http://math.uni-pannon.hu/~szalkai/Malta.html

 Reactions, mechanisms and
simplexes

István Szalkai

Pannon University, Veszprém, Hungary
Department of Mathematics

http://math.uni-pannon.hu/~szalkai/Malta.html

I.
 Simplexes
 (definitions)

(1) Chemical reactions :

$$
2 \mathrm{H}_{2}+2 \mathrm{CO}=\mathrm{CH}_{4}+\mathrm{CO}_{2}
$$

<=> Linear combination of vectors

H:	$\|2\| r\|0\|$	$\|4\|$	$\|0\|$	$10 \mid$
C:	$2 *\|0\|+2 *\|1\|-\|1\|-\|1\|=$	$10 \mid$		
O:	$\|0\| r\|1\|$	$\|0\|$	$\|2\|$	$10 \mid$

(1) Chemical reactions :

$$
2 \mathrm{H}_{2}+2 \mathrm{CO}=\mathrm{CH}_{4}+\mathrm{CO}_{2}
$$

<=> Linear combination of vectors

No kinetics, chemics, graphs (at the end),
other approaches: / janostothmeister@gmail.com /
Tóth,J., Érdi,P.: Mathematical Models of Chemical Reactions. Theory and Applications of Deterministic and Stochastic Models, Manchester Univ. Press and Princeton Univ.Press, 1989.

Tóth,J., Li,G., Rabitz,H., Tomlin,A.S.: The Effect of Lumping and Expanding on Kinetic Differential Equations, SIAM J. Appl. Math., 57 (1997), 1531-1556.

Tóth,J., Nagy,A.L., Zsély,I.: Structural Analysis of Combustion Models, arXiv preprint arXiv:1304.7964 (2013).

Tóth,J., Rospars,J.P.: Dynamic Modeling of Biochemical Reactions with Applications to Signal Transduction: Principles and Tools using Mathematica, Biosystems 79 (1-3), (2005) 33-52.

Tóth,J., Nagy,A., Papp,D.: Reaction Kinetics: Exercises, Programs and Theorems: Mathematica for Deterministic and Stochastic Kinetics, Springer, New York, NY, 2018.
(1) Chemical reactions :

$$
2 \mathrm{H}_{2}+2 \mathrm{CO}=\mathrm{CH}_{4}+\mathrm{CO}_{2}
$$

<=> Linear combination of vectors

H	\|2		101	\|4		\|0		101	
C:	2*\|0		+ 2*\|1		\|1		- \|1		101
O:	101	\|1		101	\|2		101		

Minimal: none of them can be omitted.
(1) Chemical reactions :

$$
2 \mathrm{H}_{2}+2 \mathrm{CO}=\mathrm{CH}_{4}+\mathrm{CO}_{2}
$$

<=> Linear combination of vectors

Minimal: none of them can be omitted.
(also for ions, e^{-}, cathalysts, etc.)
(1) Chemical reactions :

$$
2 \mathrm{H}_{2}+2 \mathrm{CO}=\mathrm{CH}_{4}+\mathrm{CO}_{2}
$$

<=> Linear combination of vectors

H:	$\|2\| r\|0\|$	$\|4\|$	$\|0\|$	$10 \mid$
C:	$2 *\|0\|+2 *\|1\|-\|1\|-\|1\|=$	$10 \mid$		
O:	$\|0\| r\|1\|$	$\|0\|$	$\|2\|$	$10 \mid$

Minimal: none of them can be omitted.

(also for ions, e^{-}, cathalysts, etc.)

Question:

Can we distinguish the reactions $\underline{\mathbf{u}}: \mathbf{X}+\mathbf{Y} \rightarrow \mathbf{2 X}$ and $\underline{\mathbf{v}}: \mathbf{Y} \rightarrow \mathbf{X}$?

Question:

Can we distinguish the reactions $\underline{\mathbf{u}}: \mathbf{X}+\mathbf{Y} \rightarrow \mathbf{2 X}$ and $\underline{\mathbf{v}}: \mathbf{Y} \rightarrow \mathbf{X}$?
Answer: The above model does not distinguish them: reduces to $\mathbf{0}$ and uses the vector $\underline{w}=[1,-1,0, \ldots .]^{T}$ for both.

Question:

Can we distinguish the reactions $\underline{\mathbf{u}}: \mathbf{X}+\mathbf{Y} \rightarrow \mathbf{2 X}$ and $\underline{\mathbf{v}}: \mathbf{Y} \rightarrow \mathbf{X}$?
Answer: The above model does not distinguish them: reduces to $\mathbf{0}$ and uses the vector $\underline{\mathbf{w}}=[1,-1,0, \ldots . .]^{\mathrm{T}}$ for both.

Idea: work in double dimension. Imagine for all species ($\mathrm{X}, \mathrm{Y}, \ldots$) two variants "in" and "out" and use the vectors:

$$
\underline{\mathbf{u}}^{\prime}=[-1,-1,0, \ldots, 2,0,0, \ldots, .]^{T^{\prime}}, \underline{\underline{x}} \underline{\underline{v}}^{\prime}:[0,-1,0, \ldots, 1,0,0, \ldots . .]^{T},
$$

and introduce the reactions "in \leftarrow out" as:

$$
\underline{x}=[1,0,0, \ldots,-1,0,0, \ldots . .]^{T}, \quad \underline{y}=[0,1,0, \ldots, 0,-1,0, \ldots, .]^{T},
$$

then clearly $\underline{\mathbf{u}} \equiv \underline{\mathbf{u}^{\prime}}+2 \underline{\mathbf{x}} \quad$ and $\underline{\mathbf{v}} \equiv \underline{\mathbf{v}}^{\prime}+\underline{\mathbf{x}}$,
and modify the original "start" and "goal" reactions corresponding this idea.
. . . there are several more minor observations and tricks . . .
(2) Mechanisms :

$1: \mathbf{C}+\mathbf{O}=\mathbf{C O}$	$\overline{\mathbf{X}}_{1}=[1,1,-1,0]$	
$2:$	$\mathbf{C}+\mathbf{2} \mathbf{O}=\mathbf{C O}_{2}$	$\overline{\mathrm{X}}_{2}=[1,2,0,-1]$
$\left(3: \mathrm{O}+\mathbf{C O}=\mathrm{CO}_{2}\right.$	$\left.\underline{\mathrm{X}}_{4}=[0,1,1,-1]\right)$	
$4: \mathbf{C}+\mathbf{C O}_{2}=\mathbf{2 C O}$	$[1,0,-2,1]$	

$$
2 * \underline{x}_{1}-\underline{\mathrm{x}}_{2}=\underline{\mathrm{x}}_{4}
$$

Linear combination

$$
2 * \underline{\mathrm{X}}_{1}-\underline{\mathrm{X}}_{2}-\underline{\mathrm{X}}_{4}=\underline{0}
$$

Minimal: none of them can be omitted.
(2) Mechanisms :

$1:$	$\mathbf{C}+\mathbf{O}=\mathbf{C O}$	$\underline{\mathbf{x}}_{1}=[1,1,-1,0]$
$2:$	$\mathbf{C}+\mathbf{2} \mathbf{O}=\mathbf{C O}_{2}$	$\underline{\mathbf{X}}_{2}=[1,2,0,-1]$
$(3:$	$\mathrm{O}+\mathbf{C O}=\mathrm{CO}_{2}$	$\left.\underline{X}_{3}=[0,1,1,-1]\right)$
$4:$	$\mathbf{C}+\mathbf{C O}_{2}=\mathbf{2 C O}$	$\underline{\mathbf{C}}_{4}=[1,0,-2,1]$

$$
2 * \underline{X}_{1}-\underline{x}_{2}=\underline{x}_{4}
$$

Linear combination

$$
2 * \underline{\mathrm{X}}_{1}-\underline{\mathrm{X}}_{2}-\underline{\mathrm{X}}_{4}=\underline{0}
$$

Minimal: none of them can be omitted.

(2) Mechanisms :

$$
\begin{array}{rlrl}
1: \mathrm{C}+\mathrm{O}=\mathrm{CO} & \frac{X}{1}^{X_{2}} & =[1,1,-1,0]^{\mathrm{T}} \\
2: \mathrm{C}+2 \mathrm{O}=\mathrm{CO}_{2} & \underline{X}_{2} & =[1,2,0,-1]^{\mathrm{T}} \\
\left(3: \mathrm{O}+\mathrm{CO}=\mathrm{CO}_{2}\right. & \underline{X}_{3} & \left.=[0,1,1,-1]^{\mathrm{T}}\right) \\
4: \mathrm{C}+\mathrm{CO}_{2}=2 \mathrm{CO} & \underline{X}_{4}=[1,0,-2,1]^{\mathrm{T}}
\end{array}
$$

in general:

$$
\begin{equation*}
\underline{Y}=\alpha_{1} \underline{X}_{1}+\alpha_{2} \underline{X}_{2}+\ldots \alpha_{\mathrm{n}} \underline{X}_{\mathrm{n}} \tag{M}
\end{equation*}
$$

$$
\alpha_{1} \underline{X}_{1}+\alpha_{2} \underline{X}_{2}+\ldots \alpha_{\mathrm{n}} \underline{X}_{\mathrm{n}}-\underline{Y}=\underline{0}
$$

$\underline{\mathbf{Y}}:=\mathbf{R}(M)=$ the final reaction, determined by the mechanism (M)

+ given start materials and final products . . .

(2) Mechanisms :

$$
\begin{array}{rlrl}
1: \mathrm{C}+\mathrm{O}=\mathrm{CO} & \frac{X}{1}^{X_{2}} & =[1,1,-1,0]^{\mathrm{T}} \\
2: \mathrm{C}+2 \mathrm{O}=\mathrm{CO}_{2} & \underline{X}_{2} & =[1,2,0,-1]^{\mathrm{T}} \\
\left(3: \mathrm{O}+\mathrm{CO}=\mathrm{CO}_{2}\right. & \underline{X}_{3} & \left.=[0,1,1,-1]^{\mathrm{T}}\right) \\
4: \mathrm{C}+\mathrm{CO}_{2}=2 \mathrm{CO} & \underline{X}_{4}=[1,0,-2,1]^{\mathrm{T}}
\end{array}
$$

in general:

$$
\begin{equation*}
\underline{Y}=\alpha_{1} \underline{X}_{1}+\alpha_{2} \underline{X}_{2}+\ldots \alpha_{\mathrm{n}} \underline{X}_{\mathrm{n}} \tag{M}
\end{equation*}
$$

$$
\alpha_{1} \underline{X}_{1}+\alpha_{2} \underline{X}_{2}+\ldots \alpha_{\mathrm{n}} \underline{X}_{\mathrm{n}}-\underline{Y}=\underline{0}
$$

Minimal: none of them can be omitted.
$\underline{\mathbf{Y}}:=\mathbf{R}(M)=$ the final reaction, determined by the mechanism (M)

+ given start materials and final products . . .
(3) Physicall quantities (measure units/"dimension analysis"):

tube diameter	$=d$ ($\ell)$	[$\mathbf{1 , 0 , 0 , 0 , 0 , 0}]$
linear velocity	$=v(s / t)$	[$0,1,-1,0,0,0]$
fluid density	$=\rho\left(m / \ell^{3}\right)$	$[-3,0,0,1,0,0]$
viscosity	$=\nu(m / \ell t)$	[-1, 0,-1, , , 0, 0]
heat capacity	$=\kappa\left(A / t^{2} T\right)$	[$0,0,-2,0,1,-1]$
heat transfer coeff.	$=\lambda\left(m / t^{3} T\right)$	[$0,0,-3,1,0,-1$]
thermal conductivity	$=\mu\left(m \ell / t^{3} T\right)=$	[1, 0, -3, 1, 0,-1]

Minimal connection:
$v \cdot \kappa=\mu \cdot c \quad /$ for some $c \in R /$
(3) Physical quantities (measure units/"dimension analysis"):

tube diameter	$=d(\ell)$	[$\mathbf{1 , 0 , 0 , 0 , 0 , 0}]^{\text {T }}$
linear velocity	$=v(s / t)$	[0, 1,-1, 0, 0, 0] ${ }^{\text {T }}$
fluid density	$=\rho\left(m / \ell^{3}\right)$	$[-\mathbf{3}, \mathbf{0}, \mathbf{0}, 1,0,0]^{\text {T }}$
viscosity	$=\nu(m / \ell t)$	$[-1,0,-1,1,0,0]^{\text {T }}$
heat capacity	$=\kappa\left(A / t^{2} T\right)$	[0, 0,-2, 0, 1,-1] ${ }^{\text {T }}$
eat transfer coeff.	$=\lambda\left(m / t^{3} T\right)$	[0,0,-3, 1, 0,-1] ${ }^{\text {T }}$
thermal conductivity	$=\mu\left(m \ell / t^{3} T\right)=$	[$\mathbf{1 , 0 , - 3 , 1 , 0 , - 1}]^{\text {T }}$

Minimal connection: $\quad v \cdot \kappa=\mu \cdot c \quad /$ for some $c \in R /$
<=> linear combination of the exponents

(4) In General : Main Definition:

$\mathrm{S}=\left\{\underline{\mathrm{s}}_{1}, \underline{\mathrm{~s}}_{2}, \ldots, \underline{\mathrm{~s}}_{\mathrm{k}}\right\} \subset \mathrm{R}^{\mathrm{n}}$ is an (linear) algebraic simplex iff S is minimal dependent.

(4) In General : Main Definition:

$\mathrm{S}=\left\{\underline{\mathrm{s}}_{1}, \underline{\mathrm{~s}}_{2}, \ldots, \underline{\mathrm{~s}}_{\mathrm{k}}\right\} \subset \mathrm{R}^{\mathrm{n}}$ is an (linear) algebraic simplex iff S is minimal dependent.
i.e.

S is dependent and $\mathrm{S} \backslash\left\{\underline{\mathrm{s}}_{\mathrm{i}}\right\}$ is independent for all $\mathrm{i} \leq \mathrm{k}$.

(4) In General : Main Definition:

$\mathrm{S}=\left\{\underline{\mathrm{s}}_{1}, \underline{\mathrm{~s}}_{2}, \ldots, \underline{\mathrm{~s}}_{\mathrm{k}}\right\} \subset \mathrm{R}^{\mathrm{n}}$ is an (linear) algebraic simplex iff S is minimal dependent.
i.e.

