicates that the geometrical distributed random variable is the discrete counterpart 

of the exponentially distributed random variable. This is also supported by the formulas 

p

1
)(E   and 




1
)(E , respectively. 

 

Example 

 

E2. The distances between the consecutive punctures are independent exponentially 

distributed random variables. The probability that there is no puncture until 20000 km equals 

0.6. Compute the probability that there is no puncture until 50000 km.  

Let 1  be the distance until the first puncture. Because of the forever young property, we can 

suppose that the distance begins at 0. Actually we do not know the expectation and the value of 

the parameter, but we know that 6.0)20000(P 1  , This is suitable for determining the value 

of the parameter   as follows. 6.0e1)20000(F)20000(P 20000
1   . 4.0e 20000 

, 

which implies 
51058.4

20000

4.0ln 


 . Returning to the question, 

  101.0e11)50000(P 500001058.4
1

5

  

. 

Compute the expectation of the distance between consecutive punctures. 

21827
1

)(E 1 


 .  

Given that the first puncture does not happen until 50000 km, compute the probability that it 

happens within 70000 km.  

6.0e1)2000(F)2000(P)50000|70000(P 2000

111   . 

Given that the first puncture happens within 50000 km, compute the probability that it is until 

10000 km. 

408.0
)50000(F

)10000(F

)50000(P

)10000(P

)50000(P

)5000010000(P
)50000|10000(P

1

1

1

11
11 









 . 

 

Theorem (Relationship between exponentially distributed random variables and Poisson 

distributed random variables) 
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Let i , ,...3,2,1i   be independent exponentially distributed random variables with parameter 

 , T0  fixed and 







































.

.

.

Tifk

.

.

Tif2

Tif1

Tif0

1k

1i

i

k

1i

i

32121

21

1

T . 

Then, T  is a Poisson distributed random variable with parameter T*  . 

 

The proof of this statement is omitted as it requires the knowledge of the distribution of the 

sum of exponentially distributed random variables. 

 

E3. Returning to Example E2, compute the probability that until 100000 km there 

are at most 2 punctures. 

Denote the number of punctures within T (km) by T . Applying the previous statement 100000  

is a Poisson distributed random variable with parameter 

 * .58.41058 4. 100000100000 -5   

Consequently,  )2(P)1(P)0(P)2(P 100000100000100000100000  

165.0e
!2

58.4
e

!1

58.4
e

!0

58.4 58.4
2

58.4
1

58.4
0

  .  

How many punctures happen until 200000 km most likely? 

200000  is also a Poisson distributed random variable with parameter 

16.91058.4200000 5  
** . As the parameter **  is not an integer, there is a unique 

mode, namely     916.9**  . 

 

Theorem 

If   is an exponentially distributed random variable with parameter  , then   1  is 

geometrically distributed random variable with parameter  e1p . 

Proof As 0 ,    takes nonnegative integer values, and   takes positive integer values.  

    p0e1)0(F)1(F)10(P)0(P)11(P)1(P 1   . 

         12 e1e1)1(F)2(F)21(P)1(P)21(P)2(P  

)p1(p)e1(eee 2   . 

In general, 

 

         )1k(k e1e1)1k(F)k(F)k1k(P)1k(P)k1(P)k(P

 

    pp1)e1(e)e1(e
1k1k)1k( 
 , which is the formula to be proved. 
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Example 

 

E4. Telecommunication companies invoice the fee of calls on the basis of minutes. 

It means that all minutes which have been begun have to be paid completely. If the duration of 

a call is an exponentially distributed random variable with expectation 2 minutes, how much is 

the expectation of its fee if every minute costs 25HUF.  

Let   denote the duration of a call. The minutes invoiced are   1 . The previous 

statement states that   is a geometrically distributed random variable with parameter 

393.0e1e1p 5.0   . Consequently, 54.2
393.0

1

p

1
)(E  . The expectation of the 

fee of a call is   54.6354.225E25)25(E  . 

 

g.3. Normally distributed random variables 

 

In this subsection we deal with the most important continuous distribution, namely the normal 

distribution. First of all we investigate the standard normal one. 

 

Definition The continuous random variable   is a standard normally distributed random 

variable, if its probability density function is 2

x2

e
2

1
)x(f




 , Rx . 

Remarks 

 The inequality )x(f0   holds for any value of Rx , and it can be proved that 








2dxe 2

x2

. Consequently, 1dxe
2

1
2

x2











. This means that )x(f  is really a 

probability density function.  

 The above function is often called as the Gauss curve and is denoted by )x( . 

 The function )x(  is obviously symmetric to the axis x. 

 Standard normally distributed random variables can take any value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure g.7. The probability density function of a standard normally distributed random 

variable 

 The graph of the probability density function can be seen in Fig.g.7. 
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 The cumulative distribution function of a standard normally distributed random 

variable is 









x

2

tx

dte
2

1
dt)t(f)x(F

2

, which is the area under the Gauss-curve presented 

in Fig.g.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure g.8. The value of the cumulative distribution function as the area under the 

probability density function 

 

 

 The cumulative distribution function of standard normally distributed random variables 

is denoted by )x(Φ (capital F in Greek alphabet). Its graph can be seen in Fig.g.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure g.9. The cumulative distribution function of standard normally distributed random 

variables 

 

 We use the following notation: )1,0(N~ . N refers the name “normal”, the numbers 0 

and 1 are parameters whose meanings will be explained later. 

 The function Φ  can not be written in a closed form, its values are computed numerically 

and are included in a table (see Table 1 at the end of the booklet and Table g.2.) 
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x (x)Φ 

 

0 0.5 

1 0.8413 

2 0.9773 

3 0.9986 

 

Table g.2. Some values of the cumulative distribution function of standard normally distributed 

random variables 

 

Data from this table can be read out as follows: 5.0)0(Φ  , 8413.0)1(Φ  , 9773.0)2(Φ  , 

9986.0)3(Φ  . 

 

Remarks 

 

 The tables do not contain arguments greater than 3.8. As the cumulative distribution 

function is monotone increasing and it takes values at most 1, furthermore 99993.0)8.3(Φ  , 

1(x)Φ9999.0   holds in case of x8.3  . We use 1)x(Φ   for x8.3  . 

 The tables do not contain arguments less than 0, because the values at negative 

arguments can be computed as follows. 

 

Theorem 

If x0  , then )x(Φ1)x(Φ  . 

Proof The proof is based on the symmetry of the probability density function. 

)x(Φ1dte
2

1
1dte

2

1
)x(Φ

x

2

tx

2

t 22







 









. 

Expressively, stripped areas of the Fig.g.9. are equal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure g.9. Equal areas under the standard normal probability density function due to its 

symmetry 

 

Obviously, )x(Φ1)x(Φ   holds for any value of x. 

 

Theorem 

If )1,0(N~ , then )1,0(N~  holds, as well. 

Proof Let  .  
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).x(Φ))x(Φ1(1)x(Φ1)x(P)x0(P)x(P)x(P)x(F   

Now 2

x2

e
2

1
)x('Φ)x('F)x(f






 , which proves the statement. 

 

Numerical characteristics of standard normally distributed random variables: 

 

Expectation 

0)(E  . It follows from the fact that 2

x

2

x 22

edxex


  and  

0e
2

1
lime

2

1
limdxe

2

1
xdx)x(fx)(E 2

x

x

2

x

x

2

x 222





























  .  

 

Dispersion 

1)(D  . As a proof, recall that    222 )(EE)(D  . Applying partially integration 

























 

























 dxe

2

1
e

2

1
xdxe

2

1
xxdxe

2

1
xdx)x(fx)(E 2

x

2

x

2

x

2

x

222

2222

. 

Recalling L’ Hopital’s rule we get  

0e
2

1
xlime

2

1
xlim 2

x

x

2

x

x

22









 






. Moreover, 1dxe

2

1
2

x2











, as 2

x2

e
2

1 


 is a 

probability density function. Consequently,     101)(EE)(D 2222  , which proves 

the statement. 

 

Mode 

Local maximum of   is at 0x  , consequently the mode is zero. 

Median 

0me  . We have to find the value x for which 5.0)x(Φ  . Using the table of cumulative 

distribution function of standard normal distribution, we get 0x  . 

 

Example 

E1.  Let   be a standard normally distributed random variable. Compute the probability 

that   is less than 2.5.  

P( 9938.0)5.2(Φ)5.2  . 

Compute the probability that   is greater than -1.2. 

8849.0)2.1(Φ))2.1(Φ1(1)2.1(Φ1)2.1(P  . 

Compute the probability that   is between -0.5 and 0.5. 

  .3830.016915.021)5.0(Φ2)5.0(Φ1)5.0(Φ)5.0(Φ)5.0(Φ)5.05.0(P 

At most how much is   with probability 0.9?  

x=? 9.0)x(P  . 9.0)x(Φ)x(P  . We have to find the value 0.9 in the columns of Φ , 

as the value of the function equals 0.9. Therefore, .28.1x   

At least how much is   with probability 0.95?  
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x=? 95.0)x(P  . 05.0)x(Φ95.0)x(Φ1  . As 5.0)x(Φ   and Φ  is monotone 

increasing function, 0x  . If we denote ax   , a0   and 05.0)a(Φ1)a(Φ)x(Φ  . 

This implies 95.0)a(Φ   and 1.645a  .Finally, we end in 645.1x  . 

Determine an interval which is symmetric to 0 and in which the values of   are situated with 

probability 0.99. 

x=? 99.0)xx(P  . 99.01)x(Φ2)x(Φ)x(Φ)xx(P  . This implies  

995.0)x(Φ   and 58.2x  . The interval is )58.2,58.2(  

 

Now we turn to the general form of normal distribution. 

 

Definition Let   be a standard normally distributed random variable, Rm  and 0 . The 

random variable m  is called a normally distributed random variable with 

parameters m  and  . We use the notation ),m(N~  . 

 

Remarks 

 With 0m   and 1 ,  m  is a standard normally distributed random 

variable. It fits with the notation )1,0(N~ . 

   is a linear transformation of a standard normally distributed random variable. 

 If 0a   and Rm , then m))(a(ma  . Recall that )1,0(N~  holds as 

well, furthermore a0  , consequently   is a normally distributed random variable with 

parameters m  and a . 

 

Theorem Let   be a standard normally distributed random variable, Rm  and 0 . The 

cumulative distribution function of the random variable m  is )
mx

(Φ)x(F



  and 

the probability density function of   is 

 
2

2

2

mx

e
2

1
)x(f 







 . 

Proof )
mx

()
mx

(P)xm(P)x(F








 .  

 
2

2

2

mx

' e
2

11
)

mx
(

1
)

mx
()x('F)x(f 






























 . 

 

The graph of the cumulative distribution functions can be seen in Fig.g.10. In all cases 0m  , 

the red line is for 1 , the yellow line is for 2 , the blue line is for 4  and the green 

line is for 5.0 . 
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Figure g.10. The cumulative distribution functions for normally distributed random variables 

for different values of   

 

The graph of the probability density functions be seen in Fig.g.11. In all cases 0m  , the red 

line is for 1 ,  the yellow line is for 2 , the blue line is for 4  and the green line is for 

5.0 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure g.10. The probability density functions for normally distributed random variables for 

different values of   

 

One can notice that if the value of   is large, then the curve is flat, if the value of   is small, 

then the curve is peaky. It is the obvious consequence of the fact that the peak is at height of 

2

1
. 

If we want to present the role of the parameter m, then we can notice that the probability 

density function is symmetric to m. In Fig.g.11., the parameter   equals 1, red line is for 

0m  , blue line is for 1m   and green line is for 1m  . 
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Figure g.11. The probability density functions for normally distributed random variables for 

different values of m  

 

 

 

Numerical characteristics of normally distributed random variables: 

 

Expectation 

If ),m(N~  , then m)(E  . It follows from the fact that  

mm0m)(E)m(E)(E  . 

 

Dispersion 

If ),m(N~  , then )(D . To prove it, take into consideration that 

 1)(D)m(D)(D .  

 

Summarizing, the first parameter is the expectation, the second one is the dispersion. 

 

Mode 

Local maximum of )x(f  is at mx  , consequently the mode is m. 

 

Median 

mme  . We have to find the value x for which 5.0)x(F  .This means 5.0)
mx

(Φ 



. It 

implies mx0
mx





. 

 

Example 

E2. Let )2,5(N~ . Compute the probability that   is less than 0.  

0062.09938.01)5.2(Φ1)5.2(Φ)
2

50
(Φ)x(F)0(P 


  . 

Compute the probability that the value of   is between 0 and 6.  

.6853.00062.06915.0)5.2(Φ)5.0(Φ)
2

50
(Φ)

2

56
(Φ)0(F)6(F)60(P 





 

Compute the probability that the value of    is greater than 6.  
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3085.06915.01)5.0(Φ1)
2

56
(Φ1)6(F1)6(P 


  . 

At most how much is the value of   with probability 0.8? 

x=? 8.0)x(P  . 8.0)
2

5x
(Φ 


. Since 8.0)84.0(Φ  , therefore 84.0

2

5x



. This implies 

68.6284.05x  . 

 

At least how much is the value of   with probability 0.98? 

x=? 98.0)x(P  . 98.0)
2

5x
(Φ1)x(P 


 . 02.0)

2

5x
(Φ 


. If we introduce the new 

variable 
2

5x
y


 , we reduce our task to determine the solution of 02.0)y(Φ  . This type of 

problem was previously solved. We can first realize that y  is negative and if ay  , then 

.98.0)a(Φ   Consequently, 06.2a  , 06.2y  , that is 06.2
2

5x



. Finally, arranging the 

equation we get 88.0206.25x  . 

Compute the value of the probability density function at 6. 

352.0e
2

1
)6(f

2

2

22

)56(




 



 . 

 

Theorem (k times   rule) If ),m(N~  , then 1)k(Φ2)kmkm(P  . 

Proof The proof is very simple, just compute the probability. 









   ) 

mkm
(Φ  ) 

mkm
(Φ )km(F)km(F)kmkm(P

1)k(Φ2))k(Φ1()k(Φ)k(Φ)k(Φ  . 

 

Remarks 

 Substituting the values 3,2,1,0k   into the previous formula, we get  

6826.018413.021)1(Φ2)mm(P  , 

9544.019772.021)2(Φ2)2m2m(P  , 

9974.019987.021)3(Φ2)3m3m(P  . 

 The last equality states that a normally distributed random variable takes its values in the 

interval which is symmetric to the expectation and has radius 3 times dispersion with 

probability almost 1. 

 The probability density function with parameters 1m   and 1 , for k=1,2 present 

the k times   rule (see Fig.g.12.). 
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Figure g.12.The areas under the probability density function 

 

Example 

 

E3. Let )12,3(N~ . Determine an interval, symmetric to 3 , in which the values of 

  are situated with probability 0.99! 

Apply the “k times   rule”. As the required probability equals 0.99, consequently, 

99.01)k(Φ2  . This implies 995.0)k(Φ  , and as a consequence, 58.2k  . Therefore the 

interval has the form )96.33,96.27()58.2123,58.2123()km,km(  . It is 

also presented in Fig.g.13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure g.13. The area 0.99 under the probability density function 

 

Theorem If   is a normally distributed random variable, then so is its linear transformation. 

Namely, if ),m(N~  , 0a  , then )a,bma(N~ba  . 

Proof 

Recall the definition of the normally distributed random variable, m  with 

)1,0(N~ . .bamab)m(aba   If a0  , then )a,bam(N~  , if 

0a  , then )a,bam(N~  . Summarizing these formulas we get the statement to be 

proved. 
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Theorem If ),m(N~ 111  , ),m(N~ 222   furthermore 1  and 2  are independent, then 

),mm(N~ 2
2

2
12121  . 

 

Remarks 

 Although we can not prove the previous statement, notice, that the parameters are 

calculated according to the properties of expectation and variance. The first parameter is the 

expectation. Expectation of the sum is the sum of expectations. The second parameter is the 

dispersion. Dispersions can not be given, but variances can. )(D)(D)(D 2
2

1
2

21
2  , 

therefore ))(D 2
2

2
121  . 

 As a consequence of the previous statement we emphasize the following: If i  

n,...,3,2,1i   are independent identically distributed random variables, ),m(N~i  , then 

)n,mn(N~
n

1i

i


 . 

 If i  n,...,3,2,1i   are independent identically distributed random variables, 

),m(N~i  , then 






 




n
,mN~

n

n

1i

i

. 

 

Example 

 

E4. The weights of adults are normally distributed random variables with 

expectation 75 kg and dispersion 10 kg. The weights of 5 year old children are also normally 

distributed random variables with expectation 18 kg and dispersion 3 kg. Compute the 

probability that the average weight of 20 adults is less than 70 kg. 

)10,75(N~a , )2,18(N~c . )
20

10
,75(N~

20

20

1i

i,a




,   

0127.09873.01)236.2(Φ1)236.2(Φ)
236.2

7570
(Φ)70(F)70

20
(P

20

20

1i

i,a

20

1i
i,a















. 

Give an interval symmetric to 75 kg in which the average weight of 10 adults is with 

probability 0.9.  

)
10

10
,75(N~

10

20

1i

i,a




. To answer the question apply the “k times   rule” with expectation 75  

and dispersion 10/10 . 9.01)k(Φ2   implies 645.1k  , therefore the required interval has 

the form )2.80,8.69()16.3645.175,16.3645.175(  . 

