
Gödel�s 1st Non-completeness Theorem

https://math.uni-pannon.hu/~szalkai/Godel-sk.pdf (Godel-sk-jav.tex, 2019.05.10.)

In this chapter we prove Gödel�s 1�st Non-Completeness Theorem:
If � is recursive, consistent and � ` PA then � is not complete.
First we code every expression k 2 K(L) and formulae ' 2 F (L) with a natural number

�(k) and �(') 2 N , then we prove Gödel�s 1st Non-completeness Theorem. Let us emphasize
in advance that not the technical details of the coding � are important but only the existence
of such a coding! In other words, other coding functions also would do. In fact, every coding
function of �nite sequences (strings) with natural numbers are usually called �Gödel-coding�.
Before we need the notion and properties of primitive and general recursive functions.

1. Primitive recursive functions

For the de�nitions and explanations of primitive/partial recursive and recursive-enumerable
functions and sets please refer to the 3rd Part of the green book �Diszkrét matematika és az
algoritmuselmélet alapjai�by I.Szalkai (in Hungarian).
De�nition: Any set A j N is recursive (decidable), if its charasteristic function �A :

N!f0; 1g is recursive, i.e. there is a T.M. which decides "n 2 A" for every n 2 N .

2. Gödel-coding

Lemma 1: There is a primitive recursive function

� : N� N! N

with the property: for every number n 2 N and every �nite sequence of natural numbers length
of n

�!a = (a1; :::; an) 2 Nn

there is a c 2 N , the code of �!a , such that

�(c; 0) = n and �(c; i) = ai (i � n) . �

De�nition 2: Clearly � induces a coding function

s : N� ! N

s(�!a) = c : �

(For example, we can have: s(a1; :::; an) := pa1+11 � ::: �pan+1n where pi is the i �th prime number.)

1

Lemma 3: The set of codes

C := fc 2 N : c is the code for some �!a 2 N�g

is primitive recursive (i.e. the statement �c 2 N is a code for a �nite sequence� is
primitive recursive decidable). �

Lemma 4: The decoding function

B : C ! N�

is primitive recursive. �

Lemma 5: The predicate �B(c) is an initial segment ofB(d)� is primitive recursive,
too. (We mean that B(c) = (a1; :::; an) and B(d) = (a1; :::; am) where n � m.) �

Lemma 6: The function ` : C ! N where `(c) is the length of the sequence B(c)
(coded by c) is primitive recursive. �

Note 7: Since C j N is primitive recursive and the functions s : N� ! C , B : C ! N�
both are bijective (one-to-one and onto) and primitive recursive, we do not distinguish the
sequences �!a 2 N� and their codes c = s(�!a) 2 N at all, in what follows.

Now we code all the expresssions and formulas.
Let L = (f1; :::; fn; P1; :::; Pm) be any �rst order (�xed) language. Clearly L contains

also the symbols e , _ , 9 , (,) , , and the variable symbols x1 , ::: xi
Let �rst

�0 : L ! N

be any �xed bijection. Extend then �0 to K(L) [F (L) as (for example):

De�nition 8: (i) �(x0) := s (�0(xi)) if k = xi is a 0 -order expression,

(ii)
�(k) := s (�0(fi); �0((); �(k1); �0(,); �(k2); �0(,) ; :::; �0(,); �(k�); �0()))

if k = fi(k1; :::; k�) is a �+ 1 -order expression,

(iii)
�(') := s (�0(Pj); �0((); �(k1); �0(,); �(k2); �0(,) ; :::; �0(,); �(k�); �0()))

if ' = Pj(k1; :::; k�) is a 0 -order formula,

(iv)

�(e) : = s (�0(e); �()) ,
�(_ #) : = s (�(); �0(_); �(#)) ,
�(9xi) : = s (�0(9); �0(xi); �()) ,

for the �+ 1 -order expressions e , _ # and 9xi . �

Please observe and understand the trivial base idea of coding all expressions and formulas:
eg. for coding the expression k = fi(k1; :::; k�) we just code the sequence of the codes of
the components of k : fi , (, k1 , , , ... , k� ,) . Or, in some more detail: we code the
sequence �0(fi); �0((); �(k1); �0(,); �(k2); �0(,) ; :::; �0(,); �(k�) ; �0()) , as it is written
in the de�nition above. Further, please take care of when to use �0 and when � .
Let us emphasize again, that not the details of the coding

� : K(L) [F (L)! N

2

but the existence of such coding is important. Moreover, the main aim of such codings is: to
represent and examine formulas, proofs, axiom systems (everything) with natural numbers.