S is dependent and $\mathrm{S} \backslash\left\{_{\mathrm{s}}\right\}$ is independent for all $\mathrm{i} \leq \mathrm{k}$.
i.e.

$$
\alpha_{1} \cdot \underline{\mathrm{~s}}_{1}+\alpha_{2} \cdot \underline{\mathrm{~s}}_{2}+\ldots+\alpha_{\mathrm{k}} \cdot \underline{\mathrm{~s}}_{\mathrm{k}}=\underline{0}
$$

and none of them can be omitted : $\alpha_{\mathrm{i}} \neq 0 \quad$ for all $\mathrm{i} \leq \mathrm{k}$.

(4) In General : Main Definition:

$\mathrm{S}=\left\{\underline{\mathrm{s}}_{1}, \underline{\mathrm{~s}}_{2}, \ldots, \underline{\mathrm{~s}}_{\mathrm{k}}\right\} \subset \mathrm{R}^{\mathrm{n}}$ is an (linear) algebraic simplex
iff S is minimal dependent.
i.e.

S is dependent and $\mathrm{S} \backslash\left\{_{\mathrm{s}}\right\}$ is independent for all $\mathrm{i} \leq \mathrm{k}$.
i.e.

$$
\alpha_{1} \cdot \underline{\mathrm{~s}}_{1}+\alpha_{2} \cdot \underline{\mathrm{~s}}_{2}+\ldots+\alpha_{\mathrm{k}} \cdot \underline{\mathrm{~s}}_{\mathrm{k}}=\underline{0}
$$

and none of them can be omitted : $\alpha_{\mathrm{i}} \neq 0 \quad$ for all $\mathrm{i} \leq \mathrm{k}$.
(minimal reactions, mechanisms, etc.)

II.

System of
 equations

(0) Homogeneous linear equations:

$$
\underline{A} \cdot \underline{x}=\underline{0}
$$

Find the structure of minimal solutions

Question: Assuming $\mathbf{A} \cdot \mathbf{X}=\mathbf{0}$, what information could be extracted from the linear /in/dependency of the rows and columns of \mathbf{A} and of \mathbf{X} and of $\operatorname{rank}(\mathbf{A})$?

Question: Assuming $\mathbf{A} \cdot \mathbf{X}=\mathbf{0}$, what information could be extracted from the linear /in/dependency of the rows and columns of \mathbf{A} and of \mathbf{X} and of $\operatorname{rank}(\mathbf{A})$?

Answer:

columns of \mathbf{A} are the "contents" of the species, columns of \mathbf{X} are the reactions,
generating/independent columns of X denote generating / independent reactions.

Question: Assuming $\mathbf{A} \cdot \mathbf{X}=\mathbf{0}$, what information could be extracted from the linear /in/dependency of the rows and columns of \mathbf{A} and of \mathbf{X} and of $\operatorname{rank}(\mathbf{A})$?

Answer:

columns of \mathbf{A} are the "contents" of the species, columns of \mathbf{X} are the reactions, generating/independent columns of X denote generating / independent reactions.
rows, $\operatorname{rank}(\mathrm{A}), \operatorname{rank}(\mathrm{X})=$?

Observations (reducing the dimension)
a) If a column of A (a species/reaction) is linearly independent fom the others, then it can be omitted, since it plays no role in any reaction/ mechanism.

Observations (reducing the dimension)
a) If a column of A (a species/reaction) is linearly independent fom the others, then it can be omitted, since it plays no role in any reaction/ mechanism.
b) If one column of A is parallel to another column, then one of these columns can be omitted,
since they denote the same species/reaction in multiple dose.

Observations (reducing the dimension)
a) If a column of A (a species/reaction) is linearly independent fom the others, then it can be omitted, since it plays no role in any reaction/ mechanism.
b) If one column of A is parallel to another column, then one of these columns can be omitted, since they denote the same species/reaction in multiple dose.
c) If a column of A (a reaction) contains exactly two nonzero coordinates, then this column can be omitted, since in this reaction the two species are equivalent.

Observations (reducing the dimension)
a) If a column of A (a species/reaction) is linearly independent fom the others, then it can be omitted, since it plays no role in any reaction/ mechanism.
b) If one column of A is parallel to another column, then one of these columns can be omitted, since they denote the same species/reaction in multiple dose.
c) If a column of A (a reaction) contains exactly two nonzero coordinates, then this column can be omitted, since in this reaction the two species are equivalent.

Perhaps they are important in chemistry.
NOT the Gauss elminination method.

ON A CLASS OF SOLUTIONS OF ALGEBRAIC HOMOGENEOUS LINEAR EQUATIONS

By
A. PETH ${ }^{\circ}$ (Budapest)

On solving algebraic homogeneous linear equations by Cramer's rule, solutions can automatically be obtained in which the number of zero elements is maximal in a sense [2]-[3]. In the present communication, these so-called ,simple" solutions are defined more simply, in a combinatorial manner, and their properties are formulated more generally. The necessity of introducing simple solutions emerged originally in connection with a chemical problem [2].

$$
\left.\begin{array}{c}
{\left[\begin{array}{cccccccccc}
a_{1,1} & a_{1,2} & a_{1,3} & \ldots & a_{1, k} & \ldots & a_{1, \ell} & \ldots & a_{1, m-1} & a_{1, m} \\
a_{2,1} & a_{2,2} & a_{2,3} & \ldots & a_{2, k} & \ldots & a_{2, \ell} & \ldots & a_{2, m-1} & a_{2, m} \\
\ldots & \ldots \\
a_{n, 1} & a_{n, 2} & a_{n, 3} & \ldots & a_{n, k} & \ldots & a_{n, \ell} & \ldots & a_{n, m-1} & a_{n, m}
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2} \\
\ldots \\
x_{m}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]} \\
\underline{x}=\left[\begin{array}{ccccccccc}
0 & x_{2} & 0 & \ldots & x_{k} & \ldots & 0 & \ldots & x_{m-1}
\end{array} 0\right.
\end{array}\right] .
$$

$\underline{\mathbf{x}}$ is minimal if for no $\underline{\mathbf{y}}$ we have $\operatorname{supp}(\underline{\mathbf{y}}) \subset \operatorname{supp}(\underline{\mathbf{x}})$

$$
\left.\begin{array}{c}
{\left[\begin{array}{cccccccccc}
a_{1,1} & a_{1,2} & a_{1,3} & \ldots & a_{1, k} & \ldots & a_{1, \ell} & \ldots & a_{1, m-1} & a_{1, m} \\
a_{2,1} & a_{2,2} & a_{2,3} & \ldots & a_{2, k} & \ldots & a_{2, \ell} & \ldots & a_{2, m-1} & a_{2, m} \\
\ldots & \ldots \\
a_{n, 1} & a_{n, 2} & a_{n, 3} & \ldots & a_{n, k} & \ldots & a_{n, \ell} & \ldots & a_{n, m-1} & a_{n, m}
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2} \\
\ldots \\
x_{m}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]} \\
\underline{x}=\left[\begin{array}{ccccccccc}
0 & x_{2} & 0 & \ldots & x_{k} & \ldots & 0 & \ldots & x_{m-1}
\end{array} 0\right.
\end{array}\right] .
$$

$\underline{\mathbf{x}}$ is minimal if for no $\underline{\mathbf{y}}$ we have $\operatorname{supp}(\underline{\mathbf{y}}) \subset \operatorname{supp}(\underline{\mathbf{x}})$
$\operatorname{supp}(\underline{\mathbf{x}})=\left\{\underline{\mathbf{a}}_{\mathrm{i} 1}, \underline{\mathbf{a}}_{\mathrm{i} 2}, \ldots, \underline{\mathbf{a}}_{\mathrm{ik}}: \mathrm{X}_{\mathrm{ij}} \neq 0\right\}$

Notation $\quad M_{A, \underline{b}}$ and $M_{A, \underline{0}}$ denote the sets of solutions of

$$
A \cdot \underline{x}=\underline{b} \quad \text { and } \quad A \cdot \underline{x}=\underline{0}
$$

Notation $\quad M_{A, \underline{b}}$ and $M_{A, \mathbf{0}}$ denote the sets of solutions of

$$
A \cdot \underline{x}=\underline{b} \quad \text { and } \quad A \cdot \underline{x}=\underline{0}
$$

Condition

o) $\quad M_{A, \underline{0}} \neq\{\underline{0}\}$ and $\left|M_{A, \underline{b}}\right|>1$,
i) A has no parallel columns, especially
ii) A has no column $\underline{0}$,
iii) A has no column parallel to \underline{b}.

Notation $\quad M_{A, \underline{b}}$ and $M_{A, \mathbf{0}}$ denote the sets of solutions of

$$
A \cdot \underline{x}=\underline{b} \quad \text { and } \quad A \cdot \underline{x}=\underline{0}
$$

Condition

o) $\quad M_{A, \underline{0}} \neq\{\underline{0}\}$ and $\left|M_{A, \underline{b}}\right|>1$,
i) A has no parallel columns, especially
ii) A has no column $\underline{0}$,
iii) A has no column parallel to \underline{b}.

Definition (i) For any $\underline{x} \in \mathbb{R}^{m}$

$$
\operatorname{supp}(\underline{x}):=\left\{i \leq m: x_{i} \neq 0\right\}
$$

the support of \underline{x}, especially $\operatorname{supp}(\underline{0})=\emptyset$.
(ii) For $M \subseteq \mathbb{R}^{m}$ the vector $\underline{z} \in M, \underline{z} \neq \underline{0}$
has a minimal support with respect to M (\underline{z} is minimal to M) if there is no $\underline{y} \in M, \underline{y} \neq \underline{0}$ such that $\operatorname{supp}(\underline{y}) \varsubsetneqq \operatorname{supp}(\underline{z})$.
(iii) For any $M \subseteq \mathbb{R}^{m}$

$$
M^{\min }:=\{\underline{z} \in M: \underline{z} \text { is minimal to } M\} .
$$

Proposition For any $\underline{z} \in M_{A, \underline{\underline{0}}}^{\min }, \quad A \cdot \underline{z}=\underline{0}$,

 the relevant set of column vectors of $A$$$
S_{\underline{z}}:=\left\{\underline{a}_{i}: i \in \operatorname{supp}(\underline{z})\right\} \subset \mathbb{R}^{n}
$$

is a simplex (minimal dependent set).

Connection of minimal- and base solutions:

Inhomogeneous systems:
Abase solution \underline{x} corresponds to a base of A
but some components of \underline{x} may be 0 .
\underline{x} is minimal iff it is nondegenerate.

Connection of minimal- and base solutions:

Inhomogeneous systems:
Abase solution \underline{x} corresponds to a base of A
but some components of \underline{x} may be 0 .
\underline{x} is minimal iff it is nondegenerate.
Homogeneous systems:
each base solution refers to a base of A and a further column of A, this is an $r+1$-element dependent vectorset, $r=\operatorname{rank}(A)$.

Such set need not be a simplex .
On the other hand: minimal solutions \underline{x} correspond to simplexes, they are base solutions $\quad<\quad \operatorname{supp}(x)=r+1$.

homogeneous systems

Theorem $\quad M_{A, \underline{0}}^{\min } \subseteq \mathbb{R}^{m}$ generates $M_{A, \underline{0}} \subseteq \mathbb{R}^{m}$ for any $A \in \mathbb{R}^{n \times m} . \square$

Corollary For any $\underline{x} \in M_{A, \underline{0}}$

$$
\operatorname{supp}(\underline{x}) \subseteq \bigcup\left\{\operatorname{supp}(\underline{z}): \underline{z} \in M_{A, \underline{0}}^{\min }\right\} .
$$

Remark $M_{A, \underline{0}}^{\min }$ may contain dependent but not parallel elements.
To reveal a base of $M_{A, \underline{0}}^{\min }$ would be interesting.

Inhomogeneous systems

Theorem For any $\underline{z} \in M_{A, \underline{b}}^{\min }, \quad H:=\operatorname{supp}(\underline{z})$

$$
\left(\left.A\right|_{H}\right) \cdot \underline{y}=\underline{b}
$$

has the only solution $\underline{y}=\left.\underline{z}\right|_{H}$. \square

Problem Can all solutions of $A \cdot \underline{x}=\underline{b}$ be generated from the minimal solutions, i.e. from $M_{A, b}^{\min }$?

Theorem Each solution $\underline{x} \in M_{A, \underline{b}}$

$$
\underline{x}=\sum_{i=1}^{I} \alpha_{i} \underline{z}_{i}+\underline{y}
$$

where $\underline{z}_{i} \in M_{A, \underline{b}}^{\min }, \quad \sum_{i=1}^{I} \alpha_{i}=1, \quad \underline{y} \in M_{A, \underline{0}} \cup\{\underline{0}\}$,
i.e. is an affine linear combination of the elements $M_{A, \underline{b}}^{\min }$ plus one solution of $\quad M_{A, \underline{0}} \quad$.

Theorem Each solution $\underline{x} \in M_{A, \underline{b}}$

$$
\underline{x}=\sum_{i=1}^{I} \alpha_{i} \underline{z}_{i}+\underline{y}
$$

where $\underline{z}_{i} \in M_{A, \underline{b}}^{\min }, \quad \sum_{i=1}^{I} \alpha_{i}=1, \quad \underline{y} \in M_{A, \underline{0}} \cup\{\underline{0}\}$,
i.e. is an affine linear combination of the elements $M_{A, \underline{b}}^{\min }$ plus one solution of $\quad M_{A, \underline{0}} \quad$. \square

Corollary $\quad M_{A, \underline{b}}^{\min } \cup M_{A, \underline{0}}^{\min } \quad$ generates $\quad M_{A, \underline{b}} . \quad \square$

This is a generalization of the wellknown

$$
M_{A, \underline{b}}=\underline{z}+M_{A, \underline{0}} .
$$

III.

Algorithm
(0) Homogeneous linear equations:

$$
\underline{A} \cdot \underline{x}=\underline{0}
$$

Find all minimal solutions

Happel-Sellers-Otarod [HOS,1990] 's algorithm for reaction-

 mechanisms uses :- mainly elementary matrix row-column operations
- eliminating equations.
after reductions:
- determine the bases of the solutions with heuristic methods.

Their method is mainly theoretical, non automatic. No further details are published.