At most how much is the total weight of 6 adults in the elevator with probability 0.98?  

x=? 



6

1i

i,a 98.0)x(P . )106,756(N~
6

1i

i,a 


. It means that 98.0)x(Φ 6

1i
i,a





. 

98.0)
495 24.

450x
(Φ 


. Consequently, 06.2

495 24.

450x



, finally  
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kg500kg46.50006.2495.24450x  . 

Compute the probability that the total weight of an adult and a 5 year old child is more than 100 

kg, if their weights are independent. 

)310,1875(N~ 22
ca  ,

2514.07486.01)
44.10

93100
(1)100(F1)100(P

caca 


  . 

 

E5. The daily return of a shop is a normally distributed random variable with expectation 1 

million HUF and dispersion 0.2 million HUF. Suppose that the returns belonging to different 

days are independent random variables. Compute the probability that there is at most 0.1 

million HUF difference between the returns of two different days.  

Let 1  denote the return of the first day, 2  denote the return of the second day. )2.0,1(N~1 , 

)2.0,1(N~2 .  The question is )1.0(P 21  . 

)1.0(F)1.0(F)1.01.0(P)1.0(P
21212121   . 

If we knew the cumulative distribution function of 21  , then we could substitute 0.1 and -

0.1 into it. 

As )( 2121  , furthermore )2.0,1(N~2  , )2.02.0,11(N~ 22
21  . 

Consequently, )283.0,0(N~21  . This implies )
283.0

0x
(Φ)x(F

21


 . 

Finally, 2762.016381.021)
283.0

1.0
(Φ2)

283.0

1.0
(Φ)

283.0

1.0
(Φ)1.0(P 21 


 . 

Compute the probability that the return of a fixed day is less than the 80% of the return of 

another day. 

?)8.0(P 21   )0(F)08.0(P)8.0(P
21 8.02121  . 

If we knew the cumulative distribution function of 21 8.0  , then we could substitute 0 into 

it. 

)2.08.0,18.0(N~2  , )2.08.0,18.0(N~2  . 

  )2.08.02.0,8.01(N~8.0
22

21  . Consequently, )256.0,2.0(N~8.0 21  .  

Now we can finish the computations as follows: 

2173.0)78.0()
256.0

2.00
()0(F)8.0(P

2
1 8.021 




 . 

 

g.4. Further random variables derived from normally distributed ones 

In statistics, there are many other distributions which originate from normal ones. Actually we 

investigate the chi-square and Student’s t distributions. We will use them in chapter j, as well. 

 

Definition Let )1,0(N~ . Then 2  is called a chi-squared distributed random variable 

with degree of freedom 1 and it is denoted by 2
1~   

 

Theorem The cumulative distribution function of 2  is 











x0if1)x(Φ2

0xif0
)x(F . 
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The probability density function of   is 













 

 x0
x

1
e

2

1

0xif0

)x(f
2

x . 

Proof  

All of  the values of 2
1  are nonnegative, consequently, 0)x(F 2

1




, if 0x  . For positive x  

values,  

)x(Φ)x(Φ)x(F)x(F)xx(P)x(P)x(P)x(F 2  
 

.1)x(Φ2 

 
 

 



















 



x0ife

x2

1

x2

1
e

2

1
2x)x('Φ2

0xif0

)x(F)x(f
2

x

2

x

'

' 2
. 

 

The graph of the above cumulative distribution function and the probability density function 

can be seen in Fig. g.14. 
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Figure g.14. The graphs of the cumulative distribution function and the probability 

density function of 2
1  distributed random variables 

 

Numerical characteristics of chi-squared distributed random variables with 

degree of freedom 1: 

 

Expectation 

1)(E  , which is a straightforward consequence of   101)(E)(D)(E
222  . 

 

Dispersion 

2)(D  , which can be computed by partial integration. 

 

Mode 

There is no local maximum for the probability density function. 

 

Median 

675.0me  . We have to solve the equation 5.01)x(Φ2  , that is .75.0)x(   It is 

satisfied by 675.0x  , x=0.456. 
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Definition Let n,..,3,2,1i),1,0(N~i  , and let i  be independent. Then 



n

1i

2
i  is called a 

chi-squared distributed random variable with degree of freedom n and is denoted by 
2
n~   

 

Theorem 

The probability density function of a 2
n  distributed random variable is 





















otherwise0

x0if

)
2

n
(Γ2

ex

)x(f
2

n

2

x
1

2

n

. 

The function Γ  is the generalization of the factorial for non-integer values. )5.0(Γ , 

furthermore )x(x)1x(  .  

 

The graph of the probability density function of a 2
n  distributed random variable with degree 

of freedom 5n   can be seen in Fig.g.15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure g.15. The graph of the probability density function of a 2
5  distributed random 

variables 

 

Remarks 

 For n=2, the probability density function coincides with that of an exponentially 

distributed random variable with parameter 5.0 . 

 For general values of n , the explicit form of the cumulative distribution function of 
2
n  is quite complicated, it is not used usually. The values for which the cumulative 

distribution function reaches certain levels are included in tables used in statistics. These tables 

are used in chapter j, as well. For example, if we seek the value x for which 

95.0)x(P 2
5  holds, we get 07.11x  (see Table 3 at the end of the booklet). 

Usually, the real number x for which  )x(P  holds, can be found in tables and is 

denoted by 
2

,n   (see Table 2 at the end of the booklet). 
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Figure g.15. The value exceeded with probability 0.05 in case of 2
5  

 

Numerical characteristics of chi-squared distributed random variables: 

 

Expectation 

n)(E  , which is a straightforward consequence of 



n

1i

2
i

n

1i

2
i n)(E)(E . 

 

Dispersion 

n2)(D  , which follows from 



n

1i

2
i

2
n

1i

2
i

2 n2)(D)(D . 

 

Mode 

There is no mode if 2n  , and it is 2n  , if n2 . 

 

Median  

It can not be expressed explicitly, it is about 
3)

n9

2
1(n   

 

Definition Let n21 ,...,,   and   be independent standard normally distributed random 

variables. The random variable 









n

1i

2
i

 is called a Student’s t distributed random 

variable with degree of freedom n and is denoted by n~  . 

 

Theorem 

The probability density function of a Student’s t distributed random variable with degree of 

freedom n is 
2

1n

2

n
n

x
1

)
2

n
(Γn

)
2

1n
(Γ

)x(f























 . 

Remarks 
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 If n is even, then the normalising factor is 
24)...4n)(2n(

35)...3n)(1n(

n2

1




, if n is odd, then it 

is 
35)...4n)(2n(

24)...3n)(1n(

n

1






. 

 If n=1, then 
21

x1

11
)x(f





 . The random variable with this probability density 

function is called a Cauchy distributed random variable. 

 If n , then 2

x
2

1n

2
2

e
n

x
1



















 , consequently )x(e

2

1
)x(f 2

x

n

2








 for 

any values of x. 

 The probability density functions of n  distributed random variable can be seen in 

Fig.g.16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure g.16. The probability density functions of n  distributed random variable for 

1n  (black), 5n  (red) and 100n  (blue) 

 

 The closed form of the cumulative distribution functions do not exist. The values for 

which the cumulative distribution function reach different levels are included in tables used in 

statistics (see Table 2 at the end of the booklet). These tables are used in chapter j, as well. 

Supposing n~  , the value, for which  1)xx(P  and  )x(P  is usually 

denoted by ,nt . For example, if 2.0  and 5n  , 476.1t 2.0,5  . It is also presented in Fig. 

g.17.  
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Figure g.17. The bounds for 5  distributed random variables with probability 0.8 

 

 

Numerical characteristics of Student’s t distributed random variable: 

 

Expectation 

If  n~  , then 0)(E  , if n1 . It is the straightforward consequence of the symmetry of the 

probability density function. If 1n  , expectation does not exist. 

 

Dispersion 

n

2n
)(D


 , if n2 , otherwise it does not exist. It can be computed by partial integration. 

 

Mode 

It is always zero. 

 

Median 

It is always zero, due to the symmetry of the probability density function. 
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h. The law of large numbers 

 

The aim of this chapter 

 

In this chapter we present asymptotical theorems which characterize the 

behaviour of the average of many independent identically distributed 

random variables. We return to the relative frequency, as well, and we 

prove that it is about the probability of the event. These theorems are the 

theoretical basis of the polls and computer simulations. 

 

Preliminary knowledge 

 

Expectation, dispersion and their properties. Binomially distributed 

random variables. 

 

Content 

 

h.1. Markov’s and Chebisev’s inequalities. 

 
h.2. The law of large numbers. 

 

h.3. Bernoulli’s theorem. 
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h.1. Markov and Chebisev’s inequalities 

First we provide estimations for certain probabilities. Although these estimations are quite 

rough, they are appropriate to be applied for proving asymptotical statements. Their main 

advantage is that they do not require the knowledge of the distribution of the random 

variable, they use only the expectation and dispersion. 

 

Theorem (Markov’s inequality) 

Let   be a random variable all of whose values are nonnegative and )(E   exists. Then, for 

any 0  the following inequality holds: 





)(E
)(P . 

Proof 

The proof is based on the following:  1 . Recall that 





holdnotdoesAif0

holdsAif1
A1 . 

This implies 









holdsif0

holdsif1
1 .  

Multiplying by   we get 







 

holdsif0

holdsif
1 . Taking into account the non-

negativity of  , this means that   1 . Applying the property of expectation that if 

21   then )(E)(E 21  , we can see that )(E)(E)(E   11 . Recalling that 

)A(P)(E A 1 and dividing both sides by 0  the inequality becomes 





)(E
)(P . 

This is the statement to be proved. 

 

Theorem (Chebisev’s inequality) 

Let   be a random variable those dispersion exists. Then for any 0 , the following 

inequality is satisfied: 
2

2 )(D
))(E(P




 . 

Proof Note that  )(E  holds if and only if   22
)(E  . Consequently, 

  ))(E(P))(E(P 22
 . Apply Markov’s inequality with  2)(E   

and 
2 . The non-negativity obviously holds, and   )(D))(E(E)(E 22

 . 

Therefore, 
2

2 )(D)(E
)(P)))(E(P









 , and this is the statement to be 

proved. 

 

Remark 

 Chebisev’s inequality can be also written in the following form: 

2

2 )(D
1))(E(P




 .  ))(E   is the complement of the event 

  )(E . If x)A(P  , then x1)A(P1)A(P  , which implies the statement. 
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 Chebisev’s inequality can be also written as follows: 
2k

1
))(kD)(E(P   

and 
2k

1
1))(kD)(E(P  . Substitute )(kD  . This can be done with 

)(D
k




 , 

supposing 0)(D  . If 0)(D  , then on the basis of the property of dispersion, 

1))(E(P  , therefore 0))(kD))(E(P   which is less than 
2k

1
 for any value 

of k . 

 The inequality 
2k

1
))(kD)(E(P   expresses that the random variable   

takes its values outside the neighbourhood with radius )(kD   of its expectation with 

probability not larger than 
2k

1
. Large deviation is with small probability. 

 The inequality 
2k

1
1))(kD)(E(P   states that a random variable   takes 

its values in the neighbourhood with radius )(kD   of its expectation with probability no 

smaller than 
2k

1
1 . Small deviation is with large probability.  

 The proofs do not use the distribution of the random variable. 

 If we know the distribution of  , the probabilities ))(kD)(E(P   and 

))(kD)(E(P   can be computed explicitly. 

 

Example 

 

E1. Let   be a Poisson distributed random variable with parameter 2 . 

Compute the probability that the values of   are in the neighbourhood with radius )(D   of 

its expectation.  

2)(E  , 41.12)(D  . )(D)(E   means that 

)(D)(E)(D)(E  . Explicitly, 2222  , that is 41.359.0  . 

Now 722.0e
!3

2
e

!2

2
e

!1

2
)3(P)2(P)1(P)41.359.0(P 2

3
2

2
2

1

  .  

E2. Let   be a uniformly distributed random variable in ]b,a[]2,1[  . 

Compute the probability that   takes its value in the in the neighbourhood with radius 

)(D5.1   of its expectation.  

5.0
2

21

2

ba
)(E 





 . 866.0

32

3

12

)1(2

12

ab
)(D 





 . 299.1)(D5.1  . 

The interval is )799.1,799.0()299.15.0,2999.15.0(  . The question can be written 

as )799.0(F)799.1(F)799.1799.0(P))799.1,799.0((P  . Recalling that 



























x2bif1

2bxa1if
3

1x

ab

ax

1axif0

)x(F , 
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we get  866.0
3

1799.0

3

17999.1
)799.1799.0(P 





 . 

We note that one can check that the result ends in the same probability independently of the 

endpoints of the interval ]b,a[ . 

 

E3. Let   be an exponentially distributed random variable. Determine the 

interval symmetric to expectation of   in which the values of   are situated with 

probability 0.99. 

Let the radius of the interval be )(kD  . Since )(D
1

)(E 


 , the interval looks like 


















1
k

1
,

1
k

1
. 

)
1

k
1

(F)
1

k
1

(F
1

k
11

k
1

P)
1

k
1

,
1

k
1

(P















































 . 

Recalling that 









 x0ife1

0xif0
)x(F

x
, )k1(

)
1

k
1

(

e1e1)
1

k
1

(F 










. 

The value of  )
1

k
1

(F




 depends on the sign of its argument. One can notice that 

0
1

k
1






, if k1  and 







1
k

1
0  if 1k  . If 1k  , then 

99.0865.0e10)
2

(F)
2

0(P))
1

1
1

,
1

1
1

((P 2 













 

. This implies 

k1 . Therefore, 0)
1

k
1

(F 




. Consequently,  

  99.0e1)
1

k
1

,
1

k
1

(P k1 















  , 

  01.0e k1 
, 605.401.0lnk1  , 

605.3k  . As a check, 99.001.010e1)
1

605.3
11

605.3
1

(P 605.4 












, 

which was the requirement. 

We note that the value of k is independent of the value of the parameter  .  

 

E4. We do not know the distribution of a random variable  , but we know its 

expectation and dispersion, 200)(E   and 10)(D  . Construct an interval in which the 

values of   are situated with probability at least 0.95! 

According to the Chebisev’s inequality. If 95.0
k

1
1

2
 , then 472.4k  , and the interval 

looks like    72.244,28.155472.410200,472.410200  . 

 

E5. Let   be a binomially distributed random variable with expectation 200 and 

dispersion 10. Compute the probability that values of   are situated in the neighbourhood 

of its expectation with radius )(D472.4  . 
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As   is binomially distributed with parameters n  and p , 200pn)(E  , 

10)p1(np)(D  , consequently 5.0
200

100
p1  , which implies 5.0p   and 

400n  . The question is )10472.420010472.4200(P   

)72.24428.155(P  .   takes only nonnegative integer values, hence 

)244(P...)157(P)156(P)72.24428.155(P  . As   is a binomially 

distributed random variable,   k400kknk 5.05.0
k

400
p1p

k

n
)k(P 


















 . 

244400244157400157156400156 5.05.0
244

400
...5.05.0

157

400
5.05.0

156

400
)72.24428.155(P  




























99999.0 . 

 

E6. Let   be a random variable with expectation 200 and dispersion 10. 

Determine the probability that the values of   are situated in the interval )225,175( .  

As we do not know the distribution of  , we can not determine the required probability 

exactly, but we can give an estimation for it. The interval )225,175(  is symmetric to the 

expectation 200, it can be written as  

 )(Dk)(E),(Dk)(E)105.2200,105.2200(   with 5.2k  . 

2k

1
1))(kD)(E(P    implies 84.0

5.2

1
1)225175(P

2
 . 

 

E7. Let   be binomially distributed random variable with expectation 200 and 

dispersion 10. Compute the probability that the values of   are situated in the interval 

)225,175( . 

 )224(P...)177(P)176(P)225175(P  

9858.05.05.0
224

400
...5.05.0

177

400
5.05.0

176

400 176224223177224176 

























, which is much 

more than the estimation 0.84 given by Chebisev’s inequality. We point out that actually we 

know the distribution of the random variable, and it is an extra information to E6. 

 

E8. Let   be a normally distributed random variable with expectation 200 and 

dispersion 10. Compute the probability that the values of   are situated in the interval 

)225,175( . 

Now, )10,200(N~ ,  and )
10

200x
(Φ)x(F


 . Now  )175(F)225(F)225175(P  

9876.01)5.2(Φ2)5.2(Φ)5.2(Φ)
10

200175
(Φ)

10

200225
(Φ 





 . We note that 

this probability is also much more than the estimation given by Chebisev’s inequality due to 

the extra information of distribution. Furthermore it is close to the probability computed in 

the previous example. The reason of this latter phenomenon will be given in the next section 

i. 
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h.2. The law of large numbers 

In this subsection we provide a form the law of large numbers which is easy to prove and 

which can give estimations for the probability of large deviations. This statement is the basis 

of computer simulations. One can state stronger forms of the law of large numbers and one 

also can give statements under weaker assumptions, as well. 

 

Theorem Let ,...,....,, n21  be independent identically distributed random variables with 

m)(E i   and  )(D i . Then , for any 0 ,  

1m
n

P

n

1i

i


























 , if n , 

and  

0m
n

P

n

1i

i


























  if n . 

