Godel’s 1st Non-completeness Theorem

https://math.uni-pannon.hu/~szalkai/Godel-sk.pdf (Godel-sk-jav.tex, 2019.05.10.)

In this chapter we prove Gédel’s 1’st Non-Completeness Theorem:
If T is recursive, consistent and I' = PA then T" is not complete.

First we code every expression k € K (L) and formulae ¢ € F(£) with a natural number
v(k) and v(p) € N | then we prove Godel’s 1st Non-completeness Theorem. Let us emphasize
in advance that not the technical details of the coding v are important but only the existence
of such a coding! In other words, other coding functions also would do. In fact, every coding
function of finite sequences (strings) with natural numbers are usually called ” Gédel-coding”.

Before we need the notion and properties of primitive and general recursive functions.

1. Primitive recursive functions

For the definitions and explanations of primitive/partial recursive and recursive-enumerable
functions and sets please refer to the 3rd Part of the green book ” Diszkrét matematika és az
algoritmuselmélet alapjai” by 1.Szalkai (in Hungarian).

Definition: Any set A C N is recursive (decidable), if its charasteristic function x4 :
N — {0, 1} is recursive, i.e. there is a T.M. which decides "n € A" for every n € N .

2. Godel-coding

Lemma 1: There is a primitive recursive function
B:NxN-—-N

with the property: for every number n € N and every finite sequence of natural numbers length
of n
a = (ay,...,a,) € N"

there is a ¢ € N, the code of @ , such that

B(c,0)=n and p(c,i)=a; (i<n) . O

Definition 2: Clearly 3 induces a coding function
s:N*—= N

s(d)=c. O

an—+1

a1+1

(For example, we can have: s(ay, ..., a,) := p] where p; is the 7 'th prime number.)

Lemma 3: The set of codes
C :={c € N: ¢ is the code for some @ € N*}

is primitive recursive (i.e. the statement 7c € N is a code for a finite sequence” is
primitive recursive decidable). [

Lemma 4: The decoding function
B:C—N*
is primitive recursive. [

Lemma 5: The predicate ”B(c) is an initial segment of B(d)” is primitive recursive,
too. (We mean that B(c) = (ay,...,a,) and B(d) = (ay,...,a,) where n < m.) O

Lemma 6: The function ¢:C — N where {(c) is the length of the sequence B(c)
(coded by ¢) is primitive recursive. [

Note 7: Since C' € N is primitive recursive and the functions s:N* —-C, B:(C — N*
both are bijective (one-to-one and onto) and primitive recursive, we do not distinguish the
sequences @ € N* and their codes c¢=s(@) €N at all, in what follows.

Now we code all the expresssions and formulas.
Let L= (f1,- fn,P1,...,Pn) be any first order (fixed) language. Clearly £ contains
also the symbols],V ,3,(,),, and the variable symbols x , ... z; ...
Let first
vo: L —N

be any fixed bijection. Extend then vy to K(L)U F(L) as (for example):

Definition 8: (i) v(xg) :=s(vo(z;)) if k=uaz; isa 0 -order expression,
(ii)
v(k) = s (vo(fi), vo((), v(ki), vo(s), v(ka), vo(s) s -y v0(5), v (k) 0 ())
if k= fi(ki,...,k,) isa ¢+ 1 -order expression,
(iii)
S (VO(Pj)v VO(()a V<k1)> Vﬂ(a)a V(k2>a VO(’) e VO(’)? I/(k,,), VO()))
if ¢ =Pj(ki,....,k,) is a0 -order formula,

<
—~
S
~
I

v(l) = =s(vl(l), v(¥)) ,
v(ypvad) o =s(v(¥),v(V),v(d)) ,
v(3Ixigp) = s(vo(d),vo(x), v(¥)) ,

for the ¢+ 1 -order expressions ¢, V¥ and Jz;op . O

Please observe and understand the trivial base idea of coding all expressions and formulas:
eg. for coding the expression k = f;(ki,...,k,) we just code the sequence of the codes of
the components of k : f; , (, k1 ,,, .. ,k,,). Or, in some more detail: we code the
sequence vo(f;), vo((), v(ki), vo(,), v(ka), vol(s) ,-.., vo(s), v(ky) ,v0()) , as it is written
in the definition above. Further, please take care of when to use vy and when v .

Let us emphasize again, that not the details of the coding

v:K(L)UF(L)— N

2

but the existence of such coding is important. Moreover, the main aim of such codings is: to
represent and examine formulas, proofs, axiom systems (everything) with natural numbers.