Reminder: $\mathrm{S}=\left\{\underline{\mathrm{s}}_{1}, \underline{\mathrm{~s}}_{2}, \ldots, \underline{\mathrm{~s}}_{\mathrm{k}}\right\} \subset \mathrm{R}^{\mathrm{n}}$ is an algebraic simplex iff S is dependent and $\mathrm{S} \backslash\left\{\mathrm{s}_{\mathrm{i}}\right\}$ is independent for all $\mathrm{i} \leq \mathrm{k}$.
i.e. $\alpha_{1} \cdot \underline{\mathrm{~s}}_{1}+\alpha_{2} \cdot \underline{\cdot}_{2}+\ldots+\alpha_{\mathrm{k}} \cdot \underline{\mathrm{s}}_{\mathrm{k}}=\underline{0}$ and none of them can be omitted. (minimal reactions, mechanisms, etc.)

Our TASK 1:

Algorithm for generating all simplexes $\mathrm{S} \subset \mathrm{H}$ in a given $\mathrm{H} \subset \mathrm{R}^{\mathrm{n}}$. (all reactions, mechanisms, etc.)

+ Applications

Reminder: $\mathrm{S}=\left\{\underline{\mathrm{s}}_{1}, \underline{\mathrm{~s}}_{2}, \ldots, \underline{\mathrm{~s}}_{\mathrm{k}}\right\} \subset \mathrm{R}^{\mathrm{n}}$ is an algebraic simplex iff S is dependent and $\mathrm{S} \backslash\left\{\mathrm{s}_{\mathrm{i}}\right\}$ is independent for all $\mathrm{i} \leq \mathrm{k}$.
i.e.
$\alpha_{1} \cdot \underline{s}_{1}+\alpha_{2} \cdot \underline{s}_{2}+\ldots+\alpha_{\mathrm{k}} \cdot \underline{\mathrm{s}}_{\mathrm{k}}=\underline{0}$ and none of them can be omitted.
(minimal reactions, mechanisms, etc.)

Our TASK 1:

Algorithm for generating all simplexes $\mathrm{S} \subset \mathrm{H}$ in a given $H \subset \mathrm{R}^{\mathrm{n}}$. (all reactions, mechanisms, etc.)

+ Applications

Result: polynomial algorithm
$\sqrt{ }$ [1991] Hung. J. Ind.Chem. 289-292.
$\sqrt{ }$ [2000] J. Math. Chem.1-34.

The algorithm

Each simplex in \mathbb{R}^{n} has size at most $n+1$,

$$
\begin{aligned}
|H|=m \quad & =>\quad H \text { has at most } \\
\sum_{i=1}^{n+1}\binom{m}{i} & =\binom{m+1}{n+2}-1=\mathcal{O}\left(m^{n+2}\right)
\end{aligned}
$$

such subsets.

The algorithm

Each simplex in \mathbb{R}^{n} has size at most $n+1$,
$|H|=m \quad=>\quad H$ has at most

$$
\sum_{i=1}^{n+1}\binom{m}{i}=\binom{m+1}{n+2}-1=\mathcal{O}\left(m^{n+2}\right)
$$

such subsets.

However we do not have to check these m^{n+2} subsets, since

Proposition All subsets of independent sets are independent, too. \square

Procedure Modify

szimplex[] :=\{1\};
while not end do begin
if szimplex[] $=\{k, k+1, \ldots, M, c\}$ and $c \neq " d "$ then END;
if szimplex []$=\{k, k+1, \ldots, M, " d "\}$
then $S:=\{k, k+1, \ldots, M-2, M, " "\} ;$
if szimplex[] $=\{T, t, M, c\}$ then $S:=\{T, t+1, ">\}$;
if szimplex[] $=\{T, t, " i "\}$ then $S:=\{T, t, t+1, ">\}$;
if szimplex []$=\{T, t, " d "\}$ then $S:=\{T, t+1, " "\} ;$
if szimplex[] $=\{T, t, " s "\}$ then $S:=\{T, t+1, " "\} ;$
end ;

Definition 13 (PhD 2.4.D.) (i) A hypergraph $\mathcal{H}=(V, \mathcal{E})$ is descending if $E, F \subseteq V, E \in \mathcal{E}$ and $F \subset E$ implies $F \in \mathcal{E}$,
(ii) \mathcal{H} is not deformed if $\{v\} \in \mathcal{E}$ for each $v \in V$, (iii) assumed (i) and (ii), the elements of \mathcal{E} are called independent, (iv) $S \subseteq V$ is a simplex if $S \notin \mathcal{E}$ but for each $T \varsubsetneqq S$ we have $T \in \mathcal{E}$.

Definition 13 (PhD 2.4.D.) (i) A hypergraph $\mathcal{H}=(V, \mathcal{E})$ is descending if $E, F \subseteq V, E \in \mathcal{E}$ and $F \subset E$ implies $F \in \mathcal{E}$,
(ii) \mathcal{H} is not deformed if $\{v\} \in \mathcal{E}$ for each $v \in V$,
(iii) assumed (i) and (ii), the elements of \mathcal{E} are called independent, (iv) $S \subseteq V$ is a simplex if $S \notin \mathcal{E}$ but for each $T \varsubsetneqq S$ we have $T \in \mathcal{E}$.\square

Theorem 14 (PhD 2.2.T.) (i) The algorithm does not miss any simplex and does not check any subset twice.
(ii) The running time of the algorithm is the best possible for any dataset, that is it checks the neccessary ones only.

Theorem 15 (PhD 2.3.T.) For any $H \subset \mathbb{R}^{n},|H|=m$ the algorithm checks at most m^{n+1} subsets of H, so the time elapsed is $\mathcal{O}\left(m^{n+1}\right)$, the algorithm is polynomial in time.

Computer examples are shown in the last Section of the dissertation: for some dozens of vectors in dimension $10-20$ we have result in some seconds.

The time $\mathcal{O}\left(m^{n+1}\right)$ can not be decreased in general, by Theorem 32 and Corollary 33.

J.Tóth, A.Nagy, D.Papp:

Reaction Kinetics: Exercises, Programs and Theorems: Mathematica for Deterministic and Stochastic Kinetics. Springer, New York, NY, 2018. ISBN:9781493986415,

IV.

Examples

E.g.

The species:
1st speci: H_{2}
2nd speci: O_{2}
3st speci: HO
4 th speci: HO_{2}
5th speci: $\mathrm{H}_{2} \mathrm{O}$
6th speci: $\mathrm{H}_{2} \mathrm{O}_{2}$

$$
\begin{aligned}
& \text { 1. }+12 \mathrm{H}_{2}+22 \mathrm{O}_{2}-1 \mathrm{HO}=0 \\
& 2 .+12 \mathrm{H}_{2}+1 \mathrm{O}_{2}-1 \mathrm{HO}_{2}=0 \\
& 3+1 \mathrm{H}_{2}+12 \mathrm{O}_{2}-1 \mathrm{H}_{2} \mathrm{O}=0 \\
& \text { 4. }+\mathrm{IH}_{2}+\mathrm{IO}_{2}-1 \mathrm{H}_{2} \mathrm{O}_{2}=0 \\
& \text { 5. }-1 / 2 \mathrm{H}_{2}+2 \mathrm{HO}_{2}-1 \mathrm{HO}_{2}=0 \\
& 6 .+1 / 2 \mathrm{H}_{2}+1 \mathrm{HO}-1 \mathrm{H}_{2} \mathrm{O}=0 \\
& \text { 7. }+3 / 4 \mathrm{H}_{2}+1 / 2 \mathrm{HO}_{2}-2 \mathrm{H}_{2} \mathrm{O}=0 \\
& \text { 8. }+1 / 2 \mathrm{H}_{2}+1 \mathrm{HO}_{2}-1 \mathrm{H}_{2} \mathrm{O}_{2}=0 \\
& \text { 9. }-1 \mathrm{H}_{2}+2 \mathrm{H}_{2} \mathrm{O}-1 \mathrm{H}_{2} \mathrm{O}_{2}=0 \\
& \text { 10. }+12 \mathrm{O}_{2}+1 \mathrm{HO}-1 \mathrm{HO}_{2}=0 \\
& 11 .+1 / 2 \mathrm{O}_{2}+2 \mathrm{HO}-1 \mathrm{H}_{2} \mathrm{O}=0 \\
& \text { 12. }+3 / 2 \mathrm{O}_{2}+2 \mathrm{HO}_{2}-1 \mathrm{H}_{2} \mathrm{O}=0 \\
& \text { 13. }-1 \mathrm{O}_{2}+2 \mathrm{HO}_{2}-1 \mathrm{H}_{2} \mathrm{O}_{2}=0 \\
& \text { 14. }+\mathrm{k}_{2} \mathrm{O}_{2}+1 \mathrm{H}_{2} \mathrm{O}-1 \mathrm{H}_{2} \mathrm{O}=0 \\
& 15+3 \mathrm{OH}+1 \mathrm{HO}_{2}-1 \mathrm{H}_{2} \mathrm{O}=0 \\
& \text { 16. }+2 \mathrm{OH}-1 \mathrm{H}_{2} \mathrm{O}_{2}=0 \\
& \text { 17. }+2 \mathrm{H}_{3} \mathrm{OH}_{2}+2 \mathrm{AH}_{2} \mathrm{O}-\mathrm{IH}_{2} \mathrm{O}_{2}=0
\end{aligned}
$$

"Amundson" ([A66], [P90])
$\mathrm{CO}, \mathrm{CO}_{2}, \mathrm{O}_{2}, \mathrm{H}_{2}, \mathrm{CH}_{2} \mathrm{O}, \mathrm{CH}_{3} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}, \mathrm{CH}_{4}$,
$\mathrm{CH}_{3} \mathrm{CHO}, \mathrm{H}_{2} \mathrm{O}=11$ vektor $3-\operatorname{dim}$, 213 szimplex 0.22 mp .

$$
\begin{aligned}
& -2 \mathrm{CO}+2 \mathrm{CO}_{2}-\mathrm{O}_{2}=0, \\
& 3 \mathrm{CO}-\mathrm{CO}_{2}+3 \mathrm{H}_{2}-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}=0, \\
& 5 \mathrm{CO}-2 \mathrm{CO}_{2}+3 \mathrm{H}_{2}-\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{CO}=0, \\
& 2 \mathrm{CO}-\mathrm{CO}_{2}+2 \mathrm{H}_{2}-\mathrm{CH}_{4}=0, \\
& 3 \mathrm{CO}-\mathrm{CO}_{2}+2 \mathrm{H}_{2}-\mathrm{CH}_{3} \mathrm{CHO}=0, \\
& -1 \mathrm{CO}+\mathrm{CO}_{2}+\mathrm{H}_{2}-\mathrm{H}_{2} \mathrm{O}=0, \quad \cdots
\end{aligned}
$$

N (vektortér dimenziója)	3
n (a H által kifeszített altér dimenziója)	3
M (input vektorok száma: $\|H\|$)	11
$\operatorname{simp}(H)($ szimplexek tényleges száma)	213
$1+\binom{M-2}{3}+\binom{M-3}{2}$ (alsó becslés)	$113 \leq$
$\left(\begin{array}{c}M+1 \\ n+1\end{array}\right.$ (felsó becslés)	≤ 330
t (futásidó $[m p])$	$0.22 m p$
H vizsgált részhalmazainak száma	502

"Metán" ([B99], [HS83])

szintézise szénmonoxidból és vízből, \mathbf{S}_{R} reakciót kell előállítani $S_{1}-S_{15}$-ból (ℓ a katalizátor):
$\mathrm{S}_{R}: \mathbf{2 H}_{2}+\mathbf{2 C O} \rightarrow \mathbf{C H}_{4}+\mathrm{CO}_{2}$,
$S_{1}: C O \ell+\ell=C \ell+O \ell, \quad S_{2}: C \ell+H \ell=C H \ell+\ell$,
$S_{3}: C H \ell+H \ell=C_{2} \ell+\ell, \quad S_{4}: \mathrm{CH}_{2} \ell+H \ell=\mathrm{CH}_{3} \ell+\ell$,
$S_{5}: C H_{3} \ell+H \ell=C_{4}+2 \ell, \quad S_{6}: O H \ell+H \ell=H_{2} O+2 \ell$,
$S_{7}: \mathrm{CO}_{2}+\ell=\mathrm{CO}_{2} \ell$,
$S_{8}: C O+\ell=C O \ell$,
$S_{9}: H_{2}+2 \ell=2 H \ell$,
$S_{10}: \mathrm{CO}_{2} \ell+\mathrm{H} \mathrm{\ell}=\mathrm{CHOO} \ell+\ell$
$S_{11}: \mathrm{CHOO} \ell+\mathrm{H} \mathrm{\ell}=\mathrm{CHO} \mathrm{\ell}+\mathrm{OH} \mathrm{\ell}$,
$S_{12}: O \ell+H \ell=O H \ell+\ell, \quad S_{13}: C O \ell+O \ell=\mathrm{CO}_{2} \ell+\ell$,
$S_{14}: C H O O \ell+\ell=O H \ell+C O \ell, S_{15}: C O \ell+H \ell=C H O \ell+\ell$

Az összes minimális mechanizmus (output):

1) $S_{1}+S_{2}+S_{3}+S_{4}+S_{5}-S_{7}+2 S_{8}+2 S_{9}-S_{10}-S_{11}+S_{12}+S_{15}=S_{R}$
2) $S_{1}+S_{2}+S_{3}+S_{4}+S_{5}-S_{7}+2 S_{8}+2 S_{9}-S_{10}+S_{12}-S_{14}=S_{R}$
3) $S_{1}+S_{2}+S_{3}+S_{4}+S_{5}-S_{7}+2 S_{8}+2 S_{9}+S_{13}=S_{R}$
4) $S_{10}+S_{11}-S_{12}+S_{13}-S_{15}=0$
5) $S_{10}-S_{12}+S_{13}+S_{14}=0$
6) $S_{11}-S_{14}-S_{15}=0$
(Az utolsó három csak ciklus.)