Proof 

Let n
n

n

1i

i




. Now m)
n

(E

n

1i

i




  and 

nn
D

n

1i

i

























 . Apply Chevisev’ inequality for 

n . This gives us  
2

n
2

n

)(D
mP




 , which implies 

2

2

n

1i

i

n
m

n
P





























 . As 

  and   are fixed, 0
n 2

2





, if n , which coincides with the second part of the 

statement. The formula 01
n

1m
n

P
2

2

n

1i

i






























  is the first part of the 

statement. 
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Example 

 

E1.  Let l  ,… 1000  be independent uniformly distributed random variable in 

]1,0[ . Give an estimation for the probability 
























 0.055.0

1000
P

1000

1i

i

. 

Apply the above inequality 
2

2

n

1i

i

n
m

n
P





























 . 

Now m5.0)(E i  ,  2887.0
12

1
)(D i . Substitute 05.0 , 

033.0
05.0100012

1

n 22

2








. 

Consequently, 033.00.055.0
1000

P

1000

1i

i


























 . 

At most how much is the difference between the average and 0.5 with probability 0.95? 

The question is the value of  , for which 95.0m
n

P

n

1i

i


























 . As we do not know the 

exact distribution of 
n

n

1i

i




, we can not compute the exact probability, but we are able to 

estimate the probability. 
2

2

n

1i

i

n
1m

n
P





























 ,  if 95.0

n
1

2

2





 , then 
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95.0m
n

P

n

1i

i


























  holds. 95.0

n
1

2

2





  implies 

2

05.0100012

1



, consequently 

-32 10×6667 1.  , 041.0 . 

 

How many random variables have to be averaged in order to assure that the difference 

between the average and 0.5 should be at most 0.01 with probability 0.98?  

The question is the value of n for which 98.001.0m
n

P

n

1i

i


























 . Applying the formula 

2

2

n

1i

i

n
1m

n
P





























  again, substitute 98.0

n
1

2

2





  and 01.0 . 

n
02.001.012

1

01.0 22

2








, 41667n  . 

How many random variables have to be averaged in order to assure that the difference 

between the average and 0.5 should be at most 0.005 with probability 0.98? 

If 005.0 , then , n=1.6667×10⁵, which is four times larger than the previous number of 

experiments. If we want to increase the accuracy to the half, we need 22  times more 

experiments. 

 

Remark 

 If we fix the accuracy  , and the value of n , then 
2

2

n

1i

i

n
1m

n
P





























  

gives us an estimation for the probability that the maximal difference between the average 

and the expectation exceeds the accuracy. 
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 If we fix the probability 1  (reliability) and the value of n, then 



 1

n
1

2

2

 

implies 





n

2

. Consequently, the accuracy is proportional to the square root of the 

reciprocal of the number of experiments. 

 If we fix the probability 1  (reliability) and the accuracy  , then 



 1

n
1

2

2

 

implies n
2

2





. This means that the number of experiments is proportional to the square 

of reciprocal of the accuracy. 

 As an illustration of the law of large numbers, we present Table h.1. The random 

variables were uniformly distributed in ]1,0[ , the reliability level was fixed as 95.01   

and 99.01  . The table shows that the difference between the average and the 

expectation is getting smaller and smaller as the number of simulations was increased. The 

total requested time was less than 1 minute. The theoretical accuracy 
05.0n

2




  and 

01.0n

2




  were computed for the reliability levels 0.95 and 0.99, respectively. 

 

n 

n

n

1i

i




 5.0
n

n

1i

i




  

05.0n

2




 

01.0n

2




 

 

10 

 

0.432756065694353 

 

0.067243934305647 

 

0.11785 

 

0.2635 

 

100 

   

0.530898496906201 

   

0.030898496906201 

 

0.03 7268 

 

0.0833 

 

1000 

   

0.506786612848606 

   

0.006786612848606 

 

0.011785 

 

0.02635 

 

10000 

   

0.496156685345852 

   

0.003843314654148 

 

0.003 7268 

 

0.00833 

 

100000 

   

0.500349684591498 

   

0.000349684591498 

 

0.0011785 

 

0.002635 

 

1000000 

   

0.500158856526807 

   

0.000158856526807 

 

0.0003 7268 

 

0.000833 

 

10000000 

   

0.499726933610529 

   

0.000273066389471 

 

0.00011785 

 

0.0002635 

 

100000000 

   

0.499951340487525 

   

0.000048659512475 

 

0.000037268 

 

0.0000833 

 

1000000000 

   

0.499985939301628 

   

0.000014060698372 
 

0.000011785 

 

0.00002635 

 

Table h.1. The averages and their differences from the expectation in case of uniformly 

distributed random numbers 
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Secondly, the random variables were exponentially distributed with expectation 0.1 and 10. 

Table h.2. shows that the difference between the average and the expectation depends on the 

value of the parameter. The parameter is the reciprocal of the dispersion, consequently, the 

larger the dispersion, the larger the difference. 

 

 1.0  1.0  10  10  

N 

n

n

1i

i




 10
n

n

1i

i




  

n

n

1i

i




 1.0
n

n

1i

i




  

10  

6.2277618964331 

 

3.7722381035668 

 

0.09447373893621 

 

0.055276 

 

100 

 

11.756814668520 

   

1.7568146685202 

   

0.10392000570707 

 

0.00392 

 

1000 

   

9.5670585169631 

   

0.4329414830368 

   

0.09696619091756 

 

0.00304 

 

10000 

 

 9.9932193771582 

 

   

0.0067806228417 

   

0.100150679660307 

 

0.00015 

 

100000 

    

9.9708942677258 

 

   

0.0291057322741 

   

0.100629035751288 

 

0.00063 

 

1000000 

   

9.9943200370807 

   

0.0056799629192 

   

0.100039656754390 

 

0.00004 

 

10000000 

   

10.003113268035 

   

0.0031132680354 

   

0.099950954820648 

 

0.00004 

 

100000000 

   

9.9994289522126 

   

0.00057104778736 

 

0.100000507690485 

 

0.00000005 

 

100000000 

   

10.000097147933 

 

0.00009714793369 

 

0.100000729791939 

 

0.00000007 

Table h.2. The averages and their differences from the expectation in case of exponentially 

distributed random numbers 

 

 The law of large numbers is expressed by the sentence that the expectation is about 

the average of many values of random variable. Not exactly the same, but it is not far from 

it. 

 As the expectation is an integral, the law of large numbers provides the possibility 

to compute integrals numerically as follows: Let RH:g  , RH , H]b,a[  , suppose 

that g is continuous in  b,a . Taking into account the properties of the expectation, 

  ))(g(E)ab(dx
ab

1
)x(gabdx)x(gI

b

a

b

a




  , where   is a uniformly 

distributed random variable in ].b,a[ ))(g(E   is about the average of many values of )(g  . 

  can be constructed as a linear transformation of a uniformly distributed random variable 

in [0,1]. Consequently, the algorithm of computing the approximate value of the integral 


b

a

dx)x(g is the following: generate a random number, multiply it by ab   and add “a”, then 
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substitute this value into the function g . Substitution can be made as the all the values we 

get are in the domain of g . Repeat the process n times and take the average of the values. 

Multiplying the average by ab  we get the approximate value of the integral. The 

necessary number of simulations can be determined as follows: 





















 )
abn

)(g

)ab(

dx)x(g

(P)
n

)(g

)ab(dx)x(g(P

n

1i

i

b

a

n

1i

ib

a

 

  



 1

n

))(g(D
ab1

2

i
2

2 . 

As i  is in [a,b], 
2

)x(gmin)x(gmax
))(g(D bxabxa

i



 . 

 
 

2

2

bxabxa2

n

1i

ib

a
n4

)x(gmin)x(gmax
ab1)

n

)(g

)ab(dx)x(g(P1







 


 , which 

implies 
 

n
4

)x(gmin)x(gmax
)ab(

2

2

bxabxa2 



  . 

 

Example 

E2. Compute dx
x1

1
1

0

 
 by random simulation.  

Notice that )
1

1
(Edx

x1

1
1

0





 where   is a uniformly distributed random variable in 

].1,0[  Consequently, generate random numbers with the computer, add 1, and take the 

reciprocal. This process has to be repeated many times. Take the average of the numbers 

you get, and this average is the approximate value of the integral. As ]1,0([ , 

 1,5.0
1

1



, 0625.0

4

5.0
)

1

1
(D

2
2 


. If we fix the reliability level 99.01  , the 

necessary number of simulation is n
01.0

0625.0
2




. If we would like to compute the integral 

with difference less than 0.01, then we have to make n62500100625.0 6   simulations. 

As   2ln1ln2ln)x1ln(dx
x1

1 1x

0x

1

0






 , we can follow the difference between the 

exact value and the approximate value of the integral in Table h.3. 

   is computed as 

















 


n01.0

0625.0

n

2

)x(gmin)x(gmax
2

bxabxa

.  
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N average Difference   

62 0.702627791231423 0.009480610671478 0.3175 

625 0.694214696993436 0.001067516433491 0.1 

6250 0.695502819777260 0.002355639217315 0.03175 

62500 0.693417064411419 0.000269883851474 0.01 

625000 0.693095119363388 0.000052061196558 0.003175 

6250000 0.693134534818101 0.000012645741844 0.001 

62500000 0.693167969772721 0.000020789212776 0.0003175 

625000000 0.693142704368027 0.000004476191918 0.0001 

Table h.3. The averages and their differences from the expectation in case of transformed 

random variables 

 

For all the simulations, the elapsed time was 42.9 seconds.  

E3.  Compute the value of the integral dx
x

1
sin

3

1

  with accuracy  0.01. 

 

Note, that )(E2dx
2

1

x

1
sin2dx

x

1
sin

3

1

3

1

  , where )
1

sin(


  and   is uniformly 

distributed random variable in ]3,1[ . 1
x

1
sin1  , 

 
1

4

)1(1
)

1
(sinD

2
2 





, 

2

3

1

n

1i i

n

1
41)dx

x

1
sin

n

1

1

2(P





 

 . 99.0

n

1
41

2



  and 01.0  implies 

4000000n  .We can follow the average and the theoretical accuracy as the function of the 

number of simulations in Table g.4. Elapsed time, together for all simulations, was 36.82 

seconds. 

 

n average   

40 4.044413814196310 3.162 

400 3.124480498240279 1 

4000 3.266154820794264 0.3162 

40000 3.241221397791890 0.1 

400000 3.252187207202902 0.03162 

4000000 3.251025444611742 0.01 

40000000 3.251126290354754 0. 003162 

400000000 3.250561315440294 0.001 

Table g.4. Averages of random variables given by )
1

sin(


  and the theoretical accuracy 

We note that better estimations for the variance can be also given, we used 1ysin1   for 

the sake of simplicity. 

 

E4. Compute dxe

100

100

2

x2






 by random simulation. 
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Note that )e(E200dxe 2

100

100

2

x 22 





 where   is a uniformly distributed random variable in 

]100,100[ . As 1e0 2

2





 
4

1
)e(D 22

2





,  

2

2

100

100

2

x

n

1i

2

n4

1
2001)dxe

n

e

200(P

2

i
2


 











. 99.0
n4

1
100001

2



  implies 

25000000n  . Since from the standard normal probability density function we know that 

 










2dxedxe 2

x100

100

2

x 22

, comparing the average to 2  we get Table h.5.: 

n average Difference    

25 8.323342326487701 5.816714051856701 10 

250 3.015562934762770 0.508934660131769 3.16227 

2500 2.264787314861209 0.241840959769791 1 

25000 2.441972159407621 0.064656115223379 0.316227 

250000 2.451752388622218 0.054875886008782 0.1 

2500000 2.511696184700974 0.005067910069974 0.0316227 

25000000 2.508097777785709 0.001469503154709 0.01 

250000000 2.504753761626246 0.001874513004754 0.00316227 

Table h.5. Averages of the transformed random variable and their differences 

from 2  in case of different numbers of simulations 

 

We can see that the actual difference is always smaller than the theoretical accuracy. 

 

h.3. Bernoulli’s theorem 

 

In this subsection we apply the law of large numbers to characteristically distributed random 

variables and we get a statement for relative frequencies. This statement tells us that the 

relative frequency of an event A is close to the probability of A. 

 

Theorem (Bernoulli’s theorem) Let A be an event, and )n(k A  be the frequency of the event 

performing n independent experiments. Then, for any 0 , 0))A(P
n

)n(k
(P A   if 

n  and 1))A(P
n

)n(k
(P A  supposing n . 

Proof Recall that  )n(kA  is a binomially distributed random variable with parameters n and 

)A(Pp  , and )n(k A  can be written as a sum of n independent characteristically distributed 

random variables i
A1  with parameter p . )A(Pp)(E i

A 1 , )p1(p)(D i
A

2 1 , 
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consequently, 01
n

)p1(p
1))A(P

n

)n(k
(P

2

A 



  supposing n  and 

0
n

)p1(p
))A(P

n

)n(k
(P

2

A 



  supposing n .  

 

Remarks 

 The above statement tells us that large difference between the relative frequency and 

the probability occurs with small probability, small difference occurs with large probability.   

 Roughly spoken, the relative frequency is about the probability, if the number of 

simulations is large. This is the theoretical background of computer simulations and pools. 

 
4

1
)p1(p0  , consequently 

2

A

n4

1
1))A(P

n

)n(k
(P


 . This inequality 

provides the possibility to estimate the necessary number of simulations. 

 If we fix the number of simulations and the accuracy (  ), we can estimate the 

probability that the difference between the relative frequency and the probability exceeds 

the accuracy  . 

 If we fix the number of simulations and the reliability ( 1 ), we can compute the 

accuracy   by 


 1
n4

1
1

2
, 




n4

1
. 

 If we fix the reliability ( 1 ) and the accuracy  , we can determine the necessary 

number of simulations by n
4

1
2



. 

Examples 

E1. To illustrate the above statement we present the following simulation example: flip 

a fair coin four times and determine the probability that there are both heads and tails among 

the results.  

Of course our computer can not flip a coin but it can generate a random number uniformly 

distributed on ]1,0[ . Imagine that if the result (random number) is less than 0.5, then we get 

a head, in the opposite case we get a tail. Repeat it four times and decide whether the results 

of flips are the same in all cases or there are at least one head and at least one tail. Repeat 

the composite experiment n times and compute how many times you get both heads and 

tails. The relative frequency is about the probability. If we would like to approximate the 

probability of the event “you get both heads and tails “ with accuracy 01.0  with 

probability 0.99, we need n250000
01.001.04

1

4

1
22







experiments. The relative 

frequencies arising from simulations and their differences from the exact probability 
16

14
 can 

be seen in Table h.6. One can notice that the real difference is much smaller than the 

accuracy showing that the estimation is not sharp. We can see better estimations in the next 

chapter. 
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n Relative frequency Difference   

25 0.960000000000000 0.085000000000000 1 

250 0.892000000000000 0.017000000000000 0.3162 

2500 0.874800000000000 0.000200000000000 0.1 

25000 0.873840000000000 0.001160000000000 0.03162 

250000 0.875000000000000 0 0.01 

2500000 0.875041600000000 0.000041600000000 0.003162 

25000000 0.875081200000000 0.000081200000000 0.001 

250000000 0.874980140000000 0.000019860000000 0.003162 

Table h.6. Relative frequencies and their differences from the exact probability 

 

The computer program is very simple and the elapsed time is small. The program for 

simulation was written in MatLab and it can be seen as follows: 

 
function szim16 

format long 

tic 

er=zeros(8,1) 

for j=1:1:8 

    jo=0; 
  for i=1:1:(2.5*10^j); 

   head=0; 

for k=1:1:4 

     vel=rand(1); 

     if vel<0.5 

       head=head+1; 

      end 

end 

     if 0<head & head<4 

      jo=jo+1; 

     end 

   end 

 szim=jo/(2.5*10^j); 

 er(j,1)=szim; 

end 

toc 

er 

kul=abs(er-14/16) 

 

 

The relative frequencies and their differences from the exact probability are plotted in 

Fig.h.1. and Fig.h.2. with 
k105.2n  . 
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Figure h.1. Relative frequencies as a function of the number of simulations on logarithmic 

scale 
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Figure h.2. Differences of the relative frequencies and the probability as a function of the 

number of simulations on logarithmic scale 

 

 

Of course, it is easy to find events whose probability is complicated to compute but a 

computer program for the simulation is easy to elaborate. In those cases the approximation 

of the probability by relative frequencies is a useful tool for people who are able to apply 

informatics. 
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i. Central limit theorem 

 

The aim of this chapter 

 

In this chapter we present asymptotical theorems about the distribution of 

the sum and the average of many independent identically distributed 

random variables. We will approximate the cumulative distribution 

functions and probability density functions with the help of those of 

normal distributions. 

 

Preliminary knowledge 

 

Convergence of functions. Cumulative distribution function, normal 

distribution, properties of expectation, dispersion. 

 

Content 

 

i.1. Central limit theorem for the sum of independent identically distributed random 

variables. 

 

i.2. Moivre-Laplace formula. 

 

i.3. Central limit theorem for the average of independent identically distributed random 

variables. 

 

i.4. Central limit theorem for relative frequency. 
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i.1. Central limit theorem for the sum of independent identically distributed 

random variables 

 

In the previous section we have dealt with the difference of the average of many 

independent identically distributed random variables and their expectation. We have proved 

that the difference is small with large probability, if the number of random variables is large. 

In this chapter we deal with the distribution of the sum and the average of many independent 

random variables. We state that they are approximately normally distributed. We use this 

theorem for computations, as well. 