Theorem 9: The function v:K(L)UF(L)— N isone-to-one. [

Now we go on. All the proofs below are omitted because of their simplicity, unless it is
stated otherwise. Since

Im(v) C Im(s) =C

we can consider the following predicates (questions) :

Theorem 10: The following prediacates and functions on C' are primitive recursive
(c,e,x,...e C):

Var(c) := 7 ¢ is a v-code for a variable ” |

Kif(c) :=" — 77 — expression” ,

Fml(c) :=" — 77— formula” ,

Free(e,x) :="” Fml(e) and Var(x) and z is a v-code for a free variable of the formula (coded
by)e”,

Subst(d,x,() := the code for the formula, obtained by the substitution ¢, (k) where where
d=v(p), x =v(ry), ¢ =v(k) and (of course) Kif(¢), Fml(d) and Var(x) yield,

AllSubst(h,d,x,/) := 7 the substitution —h=Subst(d,x,¢) is an allowed one ” ,

LogAx(g) := "7 g is a v-code for a logical axiom ” ,

DedRul(u,w) :=" (J|n) is a deduction rule where u=v(J) and w=v(y)” ,

DedRul(u,v,w) := 7 (J,7|n) is a deduction rule where u = v(dJ) , v = v(r) and
w=wv(n" ,

Bizr(a,b) := "7 b is a v -code of a proof (sequence of formulas connected with & and
deduction rules) from I of the formula coded by a7 . O

Let us note that I' above is a fized axiom system, and moreover the set
{v(y):vel'} CcC
must be primitive recursive.
Definition 11: Kovr(a):= 3b Bizr(a,b) (a is provable from I). O
Definition 12: Kovr := {a € C': Kovr(a)} (the set of consequences of I'). O

Please keep in mind that I' is a fized axiom system, and Koévr is the set of (v -codes of)
the formulas which are provable from T' ("corollaries of I'"). This is not the set of (v -codes of)
formulas decidable by T' , but ... think a little bit on this question, please.

In general, Kévr is even not general recursive (see 15, 16 below).

Definition 13: Any set of formulas F' is recursive if and only if its charasteristic function
Xp:C —{0,1} isrecursive. [

The following theorem reveals the real importance and strength of PA, Peano’s Axiom
system for arithmetic): we can talk about recursive sets and formulas inside I :

Theorem 14: (Representation Theorem for Recursive Sets) For any recursive set () C N"
(predicate over N") there is a formula ¢ = ¢, € F(Lpa) such that:

if b eqQ then PAI—QDQ<_>>,

b
— —
if 5 ¢Q then PAI—}goQ(b)

—_
for every b = (by,...,b,) € N* .

Proof: Easy but boring a bit: using the inductive definition of recursive functions and sets
(basic functions, opertors, ...) we can actually construct the formula ¢, itself (see the 3rd Part
of the green book ” Diszkrét matematika és az algoritmuselmélet alapjai” by 1. Szalkai). 0

14.b.) Remark, that we can not write ”if and only if” in none of the statement lines of
the previous Theorem.

Further, in the case T' = PA (possibly after a neccesary conservative extension) we can
replace PA by I' in the above Theorem.

3. The 1st Non-completeness Theorem

Definition: I is decidable if for every ¢ the question "I' - " can be decided.

Statement 15: I is decidable if and only if Kovr is recursive. [

Theorem 16: (A. Church) If ' PA and I is consistent then I' is not decidable.

Proof: Suppose on indirect way that Kovr is recursive. Then the predicates
P(a,b) := Kovr (Subst(a, z¢,b))
and

Q(b) :== 1 P(b,b)

both are recursive, too. Now let the formula ¢ € F(Lr) represent @) as in Theorem 14. Clearly
V(e) = {xo} , i.e. ¢ has exactly one free variable.
This means, for every b € C' :

Q) =T ifand only if PAF @, [b] =T .

Denote a the v -code for ¢ : v(p)=a .
Now either Q(a) =T or Q(a) =| we reach to a contradiction:

if Q(a)=7 then I'F ¢, [a] then |P(a,a) then |Kovr (Subst(a,zy,a))
then I'l/ ¢, [a] contradiction,

if Q(a)=] then I'F|p,[a] then I'W/¢, [a] and P(a,a) then Kovr (Subst(a,w,a))
then I'k ¢, [a] contradiction. O

Lemmae 17 and 18 below are, in some sense, the opposite of Theorem 16.

Lemma 17: If R, Q € N? are recursive sets and P € N is any subset, such that for each
a e N

P(a) if and only if Fu Q(a,u)
1P(a) if and only if Fv R(a,v)

then P is recursive. [

Lemma 18: If I' is complete then it is decidable.

Proof: For any complete axiom system I' we have

Kovr (a) if and only if Ju Bizr(a,u)
1Kovr (a) if and only if Jv Bizp(|a,v)

So Kévr must be recursive by Lemma 17, and use Statement 15. [

Theorem 19: (Gddel’s 1’st Non-Completeness Theorem)
If THPA andT is consistent then I' is not complete.

Proof: Lemma 18 contradicts to Church’s Theorem 16. O

Note that Godel’s Theorem 19. is a strenghtening of Church’s Theorem 16.