	Összesen	Csak S_{R}-t tartalmazók
N (vektortér dimenziója)	17	17
n (a H által kifeszített altér dimenziója)	13	13
M (input vektorok száma: $\|H\|)$	16	16
$\operatorname{simp}(H)$ (szimplexek száma)	6	3
$b \cdot\binom{a+1}{2}+(n-b) \cdot\binom{a}{2}$ (alsó becslés)	$4 \leq$	$1 \leq$
$\binom{M}{n+1}$ (felső becslés)	≤ 120	≤ 105
t (futásidő $[\mathrm{mp}])$	78.60 s	43.28 s
H vizsgált részhalmazainak száma	63429	31697

"Metán"
7.3. Táblázat

$$
\begin{gathered}
\text { V. } \\
\text { Number of } \\
\text { simplexes }
\end{gathered}
$$

Reminder: $\mathrm{S}=\left\{\underline{\mathrm{s}}_{1}, \underline{\mathrm{~s}}_{2}, \ldots, \underline{\mathrm{~s}}_{\mathrm{k}}\right\} \subset \mathrm{R}^{\mathrm{n}}$ is an algebraic simplex iff S is dependent and $\mathrm{S} \backslash\left\{\mathrm{s}_{\mathrm{i}}\right\}$ is independent for all $\mathrm{i} \leq \mathrm{k}$.
i.e. $\alpha_{1} \cdot \underline{\mathrm{~s}}_{1}+\alpha_{2} \cdot \underline{\cdot}_{2}+\ldots+\alpha_{\mathrm{k}} \cdot \underline{\mathrm{s}}_{\mathrm{k}}=\underline{0}$ and none of them can be omitted.
(minimal reactions, mechanisms, etc.)

Task 2:

Question: For given $H \subset \mathrm{R}^{\mathrm{n}}$ how many simplexes $\mathrm{S} \subset \mathrm{H}$ could be in H if $|H|=m$ is given and H spans R^{n} ?
(how many reactions, mechanisms, etc.)

Reminder: $\mathrm{S}=\left\{\underline{\mathrm{s}}_{1}, \underline{\mathrm{~s}}_{2}, \ldots, \underline{\mathrm{~s}}_{\mathrm{k}}\right\} \subset \mathrm{R}^{\mathrm{n}}$ is an algebraic simplex iff S is dependent and $\mathrm{S} \backslash\left\{\mathrm{s}_{\mathrm{i}}\right\}$ is independent for all $\mathrm{i} \leq \mathrm{k}$.
i.e. $\alpha_{1} \cdot \underline{\mathrm{~s}}_{1}+\alpha_{2} \cdot \underline{\mathrm{~s}}_{2}+\ldots+\alpha_{\mathrm{k}} \cdot \underline{\mathrm{s}}_{\mathrm{k}}=\underline{0}$ and none of them can be omitted. (minimal reactions, mechanisms, etc.)

Task 2:

Question: For given $\mathrm{H} \subset \mathrm{R}^{\mathrm{n}}$ how many simplexes $\mathrm{S} \subset \mathrm{H}$ could be in H if $|H|=m$ is given and H spans R^{n} ?
(how many reactions, mechanisms, etc.)

Notation:

$\operatorname{simp}(\mathbf{H}):=\quad$ the number of simplexes $\mathrm{S} \subset \mathrm{H}$

Assuming: $|\mathrm{H}|=m, \mathrm{H}$ spans R^{n}

Theorem 1 [1995] (Laflamme-Szalkai)

$$
\operatorname{simp}(H) \leq\binom{ m}{n+1} \quad=O\left(\mathrm{~m}^{\mathrm{n}+1}\right)
$$

and $\operatorname{simp}(\mathrm{H})$ is maximal iff every n -element subset of H is independent. \square

Assuming: $|\mathrm{H}|=m, \mathrm{H}$ spans R^{n}

Theorem 1 [1995] (Laflamme-Szalkai)

$$
\operatorname{simp}(H) \leq\binom{ m}{n+1} \quad=O\left(\mathrm{~m}^{\mathrm{n}+1}\right)
$$

and $\operatorname{simp}(\mathrm{H})$ is maximal iff every n -element subset of H is independent.

Notes:

- Sperner's theorem is not enough: what is the structure of H ?
- Vandermonde determinant: $x_{i}=\left[1, \lambda_{i}, \ldots, \lambda_{i}{ }^{\mathrm{n}-1}\right]^{\mathbf{T}} \quad(i=1, \ldots, m)$
- species are built from n particles and any n species are independent (and any $n+1$ are dependent) .

Proof. $|\mathcal{H}|=m,[\mathcal{H}]=\mathbb{R}^{n}, \mathcal{V} \subseteq \mathcal{H}$ is a base.
If $u \in \mathcal{H} \backslash \mathcal{V}$ and $u \in \mathcal{D} \subseteq \mathcal{H}$ dependent, $|\mathcal{D}| \leq n$ then choose $u^{\prime} \in \mathbb{R}^{n}$ s.t. $u^{\prime} \notin\left[h_{1}, \ldots, h_{n-1}\right]$ for any $\left\{h_{1}, \ldots, h_{n-1}\right\} \subseteq \mathcal{H}$ and let

$$
\mathcal{H}^{\prime}:=(\mathcal{H} \backslash\{u\}) \cup\left\{u^{\prime}\right\}
$$

Proof. $|\mathcal{H}|=m,[\mathcal{H}]=\mathbb{R}^{n}, \mathcal{V} \subseteq \mathcal{H}$ is a base.
If $u \in \mathcal{H} \backslash \mathcal{V}$ and $u \in \mathcal{D} \subseteq \mathcal{H}$ dependent, $|\mathcal{D}| \leq n$ then choose $u^{\prime} \in \mathbb{R}^{n}$ s.t. $u^{\prime} \notin\left[h_{1}, \ldots, h_{n-1}\right]$ for any $\left\{h_{1}, \ldots, h_{n-1}\right\} \subseteq \mathcal{H}$ and let

$$
\mathcal{H}^{\prime}:=(\mathcal{H} \backslash\{u\}) \cup\left\{u^{\prime}\right\}
$$

Then for any simplex $\mathcal{S}=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\} \subseteq \mathcal{H}(k \leq n+1)$:

- if $u \notin \mathcal{S}$ then \mathcal{S} is still a simplex of \mathcal{H}^{\prime},
- if $u \in \mathcal{S}$, say $u=u_{i}$, then $\mathcal{S} \backslash\left\{u_{i}\right\}$ is independent, so $\mathcal{S} \backslash\left\{u_{i}\right\} \cup \mathcal{V}^{\prime}$ is independent, too, and spans \mathcal{R}^{n} for some $\mathcal{V}^{\prime} \subseteq \mathcal{V}$. Now

$$
\mathcal{S}^{\prime}:=\mathcal{S} \backslash\left\{u_{i}\right\} \cup \mathcal{V}^{\prime} \cup\left\{u^{\prime}\right\}
$$

is a new simplex of \mathcal{H}^{\prime}.
The map $\mathcal{S} \rightarrow \mathcal{S}^{\prime}$ is one-to-one, so $\operatorname{simp}\left(\mathcal{H}^{\prime}\right) \geq \operatorname{simp}(\mathcal{H})$.

No other configuration has so many simplexes:
$\mathcal{S} \subseteq \mathcal{H}$ be fixed, $|\mathcal{S}|=\ell$,
the above construction repeatedly $m-\ell$ many times \Longrightarrow
no $u \in \mathcal{H}^{\prime} \backslash \mathcal{S}$ belongs to any subspace generated my $n-1$ elements of $\mathcal{H} \backslash\{u\}$.

No other configuration has so many simplexes:
$\mathcal{S} \subseteq \mathcal{H}$ be fixed, $|\mathcal{S}|=\ell$,
the above construction repeatedly $m-\ell$ many times \Longrightarrow
no $u \in \mathcal{H}^{\prime} \backslash \mathcal{S}$ belongs to any subspace generated my $n-1$ elements of $\mathcal{H} \backslash\{u\}$.
Now simplexes in $\mathcal{H}: \mathcal{S}$ itself,
and only $n+1$ element simplexes which contain at most $\ell-1$ elements of \mathcal{S}
$\operatorname{simp}(\mathcal{H}) \leq 1+\sum_{i=0}^{\ell-1}\binom{\ell}{i} \cdot\binom{m-\ell}{n+1-i}=1+\binom{m}{n+1}+\binom{m-\ell}{n+1-\ell}<\binom{m}{n+1}$
whenever $n+2 \leq m . \quad(n+1 \geq m$ easy $)$.

$$
|\mathrm{H}|=m, \quad \mathrm{H} \text { spans } \mathrm{R}^{\mathrm{n}}
$$

Theorem 2 [1995] (Laflamme-Szalkai)

$$
O\left(\mathrm{~m}^{2}\right)=\quad n \cdot\binom{m / n}{2} \leq \operatorname{simp}(H)
$$

and $\operatorname{simp}(\mathrm{H})$ is minimal iff m / n elements of H are parallel to $\underline{\mathrm{b}}_{\mathrm{i}}$ where $\left\{\underline{\mathrm{b}}_{1}, \ldots, \underline{\mathrm{~b}}_{\mathrm{n}}\right\}$ is any base of.\square
$($ parallel $=$ isomers, multiple doses,...$)$

$$
|\mathrm{H}|=m, \quad \mathrm{H} \text { spans } \mathrm{R}^{\mathrm{n}}
$$

Theorem 2 [1995] (Laflamme-Szalkai)

$O\left(\mathrm{~m}^{2}\right)=n \cdot\binom{m / n}{2} \leq \operatorname{simp}(H)$
and $\operatorname{simp}(\mathrm{H})$ is minimal iff m / n elements of H are parallel to $\underline{\mathrm{b}}_{\mathrm{i}}$ where $\left\{\underline{\mathrm{b}}_{1}, \ldots, \underline{\mathrm{~b}}_{\mathrm{n}}\right\}$ is any base of.\square

Proof: similar packing vectors to parallel sets to a base to reduce $\operatorname{simp}(\mathrm{H})$.

$$
|\mathrm{H}|=m, \mathrm{H} \text { spans } \mathrm{R}^{\mathrm{n}}
$$

Theorem 2 [1995] (Laflamme-Szalkai)

$$
O\left(\mathrm{~m}^{2}\right)=\quad n \cdot\binom{m / n}{2} \leq \operatorname{simp}(H)
$$

and $\operatorname{simp}(\mathrm{H})$ is minimal iff m / n elements of H are parallel to $\underline{\mathrm{b}}_{\mathrm{i}}$ where $\left\{\underline{\mathrm{b}}_{1}, \ldots, \underline{\mathrm{~b}}_{\mathrm{n}}\right\}$ is any base of.\square

More precisely:

$$
b \cdot\binom{a+1}{2}+(n-b) \cdot\binom{a}{2} \leq \operatorname{simp}(\mathcal{H})
$$

where
$m=a n+b \quad, \quad 0 \leq b<n, \quad a \geq 1$.

$$
|\mathrm{H}|=m, \quad \mathrm{H} \text { spans } \mathrm{R}^{\mathrm{n}}
$$

Theorem 2 [1995] (Laflamme-Szalkai)

$$
O\left(\mathrm{~m}^{2}\right)=\quad n \cdot\binom{m / n}{2} \leq \operatorname{simp}(H)
$$

and $\operatorname{simp}(\mathrm{H})$ is minimal iff m / n elements of H are parallel to $\underline{\mathrm{b}}_{\mathrm{i}}$ where $\left\{\underline{\mathrm{b}}_{1}, \ldots, \underline{\mathrm{~b}}_{\mathrm{n}}\right\}$ is any base of.\square

Open Question:

if no parallel elements are in H ?

General Conjecture (1998) (Laflamme, Meng, Szalkai) no parallel $=>$ the minimal configurations in $R^{\mathbf{n}}$ are:

? 1) If n is even $=>H$ contains n linearly independent vectors $\left\{\underline{u}_{i}: \mathrm{i}=1, \ldots, \mathrm{n}\right\}$ and the remaining of H is divided as evenly as possible between the planes $\left[\underline{\mathrm{u}}_{\mathrm{i}}, \underline{\mathrm{u}}_{\mathrm{i}+1}\right]$ for $\mathrm{i}=1,3, \ldots, \mathrm{n}-1$. \square
? 2) If n is odd $=>\mathrm{H}$ again contains n linearly independent vectors $\left\{\underline{u}_{i}: \mathrm{i}=1, \ldots, \mathrm{n}\right\}$, one extra vector in the plane $\left[\underline{\mathrm{u}}_{\mathrm{n}-1}, \underline{\mathrm{u}}_{\mathrm{n}}\right]$ and finally the remaining vectors are divided as evenly as possible between the planes $\left[\mathrm{u}_{i}, \underline{\mathrm{u}}_{\mathrm{i}+1}\right]$ for $\mathrm{i}=1,3, \ldots, \mathrm{n}-2$ with lower indices having precedence.

LATER!

Reducing the dimension ($\mathrm{n}=3$):

vectors => points, 2D-planes => lines

So, after the reduction we get:
Definition: (affine) simplexes in $\mathbf{R}^{\mathbf{2}}$ are
i) 3 colinear points,
ii) 4 general points: no three colinear,

Elementary question in R^{2} :
What is the minimal number of (total) simplexes if the number of points (spanning R^{2}) is m ?

$|\mathrm{H}|=m, \mathrm{H}$ spans R^{n}, no parallel elements

$\mathrm{n}=3$

Theorem 3 [1998] (Laflamme-Szalkai)
For $\mathrm{H} \subset \mathrm{R}^{3}$

$$
\binom{m-2}{3}+1+\binom{m-3}{2} \leq \operatorname{simp}(\mathcal{H})
$$

and for $\mathrm{m} \geq 8: \operatorname{simp}(\mathrm{H})$ is minimal iff

$($ vectors $=$ points, planes $=$ lines $)$

Theorem 3 [1998] (Laflamme-Szalkai)

Proof: packing points to lines to reduce $\operatorname{simp}(\mathrm{H})$, many subcases, 14 pp long.

Reducing the dimension ($\mathrm{n}=4$):

vectors => points, 2D-planes => lines, h.-planes => 2D-planes

So, after the reduction we get:

Definition: (affine) simplexes in $\mathbf{R}^{\mathbf{3}}$ are i) 3 colinear points,
ii) 4 coplanar, no three colinear,

iii) 5 general points: no three or four as above.

So, after the reduction we get:
Definition: (affine) simplexes in \mathbf{R}^{3} are
i) 3 colinear points,
ii) 4 coplanar, no three colinear,

iii) 5 general points: no three or four as above.

