Gödel's 1st Non-completeness Theorem

https://math.uni-pannon.hu/~szalkai/Godel-sk.pdf

(Godel-sk-jav.tex, 2019.05.10.)
In this chapter we prove Gödel's 1'st Non-Completeness Theorem:
If Γ is recursive, consistent and $\Gamma \vdash P A$ then Γ is not complete.
First we code every expression $k \in K(\mathcal{L})$ and formulae $\varphi \in F(\mathcal{L})$ with a natural number $\nu(k)$ and $\nu(\varphi) \in \mathbb{N}$, then we prove Gödel's 1st Non-completeness Theorem. Let us emphasize in advance that not the technical details of the coding ν are important but only the existence of such a coding! In other words, other coding functions also would do. In fact, every coding function of finite sequences (strings) with natural numbers are usually called "Gödel-coding".

Before we need the notion and properties of primitive and general recursive functions.

1. Primitive recursive functions

For the definitions and explanations of primitive/partial recursive and recursive-enumerable functions and sets please refer to the 3rd Part of the green book "Diszkrét matematika és az algoritmuselmélet alapjai" by I.Szalkai (in Hungarian).

Definition: Any set $A \subseteq \mathbb{N}$ is recursive (decidable), if its charasteristic function χ_{A} : $\mathbb{N} \rightarrow\{0,1\}$ is recursive, i.e. there is a T.M. which decides " $n \in A$ " for every $n \in \mathbb{N}$.

2. Gödel-coding

Lemma 1: There is a primitive recursive function

$$
\beta: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}
$$

with the property: for every number $n \in \mathbb{N}$ and every finite sequence of natural numbers length of n

$$
\vec{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n}
$$

there is a $c \in \mathbb{N}$, the code of \vec{a}, such that

$$
\beta(c, 0)=n \quad \text { and } \quad \beta(c, i)=a_{i} \quad(i \leq n)
$$

Definition 2: Clearly β induces a coding function

$$
\begin{aligned}
& s: \mathbb{N}^{*} \rightarrow \mathbb{N} \\
& s(\vec{a})=c
\end{aligned}
$$

(For example, we can have: $s\left(a_{1}, \ldots, a_{n}\right):=p_{1}^{a_{1}+1} \cdot \ldots \cdot p_{n}^{a_{n}+1}$ where p_{i} is the i 'th prime number.)

Lemma 3: The set of codes

$$
C:=\left\{c \in \mathbb{N}: c \text { is the code for some } \vec{a} \in \mathbb{N}^{*}\right\}
$$

is primitive recursive (i.e. the statement $" c \in \mathbb{N}$ is a code for a finite sequence" is primitive recursive decidable).

Lemma 4: The decoding function

$$
B: C \rightarrow \mathbb{N}^{*}
$$

is primitive recursive.
Lemma 5: The predicate " $B(c)$ is an initial segment of $B(d)$ " is primitive recursive, too. (We mean that $B(c)=\left(a_{1}, \ldots, a_{n}\right)$ and $B(d)=\left(a_{1}, \ldots, a_{m}\right)$ where $n \leq m$.)

Lemma 6: The function $\quad \ell: C \rightarrow \mathbb{N} \quad$ where $\quad \ell(c) \quad$ is the length of the sequence $B(c)$ (coded by c) is primitive recursive.

Note 7: \quad Since $C \subseteq \mathbb{N}$ is primitive recursive and the functions $s: \mathbb{N}^{*} \rightarrow C, \quad B: C \rightarrow \mathbb{N}^{*}$ both are bijective (one-to-one and onto) and primitive recursive, we do not distinguish the sequences $\vec{a} \in \mathbb{N}^{*}$ and their codes $c=s(\vec{a}) \in \mathbb{N}$ at all, in what follows.