 

Theorem (Central limit theorem) Let ,...,...,, n21   be independent identically distributed 

random variables with expectation m)(E i   and dispersion  )(D i , ,...2,1i  . Then, 

)x(Φ)x
n

nm

(Plim

n

1i

i

n








 for any Rx . 

 

The proof of the theorem requires additional tools in probability theory and analysis, 

consequently we omit it. 

 

Remarks 

 )x
n

nm

(P

n

1i

i





  is the value of the cumulative distribution function of the 

random variable 
n

nm
n

1i

i




  at the point x. 

 .0)nmnm(
n

1
)nmE(

n

1
nmE

n

1

n

nm

E
n

1i

i

n

1i

i

n

1i

i






































































1
n

n
D

n

1
nmD

n

1

n

nm

D
n

1i

i

n

1i

i

n

1i

i






































































 . 

 The random variable 
n

nm
n

1i

i




  is usually called as the standardized sum. 

 

 The central limit theorem states that the limit of the cumulative distribution function 

of the random variables 
n

nm
n

1i

i




  equals the cumulative distribution function of standard 

normally distributed random variables. Consequently, for large values of n, the cumulative 
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distribution function of the standardized sum is approximately the function Φ . It can be 

written in the form )x(Φ)x(F

n

nm
n

1i
i





 


. 

 The distribution of i  can be arbitrary. In practice, the approximation is good for 

n100  , and many times for n30  . 

 The relative frequencies of the standardized sums can be seen in the following 

Figs.i.1, i.2. and i.3., if we sum up n=1, n=2, n=5, n=10, 30n  , n=100 independent 

random variables. The random variables were uniformly distributed in ]1,0[ . The red line is 

the graph of the probability density function of standard normal distribution. One can see 

that the shape of histogram follows more and more the shape of the Gauss curve. 
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Figure i.1. The relative frequencies of the values of the standardized sums if we sum up 

n=1 and n=2 random variables 
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Figure i.2. The relative frequencies of the values of the standardized sums if we sum up 

n=5 and n=10 random variables 
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Figure i.3. The relative frequencies of the values of the standardized sums if we sum up 

n=30 and n=100 random variables 
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 The distribution of i  can be arbitrary. In Figs. i.4., i.5. and i.6. the relative 

frequencies of the standardized sum of n exponentially distributed random variables with 

expectation 



1

1)(E i  )100,30,10,5,2,1n(   are presented. One can realize that the 

shape of the Gauss curve appears for larger values of n  than previously, due to the 

asymmetry of the exponential probability density function. 
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Figure i.4. The relative frequencies of the values of the standardized sums of 

exponentially distributed random variables, if we sum up n=1 and n=2 random variables 
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Figure i.5. The relative frequencies of the values of the standardized sums of 

exponentially distributed random variables, if we sum up n=5 and n=10 random 

variables 
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Figure i.6. The relative frequencies of the values of the standardized sums of 

exponentially distributed random variables, if we sum up n=30 and n=100 random 

variables 
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 Finally we illustrate the central limit theorem in the case when )1,0(N~i , and 

2
ii  , that is 




n

1i

2
ni ~ . The standardized sums are approximately normally distributed 

random variables. We note that many program languages have a random number generator 

which provides normally distributed random variables, as well. 
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Figure i.7. The relative frequencies of the values of chi-squared distributed random 

variables with degree of freedom n=1 and n=2  
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Figure i.8. The relative frequencies of the values of chi-squared distributed random 

variables with degree of freedom n=5 and n=10 
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Figure i.9. The relative frequencies of the values chi-squared distributed random 

variables with degree of freedom n=30 and n=100 
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After the illustrations we consider what can be stated about the distribution function of the 

sums, without standardization. 

 

Remark 

 The cumulative distribution function of the sum 



n

1i

i  is about that of the normal 

distribution function with expectation mn   and dispersion n , that is 

)
n

nmx
(Φ)x(F n

1i
i 







. This can be proved as follows:  

)
n

nmy
(Φ)

n

nmy

n

nm

(P)y(P)y(F

n

1i
in

1i
in

1i
i 











 

 




, which coincides with the 

cumulative distribution function of )n,nm(N~  . We emphasize that  


n

1i
i nm)(E  and 

 


n

1i
i n)(D .  

 

Examples 

 

E1. Flip a fair coin. If the result is a head, then you gain 10 HUF, if the result 

is a tail, you pay 8 HUF. Applying the central limit theorem, compute the probability that 

after 100 games you are in loss. Determine the same probability by computer simulation. 

Let i  be the gain during the ith game. 









5.05.0

108
~i , 100,...,2,1i  . i  are independent, 

identically distributed random variables. Moreover, 1
2

1
10

2

1
8)(E i  , 

91
2

1
10

2

1
)8()(D 222

i  . The question is the probability )0(P
100

1i

i 


. Recall 

that )0(F)0(P 100

1i
i

100

1i

i





 . According to the central limit theorem, 

)
1009

1100x
(Φ)x(F100

1i
i 







, consequently,  

1336.0)111.1(Φ1)111.1(Φ)
1009

11000
(Φ)0(F100

1i
i










. 

 

In order to approximate the probability by relative frequency with accuracy 0.001, according 

to the previous section, we need 25000000 simulations. After making the required number 

of simulations, we get 
n

)n(k A 0.13568732 which is quite close to the approximate value 

obtained by the central limit theorem. 

 

E2. Supposing the previous game, how many games have to be played in order 

not to be in negative with probability 0.99? 
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Our question is the value of  n for which 99.0)0(P
n

1i

i 


. This question can be 

expressed with the cumulative distribution function of the sum as follows: n=? 

99.0)0(F1 n

1i
i





. As )
n9

1nx
(Φ)x(F n

1i
i 







, we have to solve the equation 

01.0)
n9

n0
(Φ 



. This was detailed in the subsection of normally distributed random 

variables in subsection g.3. 01.0)y(Φ   implies 3263.2y  , therefore 3263 -2.
n9

1n0





, 

,35.438n   that is 439n  . As a control, performing the simulation 25000000 times, the 

relative frequency was 0.98914. 

 

E3. The accounts in the shops are rounded to 0 or 5. If the finial digit of the 

account equals 0, 1, 2, 8, or 9 than the money to be paid ends in 0. If the finial digit of the 

account equals 3, 4, 5, 6, or 7, then the money to be paid ends in 5. Suppose that all final 

digits are equally probable and they are independent during different payments. Applying 

the central limit theorem, determine the probability that the loss of the shop due to 300 

payments is at least -30 and less than 30!  

Let the i  300,...,3,2,1i   be the loss of the shop during the ith payment. 








 


2.02.02.02.02.0

21012
~i , which are independent identically distributed random 

variables. The total loss during 300 payments equals 



300

1i

i . The question is 

)3030(P
300

1i

i  


 which can be expressed with the cumulative distribution function of 





100

1i

i  as follows: )30(F)30(F)3030(P 300

1i
i

300

1i
i

300

1i

i 





 . According to the central 

limit theorem, )
300

m300x
(Φ)x(F300

1i
i 







, where 

02.022.012.002.01.02.02)(Em i   and  

  202.012.022.002.0)1(2.02)(D 222222

i  . 

Consequently, 0.88966 )
3002

030
(Φ)30(F300

1i
i








, 

0.110340.88966-1 )
3002

030
(Φ)30(F300

1i
i





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 and  

8.077932.011034.088966.0)30(F)30(F)3030(P 300

1i
i

300

1i
i

300

1i

i 





 . 

Give an interval in which the loss is situated with probability 0.99. 

The interval in which a normally distributed random variable with parameters m= 0 and 

600  takes its values with probability 0.99 is )1.63,1.63( . Therefore the loss is 

between -63.1 and 63.1 with probability 0.99. Notice that the loss may be -300, it is in a 

loose interval with large probability. This fact is appropriate for checking based on random 

phenomenon. 
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E4. Throw a fair die 1000 times. At least how much is the sum of the results with 

probability 0.95? 

Let the result of the ith throw be denoted by i , i=1,2,…,1000. Now 
















6
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6

1
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1
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~i , which are independent identically distributed random 

variables with expectation m5.3
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1
1)(E i   and 

dispersion  7078.15.3
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1)(D 2222222

i . 

The central limit theorem states that )
n7078.1

5.3nx
(Φ)x(F n

1i
i







. The question is the value of  

x for which 95.0)x(P
1000

1i

i 


, that is 95.0)x(F1 n

1i
i





. Solving the equation 

95.0)
10007078.1

5.31000x
(1 




 , 2.3411x  . Summarizing, the sum of 1000 throws is at least 

3412 with probability 0.95. Although we do not know what happens during one experiment, 

the sum of 1000 experiments can be well predicted. 

 

i.2. Moivre-Laplace formula 

The Moivre-Laplace formula is a special form of the central limit theorem, the form applied 

to the cumulative distribution function of binomially distributed random variables. 

 

Theorem (Moivre-Laplace formula) Let )n(k A  be the frequency of the event A 

( )1p0,p)A(P   during n2  independent experiments, that is )n(k A  is binomially 

distributed random variable with parameters n and p. Then, for any Rx ,  

)x(Φ)x
)p1(np

np)n(k
(Plim A
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






.  

Proof   Recall that 



n

1i

i
A)n( 1k  A with 






erimentsexpiththeduringoccurnotdoesAif0

erimentsexpiththeduringAoccursif1i
A1 . 

i
A1  ,...2,1i   are independent, characteristically distributed random variables with 

parameter p , p)(E i
A 1 , )p1(p)(D i

A 1 . Applying the central limit theorem we get the 

statement to be proved.  

 

Remarks 

 )x(P   equals the cumulative distribution function of )n(k A  at point x. 

 np))n(k(E A  , )p1(np))n(k(D A  . 

 The Moivre-Laplace formula states that )x(Φ)x(F

)p1(np

np)n(kA




 . 
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 )
p1(np

npx
(Φ)x(F )n(kA




 , which can be proved as follows: 
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A)n(kA
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




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 For any ba  ,  

)
)p1(np

npa
(Φ)

)p1(np

npb
(Φ)a(F)b(F)b)n(ka(P )n(k)n(kA AA









 . 

 The approximation is good if  n100   and np10  . 

  )k(F)1k(F)1k)n(kk(P)k)n(k(P )n(k)n(kAA AA
 

).
)p1(np

npk
(Φ)

)p1(np

np)1k(
(Φ









  

Consequently,   knk
A p1p

k

n
)k)n(k(P











  can be approximated with the help of the 

cumulative distribution function of a normally distributed random variable. The differences 

between the exact and the approximate values can be seen in Fig.i.10. The values of 

parameters are 100n   and 1.0p  . Largest difference between the exact and the 

approximate values is less then 0.01. 
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Figure i.10. The exact and the approximate probabilities and their differences in 

case of binomial distribution 
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




  can be also approximated with the help of 

the probability density function of normally distributed random variables. From analysis one 

can recall that if the function G  is continuously differentiable in ]b,a[ , then 

)ab)(c('G)a(G)b(G   , for some )b,a(c . Applying this theorem  for ka   and 

1kb   we get  )k(F)1k(F)1k)n(kk(P )n(k)n(kA AA
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









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


,  

which coincides with the probability density function of a normally distributed random 

variable with expectation npm   and dispersion 
)p1(np

1


  at some point 

)1k,k(c  . 

If we choose the middle of he interval, that is  5.0kc   we get  )k)n(k(P A  

)
)p1(np

np5.0k
(

)p1(np

1







. The exact and the approximate probabilities and their 

differences are plotted in Fig.i.11. One can see that the largest difference between the 

approximate and exact probability is less than 0.01. 
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Figure i.11. The exact and the approximate probabilities and their differences in 

case of binomial distribution 

 

Example 

E1. In an airport, the number of tickets sold for a flight is 500. Suppose that all 

of the ticket holders come to the check in with probability 0.95 independently of each other. 

Compute the probability that the number of people come to the check in is at least 490. 

Let   denote the number of people coming to the check in.   is a binomially distributed 

random variable with parameters 500n   and 95.0p  . The question is )490(P  . Now 

 )500(P...)493(P)492(P)491(P)490(P)490(P

00046.005.095.0
500

500
...05.095.0

491

500
05.095.0

490

500 0500949110490 

























. 

If one applies the Moivre-Laplace formula, 

0.001040.998961)
05.095.0500

95.0500490
(Φ1)490(F1)490(P 




  . The difference 

between the exact and approximate probabilities is less than 0.001. One can conclude that 

that the probability of having at least 490 passengers on the flight is very small. More than 

500 tickets may be sold, if the number of places is 500 and we would like to have less than 

0.01 probability for overfilling. 

 

E2. How many tickets may be sold in order to assure that at least 500 passengers come 

to the check in? 

Let n  be the number of passengers coming to the check in in case of n tickets sold. The 

question is the value of n  for which 99.0)500(P n  . We require 99.0)501(F
n

 . 
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Applying the Moivre-Laplace formula, )
05.095.0n

95.0nx
(Φ)x(F

n



 . Solving the equation 

99.0)
05.095.0n

95.0n501
(Φ 




 we get 3263 2. 

05.095.0n

95.0n501





, which is a quadratic equation 

for n. Solving it, we obtain n=515. As a control, 

.99.09926.005.095.0
i

515
1)i(P1)i(P)500(P i515i

515

501i

515

501i

515

500

0i

515515 







 





 

E3.  How many passengers come to the check in most likely? Compute/approximate the 

probability belonging to the mode in case of n=515 tickets sold. 

The mode of a binomially distributed random variable is  

      4902.49095.0516p)1n(  , as p)1n(   

is not an integer. 2-25490
515 100585 8.05.095.0

490

515
)490(P 








 . 

Approximating this value by the normal cumulative distribution function, we get 

  )490(F)491(F)491490(P)490(P
515515515

078.00.56026 -0.63826 )
05.095.0515

95.0515490
(Φ)

05.095.0515

95.0515491
(Φ 









 . 

 If we apply approximation by probability density function, we get  

2-
515 10×8125 7.)

05.095.0515

95.0515490
(

05.095.05152

1
)490(P 







 , 

which is almost the same as the previous approximation. 

 

E4. Flip a fair coin 400 times. Determine approximately the probability that the 

number of heads is at least 480 and less than 520.  

Let 1000  be the frequency of heads in case of 1000 flips. 1000  is a binomially distributed 

random variable with parameters 1000n   and 5.0p  . The question is 

)520480(P 1000  , which can be expressed with the cumulative distribution function of 

1000  in the following way: )480(F)520(F)520480(P
100010001000   . Applying the 

Moivre-Laplace formula, )
5.05.01000

5.01000x
(Φ)x(F

1000



 , and  







 )
250

500480
(Φ)

250

500520
(Φ)520480(P 1000

7941.01)
250

20
(Φ2)

250

500480
(Φ)

250

500520
(Φ 





. 

Give an interval symmetric to 500 in which the number of heads is situated with probability 

0.99. 

If )250,500(N~ , then 99.0)2505758 2. 5002505758 2. 500(P  . That 

means 99.0)541459 (P 1000  . 

What do you think if you count 455 heads in case of 1000 flips? 

If we realize that the frequency of heads is less than 459 , then there are two possibilities . 

The first one is that an event with very small probability occurs. The second one is that the 

coin is not fair. People tend to believe the second one. This is the basic thinking of 

mathematical statistics. 
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At the end of this subsection we present the approximation of Poisson distribution by 

normal distribution. The possibility of that is not surprising: Poisson distribution is the limit 

of binomial distribution. 

 

Theorem Let n  be a sequence of Poisson distributed random variables with parameters 

nn   .Then )x(Φ)x
n

n
(Plim n

n





. 

Proof n  can be written as the sum of n independent Poisson distributed random variables 

with parameter 1 , consequently the central limit theorem provides the formula presented 

above. 

 

Remarks 

 The condition nn   is not crucial. If   is a Poisson distributed random variable 

with parameter   and 10 , then )
x

(Φ)x(P



 . 

 The expectation of   is )(E , the dispersion of   is )(D . Roughly 

spoken, the expectations of the approximated and the approximate distributions are the same 

values. The same can be stated about the dispersions. 

 Similarly to the binomially distributed random variable, 

)
k

(Φ)
1k

(Φ)1kk(Pe
!k

)k(P
k












  .The goodness of the 

approximation can be seen in Fig.i.12. in case of 10  and in Fig.i.13. in case of 50 . 
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Figure i.12. The exact and the approximate probabilities and their differences in 

case of Poisson distribution with parameter 10  
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Figure i.13. The exact and the approximate probabilities and their differences in 

case of Poisson distribution with parameter 50  
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Example 

 

E5. The working times of a certain part of a machine between consecutive failings are 

supposed to be independent exponentially distributed random variables with expectation 24 

hours. If a part goes wrong, it is changed immediately. How many spare parts should we 

have in order to have enough for a time period 90 days with probability 0.99. 

Let T  be denote the failings from time 0t   to T . Recall that T  is a Poisson distributed 

random variable with parameter TT  , where   is the parameter of the exponential 

distribution. Actually, if the time unit is a day, then 1
1

1

)(E

1

i




 , where i  ,...3,2,1i   

denotes the time between the (i-1)th and ith failings. Consequently, 90  is a Poisson 

distributed random variable with parameter 9090  . The question is the value of x for 

which 99.0)x(P 90  . )
90

90x
(Φ)x(F)x(P

9090


  . Solving the equation 

99.0)
90

90x
(Φ 


 we get 3263 2.