Still elementary question in R^{3} :
What is the minimal number of (total) simplexes if the number of points (spanning R^{3}) is m ?
$|\mathrm{H}|=m, \quad \mathrm{H}$ spans R^{n}, no parallel elements
$\mathrm{n}=4$
Theorem 4 [2010] (Balázs Szalkai - I.Szalkai)
For $\mathrm{H} \subset \mathbf{R}^{4}$

$$
\operatorname{simp}(\mathcal{H}) \geq\binom{\lfloor m / 2\rfloor}{ 3}+\binom{\lceil m / 2\rceil}{ 3}
$$

and for $\mathrm{m} \geq 24 \operatorname{simp}(\mathrm{H})$ is minimal iff H is
placed into two (skew) detour line

Theorem 4 [2010] (Laflamme-Szalkai)
Proof: packing points to planes to reduce $\operatorname{simp}(\mathrm{H})$, using the infinite sides of a tetrahedron many subcases, 10 pp long.

General Conjecture (1998) (Laflamme, Meng, Szalkai)
no parallel => the only minimal configurations in R^{n} are:
? 1) If n is even $=>H$ contains n linearly independent vectors $\left\{\underline{\mathrm{u}}_{\mathrm{i}}: \mathrm{i}=1, \ldots, \mathrm{n}\right\}$ and the remaining of H is divided as evenly as possible between the planes $\left[\underline{u}_{i}, \underline{u}_{i+1}\right]$ for $\mathrm{i}=1,3, \ldots, \mathrm{n}-1 . \square$

$$
\left[\begin{array}{lllll}
{\left[\mathrm{u}_{1}, \underline{\mathrm{u}}_{2}\right]} & {\left[\underline{u}_{3}, \underline{\mathrm{u}}_{4}\right]} & \ldots & {\left[\mathrm{u}_{i}, \underline{u}_{i+1}\right]} & \ldots
\end{array} \quad\left[\mathrm{u}_{\mathrm{n}-1}, \underline{\mathrm{u}}_{\mathrm{n}}\right]\right.
$$

General Conjecture (1998) (Laflamme, Meng, Szalkai)
no parallel => the only minimal configurations in R^{n} are:
? 2) If n is odd $=>\mathrm{H}$ contains n linearly independent vectors $\left\{\underline{u}_{i}: i=1, \ldots, n\right\}$, one extra vector in the plane $\left[\underline{u}_{n-1}, \underline{u}_{n}\right]$ and finally the remaining vectors are divided as evenly as possible between the planes $\left[\underline{u}_{i}, \underline{u}_{i+1}\right]$ for $\mathrm{i}=1,3, \ldots, \mathrm{n}-2$ with lower indices having precedence.

$\left.\left[u_{1}, u_{2}\right] \quad\left[u_{3}, \underline{u}_{4}\right] \quad \bullet \cdot u_{i}, \underline{u}_{i+1}\right] \quad \cdot \bullet \cdot\left[u_{n-2}, u_{n-1}\right],\left[u_{n-1}, u_{n}\right]$

Matroids

Matroids (hypergraphs) :
What is the minimal and maximal number of cycles and bases in a matroid of size \mathbf{m} and given rank \mathbf{n} ?

Matroids (hypergraphs) :

What is the minimal and maximal number of cycles and bases in a matroid of size m and given rank n ?

$\sqrt{ }$ [2006] (Laflamme, Dósa, Szalkai) :

Theorem 5 If $\mathrm{m}>\mathrm{n}+1$ then only the uniform matroid $\mathrm{U}_{\mathrm{m}, \mathrm{n}}$ contains the maximum number of circuits: $\quad\binom{m}{n+1}$
If $\mathrm{m}=\mathrm{n}+1$ then all matroids of size m and of rank n contain exactly 1 circuit. \qquad

Matroids (hypergraphs) :

What is the minimal and maximal number of cycles and bases in a matroid of size m and given rank n ?

$\sqrt{ }$ [2006] (Laflamme, Dósa, Szalkai) :

Theorem 5 If $\mathrm{m}>\mathrm{n}+1$ then only the uniform matroid $\mathrm{U}_{\mathrm{m}, \mathrm{n}}$ contains the maximum number of circuits: $\quad\binom{m}{n+1}$
If $\mathrm{m}=\mathrm{n}+1$ then all matroids of size m and of rank n contain exactly 1 circuit. \qquad

Theorem 6 If $\mathrm{m}>\mathrm{n}$ then only the uniform matroid $\mathrm{U}_{\mathrm{m}, \mathrm{n}}$ contains the maximum number of bases:

$$
\binom{m}{n}
$$

Matroids (hypergraphs) :

What is the minimal and maximal number of cycles and bases in a matroid of size m and given rank n ?

$\sqrt{ }$ [2006] (Laflamme, Dósa, Szalkai) :

Theorem 7 For each m and n there is a unique matroid M_{o} of size m and of rank n containing the minimum number of bases, namely $\mathbf{1}$ when we allow loops in the matroid.

Matroids (hypergraphs) :
 What is the minimal and maximal number of cycles and bases in a matroid of size m and given rank n ?

$\sqrt{ }$ [2006] (Laflamme, Dósa, Szalkai) :

Theorem 7 For each m and n there is a unique matroid M_{o} of size m and of rank n containing the minimum number of bases, namely $\mathbf{1}$ when we allow loops in the matroid.

Theorem 8 Any matroid M of size m and of rank n contains the minimum number $\mathbf{m} \mathbf{- n}$ circuits if and only if the circuits of the matroid are pairwise disjoint. \square

THM: For each m and n each matroid M contains the minimum number of bases iff it has a base $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ such that all other elements in M are parallel to a_{1}.

THM: For each m and n each matroid M contains the minimum number of bases iff it has a base $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ such that all other elements in M are parallel to a_{1}.

PROBLEM Characterize the matroids with the minimum number of circuits and bases, when neither parallel elements nor loops are allowed.

THM: For each m and n each matroid M contains the minimum number of bases iff it has a base $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ such that all other elements in M are parallel to a_{1}.

PROBLEM Characterize the matroids with the minimum number of circuits and bases, when neither parallel elements nor loops are allowed.

Conjecture [Oxley, 1997] For matroids with $\boldsymbol{k} \leq \operatorname{girth}(\mathbf{M})$ the uniform matroid $\mathrm{U}_{\mathrm{m}-3, \mathrm{k}}$ has minimal number of circuits, namely

$$
1+3 \cdot\binom{m-3}{k-1}+3 \cdot\binom{m-3}{k-2}+\binom{m-3}{k-3}
$$

THM. [2015] (Alahmadi,Aldred,Cruz,Ok,Solé,Thomassen) : Any loopless matroid M of size μ and rank v without parallel elements has at least μ cocircuits.

VII.

Codes,

Families, ...

DEF: For $n, k \in \mathrm{~N}$ and $\mathrm{C} \in \boldsymbol{C}[n, k]$ linear code (length n dimension k)
$\mathrm{M}(\mathrm{C}):=$ number of minimal codewords in C
and $\quad \mathrm{M}(n, k):=\underline{\max }\{\mathrm{M}(\mathrm{C}) \mid \mathrm{C} \in \boldsymbol{C}[n, k]\}$.

DEF: For $n, k \in \mathrm{~N}$ and $\mathrm{C} \in \boldsymbol{C}[n, k]$ linear code (length n dimension k)
$\mathrm{M}(\mathrm{C}) \quad:=$ number of minimal codewords in C
and $\quad \mathrm{M}(n, k):=\underline{\max }\{\mathrm{M}(\mathrm{C}) \mid \mathrm{C} \in \boldsymbol{C}[n, k]\}$.

THM. [2013] (Alahmadi,Aldred,Cruzs Solé. Thomassen) : ($1 \leq n \leq k)$
circles of matroids $\Rightarrow \mathrm{M}(n, k) \leq\binom{ n}{k-1}$

DEF: For $n, k \in \mathrm{~N}$ and $\mathrm{C} \in \boldsymbol{C}[n, k]$ linear code (length n dimension k)
$\mathrm{M}(\mathrm{C}) \quad:=$ number of minimal codewords in C
and $\quad \mathrm{M}(n, k):=\underline{\max }\{\mathrm{M}(\mathrm{C}) \mid \mathrm{C} \in \mathrm{C}[n, k]\}$.

THM. [2013] (Alahmadi,Aldred,Cruz: Solé. Thomassen) : ($1 \leq n \leq k)$
circles of matroids $\Rightarrow \mathrm{M}(n, k) \leq\binom{ n}{k-1}$

THM. [2015] (Alahmadi,Aldred,Cruz,Ok,Solé,Thomassen) :
circles of matroids $\Rightarrow>\quad k \leq \mathrm{M}(n, k)$

DEF: For $n, k \in \mathrm{~N}$ and $\mathrm{C} \in \boldsymbol{C}[n, k]$ linear code (length n dimension k)
$\mathrm{M}(\mathrm{C}) \quad:=$ number of minimal codewords in C
and $\mathrm{M}(n, k):=\underline{\max }\{\mathrm{M}(\mathrm{C}) \mid \mathrm{C} \in \boldsymbol{C}[n, k]\}$.

THM. [2013] (Alahmadi,Aldred,Cruz: Solé. Thomassen) : ($1 \leq n \leq k)$
circles of matroids $\Rightarrow \mathrm{M}(n, k) \leq\binom{ n}{k-1}$

THM. [2015] (Alahmadi,Aldred,Cruz,Ok,Solé,Thomassen) : circles of matroids $\Rightarrow>\quad k \leq \mathrm{M}(n, k)$

THM. [2015] (Alahmadi,Aldred,Cruz,Ok,Solé,Thomassen) :
C has distances ≥ 2, circles of matroids $=>$
$b\binom{a+1}{2}+(n-k-b)\binom{a}{2} \leq \mathrm{M}(n, k) \quad / n=a \cdot(n-k)+b /$

Corollary [2015] (Alahmadi,Aldred,Cruz,Ok,Solé,Thomassen, Kashyap) :
For any $[n, k]$ code C of dual distance at least $3: \mathrm{M}(\mathrm{C}) \geq n$

G is a connected graph (allowing multiple edges but no loops), \mathbf{p} vertices, \mathbf{q} edges.

QUESTION [1981] (Entringer and Slater):

How many cycles $\#_{\mathrm{G}}$ a graph with p vertices and q edges can have?
Trivial: $\# \mathrm{C}_{\mathrm{G}}<2^{q-p+1}$

G is a connected graph (allowing multiple edges but no loops), \mathbf{p} vertices, \mathbf{q} edges.

QUESTION [1981] (Entringer and Slater):
How many cycles $\# \mathrm{C}_{\mathrm{G}}$ a graph with p vertices and q edges can have?
Trivial: $\# \mathrm{C}_{\mathrm{G}}<2^{q-p+1}$
Cycle code $\mathbf{C}(\mathbf{G})$ has length $\mathbf{n}=\mathbf{q}$, dimension $\mathbf{k}=\mathbf{q}-\mathbf{p}+1$.
Note: The minimal codewords of $\mathrm{C}(\mathrm{G})$ are exactly the incidence vectors of cycles, that is, circuits in the cycle matroid in G.

THM. [2013] (Aldred,Alahmadi,Cruz,Solé,Thomassen) :
If $\mathrm{q}>2 \mathrm{p}+\mathrm{O}(\log (\mathrm{p}))$ then $\# \mathrm{C}_{\mathrm{G}}<2^{\mathrm{q}-\mathrm{p}}$.

THM. [2015] (Alahmadi,Aldred,Cruz,Ok,Solé,Thomassen) : matroids => In any 2-edge-connected graph with p vertices and q edges the number of cycles is (the bound is tight) $/ q=a(p-1)+b /$ $b\binom{a+1}{2}+(p-1-b)\binom{a}{2} \leq \# \mathrm{C}_{\mathrm{G}}$

THM. [2015] (Alahmadi,Aldred,Cruz,Ok,Solé,Thomassen) : matroids => In any 2-edge-connected graph with p vertices and q edges the number of cycles is (the bound is tight) $/ q=a(p-1)+b /$
$b\binom{a+1}{2}+(p-1-b)\binom{a}{2} \leq \# \mathrm{C}_{\mathrm{G}}$

THM. [2015] (Alahmadi,Aldred,Cruz,Ok,Solé,Thomassen) : matroids =>
Any 3-edge-connected graph with q edges contains at least \boldsymbol{q} cycles, the bound is sharp: $\boldsymbol{q} \leq \# \mathrm{C}_{\mathrm{G}}$

THM. [2015] (Alahmadi,Aldred,Cruz,Ok,Solé,Thomassen) : matroids => In any 2 -edge-connected graph with p vertices and q edges the number of cycles is (the bound is tight) $/ q=a(p-1)+b /$
$b\binom{a+1}{2}+(p-1-b)\binom{a}{2} \leq \# \mathrm{C}_{\mathrm{G}}$

THM. [2015] (Alahmadi,Aldred,Cruz,Ok,Solé,Thomassen) :
matroids =>
Any 3-edge-connected graph with q edges contains at least \boldsymbol{q} cycles, the bound is sharp: $\quad \boldsymbol{q} \leq \# \mathrm{C}_{\mathrm{G}}$

THM. [2015] (Alahmadi,Aldred,Cruz,Ok,Solé,Thomassen) :
Any 2-connected graph with q edges and p vertices contains at least

$$
\binom{q-p+2}{2} \leq \# \mathrm{C}_{\mathrm{G}}
$$

DEF: Let $m, d \in \mathbb{N}, \mathcal{X}_{m}:=\{1, \ldots, m\}$ and
$\mathcal{P}\left(\mathcal{X}_{m}\right):=\left\{p: \mathcal{X}_{m} \rightarrow \mathbb{R} \mid p\right.$ is a probability measure on $\left.\mathcal{X}_{m}\right\}$.
Then, for any fixed $q \in \mathcal{P}\left(\mathcal{X}_{m}\right)$ and $A=\left[\underline{a}_{1}, \ldots, \underline{a}_{m}\right] \in \mathbb{R}^{d \times m}$ let
$\mathcal{E}_{q, A}:=\left\{s \in \mathcal{P}\left(\mathcal{X}_{m}\right) \left\lvert\, s(i)=\frac{q(i) \cdot \exp \left(\underline{\theta}^{T} \underline{a}_{i}\right)}{\sum_{j=1}^{m} q(j) \cdot \exp \left(\underline{\theta}^{T} \underline{a}_{j}\right)}\right.\right.$ for $\left.i \leq m, \underline{\theta} \in \mathbb{R}^{d}\right\}$
an "exponential family".
THM: [Rauh,Kahle,Ay,2009] Any $p \in \mathcal{P}\left(\mathcal{X}_{m}\right)$ is in the closure of $\mathcal{E}_{q, A}$ iff

$$
p^{u^{+}} \cdot q^{u^{-}}=p^{u^{-}} \cdot q^{u^{+}} \text {for all } u \in \operatorname{Ker}(A)
$$

where $p^{v}:=\prod_{\substack{i=1 \\ 0<r(i)}}^{m} p(i)^{v(i)}$ and u^{+}, u^{-}are the + and - components of $u \in \mathbb{R}^{m}$.
NOTE: Using the estimates on the number of circuits of matroids, the number of equations above is at most $\binom{m}{r+2}$ where $r=\operatorname{dim}\left(\mathcal{E}_{q, A}\right)$.