Now we code all the expresssions and formulas.
Let $\mathcal{L}=\left(f_{1}, \ldots, f_{n}, P_{1}, \ldots, P_{m}\right)$ be any first order (fixed) language. Clearly \mathcal{L} contains also the symbols $\rceil, \vee, \exists,(),$,$\quad and the variable symbols x_{1}, \ldots x_{i} \ldots$

Let first

$$
\nu_{0}: \mathcal{L} \rightarrow \mathbb{N}
$$

be any fixed bijection. Extend then ν_{0} to $\quad K(\mathcal{L}) \cup F(\mathcal{L}) \quad$ as (for example):
Definition 8: (i) $\quad \nu\left(x_{0}\right):=s\left(\nu_{0}\left(x_{i}\right)\right) \quad$ if $\quad k=x_{i} \quad$ is a 0 -order expression,

$$
\begin{equation*}
\nu(k):=s\left(\nu_{0}\left(\mathbf{f}_{i}\right), \nu_{0}\left((), \nu\left(\mathbf{k}_{1}\right), \nu_{0}(,), \nu\left(\mathbf{k}_{2}\right), \nu_{0}(,), \ldots, \nu_{0}(,), \nu\left(k_{\mu}\right), \nu_{0}()\right)\right) \tag{ii}
\end{equation*}
$$

if $\quad k=f_{i}\left(k_{1}, \ldots, k_{\mu}\right) \quad$ is a $\quad \iota+1$-order expression,
(iii)

$$
\nu(\varphi):=s\left(\nu_{0}\left(\mathbf{P}_{j}\right), \nu_{0}\left((), \nu\left(\mathbf{k}_{1}\right), \nu_{0}(,), \nu\left(\mathbf{k}_{2}\right), \nu_{0}(,), \ldots, \nu_{0}(,), \nu\left(k_{\nu}\right), \nu_{0}()\right)\right)
$$

if $\varphi=P_{j}\left(k_{1}, \ldots, k_{\nu}\right) \quad$ is a 0 -order formula,
(iv)

$$
\begin{aligned}
\nu(\rceil \boldsymbol{\psi}) & \left.:=s\left(\nu_{0}(\rceil\right), \nu(\boldsymbol{\psi})\right), \\
\nu(\boldsymbol{\psi} \vee \boldsymbol{\vartheta}) & :=s\left(\nu(\boldsymbol{\psi}), \nu_{0}(\vee), \nu(\boldsymbol{\vartheta})\right), \\
\nu\left(\exists \mathbf{x}_{i} \boldsymbol{\psi}\right) & :
\end{aligned}=s\left(\nu_{0}(\exists), \nu_{0}\left(\mathbf{x}_{i}\right), \nu(\boldsymbol{\psi})\right), ~ l
$$

for the $\iota+1$-order expressions $\rceil \psi, \psi \vee \vartheta$ and $\exists x_{i} \psi$.
Please observe and understand the trivial base idea of coding all expressions and formulas: eg. for coding the expression $k=f_{i}\left(k_{1}, \ldots, k_{\mu}\right)$ we just code the sequence of the codes of the components of $k: \quad f_{i},\left(, k_{1},,, \ldots, k_{\mu},\right)$. Or, in some more detail: we code the sequence $\quad \nu_{0}\left(\mathbf{f}_{i}\right), \nu_{0}\left((), \nu\left(\mathbf{k}_{1}\right), \nu_{0}(),, \nu\left(\mathbf{k}_{2}\right), \nu_{0}(),, \ldots, \nu_{0}(),, \nu\left(k_{\mu}\right), \nu_{0}()\right)$, as it is written in the definition above. Further, please take care of when to use ν_{0} and when ν.

Let us emphasize again, that not the details of the coding

$$
\nu: K(\mathcal{L}) \cup F(\mathcal{L}) \rightarrow \mathbb{N}
$$

but the existence of such coding is important. Moreover, the main aim of such codings is: to represent and examine formulas, proofs, axiom systems (everything) with natural numbers.