90

90x



, which implies 07.112903263 2.90x  . 

Consequently, we should have 113 spare parts in order not to run out them with probability 

0.99.  As a control, 0.99172 e
!i

90
)113(P 90

113

0i

i

90  



 , but 

0.98924e
!i

90
)112(P 90

112

0i

i

90  



 . This also supports the goodness of the presented 

method. 

 

i.3. Central limit theorem for the average of independent identically 

distributed random variables 

The central limit theorem was presented for the sum of many independent random variables. 

The average can be computed as a product of the sum and a constant value, consequently, 

the central limit theorem can be written for the average, as well. 

 

Theorem Let ,...,...,, n21   be independent identically distributed random variables with 

expectation m)(E i   and dispersion  )(D i , ,...2,1i  . Then,  
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 for any Rx . 

 

Proof  Notice that  
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 . 

Therefore the statement is the straightforward consequence of the central limit theorem for 

sums. 

 

Remarks 

 m)
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n
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 is the cumulative distribution function of 
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, that is the 

standardized average. 
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. This can be proved as follows:  
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. 

 The cumulative distribution function of the average can be approximated by the 

cumulative distribution function of a normally distributed random variable. The 

expectations of the approximated and the approximate distributions are the same and so are 

their dispersions. 

 The distribution of the averaged random variables can be arbitrary. 

 The approximation can be applied if the number of random variables is at least 100.  

 The fact that the average is approximately a normally distributed random variable 

and data are frequently averaged in statistics, is the reason of the leading role of normal 

distribution in statistics. 

 

Example 

E1. Let us suppose that the lifetime of bulbs are independent exponentially 

distributed random variables with expectation 1000  hours. Give and interval symmetric to 

1000 in which the lifetime of one bulb is situated with probability 0.8.  

1000
1

)(E i 


 . As 865.0e1)2000(P 1000

2000

i 


, consequently, the interval looks 

like )x1000,x1000(   with 1000x  .  
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 . Solving the equation 8.0ee 1000
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, we get  

1746 2.e8.0ee 1000

x

1000

x




. Defining the new variable 1000

x

ey   we get 

1746 2.
y

1
y  . This is a quadratic equation for the variable y . Solving it we end up with  

-0.38993y   and 5645 .2y  . 1000

x

ey   can not be negative, therefore 5645 .2y  . This 

implies 76 941.2.5645) ln(1000x  .  

The interval looks like ( 1941.76)(58.24,76) 941.100076, 941.1000  .We note that 

the interval is quite large, almost 1900 hours its length is. 

As a control, 

8.0)e1(e1)24.58(F)76.1941(F)76.194124.58(P 1000

24.58

1000

76.1941

i ii
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


 . 

Give and interval symmetric to 1000 in which the average lifetime of 200 bulbs is situated 

with probability 0.8. 

Turning to the average, 
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Taking into account that 
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, we should determine the value y for 

which 8.0

200

1000

1000y1000
Φ

200

1000

1000y1000
Φ 









































 holds. This implies  

8.01

200

1000

y
Φ2 



















 , that is 2816.1
1000

200y
 , that is 623.90y  .  

The interval in which the average is situated with probability 0.8 is 

  )1091,909(90.623100090.623,1000  . Notice that its length is about 182 hours, 

which is much less than it was in the case of exponential distribution. 

 

i.4. Central limit theorem for relative frequency 

At the end of this chapter, we present the central limit theorem for relative frequency. As the 

relative frequency is the average of independent characteristically distributed random 

variable with parameter p, this form of the central limit theorem is a special case of that 

concerning average. 
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Theorem Let )n(k A  be the frequency of the event A for which 1p0,p)A(P  , during 

n2  independent experiments. Then, for any Rx , )x(Φx

n

)p1(p

p
n

)n(k

Plim

A

n


























. 

Remarks 

 p)
n

)n(k
(E A  , 

n

)p1(p
)

n

)n(k
(D A 

 . 

 )x

n

)p1(p

p
n

)n(k

(P

A






 is the value of the cumulative distribution function of the 

standardized relative frequency. 

 Returning to the relative frequency, 
























n

)p1(p

px
Φ)x(F

n

)n(kA
. This can be argued 

by 





















































n

)p1(p

py
Φ

n

)p1(p

py

n

)p1(p

p
n

)n(k

P)y
n

)n(k
(P

A

A . 

 















































n

)p1(p

pp
Φ

n

)p1(p

pp
Φ)p

n

)n(k
p(P)p

n

)n(k
(P AA  

1)
)p1(p

n
(Φ2 




 . 

 

It provides possibility to compute  

1. the reliability 1  as the function of   and n , 

2.   (accuracy) as the function of reliability 1  and n  

3. number of necessary experiments (n) as the function of   and 1 . 

 

 This formula can be directly applied if p is known. 

 

Example 

E1. Throw a fair die 500 times. Compute the probability that the relative 

frequency of “six” is at least 0.15 and less than 0.18. 

Let A be the event that the result is “six” performing one throw. The question is 

)18.0
500

)500(k
15.0(P A  . Recall that  
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





























































500

6

5

6

1

6

1
15.0

Φ

500

6

5

6

1

6

1
18.0

Φ)15.0(F)18.0(F)18.0
500

)500(k
15.0(P

500

)500(k

500

)500(k
A

AA

0.630.6294815866.00.78814(-1)Φ-(0.8)Φ  . 

Making computer simulations, applying 610  repetitions, we get an approximate value for 

)18.0
500

)500(k
15.0(P A  . This means that 86 10510500   random experiments were 

performed, which required 0.31 sec. Computer simulation resulted in 0.627480. 

 

E2. Throw a fair die 500 times. At most how much is the difference between the 

exact probability and the relative frequency with reliability 0.9? 

 Applying 1)
)p1(p

n
(Φ2)p

n

)n(k
(P A 




 , 90.01)

)p1(p

n
(Φ2 




 implies 

645.1
)p1(p

n





. Substituting 500n  and 

6

1
p   we get 0274.0

500

6

5

6

1
654.1





 . It 

means that 90.0)1941.0
500

)500(k
1393.0(P)0274.0

6

1

500

)500(k
0274.0

6

1
(P AA  . 

Computer simulation resulted in 0.907078. If we would like to increase the reliability, for 

example, 99.01  , then 99.01)
)p1(p

n
(Φ2 




, 5758.2

6

5

6

1

500





, 0.04293  . 

Consequently, the interval is 0.20960) .12374,0()04293.0
6

1
,04293.0

6

1
(  . We can 

realize that the greater the reliability, the larger the interval. 

 

E3. Throw a fair die 500 times repeatedly. How many throws should be done, if the 

relative frequency of “six” is closer to the exact probability than 01.0  with reliability 0.99? 

Apply the formula 1)
)p1(p

n
(Φ2)p

n

)n(k
(P A 




  again with 01.0  and 

99.01  . 99.01)
)p1(p

n
(Φ2 




 implies 5758.2)

)p1(p

n01.0



, that is 

6

5

6

1

01.0

5758.2
n  , 9215

6

5

6

1

01.0

5758.2
n

2















  instead of 500 experiments. As 

1)
)p1(p

n
(Φ2 




 is a monotone increasing function of n, if we increase the value of n, we 

increase the reliability, as well. If we apply the estimation 
2

A

n

)p1(p
1)p

n

)n(k
(P




  

presented in the previous chapter, substituting 01.0 , 
6

1
p   and 99.0

n

)p1(p
1

2





 we 
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get 13890
01.001.0

6

5

6

1

n
2






  which is about the 1.5 times larger than the previously 

determined simulation number. It means that it is rather worth computing by central limit 

theorem, than by the law of large numbers. 

Note that if we would like to have accuracy 001.0 , then the number of simulation has to 

be 10010 2   times larger than in the case of 01.0 .  

 

We would like to emphasize that in the previous examples the probability of the event A 

was known. But in many cases it is unknown and we would like to approximate the 

unknown probability by the relative frequency. In those cases we can apply upper estimation 

for the probability 1)
)p1(p

n
(Φ2 




. 

Theorem For any value of 1p0  , 1)
)p1(p

n
(Φ21)n2(Φ2 




 . 

Proof If 1p0  , then 
4

1
)p1(p  , therefore 

2

1
)p1(p  . This implies  

)p1(p

n

2

1

n







, that is 

)p1(p

n
n2




 . Since Φ is a monotone increasing function, 

so is 1Φ2  , therefore 
)p1(p

n
n2




  implies 1)

)p1(p

n
(Φ21)n2(Φ2 




 , 

which is the statement to be proved. 

 

Remarks 

 

 The formula 1)n2(Φ2  does not contain the unknown value of p , therefore  the 

inequality )p
n

k
(P1)n2(Φ2 A   is suitable for estimating the accuracy, the 

reliability and the necessary number of simulations in the case of unknown p  value. 

 

For the sake of applications, we determine the reliability as the function of n and   , the 

accuracy   as the function of n and reliability 1 , and the necessary number of 

simulations as the function of   and 1 . 

 

1. If n and   are fixed then )p
n

k
(P1)n2(Φ2 A   supplies a direct lower 

bound for the reliability.  

2. If n and the reliability 1  are fixed, with the choice  11)n2(Φ2 , then 








 
 

2
1Φn2 1  and 

n2

2
1Φ 1








 






. Notice that the accuracy   is proportional to the 
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reciprocal of the square root of the number of simulations. We note that y
2

1Φ 1 






 
  

means that 
2

1)y(Φ


 . Summarizing, if 
n2

2
1Φ 1








 






, then )p
n

k
(P1 A  . 

 If the accuracy   and the reliability 1  are fixed, then  11)n2(Φ2  

serves again for the formula 






 
 

2
1Φn2 1  and, 

2

1

2

2
1Φ

n




























 






. If n increases, 

then the reliability increases supposing   is fixed. If the reliability is fixed and n increases, 

then   decreases. Note that the required number of simulations is proportional to the square 

of the reciprocal of the accuracy. Summarizing, if n
2

2
1Φ

2

1






























 


, then 

)p
n

k
(P1 A  . 

 

Examples 

 

E1. At a survey, 1000n   people are asked about a yes/no question. The 

relative frequency of the answer “yes” is 0.35. Estimate the probability that the relative 

frequency is closer to the probability of the answer “yes” )p(  than 0.05, that is 

)4.0p3.0(P  . 

Let A be the event that the answer is yes, p)A(P   is unknown. Recalling 

)p
n

k
(P1)n2(Φ2 A    and substituting 1000n   and 05.0 , 

0.99841-0.99922 1)100005.02(21)n2(2  . Therefore,  

)05.0pk(P0.9984 A  . 

 

E2. At a survey, 1000n   people are asked about a yes/no question. How much 

is the largest difference between the relative frequency and the exact probability p  with 

reliability 95.0 ? 

We have a formula for the accuracy, namely 
n2

2
1Φ 1








 






. Now, 95.01  , 

975.0
2

1 


 , 96.1
2

1Φ 1 






 
  and 031.0

10002

96.1

n2

2
1Φ 1










 


. That means 

)031.035.0
1000

k
031.035.0(P95.0 A  . This is the reason why surveys publish the 

results with %3  in case of 1000 people. 
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E3. At a survey some people are asked about a yes/no question. If we need 

accuracy 01.0  with reliability 0.95, how many people should be asked to be able to do 

this? 

Apply n
2

2
1Φ

2

1






























 


 with 01.0 , 95.01  . 

960498
01.02

96.1

2

2
1Φ

2

2

2

1








































 


. 

This is the reason why 10000  people are asked to have accuracy 01.0  with reliability 0.95. 

Summarizing our result, in case of n9604  , )35.0p34.0(P)01.0p
n

k
(P95.0 A  .  

Of course, the above questions should have been asked for computer simulation as well. The 

main difference between survey and computer simulation is that the number of simulation 

can be easily increased but the increment of number of people asked at a survey requires lots 

of money.  

 

Finally we present Tables i.1.and i.2., which contain the required number of simulations for 

given accuracy, in case of reliability levels 95.01   and 99.01  . These reliability 

levels are often used in practice. In Tables i.3. and i.4., we present accuracy at given 

numbers of simulation. 

95.01   

n   

10 0.3099 

100 0.098 

500 0.043827 

1000 0.03099 

5000 0.013859 

10000 0.0098 

50000 0.0043827 

100000 0.003099 

500000 0.0013859 

1000000 0.00098 

500000 0.00043827 

1000000 0.0003099 

5000000 0.00013859 

10000000 0.000098 

50000000 0.000043827 

100000000 0.00003099 

Table i.1.The accuracy in the function of number of simulations in case of reliability 

level 0.95 

 
99.01   

n   

10 0.40727 

100 0.12879 

500 0.05 7597 
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1000 0.040727 

5000 0.018214 

10000 0.012879 

50000 0.005 7597 

100000 0.0040727 

500000 0.0018214 

1000000 0.0012879 

500000 0.0005 7597 

1000000 0.00040727 

5000000 0.00018214 

10000000 0.00012879 

50000000 0.00005 7597 

100000000 0.000040727 

Table i.2.The accuracy in the function of number of simulations in case of reliability 

level 0.95 

 

95.01   

  n 

0.1 97 

0.05 385 

0.025 1537 

0.01 9604 

0.005 38416 

0.0025 153660 

0.001 960400 

0.0005 3841600 

0.00025 15366000 

0.0001 96040000 

 

Table i.3.Necessary number of simulations to a given accuracy in case of reliability 

level 0.95 

 

99.01   

  n 

0.1 166 

0.05 664 

0.025 2654 

0.01 16587 

0.005 66347 

0.0025 265390 

0.001 1658700 

0.0005 6634700 

0.00025 26539000 

0.0001 165870000 

 

Table i.4.Necessary number of simulations to a given accuracy in case of reliability 

level 0.99 
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j. Basic concepts of mathematical statistics  

 

The aim of this chapter 

 

In this chapter we present the basic concepts of mathematical statistics 

and we sketch some branches of it. We introduce the empirical 

cumulative distribution function, the empirical density function, 

estimations of expectations and dispersions. We also present how to test 

hypothesis in some cases.  

 

Preliminary knowledge 

 

Properties of average. Normal distribution. Student’s t distribution. Chi-

squared distribution. 

 

Content 

 

j.1. Empirical cumulative distribution functions and histogram.  

 
j.2. Estimation of probability, expectation and variance. 

 

j.3. Testing hypothesis. 
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j.1. Empirical cumulative distribution function and histogram 

In the previous chapters we have dealt with probabilities. In this last section we present how 

to draw conclusions from data on the basis of probabilistic arguments. As the cumulative 

distribution function contains all information about the random variable, our primary aim is 

to approximate it on the basis of data. Data have dual nature, before performing the 

sampling they are random variables, after performing the sampling they are real numbers as 

the results of observations of a random phenomenon. The statistical methods are executed 

on the numbers, but they are elaborated for the random variables.  

 

First, clarify the concept of sample. 

 

Definition A sample is a series of independent observations concerning a random variable 

 . More precisely, a sample is ),...,,( n21  , where i  n,...,2,1i   are independent 

identically distributed random variable with common distribution function F . The number 

of elements of the sample equals n. 

 

Definition Let the values of the sample be n21 x,...,x,x , Rx i  , i=1,2,…,n. The empirical 

cumulative distribution function belonging to the values of the sample )x,...,x,x(x n21  

is defined as   RR:F x,...,x,x 
n21

  

 

n

1

)z(F)z(F

n

1i

zx

ex,...,x,x

i





n21

. 

 

Remarks 

 The argument of the function is denoted by z because the letter x is related to the 

sample. 

   )z(F x,...,x,x n21
 is briefly denoted by )z(Fe . 

 The cumulative distribution function is the relative frequency of the event  z  if 

we perform independent experiments for this event. 

 

n
)z(F

n

1i

zx

e

i






1

 is a step function 

which has jumps at ixz  . It is constant zero previous to the smallest element of the 

sample, and it is constant 1 following the greatest one.  

 The elements of the sample ji xandx  may be equal. 

 The function )z(Fe  has all the properties of cumulative distribution function. 

Namely,  

1.    






 
n

1i

yx

n

1i

zx ii
11  for any values of yz  , which implies the monotone 

increasing property. 

2. Its limit is zero at   and 1 at  . 

3. It is left hand-side continuous. Consequently, it is really a cumulative 

distribution function. 
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 The random variable 















n

1

n

1

n

1

x..xx

~
n21

 has the same cumulative 

distribution function if all the values ix  are different i=1,2,…,n. If some values 

ix  are repeatedly in the sample, then the probability belonging to this value is 

the relative frequency of this element in the sample. 

 

Example 

E1. Let the elements of the sample be ,12x1  10x 2  , ,15x 3   12x 4  , 13x 5  . 

Draw the empirical cumulative distribution function belonging to these sample elements. 
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This function can be seen in Fig.j.1. 
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Figure j.1. The empirical distribution function belonging to the sample 

elements in E.1. 

 

Theorem If )z(Fe  is the empirical cumulative distribution function belonging to the sample 

elements )x,....,x( n1  and )z(F  is the cumulative distribution function of i , ,...3,2,1i   , 

then for any value of Rx  and 0 , 1))z(F)z(F(P e   if n . 