VIII.

Hypergraphs

Definition For any hypergraph $\mathcal{H}=(V, \mathcal{E}), V \neq \emptyset, k \in \mathbb{N}^{1}$ 'st version
(i) $\mathcal{E}_{k}:=\{E \in \mathcal{E}:|E|=k\}$,
(ii) any k-element subset of V is k-vertex,
(iii) $S \subset V$ is in general position if
$S \nsubseteq E \quad$ for all $E \in \mathcal{E}$,

Definition For any hypergraph $\mathcal{H}=(V, \mathcal{E}), V \neq \emptyset, k \in \mathbb{N}^{1 \text { 'st version }}$
(i) $\mathcal{E}_{k}:=\{E \in \mathcal{E}:|E|=k\}$,
(ii) any k-element subset of V is k-vertex, (iii) $S \subset V$ is in general position if

$$
S \nsubseteq E \quad \text { for all } E \in \mathcal{E},
$$

(iv) S is k-pyramid if it is a k-vertex in general position,
(v) 4-vertices are quads, 4-pyramids are tetrahedrons,
(vi) $S \subset V$ is a 4-element simplex if it is a quad but not a tetrahedron:

$$
S \subseteq E \quad \text { for some } E \in \mathcal{E}
$$

\mathcal{S}_{4} is the set of the 4 -element simplexes,

Definition For any hypergraph $\mathcal{H}=(V, \mathcal{E}), V \neq \emptyset, k \in \mathbb{N}^{1 \text { 'st version }}$
(i) $\mathcal{E}_{k}:=\{E \in \mathcal{E}:|E|=k\}$,
(ii) any k-element subset of V is k-vertex,
(iii) $S \subset V$ is in general position if

$$
S \nsubseteq E \quad \text { for all } E \in \mathcal{E},
$$

(iv) S is k-pyramid if it is a k-vertex in general position,
(v) 4-vertices are quads, 4-pyramids are tetrahedrons,
(vi) $S \subset V$ is a 4-element simplex if it is a quad but not a tetrahedron:

$$
S \subseteq E \quad \text { for some } E \in \mathcal{E}
$$

\mathcal{S}_{4} is the set of the 4-element simplexes,
(vii) $T \subset V$ is a 5-element simplex if it is a 5-vertex
but no its subset is a 4-element simplex:
$F \nsubseteq T \quad$ for all $F \in \mathcal{S}_{4}, \quad$ i.e. $|T \cap E| \leq 3$ for $E \in \mathcal{E}$,
\mathcal{S}_{5} is the set of the 5 -element simplexes.

Condition

i) $\mathcal{E}_{\ell}=\emptyset$ for $\ell \leq 3$,
ii) for any $E_{1}, E_{2} \in \mathcal{E}, E_{1} \neq E_{2} \quad\left|E_{1} \cap E_{2}\right| \leq 2$.

Condition

i) $\mathcal{E}_{\ell}=\emptyset$ for $\ell \leq 3$,
ii) for any $E_{1}, E_{2} \in \mathcal{E}, E_{1} \neq E_{2} \quad\left|E_{1} \cap E_{2}\right| \leq 2$.

Problem If $|V|=m$, what is the minimal value of

$$
s(m):=\left|\mathcal{S}_{4}\right|+\left|\mathcal{S}_{5}\right|
$$

1'st version

Condition

i) $\mathcal{E}_{\ell}=\emptyset$ for $\ell \leq 3$,
ii) for any $E_{1}, E_{2} \in \mathcal{E}, E_{1} \neq E_{2} \quad\left|E_{1} \cap E_{2}\right| \leq 2$.

Problem If $|V|=m$, what is the minimal value of

$$
s(m):=\left|\mathcal{S}_{4}\right|+\left|\mathcal{S}_{5}\right|
$$

Theorem 65 Under Condition and $m \geq 58$ we have a constant $C_{1} \leq 17$

$$
\binom{m}{4}-\frac{1}{6} C_{1} m^{3}-\mathcal{O}\left(m^{2}\right) \leq s(m)
$$

Problem 2 What is $\min \operatorname{simp}(\mathcal{V})$ and the structure of \mathcal{V}
if $[\mathcal{V}]=\mathbb{R}^{D},|\mathcal{V}|=m \quad$ and no parallel vectors in \mathcal{V} ?
($S_{\ell} \subseteq \mathcal{V}$ linear algebraic simplexes)

Problem 2 What is $\min \operatorname{simp}(\mathcal{V})$ and the structure of \mathcal{V} if $[\mathcal{V}]=\mathbb{R}^{D},|\mathcal{V}|=m \quad$ and no parallel vectors in \mathcal{V} ? $\left(S_{\ell} \subseteq \mathcal{V}\right.$ linear algebraic simplexes)

Alternatively: $S_{a}=\left\{s_{1}, \ldots, s_{k}\right\}$ is an affine simplex \Longleftrightarrow $S_{\ell}=\left\{\underline{s}_{2}-\underline{s}_{1}, \underline{s}_{3}-\underline{s}_{1}, \ldots, \underline{s}_{k}-\underline{s}_{1}\right\}$ is a linear algebraic simplex (any $s_{1} \in S_{a}$).

Definition: (affine) simplexes in R^{3} are
i) 3 colinear points,
ii) 4 coplanar, no three colinear,
iii) 5 general points: no three or four as above

\square

Definition: (affine) simplexes in $\mathbf{R}^{\mathbf{3}}$ are

i) 3 colinear points,
ii) 4 coplanar, no three colinear,
iii) 5 general points: no three or four as above

\square

Definition: $S_{a} \subset \mathbb{R}^{D-1}$ is an affine simplex if $3 \leq\left|S_{a}\right|$, S_{a} is contained in a $\left(\left|S_{a}\right|-2\right)$-dimensional hyperplane but no proper subset $S^{\prime} \varsubsetneqq S_{a}$ is contained in a hyperplane of dimension $\left|S^{\prime}\right|-2$.

Theorem 3 [1998] (Laflamme-Szalkai) \quad For $\mathrm{H} \subset \mathbf{R}^{3}$
$\binom{m-2}{3}+1+\binom{m-3}{2} \leq \operatorname{simp}(\mathcal{H})$

Theorem 4 [2010] (Balázs Szalkai - I.Szalkai) For $\mathbf{H} \subset \mathbf{R}^{4}$
$\binom{\lfloor m / 2\rfloor}{ 3}+\binom{\lceil m / 2\rceil}{ 3} \leq \operatorname{simp}(\mathcal{H})$

Mostly contain (affine) simplexes of three points.

General Conjecture (1998) (Laflamme, Meng, Szalkai)
no parallel => the only minimal configurations in R^{n} are:
? 1) If n is even $=>\mathrm{H}$ contains n linearly independent vectors $\left\{\underline{\mathrm{u}}_{\mathrm{i}}: \mathrm{i}=1, \ldots, \mathrm{n}\right\}$ and the remaining of H is divided as evenly as possible between the planes $\left[\underline{u}_{i}, \underline{u}_{i+1}\right]$ for $\mathrm{i}=1,3, \ldots, \mathrm{n}-1 . \square$

$$
\left[\begin{array}{lllll}
{\left[\mathrm{u}_{1}, \underline{\mathrm{u}}_{2}\right]} & {\left[\underline{u}_{3}, \underline{\mathrm{u}}_{4}\right]} & \ldots & {\left[\mathrm{u}_{i}, \underline{u}_{i+1}\right]} & \ldots
\end{array} \quad\left[\mathrm{u}_{\mathrm{n}-1}, \underline{\mathrm{u}}_{\mathrm{n}}\right]\right.
$$

General Conjecture (1998) (Laflamme, Meng, Szalkai)
no parallel => the only minimal configurations in R^{n} are:
? 2) If n is odd $=>\mathrm{H}$ contains n linearly independent vectors $\left\{\underline{u}_{i}: i=1, \ldots, n\right\}$, one extra vector in the plane $\left[\underline{u}_{n-1}, \underline{u}_{n}\right]$ and finally the remaining vectors are divided as evenly as possible between the planes $\left[\underline{u}_{i}, \underline{u}_{i+1}\right]$ for $\mathrm{i}=1,3, \ldots, \mathrm{n}-2$ with lower indices having precedence.

$\left[u_{1}, u_{2}\right] \quad\left[u_{3}, \underline{u}_{4}\right] \quad\left[u_{i}, \underline{u}_{i+1}\right] \cdot \bullet \cdot \bullet\left[u_{n-2}, u_{n-1}\right],\left[u_{n-1}, u_{n}\right]$

2'nd version

New: no three points are collinear (or: $k \leq|S|$)

2'nd version

New: no three points are collinear (or: $k \leq|S|$)

Definition: $S_{a} \subset \mathbb{R}^{D-1}$ is an affine simplex if $3 \leq\left|S_{a}\right|$,
S_{a} is contained in a $\left(\left|S_{a}\right|-2\right)$-dimensional hyperplane
but no proper subset $S^{\prime} \varsubsetneqq S_{a}$ is contained
in a hyperplane of dimension $\left|S^{\prime}\right|-2$.

2'nd version

New: no three points are collinear (or: $k \leq|S|$)
Definition: $S_{a} \subset \mathbb{R}^{D-1}$ is an affine simplex if $3 \leq\left|S_{a}\right|$,
S_{a} is contained in a $\left(\left|S_{a}\right|-2\right)$-dimensional hyperplane
but no proper subset $S^{\prime} \varsubsetneqq S_{a}$ is contained
in a hyperplane of dimension $\left|S^{\prime}\right|-2$.
$k=d:=D-1$

Remark: Two kinds of subsets of \mathcal{H} form an affine simplex:
$d+1$ points on a hyperplane of dimension $d-1$, or
$d+2$ points, no $d+1$ of which lie on a common hyperplane of dimension $d-1$.

2'nd version

Zs.Tuza, I.Szalkai (2014)

Theorem $3 \quad \forall d \geq 3 \quad \exists c_{d}$ constant:
If $\mathcal{H} \subset \mathbb{R}^{d},|\mathcal{H}|=n \quad$ and
no d points from \mathcal{H} lie on a hyperplane of dimension $d-2$,
then $\binom{n}{d+1}-c_{d} \cdot n^{d} \leq \operatorname{simp}_{a}(\mathcal{H})$.

Corollary 4 For $\mathcal{H} \subset \mathbb{R}^{3},|\mathcal{H}|=n$, no three collinear
$\binom{n}{4}-O\left(n^{3}\right) \leq \operatorname{simp}_{a}(\mathcal{H})$ as $n \rightarrow \infty$.

2'nd version

Zs.Tuza, I.Szalkai (2014)

Theorem $3 \quad \forall d \geq 3 \quad \exists c_{d}$ constant:
If $\mathcal{H} \subset \mathbb{R}^{d},|\mathcal{H}|=n \quad$ and
no d points from \mathcal{H} lie on a hyperplane of dimension $d-2$,
then $\binom{n}{d+1}-c_{d} \cdot n^{d} \leq \operatorname{simp}_{a}(\mathcal{H})$.

Corollary 4 For $\mathcal{H} \subset \mathbb{R}^{3},|\mathcal{H}|=n$, no three collinear

$\binom{n}{4}-O\left(n^{3}\right) \leq \operatorname{simp}_{a}(\mathcal{H})$ as $n \rightarrow \infty$.
(asymptotically tight)

Proposition 7 There is an arrangement of n points in \mathbb{R}^{3}, such that the number of affine simplexes determined by them is only

$$
\begin{array}{ll}
\binom{n-1}{4}-\frac{(n-2)(n-5)}{2} & \text { if } n \text { is even, } \\
\binom{n-1}{4}-\frac{(n-3)(n-5)}{2} & \text { if } n \text { is odd }
\end{array}
$$

that is, $\quad \frac{1}{24} n^{4}-\frac{5}{12} n^{3}+O\left(n^{2}\right)$.

2'nd version

Combinatorial formulation

Definition 5 A hypergraph $\mathcal{H}=(X, \mathcal{E})$ is q-linear $(q \geq 1)$
if $\quad\left|E^{\prime} \cap E^{\prime \prime}\right|<q \quad$ for all $E^{\prime}, E^{\prime \prime} \in \mathcal{E}, E^{\prime} \neq E^{\prime \prime}$. \square
E.g. in a 1-linear hypergraph any two edges are disjoint, "2-linear" coincides with "linear" hypergraphs in the usual sense (in Euclidean spaces any two points uniquely determine a line).