Theorem 9: The function $\quad \nu: K(\mathcal{L}) \cup F(\mathcal{L}) \rightarrow \mathbb{N} \quad$ is one-to-one.
Now we go on. All the proofs below are omitted because of their simplicity, unless it is stated otherwise. Since

$$
\operatorname{Im}(\nu) \subset \operatorname{Im}(s)=C,
$$

we can consider the following predicates (questions) :
Theorem 10: The following prediacates and functions on C are primitive recursive $(c, e, x, \ldots \in C)$:
$\operatorname{Var}(\mathbf{c}):=" c$ is a ν-code for a variable $"$,
Kif(c) := " - ,,\quad expression ",
$\operatorname{Fml}(\mathbf{c}):=" \quad-\quad, \quad-\quad$ formula $"$,
Free $(\mathbf{e}, \mathbf{x}):=" \operatorname{Fml}(\mathrm{e})$ and $\operatorname{Var}(\mathrm{x})$ and x is a ν-code for a free variable of the formula (coded by) e",

Subst($\mathbf{d}, \mathbf{x}, \ell):=$ the code for the formula, obtained by the substitution $\varphi_{x_{m}}(k)$ where where $d=\nu(\varphi), x=\nu\left(x_{m}\right), \quad \ell=\nu(k) \quad$ and (of course) $\quad \operatorname{Kif}(\ell), \operatorname{Fml}(\mathrm{d})$ and $\operatorname{Var}(\mathrm{x})$ yield,

AllSubst $(\mathbf{h}, \mathbf{d}, \mathbf{x}, \ell):="$ the substitution $\quad \mathrm{h}=\operatorname{Subst}(\mathrm{d}, \mathrm{x}, \ell)$ is an allowed one ",
$\log \operatorname{Ax}(\mathrm{g}):=" \mathrm{~g}$ is a ν-code for a logical axiom $"$,
$\operatorname{DedRul}(\mathbf{u}, \mathbf{w}):="(\vartheta \mid \eta)$ is a deduction rule where $\quad u=\nu(\vartheta)$ and $\quad w=\nu(\eta) "$,
$\operatorname{DedRul}(\mathbf{u}, \mathbf{v}, \mathbf{w}):="(\vartheta, \tau \mid \eta)$ is a deduction rule where $\quad u=\nu(\vartheta), v=\nu(\tau)$ and $w=\nu(\eta) "$,
$\mathrm{Biz}_{\boldsymbol{\Gamma}}(\mathbf{a}, \mathbf{b}):=" b$ is a ν-code of a proof (sequence of formulas connected with \& and deduction rules) from Γ of the formula coded by a ".

Let us note that Γ above is a fixed axiom system, and moreover the set

$$
\{\nu(\gamma): \gamma \in \Gamma\} \subset C
$$

must be primitive recursive.
Definition 11: $\operatorname{Köv}_{\Gamma} \mathbf{(a)}:=\exists b B i z_{\Gamma}(a, b) \quad(a$ is provable from $\Gamma)$.
Definition 12: $\operatorname{Köv}_{\Gamma}:=\left\{a \in C: K \ddot{o} v_{\Gamma}(a)\right\} \quad$ (the set of consequences of Γ).
Please keep in mind that Γ is a fixed axiom system, and $\mathrm{Köv}_{\Gamma}$ is the set of (ν-codes of) the formulas which are provable from Γ ("corollaries of Γ "). This is not the set of (ν-codes of) formulas decidable by Γ, but ... think a little bit on this question, please.

In general, Köv ${ }_{\Gamma}$ is even not general recursive (see 15, 16 below).
Definition 13: Any set of formulas F is recursive if and only if its charasteristic function $\chi_{F}: C \rightarrow\{0,1\} \quad$ is recursive.

The following theorem reveals the real importance and strength of PA, Peano's Axiom system for arithmetic): we can talk about recursive sets and formulas inside Γ :

Theorem 14: (Representation Theorem for Recursive Sets) For any recursive set $Q \subset \mathbb{N}^{n}$ (predicate over $\left.\mathbb{N}^{n}\right)$ there is a formula $\varphi=\varphi_{Q} \in F\left(\mathcal{L}_{P A}\right)$ such that:

$$
\begin{array}{lll}
\text { if } & \vec{b} \in Q \quad \text { then } \quad P A \vdash \varphi_{Q}(\vec{b}), \\
\text { if } \quad \vec{b} \notin Q \quad \text { then } \quad P A \vdash 1 \varphi_{Q}(\vec{b})
\end{array}
$$

for every $\quad \vec{b}=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{N}^{n}$.
Proof: Easy but boring a bit: using the inductive definition of recursive functions and sets (basic functions, opertors, ...) we can actually construct the formula φ_{Q} itself (see the 3rd Part of the green book "Diszkrét matematika és az algoritmuselmélet alapjai" by I. Szalkai).
14.b.) Remark, that we can not write "if and only if" in none of the statement lines of the previous Theorem.