Proof Let A be the event that the random variable  * is less than z, that is  zA  * . 

Now )z(Fe  is the relative frequency of A during n independent trials. Moreover, 

)A(P)z(F  . The law of large numbers states that the relative frequency of an event and the 

probability of that are close to each other, that is 

01
n

))z(F1)(z(F
1))z(F)z(F(P

2e 



 , supposing n . 
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Remarks 

 The above theorem is the consequence of the law of large numbers.  

 The theorem states that the values of the cumulative distribution function can be 

approximated by the empirical cumulative distribution function. The necessary number of 

simulations to a given accuracy can be determined by applying the central limit theorem 

presented in the previous section. For example, if 01.0 , then 9604n  , if the reliability 

level is 0.95. 

 

Example 

E1. Let *  be an exponentially distributed random variable with parameter 

1 . Take a sample of n elements independently with respect to * . Draw the empirical 

cumulative distribution function of the sample if n=10 and n=100 and 1000n  . 

The empirical cumulative distribution functions together with the exact one can be seen in 

Figs.j.2. and j.3. 
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Figure j.2. The empirical distribution function belonging to an exponentially distributed 

sample of 10 and 100 elements 

 

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
e
(x

)

     
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.05

0.1

0.15

0.2

0.25

x

F
e
(x

)

 
 

Figure j.3. Empirical distribution function belonging to an exponentially distributed sample 

of 1000 elements and a segment of the function 

 

One can realize that there is hardly any difference between the exact cumulative distribution 

function and the empirical one if the number of sample elements is large. 
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E2. The exact cumulative distribution function and the empirical one is presented in Fig. 

j.4. in case of 









5.05.0

10
~ . The number of sample elements was n=10 and n=100. 
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Fig.j.4. The empirical cumulative distribution function (blue) and the exact one (red) in case 

of 10 and 100 sample elements, respectively 

 

One can see that if the number of elements is large, then they are close to each other. 

 

The following statement is a stronger one than the previously proved statement. We present 

it without proof. 

 

Theorem (Glivenko) 

If  )z(Fe  is the empirical cumulative distribution function belonging to the sample elements 

)x,....,x( n1  and )z(F  is the cumulative distribution function of *  and i , ,...3,2,1i  . 

Then 0)z(F)z(Fsup e
Rz




 if n  with probability 1. 

 

Remarks 

 Glivenko’s theorem is often used as the fundamental theorem of mathematical 

statistics. 

 Its philosophical interpretation is that the world is knowable. 

 The main differences of Glivenko’s theorem and the theorem presented at the 

beginning of the section are that this later states uniform convergence (not for every z  

separately) and states probability 1 (strong law of large numbers). 

 A test for distribution function can be given on the basis of maximal difference. It is 

called  Kolmogorov-Smirnov’s test, and will be presented in the last subsection. 

 

Now we turn to the approximation of the probability density function by histogram. 

Histograms are used for presentation of relative frequencies. We usually compared them to 

the probability density function. We mention that relative frequency and frequency differs in 

a constant multiplier, therefore the shape the figures are very similar.  
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Definition Let n21 x,...,x,x  be the values of the sample. Let i
n,..,2,1i

xmina


 , i
n,..,2,1i

xmaxb


  and 

m1  fixed. Then consider the points 
m2

ab
ay0


 , 

m

ab
iyy 1ii


  , 1m,...,2,1i  . 

Let   


 


n

1j

y,yxi i1ij
)m,n(k 1 , m,...,2,1i   and  



















otherwise0

m,...,2,1i)y,y[zif

m

ab

1

n

)m,n(k

)z(f
i1i

i

e .  

The function )z(f e  is called the histogram with m equal length subintervals belonging to 

the sample elements n21 x,...,x,x . 

 

Remarks 

 The histogram strongly depends on the value of m. If m is too small or too large as 

compared to n the shape of the graph of the histogram will not be appropriate. To see this, 

we present Fig.j.5. The number of sample elements was n=100 in all cases. The sample was 

uniformly distributed, m=4, m=10, m=50 and m=100. The sample elements were the same 

in case of all histograms. 
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Figure j.5. Histograms of a sample of 100 elements in case of 5 and 11 subintervals  
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Figure j.5. Histograms of a sample of 100 elements in case of m=50 and m=100 

 

If the number of sample elements is 10000 and they are uniformly distributed in [0,1], then 

the histograms for 4m  , 10m  , 50m   and 100m  look as follows: 
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j.5. Histograms of sample of 10000 elements in case of 5 and 11 subintervals 
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j.6. Histograms of sample of 10000 elements in case of 51 and 101 subintervals 

 

The histograms belonging to 4m   and 10m   seem to be better approximations of the 

probability density function of uniformly distributed random variable. The height of the first 

and last rectangle is the half of the others because the smallest value of the sample is about 

zero, the first subinterval is ]05.0,05.0[ , and 05.0)05.00(P)05.005.0(P  , 

while 1.0)15.005.0(P  . The last subinterval is ]05.1,95.0( , 05.0)05.195.0(P  . 

 

 Although there are many theorems concerning the relationship of the empirical 

cumulative distribution function and the real cumulative distribution function, it is difficult 

to give a limit theorem concerning the histogram and the probability density function. 

Roughly speaking, for appropriate fixed m values, the histogram is close the real probability 

density function, if n is large. Examples were presented in section g. 

 

j.2. Estimation of probability, expectation and variance 

 

After approximating the cumulative distribution function and the probability density 

function, we estimate the probability of an event, furthermore the expectation and the 

variance of a random variable. This will be done by a function of the sample. 

Definition Let ),...,,( n21   be a sample and RRH:g n   a real valued function 

with HIm  . Then )(gg   is called statistics. 

 

Remarks 
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 Statistics are the function of the sample. The question in which cases which function 

should be applied is an important question of mathematical statistics. 

 The function RΩ:g   is a random variable, and )x,...x,x(g n21  is a real 

number. The dual property appears in this case, as well. 

 

Estimation of probability  

 

Let ),...,,( n21   be a sample,  





erimentexpiththeatoccursAif0

erimentexpiththeatoccursAif1
1

i

Ai   

are characteristically distributed random variables with parameter 1p0  . Let RR:g n   
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n
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
 . Then 

n
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  is the sample average. It can be 

considered as the relative frequency of an event A  with p)A(P  . Now, 
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n
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n
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i
^








 , then the expectation of the estimation equals 

the exact probability p  and the dispersion of the estimation tends to zero if n . These 

two properties imply the consistency of the estimation, which means that the estimate value 

fluctuates around the value to be estimated and the fluctuation tends zero if the number of 

sample elements tends to infinity. 

Moreover, applying the central limit theorem, for n100  , np10  , we can write that 
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Summarizing, the interval  

 

 

contains the exact probability p with probability (reliability level) 1 . This interval is 

usually called the confidence interval for the probability belonging to the reliability level 

1 . 
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Remarks 

 We list the values u  for some frequently used reliability levels 1 , and give 

confidence intervals for the probability  in case of  relative frequency 450.0
n

n

1i

i




  and 

n=500 in Table j.1. 

 

1  
u  Confidence interval 

0.9 1.645  0.487 0.413,  

0.95 1.960  0.493 0.406,  

0.98 2.326  0.5020.398,  

0.99 2.575  507.0,393.0  

 

Table j.1. Values u  and confidence intervals for the probability belonging to reliability 

level 1  

 

 The larger the reliability, the wider the interval. 

 

Estimation of the expectation in case of known value of dispersion 

 

Let ),...,,( n21   be a sample, i  are random variables with expectation m  and 
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estimate the expectation by the sample average, then, with notation 
n
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  , m)m(E
^

 , 

and 0mD
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
. This means that the sample average is a consistent estimation for the 

expectation. Note that the sample average is the expectation belonging to the empirical 

cumulative distribution function. Moreover, if ),m(N~i  , or n100  , then 
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,m(N~
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is an interval in which the expectation m is situated with probability 1 ,  It is called the 

confidence interval of the expectation belonging to the reliability level 1 . 

 

Remarks 

 

 The above formula can be applied in the case when the dispersion is given.  

 If we have the sample elements )x,...,x,x( n21 , we have to substitute these values 

into the formula 
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 to get the confidence interval for 

the expectation belonging to the reliability level 1  in case of σ=0.2 . For 

example, if 5.1x1  , 7.1x 2  , 4.1x 3  , 9.1x 4  , 7.1x 5   then  

64.1
5

7.19.14.17.15.1

5

xxxxx 54321 





. The confidence interval 

belonging to the reliability levels 9.0 , 95.0 , 98.0 and 99.0 are contained in the Table j.2. 

 

1  
u  









 

5

2.0
u64.1,

5

2.0
u64.1  

0.9 1.645  1.787 1.493,  

0.95 1.960  815.1,465.1  

0.98 2.326  848.1,432.1  

0.99 2.575  871.1,409.1  

Table j.2. Confidence intervals for the expectation in case of reliability level 1  

 

 If the reliability level is increased, then the length of the interval increases, as well. 

 If the number of sample elements tends to infinity, the length of the confidence 

interval tends to zero. 

 If the accuracy is given, we can compute the necessary number of sample elements 

to a given reliability level. For example, if we would like to have a confidence interval to 
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the reliability level 0.99 with length 0.1, then  
2
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n
u 
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u
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n1072.0
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576.2
2
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

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
 . The number of the necessary elements is proportional to the 

variance and to the square of the reciprocal of the accuracy. 

 

If the dispersion of the random variable is not known then we have to estimate it on the 

basis of the sample. 

 

Estimation of the variance and the dispersion  

 

As the sample average is the expectation belonging to the empirical distribution function, it 

is a natural idea to estimate the variance 
2  by the variance belonging to the empirical 

distribution function. 
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

.  This implies 

 
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n
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i

n
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n
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E 





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




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






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Consequently, 

 
2

n

1i

2

i

n
E 






















 . Let  

 
)y,...,y,y(s

1n

n

1n

yy

)y,...,y,y(s n21
2

n

1i

2

i

n21










2

* .

   
22

n

1i

2

i

n

1i

2

i

n21
2

n

1n

1n

n

n
E

1n

n

1n
E)),...,,(s(E 




























































* . 

),...,,(s n21
2 *  is briefly denoted by 

2s * . It can be proved that if )(E
4

i  exists, then 

0)),...,,(s(D n21
22 * , if n . Summarizing, 

2*s  is a consistent estimation of the 

variance. Now it is worth estimating the dispersion by the statistics 

 

1n
),...,(s),...,(s

n

1i

2

i

n21
2

n21







** . 

Definition The statistics 

 

1n
),...,(s

n

1i

2

i

n21







*  is called the corrected empirical 

dispersion. 

 

To construct confidence interval for the variance and the dispersion we state the following 

theorem without proof (Fisher-Cochran’s theorem) 

Theorem If  ),m(N~i  , then 2
1n2

n21
2

~
),...,(s

)1n( 





*
, furthermore   and 

),...,(s n21
2 *  are independent random variables. By definition of Student’s t 

distribution (see chapter g), this also implies that 1n

n21

~n
),...,(s

m






*
. 

 

Remarks 

 2
n  distributed random variables were presented in Chapter g. The explicit forms of 

their cumulative distribution functions are not usually used. There are tables (see Table 3.) 

which contain the real values 
2

,n   for which   )(P 2
,n  supposing 2

n~  . This means 

that   1)(P 2
,n . These values 

2
,n   are called the critical values belonging to the 

reliability level 1 . 

 By the help of the critical values belonging to 
2

1


  and 
2


 one can construct an 

interval in which the values of a 2
n  distributed random variable are situated with 

probability 1  . Namely, )(P 2
2/,n

2
2/1,n   . These intervals will be used to 
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construct such intervals in which the variance and the dispersion are situated with 

probability 1 . 

If  ),m(N~i  , then 

 
2

1n2

n

1i

2

i

2

n21
2

~
),...,,(s

)1n( 
 












*

, consequently, 




  1)
*s

)1n((P 2
2/,n2

2
2

2/1,n . Arranging the sides of the inequalities we end up 

with 








1)
*s

)1n(
*s

)1n((P
2

2/1,n

2
2

2
2/,n

2

. As a straightforward consequence, 










1)
*s

)1n(
*s

)1n((P
2

2/1,n

2

2
2/,n

2

. Summarizing, supposing normally 

distributed samples or large number of elements, the confidence interval for the variance 

belonging to the reliability level 1  looks like  

 






















2

2/1,n

2

2
2/,n

2 *s
)1n(,

*s
)1n(  

 

and that for the dispersion it is  

 






















2

2/1,n

2

2
2/,n

2 *s
)1n(,

*s
)1n( . 

 

Remarks 

 Due to the central limit theorem, the assumption of normally distributed sample can 

be omitted if n is large. 

 If we have the value of the sample, we can construct the confidence intervals for the 

variance and the dispersion by the following steps: compute the value of 
2*s , find the 

critical value belonging to the reliability levels 
2


 and 

2
1


 , then substitute them into the 

formulae in the boxes. 

 For example, assuming normally distributed sample, if 5.1x1  , 7.1x 2  , 

4.1x 3  , 9.1x 4  , 7.1x 5   then 64.1x   and 

 









4

xx

s

5

1i

2

i

2
*  

         
 




4

64.17.164.19.164.14.164.17.164.15.1
22222

0.038  .  

 

Confidence intervals belonging to the reliability levels 9.0 , 95.0 , 98.0 and 99.0  are 

included in Table j.3. 
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1  2
2/1,4   2

2/,4   






















2

2/4

2

2
2/,4

2 s
4,

s
4

**
 






















2

2/1,4

2

2
2/,4

2 s
)1n(,

s
)1n(

**
 

 

0.9 

0.711 9. 488  0.214 0.016,   0.462,0.127,  

0.95 0.484 8. 496  0.314,0.018   0.560 0.134,  

0.98 0.297 13.277  512.0,011.0   0.715 0.107,  

0.99 0.207 14. 86  734.0,010.0   0.857 0.101,   

Table j.3. Critical values and confidence intervals for the variance and dispersion in case 

of reliability levels 1  

 

 The greater the reliability, the larger the interval is.  

 

Finally let us return to the estimation of the expectation in case of unknown dispersion. 

 

 

Estimation of the expectation in case of unknown dispersion 

 

Taking the sample average does not require the knowledge of the dispersion. Furthermore, 

estimating the expectation by the sample average, m)
n

(E)m(E

n

1i

i
^








 , and 

0
n

D

n

1i

i
























  holds in the case of unknown value of  , as well. 

 

Turning to the confidence interval for the expectation, apply Fisher-Cochran’ theorem and 

the formula 1n~n
s

m




*
 in case of normally distributed samples. 

There are tables of Student’s t distribution, in which one can find the real numbers ,t n  , 

for which   1)ttt(P ,nn,n . The value ,t n  is called the critical value belonging 

to the reliability level 1 . Now, 


  1)tn
s

m
t(P ,1n,1n

*
. Arranging both 

sides of the inequalities we end up with 








1)
n

st
m

n

st
(P

,1n,1n **
. 

Summarizing, the confidence interval for the expectation belonging to the reliability level 

1  is 








 







n

st
,

n

st ,1n,1n **
. 

 

Remarks 



 

 

Probability theory and math.statistics     Basic concepts of mathematical statistics 

 

191 

 Note that the confidence intervals for the expectation are very similar in the cases of 

known and unknown dispersion. In case of unknown dispersion,   is replaced by its 

estimation, *s , and the critical value is  ,t 1n  instead of u . 

 The larger the reliability level, the larger the interval. 

 The larger the number of elements, the smaller the critical value. 

 The limit of the critical values ,nt  is u , that is 


 utlim ,n
n

.This is due to the 

statement that the cumulative function of a standard normally distributed random 

variable is the limit of the cumulative distribution functions of Student’s t distributed 

random variables. 

 The confidence intervals belonging to a given reliability level can be constructed 

after executing the following steps: compute *s  on the basis of the sample, find the critical 

value and substitute into the above formula. In case of a normally distributed sample and 

5.1x1  , 7.1x 2  , 4.1x 3  , 9.1x 4  , 7.1x 5  , 64.1x   and 0.038 *s  . The 

confidence intervals belonging to the reliability levels 9.0 , 95.0 , 0.975 and 0.99 are 

presented in Table j.5. 

  

1  
,4t  








 







5

st
,

5

st ,4,4 **
 

 0.9 2.132  826 1. 454, 1.  

0.95 2.776  882.1,1.398  

0.975 3.495  945.1,1.335  

0.99 4.604  2.041 ,239 1.  

 

Table j.5. Critical values and confidence intervals for the expectation in case of unknown 

value of dispersion 

j.3. Testing hypothesis 

An important branch of mathematical statistics is testing hypothesis. Hypothesis is an idea 

about the value of probability, expectation, dispersion, a parameter or about the cumulative 

distribution function itself. We check whether the hypothesis can be true or not, more 

exactly, the data contradict the hypothesis or not. The main idea of testing hypothesis is the 

following: if the hypothesis holds, then a certain function of the sample has a known 

distribution. This implies that one can determine an interval in which the function of the 

sample is situated with a given reliability 1 . If the hypothesis does hold, the values of 

the function (test function) are outside that interval with probability  . The mentioned 

interval is called the acceptation region; its compliment is the critical region. Then, check 

whether the test function is really in the acceptation region. If it is, then the data do not 

contradict the hypotheses. If it is not, there are two reasons for which  this may happen: the 

hypothesis does not hold or the hypothesis holds and an event with small probability   

occurs. Statisticians vote for the first one, hence we do not accept the hypothesis, because 

we rather trust in the alternative than in the occurrence of rare event. Of course, the decision 

may be wrong. 