Combinatorial formulation

Definition 5 A hypergraph $\mathcal{H}=(X, \mathcal{E})$ is q-linear $(q \geq 1)$
if $\quad\left|E^{\prime} \cap E^{\prime \prime}\right|<q \quad$ for all $E^{\prime}, E^{\prime \prime} \in \mathcal{E}, E^{\prime} \neq E^{\prime \prime}$. \square
E.g. in a 1-linear hypergraph any two edges are disjoint,
"2-linear" coincides with "linear" hypergraphs in the usual sense
(in Euclidean spaces any two points uniquely determine a line).
$\binom{H}{k}=\{k$-element subsets of $H\}$,
$\mathcal{E}_{k}:=\bigcup_{E \in \mathcal{E}}\binom{E}{k} ; \quad\left(X, \mathcal{E}_{k}\right)$ is the k-section hypergraph of \mathcal{H},
$\mathcal{E}_{k+1}^{0}:=\left\{F \in\binom{X}{k+1} \left\lvert\,\binom{ F}{k} \cap \mathcal{E}_{k}=\emptyset\right.\right\}$.
members of $\mathcal{E}_{k} \cup \mathcal{E}_{k+1}^{0}$ are the $(k-1)$-dimensional
semi-simplexes in $\mathcal{H} \quad(k=d+1)$

2'nd version

Zs.Tuza, I.Szalkai (2014)

Theorem 6 For $k \geq 3$ there is a constant $c=c_{k}$ such that

$$
\left|\mathcal{E}_{k}\right|+\left|\mathcal{E}_{k+1}^{0}\right| \geq\binom{ n}{k}-c n^{k-1}
$$

for all $(k-1)$-linear hypergraphs $\mathcal{H}=(X, \mathcal{E}),|X|=n . \square$

This result implies Theorem 3.

Sperner families

2'nd version

For any $\mathcal{H}=(X, \mathcal{E})$ (not necessarily q-linear) and k $\mathcal{S}_{k}(\mathcal{H}):=\mathcal{E}_{k} \cup \mathcal{E}_{k+1}^{0} \quad$ is a Sperner family, YBLM inequality ${ }^{2}$

$$
\sum_{S \in \mathcal{S}}\binom{n}{|S|}^{-1} \leq 1
$$

Sperner families

For any $\mathcal{H}=(X, \mathcal{E})$ (not necessarily q-linear) and k $\mathcal{S}_{k}(\mathcal{H}):=\mathcal{E}_{k} \cup \mathcal{E}_{k+1}^{0} \quad$ is a Sperner family,

YBLM inequality ${ }^{2}$

$$
\sum_{S \in \mathcal{S}}\binom{n}{|S|}^{-1} \leq 1
$$

Yamamoto [1954], Bollobás [1965], Lubell [1966], Meshalkin [1963]
\Rightarrow Hungarian architect Ybl Miklós (1814-1891)
https://en.wikipedia.org/wiki/Mikl\�\�s_Ybl

Sperner families

For any $\mathcal{H}=(X, \mathcal{E})$ (not necessarily q-linear) and k $\mathcal{S}_{k}(\mathcal{H}):=\mathcal{E}_{k} \cup \mathcal{E}_{k+1}^{0} \quad$ is a Sperner family, YBLM inequality ${ }^{2}$

$$
\sum_{S \in \mathcal{S}}\binom{n}{|S|}^{-1} \leq 1
$$

we let
$s(n, k):=\min _{\mathcal{H} \text { is } \underline{(k-1) \text {-linear, }}|X|=n} \sum_{S \in \mathcal{S}_{k}(\mathcal{H})}\binom{n}{|S|}^{-1}$
$s^{\prime}(n, k):=$

$$
\min _{\mathcal{H}=(X, \mathcal{E}),|X|=n}
$$

$$
\sum_{S \in \mathcal{S}_{k}(\mathcal{H})}\binom{n}{|S|}^{-1}
$$

2'nd version

Zs.Tuza (2014)

Theorem 8 For every fixed $k \geq 2$, the limits
$s_{k}:=\lim _{n \rightarrow \infty} s(n, k) \quad$ and $\quad s_{k}^{\prime}:=\lim _{n \rightarrow \infty} s^{\prime}(n, k)$
exist and satisfy

$$
0<s_{k}^{\prime} \leq s_{k}<1
$$

strict inequality at both ends.

Turán numbers

For fixed k-uniform hypergraph \mathcal{F}
$\underline{e x(n, \mathcal{F})}:=$ Turán number $=$ the maximum number of edges in a k-uniform hypergraph of order n which does not contain any subhypergraph isomorphic to \mathcal{F}.

Turán numbers

For fixed k-uniform hypergraph \mathcal{F}
$\underline{e x(n, \mathcal{F})}:=$ Turán number $=$ the maximum number of edges in a k-uniform hypergraph of order n
which does not contain any subhypergraph isomorphic to \mathcal{F}.
$\mathcal{K}_{k+1}^{(k)}:=\left(X_{k}, \mathcal{E}_{k}\right), \quad\left|X_{k}\right|=k+1,|E|=k$ for $E \in \mathcal{E}$ (=the complete k-uniform hypergraph of order k).
E.g. $\mathcal{K}_{3}^{(2)}=K_{3}, \quad \operatorname{ex}\left(n, K_{3}\right)=\left\lfloor\frac{n^{2}}{4}\right\rfloor$ well known, for $2<k \quad \operatorname{ex}\left(n, \mathcal{K}_{k+1}^{(k)}\right) \quad$ is open.

Remark12 If $\mathcal{H}=(X, \mathcal{E})$ is a k-uniform hypergraph of order n such that each $(k+1)$-tuple of vertices contains at least one edge of \mathcal{H}, then $\mathcal{E}_{k+1}^{0}=\emptyset$.

Remark12 If $\mathcal{H}=(X, \mathcal{E})$ is a k-uniform hypergraph of order n such that each $(k+1)$-tuple of vertices contains at least one edge of \mathcal{H}, then $\mathcal{E}_{k+1}^{0}=\emptyset$.

In particular, taking \mathcal{H} as the complement of a hypergraph extremal for ex $\left(n, \mathcal{K}_{k+1}^{(k)}\right)$, we obtain:

$$
s^{\prime}(n, k) \leq 1-\frac{\operatorname{ex}\left(n, \mathcal{K}_{k+1}^{(k)}\right)}{\binom{n}{k}} \quad \text { and } \quad s_{k}^{\prime} \leq 1-\lim _{n \rightarrow \infty} \frac{\operatorname{ex}\left(n, \mathcal{K}_{k+1}^{(k)}\right)}{\binom{n}{k}}
$$

Remark12 If $\mathcal{H}=(X, \mathcal{E})$ is a k-uniform hypergraph of order n such that each $(k+1)$-tuple of vertices contains at least one edge of \mathcal{H}, then $\mathcal{E}_{k+1}^{0}=\emptyset$.

In particular, taking \mathcal{H} as the complement of a hypergraph extremal for ex $\left(n, \mathcal{K}_{k+1}^{(k)}\right)$, we obtain:

$$
s^{\prime}(n, k) \leq 1-\frac{e x\left(n, \mathcal{K}_{k+1}^{(k)}\right)}{\binom{n}{k}} \quad \text { and } \quad s_{k}^{\prime} \leq 1-\lim _{n \rightarrow \infty} \frac{\operatorname{ex}\left(n, \mathcal{K}_{k+1}^{(k)}\right)}{\binom{n}{k}}
$$

Hence, any lower bound on the Turán density of $\mathcal{K}_{k+1}^{(k)}$ implies an upper bound on s_{k}^{\prime}.

IX.

General

Hierarchy

On the Mathematical Foundation of Reaction Mechanisms

(manuscript in preparation, 130611)
Peter H.Sellers, 2014, Árpád Pethő,Á. 2012
István Szalkai

Definitions

A chemical (stoichiometric) system is made up of an infinite hierarchy of disjoint finite sets:

Definition 2 We introduce the (arbitrary) nonempty disjoint finite sets sets \mathcal{A}_{x} for $x=0,1, \ldots \in \mathbb{N}$ as $\left(\mathcal{A}, \mathcal{M}, \mathcal{E}, \mathcal{C}\right.$ are special notations for $\left.\mathcal{A}_{0}, \ldots, \mathcal{A}_{3}\right)$:
o) $\mathcal{A}:=\mathcal{A}_{0}=\left\{A_{1}, \ldots, A_{a}\right\} \quad$ called atoms,
i) $\mathcal{M}:=\mathcal{A}_{1}=\left\{M_{1}, \ldots, M_{m}\right\} \quad$ called molecules or species,
ii) $\mathcal{E}:=\mathcal{A}_{2}=\left\{E_{1}, \ldots, E_{e}\right\} \quad$ called elementary mechanistic steps or reactions,
iii) $\mathcal{C}:=\mathcal{A}_{3}=\left\{C_{1}, \ldots, C_{c}\right\} \quad$ called (elementary) mechanisms or catalizatinos,
x) $\mathcal{A}_{x}=\left\{A_{1}^{(x)}, \ldots, A_{d(x)}^{(x)}\right\} \quad$ called the x-th level of hierarchy,

Definition 3 We define the algebras $\mathcal{L}_{x}:=\left(L_{x},+, \cdot\right)$ for $x=0,1, \ldots \in \mathbb{N}$ as the ground sets

$$
\begin{equation*}
L_{x}:=\left\{\sum_{j=1}^{d(x)} \alpha_{j} \cdot A_{j}^{(x)}: \alpha_{j} \in \mathbb{Z}\right\} \tag{3}
\end{equation*}
$$

abbreviating $\sum_{j=1}^{d(x)} \alpha_{j} \cdot A_{j}^{(x)}$ as $\left[\alpha_{1}, \ldots, \alpha_{d(x)}\right]$, equipped with the usual operations

$$
\begin{equation*}
\left[\alpha_{1}, \ldots, \alpha_{d(x)}\right]+\left[\beta_{1}, \ldots, \beta_{d(x)}\right]:=\left[\alpha_{1}+\beta_{1}, \ldots, \alpha_{d(x)}+\beta_{d(x)}\right] \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda \cdot\left[\alpha_{1}, \ldots, \alpha_{d(x)}\right]:=\left[\lambda \cdot \alpha_{1}, \ldots, \lambda \cdot \alpha_{d(x)}\right] \quad \text { for } \lambda \in \mathbb{Z} \tag{5}
\end{equation*}
$$

Clearly the bases of \mathcal{L}_{x} are the sets \mathcal{A}_{x}.

$$
\begin{gather*}
\Delta_{1}\left(M_{j}\right)=\sum_{k=1}^{a} \alpha_{j, k} \cdot A_{k}, \quad \Delta_{2}\left(E_{i}\right)=\sum_{j=1}^{m} \mu_{i, j} \cdot M_{j} \quad(1 \leq i \leq e) \tag{6}\\
\sum_{j=1}^{m} \mu_{i, j} \cdot \alpha_{j, k}=0 \quad \text { for } 1 \leq i \leq e, 1 \leq k \leq a . \tag{7}
\end{gather*}
$$

Using matrices (7) can be written as

$$
\begin{equation*}
\left[\mu_{i, j}\right]_{e, m} \cdot\left[\alpha_{j, k}\right]_{m, a}=[0]_{e, a}, \tag{8}
\end{equation*}
$$

or in the language of the linear mappings

$$
\begin{equation*}
\Delta_{1} \circ \Delta_{2}=O \quad \text { i.e. } \quad \operatorname{Im}\left(\Delta_{2}\right) \subseteq \operatorname{Ker}\left(\Delta_{1}\right) \tag{9}
\end{equation*}
$$

where, of course

$$
\begin{equation*}
\Delta_{2}: \mathcal{L}_{2} \rightarrow \mathcal{L}_{1} \quad \text { and } \quad \Delta_{1}: \mathcal{L}_{1} \rightarrow \mathcal{L}_{0} . \tag{10}
\end{equation*}
$$

$\left(\left[\mu_{i, j}\right]_{e, m}\right.$ is called stoichiometric while $\left[\alpha_{j, k}\right]_{m, a}$ is the composition matrix.)
in general:
Definition 4 For $x \in \mathbb{N}, x \neq 0$ we call the linear mappings

$$
\begin{equation*}
\Delta_{x}: \mathcal{L}_{x} \rightarrow \mathcal{L}_{x-1} \tag{11}
\end{equation*}
$$

stoichiometric connections between \mathcal{L}_{x} and \mathcal{L}_{x-1} if

$$
\begin{equation*}
\Delta_{x} \circ \Delta_{x+1}=O \quad \text { for } \quad x=1,2, \ldots \tag{12}
\end{equation*}
$$

where $O=O_{x}: \mathcal{L}_{x+1} \rightarrow \mathcal{L}_{x-1}$ is the null-mapping. $\quad \square$
in general:
Definition 4 For $x \in \mathbb{N}, x \neq 0$ we call the linear mappings

$$
\begin{equation*}
\Delta_{x}: \mathcal{L}_{x} \rightarrow \mathcal{L}_{x-1} \tag{11}
\end{equation*}
$$

stoichiometric connections between \mathcal{L}_{x} and \mathcal{L}_{x-1} if

$$
\begin{equation*}
\Delta_{x} \circ \Delta_{x+1}=O \quad \text { for } \quad x=1,2, \ldots \tag{12}
\end{equation*}
$$

where $O=O_{x}: \mathcal{L}_{x+1} \rightarrow \mathcal{L}_{x-1}$ is the null-mapping. $\quad \square$
Remark 5 The requirement (12) can be written equivalently as

$$
\begin{equation*}
\operatorname{Im}\left(\Delta_{x+1}\right) \subseteq \operatorname{Ker}\left(\Delta_{x}\right) \quad \text { for } x=1,2, \ldots \tag{13}
\end{equation*}
$$

in general:
Definition 4 For $x \in \mathbb{N}, x \neq 0$ we call the linear mappings

$$
\begin{equation*}
\Delta_{x}: \mathcal{L}_{x} \rightarrow \mathcal{L}_{x-1} \tag{11}
\end{equation*}
$$

stoichiometric connections between \mathcal{L}_{x} and \mathcal{L}_{x-1} if

$$
\begin{equation*}
\Delta_{x} \circ \Delta_{x+1}=O \quad \text { for } \quad x=1,2, \ldots \tag{12}
\end{equation*}
$$

where $O=O_{x}: \mathcal{L}_{x+1} \rightarrow \mathcal{L}_{x-1}$ is the null-mapping. \square
Remark 5 The requirement (12) can be written equivalently as

$$
\begin{equation*}
\operatorname{Im}\left(\Delta_{x+1}\right) \subseteq \operatorname{Ker}\left(\Delta_{x}\right) \quad \text { for } x=1,2, \ldots \tag{13}
\end{equation*}
$$

Definition 6 We call a system of algebras and mappings

$$
\begin{equation*}
\mathcal{H}=\left(\mathcal{L}_{x}, \Delta_{x+1}: x \in \mathbb{N}\right) \tag{14}
\end{equation*}
$$

(stoichiometric) hierarchy, if it satisfies Definitions 2 through 4. \square

Properties

For $\underline{v}=\sum_{j=1}^{d(x)} \alpha_{j} \cdot A_{j}^{(x)} \in L_{x}(0<x), \underline{v} \in \operatorname{Ker}\left(\Delta_{x}\right)$ we know that

$$
\Delta_{x}(\underline{v})=\sum_{j=1}^{d(x)} \alpha_{j} \cdot \Delta_{x}\left(A_{j}^{(x)}\right)=\sum_{j=1}^{d(x)} \alpha_{j} \cdot\left(\sum_{i=1}^{d(x-1)} \beta_{i}^{(j)} \cdot A_{i}^{(x-1)}\right)
$$

$$
=\sum_{i=1}^{d(x-1)}\left(\sum_{j=1}^{d(x)} \alpha_{j} \beta_{i}^{(j)}\right) \cdot A_{i}^{(x-1)}=\underline{0}
$$

which includes $\quad \sum_{j=1}^{d(x)} \alpha_{j} \beta_{i}^{(j)}=0 \quad$ for $i \leq d(x-1)$
since $\left\{A_{1}^{(x)}, \ldots, A_{d(x)}^{(x)}\right\}$ was assumed to be a base.
above implies

$$
\begin{equation*}
\operatorname{Im}\left(\Delta_{2}\right)=\text { the set of all balanced reactions. } \tag{16}
\end{equation*}
$$

$\operatorname{Ker}\left(\Delta_{2}\right)=$ the set of all cycle-mechanisms.
In general
Definition 7 For $x>0$ the elements of
$\operatorname{Ker}\left(\Delta_{x}\right)$ are called (generalized) cycle-mechanisms $\operatorname{Im}\left(\Delta_{x}\right)$ are called balanced mechanisms.