Further, in the case $\Gamma \vdash P A$ (possibly after a neccesary conservative extension) we can replace $P A$ by Γ in the above Theorem.

3. The 1st Non-completeness Theorem

Definition: $\quad \Gamma$ is decidable if for every φ the question " $\Gamma \vdash \varphi$ " can be decided.
Statement 15: $\quad \Gamma$ is decidable if and only if $K o ̈ v_{\Gamma}$ is recursive.
Theorem 16: (A. Church) If $\Gamma \vdash P A$ and Γ is consistent then Γ is not decidable.
Proof: Suppose on indirect way that Köv Γ is recursive. Then the predicates

$$
P(a, b):=K \ddot{\partial} v_{\Gamma}\left(\operatorname{Subst}\left(a, x_{0}, b\right)\right)
$$

and

$$
Q(b):=\rceil P(b, b)
$$

both are recursive, too. Now let the formula $\varphi \in F\left(\mathcal{L}_{\Gamma}\right)$ represent Q as in Theorem 14. Clearly $V(\varphi)=\left\{x_{0}\right\}$, i.e. φ has exactly one free variable.

This means, for every $b \in C$:

$$
Q(b)=\uparrow \quad \text { if and only if } \quad P A \vdash \varphi_{x_{0}}[b]=\uparrow .
$$

Denote a the ν-code for φ : $\quad \nu(\varphi)=a$.
Now either $Q(a)=\uparrow$ or $Q(a)=\downarrow$ we reach to a contradiction:
if $\quad Q(a)=\uparrow$ then $\Gamma \vdash \varphi_{x_{0}}[a]$ then $\rceil P(a, a)$ then $\rceil \operatorname{Köv} v_{\Gamma}\left(\operatorname{Subst}\left(a, x_{0}, a\right)\right)$ then $\Gamma \nvdash \varphi_{x_{0}}[a]$ contradiction,
if $\quad Q(a)=\downarrow$ then $\Gamma \vdash 7 \varphi_{x_{0}}[a]$ then $\Gamma \nvdash \varphi_{x_{0}}[a]$ and $P(a, a)$ then $K \ddot{o} v_{\Gamma}\left(\operatorname{Subst}\left(a, x_{0}, a\right)\right)$ then $\Gamma \vdash \varphi_{x_{0}}[a]$ contradiction.

Lemmae 17 and 18 below are, in some sense, the opposite of Theorem 16.

Lemma 17: If $R, Q \subseteq \mathbb{N}^{2}$ are recursive sets and $P \subseteq \mathbb{N}$ is any subset, such that for each $a \in \mathbb{N}$

$$
\begin{array}{rll}
P(a) & \text { if and only if } & \exists u Q(a, u) \\
1 P(a) & \text { if and only if } & \exists v R(a, v)
\end{array}
$$

then P is recursive.
Lemma 18: If Γ is complete then it is decidable.
Proof: For any complete axiom system Γ we have

$$
\left.\begin{array}{rl}
K \ddot{\partial} v_{\Gamma}(a) & \text { if and only if } \\
\rceil K u B i z_{\Gamma}(a, u) \\
\rceil \text { Köv } & (a)
\end{array} \quad \text { if and only if } \quad \exists v B i z_{\Gamma}(\rceil a, v\right) .
$$

So $K o ̈ v_{\Gamma}$ must be recursive by Lemma 17, and use Statement 15 .

Theorem 19: (Gödel's 1'st Non-Completeness Theorem)

If $\Gamma \vdash P A$ and Γ is consistent then Γ is not complete.
Proof: Lemma 18 contradicts to Church's Theorem 16.

Note that Gödel's Theorem 19. is a strenghtening of Church's Theorem 16.