The name of the basic idea is null hypotheses ( 0H ), the name of the opposite is alternative 

hypothesis )H( 1 . They have to be mutually exclusive but they may not cover all the 

possibilities concerning the parameter. For example, 0H  is that the probability of an event is 

0.4, the alternative hypothesis is that the probability of the event is smaller than 0.4.  
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The decision, whether we accept (fail to reject) 0H  or reject it, may be right or wrong. The 

following four cases can be distinguished: 

 

 
0H  is accepted 0H  is rejected 

 0H  is true Right decision Wrong decision 

0H  is not true Wrong decision Right decision 

Table j.6. Possibilities concerning the decisions in testing a hypothesis 

 

Decision that 0H  is true, although it is rejected is called as error of the first kind (type I. 

error), its probability is  . The probability of the first kind error is usually called as the 

level of significance.  

Decision that 0H  is not true, although it is not failed to reject is called as error of the second 

kind (type II. error). Its probability depends on the value of the tested parameter, for 

example. Consequences of the different kind of errors are of various severities. 

 

Remarks 

 Usually applied significance levels are 05.0  and 01.0 . 

 Some test functions are connected with the statistics presented in the previous 

subsection. 

 The elaborated tests can be executed as a recipe in the kitchen. Their steps are the 

following: 

State 0H  and 1H , fix the level of significance. 

Determine the critical region and the acceptance region. 

Compute the actual value of the test function by substituting the values of the sample 

elements into the test function. 

Check whether the actual value of the test function is in the critical region or in the 

acceptance region. 

Make your decision: if the actual value of the test function is in the critical region, reject 

0H , if it is in the acceptance region, accept 0H . 

 If 0H  is accepted, then 0H  may be untrue but the data do not contradict to this 

assumption. If you doubt in 0H  you should take a sample of more elements. 

 

In the latest part of this subsection we present tests for the probability, expectation, variance 

and cumulative distribution function. We explain the task, present the test function, critical 

and acceptance region and decision itself in all cases, separately.  

 

Test for the probability 

 

During this problem we have to decide about the probability of an event, whether it can be a 

fixed number or not.  

Let ),...,,( n21    be the sample, 





erimentexpiththeatoccursAif0

erimentexpiththeatoccursAif1
1

i

Ai . 

Now, 



n

1i

Ai )n(k , the frequency of A , and 
n

)n(k

n

A

n

1i

i




  is its relative frequency.  
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Let ,p)A(P:H 00   01 p)A(P:H  , where 0p  is the idea about the probability of the event. 

If n100  , 0np10   is satisfied, then by the central limit theorem we can state, that 

)1,0(N~

n

)p1(p

p
n

)n(k

00

0
A





 supposing that 0H  holds. Consequently, let the test function be 

n

)p1(p

p
n

)n(k

u

00

0
A





 . If 0H  holds, then 




  1)u

n

)p1(p

p
n

)n(k

u(P

00

0
A

, where 

2
1)u(Φ


 , coinciding with the previous subsection. The critical region is 

     ,uu,  and the acceptance region is   u,u . The critical value u  and its 

opposite are the bounds of the critical region. If the actual value of  

n

)p1(p

p
n

)n(k

00

0
A





 is in the 

interval   u,u , then 0H  is accepted, in the opposite case 0H  is rejected and 1H  is 

accepted. The level of significance equals  . 

 

Let 00 p)A(P:H   and 01 p)A(P:H   a one sided alternative hypothesis. Then, if 0H  

holds, then )1,0(N~

n

)p1(p

p
n

)n(k

00

0
A





, and 




  1)

n

)p1(p

p
n

)n(k

u(P

00

0
A

2  supposing n100  , 

0np10  . The critical region is   2u, , the acceptance region is    ,u 2 . If the 

actual value of the test function 

n

)p1(p

p
n

)n(k

00

0
A





 is at least  2u , then we accept 0H , if it is 

less than  2u  we reject 0H  and we accept 1H . Then the data rather support that 

0p)A(P   and they contradict to 0p)A(P  .  

 

Remarks 

 The alternative hypothesis pp:H 01   can be similarly handled. 

 The smaller the significance level, the larger the acceptance region.  

 The larger the number of sample elements, the smaller the value of 
n

)p1(p 00 
 

and the larger is its reciprocal. Consequently, greater difference can be accepted between the 

relative frequency and the real probability in case of a small number of sample elements. 

Same difference between the relative frequency and the real probability may result in 

acceptance of 0H  for a small number of elements of the sample and in rejection of 0H  in 

case of large number of elements of the sample. 
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 Same difference between the relative frequency and the real probability may result 

in acceptance of 0H  for small number of elements of sample and in rejection of 0H  in case 

of large number of elements of the sample. 

 Acceptance of   in case of two sided alternative hypothesis and rejection of   in case 

of one sided alternative hypothesis may happen at the same significance level. Example will 

be presented later. 

 

 

Example  

 

E1. Let the relative frequency of an event A during n independent experiments be 

35.0 . Test the hypothesis 4.0)A(P:H0   and 4.0)A(P:H1   in the case of significance 

levels 1.0 , 05.0 , 01.0  and number of sample elements 100n  , 300n  , 

600n  .  Results are included in Table j.7. 

 
n,  

u  Critical region Actual value of 

the test function 

Decision 

1.0 , 

n=100 

1.645     ,645.1645.1,  -1. 0206 
0H  is accepted, 

H1  is rejected 

1.0 , 

n=300 

645.1      ,645.1645.1,  -1. 7678 
0H  is rejected, 

1H  is accepted 

1.0 , 

n=600 

645.1      ,645.1645.1,  -2. 5 
0H  is rejected, 

1H  is accepted 

05.0 , 

n=100 

1.96     ,96.196.1,  -1. 0206 
0H  is accepted, 

H1  is rejected 

05.0 , 

n=300 

1.96     ,96.196.1,  -1. 7678 
0H  is accepted, 

H1  is rejected 

05.0 , 

n=600 

1.96     ,96.196.1,  -2. 5 
0H  is rejected, 

1H  is accepted 

01.0 , 

n=100 

576.2      ,576.2576.2,  -1. 0206 
0H  is accepted, 

H1  is rejected 

01.0 , 

n=300 

576.2      ,576.2576.2,  -1. 7678 
0H  is accepted, 

H1  is rejected 

01.0 , 

n=600 

576.2      ,576.2576.2,  -2. 5 
0H  is accepted, 

H1  is rejected 

Table j.7. Testing hypothesis 4.0p   with two sided alternative hypothesis 

 

E2. Let the relative frequency of an event A during n independent experiments be 35.0 . 

Test the hypothesis 4.0)A(P:H0   and  4.0)A(P:H1  in the case of significance levels 

1.0 , 05.0 , 01.0  and number of elements of the samples 100n  , 300n  , 

600n  . Results are included in Table j.8. 

 
n,  

2u  Critical 

region 

Actual value of the test 

function 

Decision 

1.0 , 

n=100 

282.1   282.1,  -1. 0206 
0H  is accepted, 

H1  is rejected 
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1.0 , 

n=300 

282.1   282.1,  -1. 7678 
0H  is rejected, 1H  is 

accepted 

1.0 , 

n=600 

282.1   282.1,  -2. 5 
0H  is rejected, 1H  is 

accepted 

05.0 , 

n=100 

1.645  645.1,  -1. 0206 
0H  is accepted, H1  is 

rejected 

05.0 , 

n=600 

1.645  645.1,  -1. 7678 
0H  is rejected, 1H  is 

accepted 

05.0 , 

n=600 

1.645  645.1,  -2. 5 
0H  is rejected, 1H  is 

accepted 

01.0 , 

n=100 

326.2   326.2,  -1. 0206 
0H  is accepted, H1  is 

rejected 

01.0 , 

n=300 

326.2   326.2,  -1. 7678 
0H  is accepted, H1  is 

rejected 

01.0 , 

n=600 

326.2   326.2,  -2. 5 
0H  is rejected, 1H  is 

accepted 

Table j.8. Testing hypothesis 4.0p   with one sided alternative hypothesis 

 

 Test for the expectation in case of known value of dispersion 

 

Let ),...,,( n21   be a sample, i  are random variables with expectation m  and with 

known dispersion  . We would like to check weather 00 mm:H   holds or conversely, 

01 mm:H  . If ),m(N~i   or n100  , then )1,0(N~

n

m
n

n

1i

i








. Consequently, if 0H  

holds, then 


































 







1u

n

m
nuP

0

n

1i

i

. The critical region is      ,uu, , the 

acceptance region is   u,u . Using the test function 

n

m
nu

0

n

1i

i












, if the actual value 

of the test  function is in the critical region then 0H  is rejected, if it is in the acceptance  

region then 0H  is accepted. 
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If the alternative hypothesis is 01 mm:H  , then the critical region is   2u, , the 

acceptance region is    ,u 2 . If the actual value of the test function 

n

m
nu

0

n

1i

i












 is in 

the acceptance region then 0H  is accepted, if it is in the critical region then 0H   is rejected 

and 1H  is accepted. 

 

Remarks 

 The alternative hypothesis mm:H 01   can be similarly handled. 

 The smaller the significance level, the larger the acceptance region. 

 The larger the number of elements of the sample, the smaller difference 

between the average and the real expectation can be allowed if 0H  is accepted. 

 The necessary number of elements of the sample to detect difference    

between the real and the hypothetical expectation is n
u

2












 . It is proportional to the 

variance and the square of the reciprocal of the difference to be detected. 

 The case when 0H  is rejected applying two sided alternative hypothesis and 

0H  is accepted applying one sided alternative hypothesis may occur. 

 The test function requires the knowledge of the dispersion.  

 

Example 

E3. Let ),m(N~i  . Let us assume that the dispersion of the random variable 

investigated equals 1.2. The computed sample average is supposed to be 100.5. Test the 

hypothesis that 100m:H 0   and 100m:H1   if the level is significance is 1.0 , 

05.0 , 01.0  and the number of sample elements are 10n  , 30n  , 50n  . 

Results are included in Table j.9. 

  
n,  

u  Critical region  Actual value of 

the test function 

Decision 

1.0 , 

n=10 

1.645     ,645.1645.1,  1. 3176 
0H  is accepted 

1.0 , 

n=30 

645.1      ,645.1645.1,  2. 2822 
0H  is rejected, 

1H  is accepted 

1.0 , 

n=50 

645.1      ,645.1645.1,  2. 9463 
0H  is rejected, 

1H  is accepted 

05.0 , 

n=10 

96.1      ,96.196.1,  1. 3176 
0H  is accepted 

05.0 , 

n=30 

1.96     ,96.196.1,  2. 2822 
0H  is rejected, 

1H  is accepted 

05.0 , 

n=50 

1.96     ,96.196.1,  2. 9463 
0H  is rejected, 

1H  is accepted 

01.0 , 2.576     ,576.2576.2,  1. 3176 
0H  is accepted 
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n=10 

01.0 , 

n=30 

576.2      ,576.2576.2,  2. 2822 
0H  is accepted 

01.0 , 

n=50 

576.2      ,576.2576.2,  2. 9463 
0H  is rejected, 

1H  is accepted 

 

Table j.9. Testing hypothesis 100m   with two sided alternative hypothesis 

 

E4. Let ),m(N~i  . Let us assume that the dispersion of the random variable 

investigated equals 1.2. The computed sample average is supposed to be 100.5. Test the 

hypothesis that 100m:H 0   and m100:H1  , if the level is significance is 1.0 , 

05.0 , 01.0  and the number of sample elements are 10n  , 30n  , 50n  . 

Results are included in Table j.10. 
n,  

2u  Critical 

region  

Actual value of the test 

function 

Decision 

1.0 , 

n=10 

282.1   ,282.1  1. 3176 
0H  is rejected, H1 is 

accepted 

1.0 , 

n=30 

282.1   ,282.1  2. 2822 
0H  is rejected, 1H  is 

accepted 

1.0 , 

n=50 

282.1   ,282.1  2. 9463 
0H  is rejected, 1H  is 

accepted 

05.0 , 

n=10 

1.645  ,645.1  1. 3176 
0H  is accepted, H1  is 

rejected 

05.0 , 

n=30 

1.645  ,645.1  2. 2822 
0H  is rejected, 1H  is 

accepted 

05.0 , 

n=50 

1.645  ,645.1  2. 9463 
0H  is rejected, 1H  is 

accepted 

01.0 , 

n=10 

326.2   ,326.2  1. 3176 
0H  is accepted, H1  is 

rejected 

01.0 , 

n=30 

326.2   ,326.2  2. 2822 
0H  is accepted, H1  is 

rejected 

01.0 , 

n=50 

326.2   ,326.2  2. 9463 
0H  is rejected, 1H  is 

accepted 

Table j.10. Testing hypothesis 100m   with one sided alternative hypothesis 

 

Test for the expectation in case of unknown value of dispersion 

 

Let ),...,,( n21   be the sample, i  are random variables with expectation m  and 

dispersion   but the value of the dispersion is unknown. Let us assume that ),m(N~   or 

the number of the elements of the sample is large. We would like to check whether 

00 mm:H   holds or conversely, 01 mm:H  . If ),m(N~i   or n100  , then 
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)1,0(N~

n

m
n

n

1i

i








. As we do not know the value of  , we can not compute the actual 

value of  the above statistics. If we use *s  instead of  , then 1n

0

n

1i

i

~

n

s

m
n






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*
 supposing 

0H  holds. Consequently,  










































1t

n

s

m
ntP ,1n

0

n

1i

i

,1n *
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The critical region is      ,tt, ,1n,1n , the acceptance region is   ,1n,1n t,t . 

Using the test function 

n

s

m
nt

0

n

1i

i

*










, if the actual value of the test  function is in the 

critical region then 0H  is rejected, if it is in the acceptance region then 0H  is accepted. 

If the alternative hypothesis is 01 mm:H  , then the critical region is   2t, , the 

acceptance region is    ,t 2 . If the actual value of the test function, that is 

n

s

m
n

x

0

n

1i

i

*






, 

is in the acceptance region, then 0H  is accepted, if it is in the critical region then 0H   is 

rejected and 1H  is accepted. 

If  00 mm:H   and  01 mm:H  , then the critical region is )t,( 2,n   and acceptance 

region is    ,t 2 . If the actual value of the test function is in the acceptance region then 

0H  is accepted, if it is in the critical region then 0H   is rejected and 1H  is accepted. 

 

Remarks 

 The alternative hypothesis mm:H 01   can be similarly handled. 

 The smaller the significance level, the larger the acceptance region. 

 The larger the number of elements of the sample, the smaller difference between the 

average and the real expectation can be allowed if 0H  is expected. 
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 The case when 0H  is rejected applying two sided alternative hypothesis and 0H  is 

accepted applying one sided alternative hypothesis may occur. 

 Note that test functions in case of known and unknown dispersion are very similar.  

 

Example 

 

E5. Let ),m(N~i  . Let us assume that the corrected empirical dispersion computed 

from the sample equals 1.2. The sample average is supposed to be 100.5. Test the 

hypothesis that 100m:H 0   and 100m:H1  , if the level is significance are 1.0 , 

05.0 , 01.0  and the number of sample elements are 10n  , 30n  , 50n  . 

The results can be seen in Table j.11. 

 

 
n,  

t  Critical region  Actual value 

of the test 

function 

Decision 

1.0 , n=10 1.833     ,1.8331.833,  1. 3176 
0H  is 

accepted 

1.0 , n=30 1.697     ,1.6971.697,  2. 2822 
0H  is 

rejected, 1H  

is accepted 

1.0 , n=50 1.676     ,1.6761.676,  2. 9463 
0H  is 

rejected, 1H  

is accepted 

05.0 , 

n=10 

2.262     ,2.2622.262,  1. 3176 
0H  is 

accepted, 1H  

is rejected 

05.0 , 

n=30 

2.042     ,2.0422.042,  2. 2822 
0H  is 

rejected, 1H  

is accepted 

05.0 , 

n=50 

2.009     ,2.0092.009,  2. 9463 
0H  is 

rejected, 1H  

is accepted 

01.0 , 

n=10 

3.250     ,3.2503.250,  1. 3176 
0H  is 

accepted, H1 

is rejected 

01.0 , 

n=30 

2.750     ,2.750 2.750 ,  2. 2822 
0H  is 

accepted, H1 

is rejected 

01.0 , 

n=50 

2.678     ,2.6782.678,  2. 9463 
0H  is 

rejected, 1H  

is accepted 

Table j.11. Testing hypothesis 100m   in case of unknown dispersion with two sided 

alternative hypothesis 
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E6. Let ),m(N~i  . Let us assume that corrected empirical dispersion computed by 

the sample equals 1.2. The sample average is supposed to be 100.5. Test the hypothesis that 

100m:H 0   and m100:H1   if the level is significance are 1.0 , 05.0 , 01.0  

and the number of sample elements are 10n  , 30n  , 50n  .  