Clearly, by (13) each balanced mechanisms must be cycles.

We did not prescribe $\operatorname{Ker}\left(\Delta_{x}\right)=\emptyset$, so we may use
Definition 8 For $x>0$ we call the vectors $\underline{w_{1}}, \underline{w_{2}} \in L_{x}$ to be equivalent modulo $\operatorname{Ker}\left(\Delta_{x}\right)$ if and only if

$$
\begin{equation*}
\underline{w_{2}}-\underline{w_{1}} \in \operatorname{Ker}\left(\Delta_{x}\right) . \tag{18}
\end{equation*}
$$

We shorten

$$
\begin{equation*}
\underline{w_{1}} \rightleftarrows \underline{w_{2}} . \tag{19}
\end{equation*}
$$

\square
Clearly

$$
\begin{equation*}
\underline{w_{2}}=\underline{w_{1}}+\underline{y} \quad \text { for some } \underline{y} \in \operatorname{Ker}\left(\Delta_{x}\right) . \tag{20}
\end{equation*}
$$

It is well known, that \rightleftarrows is an equivalence relation and

$$
L_{x} / \rightleftarrows \cong \operatorname{Im}\left(\Delta_{x}\right)
$$

Dual mappings $\quad \Delta_{x}^{*}: \mathcal{L}_{x-1}^{*} \rightarrow \mathcal{L}_{x}^{*} \quad(1 \leq x)$.

mathematical definition
Definition 9 Let V and W be any linear spaces, usually $\Gamma=\mathbb{R}$.
(i) The dual space V^{*} is the set of linear mappings (functions)
$f: V \rightarrow \Gamma$. The addition and scalar multiplication for $f_{1}, f_{2}, f \in V^{*}$ and $\lambda \in \Gamma$

$$
\begin{align*}
\left(f_{1} \oplus f_{2}\right)(v) & : \\
(\lambda \odot f)(v) & : \tag{25}\\
(\lambda) & =\lambda \cdot f(v) \quad(v \in V, \lambda \in \Gamma)
\end{align*}
$$

(ii) For any linear mapping $\mathcal{M}: V \rightarrow W$, the dual mapping

$$
\begin{equation*}
\mathcal{M}^{*}: W^{*} \rightarrow V^{*}, \quad g \longmapsto f \tag{26}
\end{equation*}
$$

The elements of V^{*} are called also functionals or valuations.

Dual mappings $\quad \Delta_{x}^{*}: \mathcal{L}_{x-1}^{*} \rightarrow \mathcal{L}_{x}^{*} \quad(1 \leq x)$.

mathematical definition
Definition 9 Let V and W be any linear spaces, usually $\Gamma=\mathbb{R}$.
(i) The dual space V^{*} is the set of linear mappings (functions)
$f: V \rightarrow \Gamma$. The addition and scalar multiplication for $f_{1}, f_{2}, f \in V^{*}$ and $\lambda \in \Gamma$

$$
\begin{align*}
\left(f_{1} \oplus f_{2}\right)(v) & : \\
(\lambda \odot f)(v) & : \tag{25}\\
(\lambda) & =\lambda \cdot f(v) \quad(v \in V, \lambda \in \Gamma)
\end{align*}
$$

(ii) For any linear mapping $\mathcal{M}: V \rightarrow W$, the dual mapping

$$
\begin{equation*}
\mathcal{M}^{*}: W^{*} \rightarrow V^{*}, \quad g \longmapsto f \tag{26}
\end{equation*}
$$

The elements of V^{*} are called also functionals or valuations.
Definition 10 The dual mappings $\Delta_{x}^{*}: \mathcal{L}_{x-1}^{*} \rightarrow \mathcal{L}_{x}^{*}(1 \leq x)$ are called dual stoichiometric connections.
(the matrices of Δ_{x}^{*} are the transposes of the matrices of Δ_{x}.)
pile Pittsetters, The lockefether University
Istrian Szalkai
University of Vezprém 1230 York Ave, N.Y , NY 10021 P.O. Box 158 , Kejprém 27 Jan. 2003 Hungary

Dear Istran,
Thankyou for the e-mail. Let me respond to the comments you have made, based on the POSTSCRIPT in my letter of 11 April 2002 I aim thinking of comments 1,2 and 3 , in particular.
(1.) I agree with your suggestion that we ficus on the mathematics, ire the properties of 3 rector spaces

$$
\varepsilon \xrightarrow{\Delta_{2}} M_{l}^{\Delta_{1}} \not A
$$

joined by linear transformations such that

$$
\begin{gathered}
\text { X. } \\
\text { Valuation } \\
\text { Operator }
\end{gathered}
$$

Definition 6.5.

(i) call the elements of an arbitrary set $\left\{C_{1}, \ldots, C_{n}\right\}$ components, the linear combination $\underline{S}=\sum_{i=1}^{n} s_{i} \cdot C_{i}\left(s_{i} \in \mathbb{R}\right)$ (chemical) structures, $V:=\left\{\sum_{i=1}^{n} s_{i} \cdot C_{i}: s_{i} \in \mathbb{R}\right\}$ are sets of massess.
(ii) Any linear functional $\mathcal{L}: V \rightarrow \mathbb{R}$ is called evaluating operator. \square

Definition 6.5.

(i) call the elements of an arbitrary set $\left\{C_{1}, \ldots, C_{n}\right\}$ components, the linear combination $\underline{S}=\sum_{i=1}^{n} s_{i} \cdot C_{i}\left(s_{i} \in \mathbb{R}\right)$ (chemical) structures,

$$
V:=\left\{\sum_{i=1}^{n} s_{i} \cdot C_{i}: s_{i} \in \mathbb{R}\right\} \text { are sets of massess. }
$$

(ii) Any linear functional $\mathcal{L}: V \rightarrow \mathbb{R}$ is called evaluating operator.

Theorem 6.6. All the evaluating operators on V have the form

$$
\mathcal{L}(\underline{S})=\sum_{i=1}^{n} a_{i} \cdot s_{i}
$$

where the coefficient vector $\underline{a}=\left[a_{1}, \ldots, a_{n}\right]^{T} \in \mathbb{R}^{n}$ is uniquely determined by $\mathcal{L}: a_{i}=\mathcal{L}\left(C_{i}\right)$.

Definition 6.5.

(i) call the elements of an arbitrary set $\left\{C_{1}, \ldots, C_{n}\right\}$ components, the linear combination $\underline{S}=\sum_{i=1}^{n} s_{i} \cdot C_{i}\left(s_{i} \in \mathbb{R}\right)$ (chemical) structures,

$$
V:=\left\{\sum_{i=1}^{n} s_{i} \cdot C_{i}: s_{i} \in \mathbb{R}\right\} \text { are sets of massess. }
$$

(ii) Any linear functional $\mathcal{L}: V \rightarrow \mathbb{R}$ is called evaluating operator.

Theorem 6.6. All the evaluating operators on V have the form

$$
\mathcal{L}(\underline{S})=\sum_{i=1}^{n} a_{i} \cdot s_{i}
$$

where the coefficient vector $\underline{a}=\left[a_{1}, \ldots, a_{n}\right]^{T} \in \mathbb{R}^{n}$ is uniquely determined by $\mathcal{L}: a_{i}=\mathcal{L}\left(C_{i}\right)$.

Immediately we get
Theorem 6.7. (Hess' law) If the reactions X_{1}, \ldots, X_{k} result the zero mechanism $\mathcal{\mathcal { O }}$, then the sum of the heats $\mathcal{H}\left(X_{1}\right), \ldots, \mathcal{H}\left(X_{k}\right) \quad$ is 0 .

The fact $V^{*} \cong V$ implies
Theorem 77 (PhD 6.8.T.) If V is built up from n components, then there are at most n linearly independent evaluating operators $\mathcal{L}_{1}, \ldots, \mathcal{L}_{n}$, so all each other evaluating operator \mathcal{L} can be expressed as $\mathcal{L}=\alpha_{1} \mathcal{L}_{1}+\ldots+\alpha_{n} \mathcal{L}_{n}$.

Cauchy-Bunyakowsky-Schwarz's inequality:
Theorem 78 (PhD 6.9.T.) For any V and $\mathcal{L}: V \rightarrow \mathbb{R}$ there is a constant $c \in \mathbb{R}^{+}$such that

$$
|\mathcal{L}(\underline{S})| \leq c \cdot\|\underline{S}\| \quad \text { for } \underline{S} \in V,
$$

where $\quad\|\underline{S}\|=\sqrt{s_{1}^{2}+\ldots+s_{n}^{2}}, \quad c=\sqrt{a_{1}^{2}+\ldots+a_{n}^{2}}$

Theorem 6.10. If V_{1} and V_{2} are generated by $\mathcal{C}=\left\{C_{1}, \ldots, C_{n}\right\}$ and $\mathcal{D}=\left\{D_{1}, \ldots, D_{m}\right\}$ resp, $\mathcal{C} \cap \mathcal{D}=\emptyset$ and $V=V_{1} \oplus V_{2}$, then V has evaluating operators only:

$$
\mathcal{L}=\left.\left.\mathcal{L}\right|_{V_{1}} \oplus \mathcal{L}\right|_{V_{2}}
$$

$\mathcal{L}(\underline{S})=\sum_{i=1}^{n} a_{i} s_{i}+\sum_{j=1}^{m} b_{j} t_{j} \quad$ for $\quad \underline{S}=\sum_{i=1}^{n} s_{i} C_{i}+\sum_{j=1}^{m} t_{j} D_{j}$.

Theorem 6.11. For any two scalar products $\mathcal{A}, \mathcal{B}: V \times V \rightarrow \mathbb{R}$ there is an continuous automorphism $\mathcal{I}: V \rightarrow V$ such that

$$
\mathcal{A}(\underline{u}, \underline{v})=\mathcal{B}(\mathcal{I}(\underline{u}), \mathcal{I}(\underline{v})) \quad(\underline{u}, \underline{v} \in V) .
$$

Roughly speaking this means, that all the evaluating operators of a mass-set differ from a scalar multiplier only.

XI.
 Graphs

Petri-graph (P-graph), Volpert-graph, Feinberg-Horn-Jackson-graph

Dealing with the chemical structure (an idea) :

	A B C D	E F G	H I J K	e
A B C D		$-1 \begin{aligned} & -1 \\ & \hline \end{aligned}$	$\begin{array}{ll}-1 & \\ & -1\end{array}$	+2
E F G	+1 +1	-1 ${ }^{*}+1$	$-1{ }^{+1}$	-2
H I J K	$+1$ $+1$	-1^{+1}	$\begin{array}{ccccc}* & +1 & & +1 \\ -1 & * & -1 & \\ & +1 & * & \\ -1 & & & *\end{array}$	+1
e	-2	+2	-1	*

	A B C D	E F G	H I J K	e
A B C D	$\begin{array}{ccccc}* & +1 & & \\ -1 & * & -1 & \\ & +1 & & & \\ & & -1 & & \end{array}$			$\begin{aligned} & +2 \\ & -2 \\ & -2 \end{aligned}$
E F G		${ }_{-1}{ }^{+1}$		+1 +2 -3
H I J K			$\begin{array}{ccc} * \\ -1 & +1 & \\ & +1 & \\ -1 & & \\ & & \\ & \end{array}$	$\begin{aligned} & +2 \\ & +2 \\ & \mathbf{- 1} \end{aligned}$
e	$-2+2-2$	-1-2+3	$-2 \quad-2+1$	*

	A b C D	E F G	н I J	e
A B C D		$\mathbf{M}^{(1,2)}$	$M^{(1,3)}$	$\begin{aligned} & +2 \\ & { }_{-2} \\ & -2 \end{aligned}$
d E F	$\mathbf{M}^{(2,1)}$	${ }_{-1}^{*}+\frac{1}{*}$	$\mathbf{M}^{(2,3)}$	${ }_{-3}^{+1}+{ }_{-1}^{+2} \mathrm{e}^{(2)}$
${ }^{\text {J }}$	$\mathbf{M}^{(3,1)}$	$\mathbf{M}^{(3,2)}$		$\begin{aligned} & +2 \\ & { }_{-1}^{+2} \end{aligned}$
e	-2 +2 -2	-1-2 +3	-2 $-2+1$	*

cut
szétvágás:
$e_{j}^{(i) U \prime J}=e_{j}^{(i) R \dot{E} G I}+\sum_{k \neq i} \sum_{\ell} M^{(i, j)}[j, \ell]$
összeillesztés:
$M^{(i, j)}=?$
glue

Many thanks to

You