Theorem 9: The function � : K(L) [F (L)! N is one-to-one. �

Now we go on. All the proofs below are omitted because of their simplicity, unless it is
stated otherwise. Since

Im(�) � Im(s) = C ,

we can consider the following predicates (questions) :

Theorem 10: The following prediacates and functions on C are primitive recursive
(c; e; x; ::: 2 C):
Var(c) := �c is a �-code for a variable �,

Kif(c) := � � �� � expression �,

Fml(c) := � � �� � formula �,

Free(e,x) := �Fml(e) and Var(x) and x is a �-code for a free variable of the formula (coded
by) e �,

Subst(d,x,`) := the code for the formula, obtained by the substitution 'xm(k) where where
d = �('), x = �(xm), ` = �(k) and (of course) Kif(`), Fml(d) and Var(x) yield,

AllSubst(h,d,x,`) := �the substitution h=Subst(d,x,`) is an allowed one �,

LogAx(g) := �g is a �-code for a logical axiom �,

DedRul(u,w) := �(#j�) is a deduction rule where u = �(#) and w = �(�) � ,

DedRul(u,v,w) := � (#; � j�) is a deduction rule where u = �(#) , v = �(�) and
w = �(�) � ,

Biz�(a,b) := � b is a � -code of a proof (sequence of formulas connected with & and
deduction rules) from � of the formula coded by a �. �

Let us note that � above is a �xed axiom system, and moreover the set

f�(
) :
 2 �g � C

must be primitive recursive.

De�nition 11: Köv�(a):= 9b Biz�(a; b) (a is provable from �). �

De�nition 12: Köv� := fa 2 C : K�ov�(a)g (the set of consequences of �). �

Please keep in mind that � is a �xed axiom system, and Köv� is the set of (� -codes of)
the formulas which are provable from � ("corollaries of �"). This is not the set of (� -codes of)
formulas decidable by � , but ... think a little bit on this question, please.
In general, Köv� is even not general recursive (see 15, 16 below).

De�nition 13: Any set of formulas F is recursive if and only if its charasteristic function
�F : C ! f0; 1g is recursive. �

3

The following theorem reveals the real importance and strength of PA, Peano�s Axiom
system for arithmetic): we can talk about recursive sets and formulas inside � :

Theorem 14: (Representation Theorem for Recursive Sets) For any recursive set Q � Nn
(predicate over Nn) there is a formula ' = 'Q 2 F (LPA) such that:

if
�!
b 2 Q then PA ` 'Q

��!
b
�
,

if
�!
b =2 Q then PA ` e 'Q

��!
b
�

for every
�!
b = (b1; :::; bn) 2 Nn .

Proof: Easy but boring a bit: using the inductive de�nition of recursive functions and sets
(basic functions, opertors, ...) we can actually construct the formula 'Q itself (see the 3rd Part
of the green book �Diszkrét matematika és az algoritmuselmélet alapjai�by I. Szalkai). �

14.b.) Remark, that we can not write �if and only if� in none of the statement lines of
the previous Theorem.
Further, in the case � ` PA (possibly after a neccesary conservative extension) we can

replace PA by � in the above Theorem.

3. The 1st Non-completeness Theorem

De�nition: � is decidable if for every ' the question "� ` '" can be decided.
Statement 15: � is decidable if and only if Köv� is recursive. �

Theorem 16: (A. Church) If � ` PA and � is consistent then � is not decidable.

Proof: Suppose on indirect way that Köv� is recursive. Then the predicates

P (a; b) := K�ov� (Subst(a; x0; b))

and
Q(b) := e P (b; b)

both are recursive, too. Now let the formula ' 2 F (L�) represent Q as in Theorem 14. Clearly
V (') = fx0g , i.e. ' has exactly one free variable.
This means, for every b 2 C :

Q(b) =" if and only if PA ` 'x0 [b] =" .

Denote a the � -code for ' : �(') = a .
Now either Q(a) =" or Q(a) =# we reach to a contradiction:

if Q(a) =" then � ` 'x0 [a] then eP (a; a) then eK�ov� (Subst(a; x0; a))
then � 6` 'x0 [a] contradiction,

if Q(a) =# then � `e'x0 [a] then � 6` 'x0 [a] and P (a; a) then K�ov� (Subst(a; x0; a))

then � ` 'x0 [a] contradiction. �

Lemmae 17 and 18 below are, in some sense, the opposite of Theorem 16.

4

Lemma 17: If R;Q j N2 are recursive sets and P j N is any subset, such that for each
a 2 N

P (a) if and only if 9u Q(a; u)
eP (a) if and only if 9v R(a; v)

then P is recursive. �

Lemma 18: If � is complete then it is decidable.

Proof: For any complete axiom system � we have

K�ov� (a) if and only if 9u Biz�(a; u) ,

eK�ov� (a) if and only if 9v Biz�(ea; v) .

So K�ov� must be recursive by Lemma 17, and use Statement 15. �

Theorem 19: (Gödel�s 1�st Non-Completeness Theorem)

If � ` PA and � is consistent then � is not complete.

Proof: Lemma 18 contradicts to Church�s Theorem 16. �

Note that Gödel�s Theorem 19. is a strenghtening of Church�s Theorem 16.

5