Results can be followed in Table j.12.  
n,  

2t  Critical region  Actual value 

of the test 

function 

Decision 

1.0 , n=10 1.383   ,1.383  1. 3176 
0H  is 

accepted,  H1 

is  rejected 

1.0 , n=30 1.310  ,1.310  2. 2822 
0H  is 

rejected, 1H  is 

accepted 

1.0 , n=50 1.299   ,1.299  2. 9463 
0H  is 

rejected, 1H  is 

accepted 

05.0 , 

n=10 

1.833  ,1.833  1. 3176 
0H  is 

accepted, H1 is 

rejected 

05.0 , 

n=30 

1.697  ,1.697  2. 2822 
0H  is 

rejected, 1H  is 

accepted 

05.0 , 

n=50 

1.676  ,1.676  2. 9463 
0H  is 

rejected, 1H  is 

accepted 

01.0 , 

n=10 

821 2.   ,821 2.  1. 3176 
0H  is 

accepted, H1 is 

rejected  

01.0 , 

n=30 

462 2.   ,462 2.  2. 2822 
0H  is 

accepted, 

1H  is rejected 

01.0 , 

n=50 

405 2.   ,405 2.  2. 9463 
0H  is 

rejected, 1H  is 

accepted 

Table j.12. Testing hypothesis 100m   in case of unknown dispersion with one sided 

alternative hypothesis 

 

 

Test for the value of variance 

 

Let ),...,,( n21   be a sample, i  are random variables with expectation m  and 

dispersion  .  We would like to check weather 2
0

2
0 :H   holds or conversely, 

2
0

2
1 :H  . Recall that if ),m(N~i   or n is large, then 2

1n2
0

2

~
*s)1n(





 supposing 
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0H  holds. Consequently, 



  1)

*s)1n(
(P 2

2/,1n2
0

2
2

2/1,1n . The test function is 

2
0

2
2 *s)1n(




 . The critical region is   ),(,0 2

2/,1n
2

2/1,1n   , the acceptance region 

is  2
2/,1n

2
2/1,1n ,   . If the actual value of the test function is in the acceptance region 

then 0H  is accepted, if it is in the critical region then 0H  is rejected and 1H  is accepted. 

If the alternative hypothesis is 2
0

2
1 :H  , then 




 )

*s)1n(
(P 2

1,1n2
0

2

. Now, 

acceptance region is ),( 2
,1n   , critical region is ],0[ 2

1,1n  . If the actual value of the test 

function is in the acceptance region then 0H  is accepted, if it is in the critical region then 

0H  is rejected and 1H  is accepted. 

Finally, if the alternative hypothesis is 22
01 :H  , then apply 





 1)

*s)1n(
(P 2

,1n2
0

2

. Now, acceptance region is  2
,1n,0  , critical region is 

   ,2
,1n . If the actual value of the test function is in the acceptance region then 0H  is 

accepted, if it is in the critical region then 0H  is rejected and 1H  is accepted. 

 

E7. Let ),m(N~i  . Let us assume that corrected empirical dispersion computed by 

the sample equals *s =1.3. Test the hypothesis that 1.1:H0   and 1.1:H1   if the level 

is significance are 1.0 , 05.0 , 01.0  and the number of sample elements are 

10n  , 30n  , 50n  . 

 
n,  

2/1   
2/  Critical region  Actual 

value of 

the test 

statistics 

Decision 

1.0 , 

n=10 

16. 919 3. 325     919, 16.3.325,0  12. 57 
0H  is 

accepted, 

H1 is 

rejected 

1.0 , 

n=30 

42. 557 17. 708     557, 42.708 17.,0  40. 504 
0H  is 

accepted, 

H1 is 

rejected 

1.0 , 

n=50 

66. 339 33. 93     66.339,93 33.,0  68. 438 
0H  is 

rejected, 

1H  is 

accepted 

05.0 , 

n=10 

19. 023 2. 7004     19.023,7004.2,0  12. 57 
0H  is 

accepted, 

H1 is 

rejected 

05.0 , 45. 722 16. 047     45.722,047.16,0  40. 504 
0H  is 
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n=30 accepted, 

H1 is 

rejected 

05.0 , 

n=50 

70. 222 31. 555     222, 70.555 31.,0  68. 438 
0H  is 

accepted, 

H1 is 

rejected 

01.0 , 

n=10 

23. 589 1. 7349     23.589,7349.1,0  12. 57 
0H  is 

accepted, 

H1 is 

rejected 

01.0 , 

n=30 

52. 336 13. 121     52.336,121.13,0  40. 504 
0H  

accepted, 

H1 is 

rejected 

 

01.0 , 

n=50 

78. 231 23. 983     231, 78.983.23,0  68. 438 
0H  is 

accepted, 

H1 is 

rejected  

Table j.13. Testing hypothesis 1.1  with two sided alternative hypothesis 

 

E8. Let ),m(N~i  . Let us assume that the corrected empirical dispersion 

computed from the sample equals *s =1.3. Test the hypothesis that 1.1:H0   and 

1.1:H1  if the level is significance are 1.0 , 05.0 , 01.0  and the number of 

sample elements are 10n  , 30n  , 50n  .  

 
n,  

  Critical region  Actual 

value of 

the test 

statistics 

Decision 

1.0 , 

n=10 

14. 684  684, 14.  12. 57 
0H  is accepted, H1 is 

rejected 

1.0 , 

n=30 

39. 087  087, 39.  40. 504 
0H  is rejected, 1H  is 

accepted 

1.0 , 

n=50 

62. 038  038, 62.  68. 438 
0H  is rejected, 1H  is 

accepted 

05.0 , 

n=10 

16. 919  919, 16.  12. 57 
0H  accepted, H1 is 

rejected 

05.0 , 

n=30 

42. 557  557, 42.  40. 504 
0H  is accepted, H1 is 

rejected 

05.0 , 

n=50 

66. 339  339, 66.  68. 438 
0H  is rejected, 1H  is 

accepted 

01.0 , 

n=10 

21. 666  , 666 21.  12. 57 
0H  is accepted, H1 is 

rejected 

01.0 , 

n=30 

49. 588  588, 49.  40. 504 
0H  is accepted, H1 is 

rejected 
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01.0 , 

n=50 

74. 919  919, 74.  68. 438 
0H  is accepted, H1 is 

rejected 

Table j.14. Testing hypothesis 2.1  with one sided alternative hypothesis 

 

 

Kolmogorov-Smirnov’ test for the cumulative distribution function 

 

Finally, we present the Komogorov-Smirnov’ test to test the distribution of the sample. 

Namely, the hypothesis is that the cumulative distribution function is a given function or, 

alternatively data contradict to that. To do that we use the maximum difference between the 

empirical distribution function constructed from the sample and the hypothetical distribution 

function. 

Let ),...,,( n21   be the sample, its values are n21 x,...,x,x . Let  )z(Fe  be the 

empirical distribution function constructed on the basis of the sample. Let the null 

hypothesis be 00 FF:H   and let 01 FF:H  . If 0H  holds, then 

)y)z(F)z(Fsupnlim(P)y(K e
Rzn




 can be given for any value of y. The values of this 

function are included in Table 4. 

Therefore, if 0H  holds then fixing the value 1  one can find the value k  for which 

 




1)k)z(F)z(Fsupnlim(P e

Rz
n

. The critical region is   ,k , the acceptance 

region is  k,0 . Test function is )z(F)z(Fsupn e
Rz




. If the actual value of the test 

function is in the critical region then 0H  is rejected, if it is in the acceptance region then 0H  

is accepted. Referring to the shape of the empirical distribution function, the supremum can 

be computed as the maximal difference of the cumulative distribution function and the 

empirical distribution function and its right hand side limit at the points of the values of the 

sample. Consequently, it is enough to compute the values of the hypothetical distribution 

function at the points of the sample values, the right hand side limit of that at the same 

points, furthermore the values of the empirical distribution function and their limits at these 

points. Taking the differences, and their maximum we get the actual value of the test 

function.  

 

Example 

 

E9. Let the elements of the sample be 2x1  , 5.0x 2  , 1.0x 3  , 7.0x 4  , 2.0x 5  . 

Test that z
0 e1)z(F:H   or z

1 e1)z(F:H   holds. 

First note that the basis of Kolmogorov’s test is an asymptotic theorem, hence it is not 

recommended using it for a sample of 5 elements. Nevertheless, for the sake of simplicity 

we do that.  

The empirical cumulative distribution function is 






























z2if1

2z7.0if8.0

7.0z5.0if6.0

5.0z2.0if4.0

2.0z1.0if2.0

1.0zif0

)z(Fe . 
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ix  )x(F ie  )z(Flim e
xz i

 )x(F i0  )x(F)x(F i0ie   
)x(F)z(Flim i0e

xz i




 

0.1 0 0.2 0.095 0.095 0.105 

0.2 0.2 0.4 0.181 0.019 0.219 

0.5 0.4 0.6 0.393 0.007 0.207 

0.7 0.6 0.8 0.503 0.097 0.297 

2 0.8 1 0.865 0.065 0.135 

Table j.13. Testing hypothesis ze1)z(F   

 

One can see that 097.0)x(F)x(Fmax i0ie  , 297.0)x(F)z(Flimmax i0e
xz i




, therefore 

297.0)x(F)x(Fmax 0e
Rx




. Thus the actual value of the test function is 664.0297.05  . 

 

The critical values for 1.0 , 05.0 , 01.0  are  1.23, 1.36 and 1.63, respectively, 

(see Table of Kolmogorov’s function), consequently 0H  is accepted in all cases of level of 

significance. One can check that the hypothesis z1.1
0 e1)z(F:H    is also excepted on the 

basis of this data. This means that the conclusion „ 0H  is accepted” means that data do not 

contradict to the hypothesis.  

 

Of course, many other tests exist for testing hypothesis, but their presentation is out of the 

frame of this booklet. 
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Cumulative distribution function of standard normally distributed 

random variables 
)x(P)x(Φ   

)1,0(N~  
 

x .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 

.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359 

.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753 

.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141 

.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517 

.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879 

.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224 

.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549 

.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852 

.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133 

.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389 

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621 

1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830 

1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015 

1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177 

1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319 

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441 

1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545 

1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633 

1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706 

1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767 

2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817 

2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857 

2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890 

2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916 

2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936 

2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952 

2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964 

2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974 

2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981 

2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986 

3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990 

3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993 

3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995 

3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997 

3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998 

3.5 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 

3.6 .9998 .9998 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 

3.7 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 

3.8 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 

Table 1. Cumulative distribution function of standard normally distributed random 

variables 
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Critical values of Student’s t distributed random variables 

 
 ),t(P n  

n~   

 
n\  0.2 0.1 0.05 0.025 0.01 0.001 

1 3.078 6.314 12.706 25.452 63.657 636.621 

2 1.886 2.920 4.303 6.205 9.925 31.599 

3 1.638 2.353 3.182 4.177 5.841 12.924 

4 1.533 2.132 2.776 3.495 4.604 8.610 

5 1.476 2.015 2.571 3.163 4.032 6.869 

6 1.440 1.943 2.447 2.969 3.707 5.959 

7 1.415 1.895 2.365 2.841 3.499 5.408 

8 1.397 1.860 2.306 2.752 3.355 5.041 

9 1.383 1.833 2.262 2.685 3.250 4.781 

10 1.372 1.812 2.228 2.634 3.169 4.587 

11 1.363 1.796 2.201 2.593 3.106 4.437 

12 1.356 1.782 2.179 2.560 3.055 4.318 

13 1.350 1.771 2.160 2.533 3.012 4.221 

14 1.345 1.761 2.145 2.510 2.977 4.140 

15 1.341 1.753 2.131 2.490 2.947 4.073 

16 1.337 1.746 2.120 2.473 2.921 4.015 

17 1.333 1.740 2.110 2.458 2.898 3.965 

18 1.330 1.734 2.101 2.445 2.878 3.922 

19 1.328 1.729 2.093 2.433 2.861 3.883 

20 1.325 1.725 2.086 2.423 2.845 3.850 

25 1.316 1.708 2.060 2.385 2.787 3.725 

30 1.310 1.697 2.042 2.360 2.750 3.646 

35 1.306 1.690 2.030 2.342 2.724 3.591 

40 1.303 1.684 2.021 2.329 2.704 3.551 

50 1.299 1.676 2.009 2.311 2.678 3.496 

60 1.296 1.671 2.000 2.299 2.660 3.460 

70 1.294 1.667 1.994 2.291 2.648 3.435 

80 1.292 1.664 1.990 2.284 2.639 3.416 

90 1.291 1.662 1.987 2.280 2.632 3.402 

100 1.290 1.660 1.984 2.276 2.626 3.390 

  1.282 1.645 1.960 2.241 2.576 3.291 

Table 2. Critical values of Student’s t distributed random variables 
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Critical values of 2  distributed random variables 

 

  )(P 2
,n  

2
n~   

 

n\  0.999 0.99 0.975 0.95 0.90 0.10 0.05 0.025 0.01 0.001 

1 .00 .00 .00 .00 .02 2.71 3.84 5.02 6.63 10.83 

2 .00 .02 .05 .10 .21 4.61 5.99 7.38 9.21 13.82 

3 .02 .11 .22 .35 .58 6.25 7.81 9.35 11.34 16.27 

4 .09 .30 .48 .71 1.06 7.78 9.49 11.14 13.28 18.47 

5 .21 .55 .83 1.15 1.61 9.24 11.07 12.83 15.09 20.52 

6 .38 .87 1.24 1.64 2.20 10.64 12.59 14.45 16.81 22.46 

7 .60 1.24 1.69 2.17 2.83 12.02 14.07 16.01 18.48 24.32 

8 .86 1.65 2.18 2.73 3.49 13.36 15.51 17.53 20.09 26.12 

9 1.15 2.09 2.70 3.33 4.17 14.68 16.92 19.02 21.67 27.88 

10 1.48 2.56 3.25 3.94 4.87 15.99 18.31 20.48 23.21 29.59 

11 1.83 3.05 3.82 4.57 5.58 17.28 19.68 21.92 24.72 31.26 

12 2.21 3.57 4.40 5.23 6.30 18.55 21.03 23.34 26.22 32.91 

13 2.62 4.11 5.01 5.89 7.04 19.81 22.36 24.74 27.69 34.53 

14 3.04 4.66 5.63 6.57 7.79 21.06 23.68 26.12 29.14 36.12 

15 3.48 5.23 6.26 7.26 8.55 22.31 25.00 27.49 30.58 37.70 

16 3.94 5.81 6.91 7.96 9.31 23.54 26.30 28.85 32.00 39.25 

17 4.42 6.41 7.56 8.67 10.09 24.77 27.59 30.19 33.41 40.79 

18 4.90 7.01 8.23 9.39 10.86 25.99 28.87 31.53 34.81 42.31 

19 5.41 7.63 8.91 10.12 11.65 27.20 30.14 32.85 36.19 43.82 

20 5.92 8.26 9.59 10.85 12.44 28.41 31.41 34.17 37.57 45.31 

25 8.65 11.52 13.12 14.61 16.47 34.38 37.65 40.65 44.31 52.62 

30 11.59 14.95 16.79 18.49 20.60 40.26 43.77 46.98 50.89 59.70 

35 14.69 18.51 20.57 22.47 24.80 46.06 49.80 53.20 57.34 66.62 

40 17.92 22.16 24.43 26.51 29.05 51.81 55.76 59.34 63.69 73.40 

50 24.67 29.71 32.36 34.76 37.69 63.17 67.50 71.42 76.15 86.66 

60 31.74 37.48 40.48 43.19 46.46 74.40 79.08 83.30 88.38 99.61 

70 39.04 45.44 48.76 51.74 55.33 85.53 90.53 95.02 100.43 112.32 

80 46.52 53.54 57.15 60.39 64.28 96.58 101.88 106.63 112.33 124.84 

90 54.16 61.75 65.65 69.13 73.29 107.57 113.15 118.14 124.12 137.21 

100 61.92 70.06 74.22 77.93 82.36 118.50 124.34 129.56 135.81 149.45 

 

Table 3.Critical values of 2 distributed random variables 
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Kolmogorov’s function 

 

)y)z(F)z(Fsupnlim(P)y(K e
Rzn




 

 

 

y .01 .02 .03 .04 .05 .06 .07 .08 .09 

0.4 .003 .004 .005 .007 .010 .013 .016 .020 .025 

0.5 .036 .043 .050 .059 .068 .077 .088 .099 .110 

0.6 .136 .149 .163 .178 .193 .208 .224 .240 .256 

0.7 .289 .305 .322 .339 .356 .373 .390 .406 .423 

0.8 .456 .472 .488 .504 .519 .535 .550 .565 .579 

0.9 .607 .621 .634 .647 .660 .673 .685 .696 .708 

1.0 .730 .741 .751 .761 .770 .780 .789 .798 .806 

1.1 .822 .830 .837 .845 .851 .858 .864 .871 .877 

1.2 .888 .893 .898 .903 .908 .912 .916 .921 .925 

1.3 .932 .935 .939 .942 .945 .948 .951 .953 .956 

1.4 .960 .962 .965 .967 .968 .970 .972 .973 .975 

1.5 .978 .979 .980 .981 .983 .984 .985 .986 .986 

1.6 .988 .989 .989 .990 .991 .991 .992 .992 .993 

1.7 .994 .994 .995 .995 .995 .996 .996 .996 .996 

1.8 .997 .997 .997 .998 .998 .998 .998 .998 .998 

1.9 .999 .999 .999 .999 .999 .999 .999 .999 .999 

 

Table 4. Kolmogorov’s function 

 


