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On numerical solutions for a class
of nonlinear delay equations with
time- and state-dependent delays

I. Gyori, F. Hartung, J. Tur:

Abstract. In this paper, based on a general approximation framework developed by the authors
for nonlinear functional differential equations with state- and time-dependent delays, we present
numerical experiments for the above class of equations using approximating equations with piece-
wise constant arguments (EPCA).
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1. Introduction

In this paper we present numerical experiments for a class of functional differential equa-
tions (FDEs) with time- and state-dependent delays. The computational scheme used here
is based on approximation of functional differential equations by equations with piecewise
constant arguments (EPCA). Related (theoretical) convergence and rate of convergence
results of this method for FDEs with time- and state-dependent delays are discussed by
the authors in [7]. (See also Theorem 2.1. below.)

Numerical findings summarized in Section 3 show good agreement with the theoretical
predictions concerning the convergence properties of our method (Example 3.1. — 3.4.) and
furthermore they reveal interesting dynamics of the particular equations considered (see
e.g., Example 3.8.). For the sake of comparison we constructed and implemented a second
order scheme, but as Example 3.3. shows the accuracy of higher order schemes can break
down if certain “jump discontinuities” are not properly tracked (see [9] for details) by
the numerical method. In Examples 3.5. — 3.7. we study initial value problems where the
Lipschitz-continuity of the initial function is violated ( and thus uniqueness of the solution
is not guaranteed by Theorem 2.1.) and in Example 3.7 we see how numerical solutions ap-
proach asymptotically the stable branch of the solution. We observed the most interesting
dynamic behavior in Example 3.8, where the delay equation has a unique unstable periodic
solution which our method approximates on finite intervals (the length of which depends
on the discretization parameter), but afterward the numerical solutions approach +oc¢ in
a very “regular” fashion. In fact, in [8] we establish results on asymptotic behavior of the
solutions, corresponding to small initial data, of the delay equation studied in Example 3.8.
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(see also Theorem 3.9. below) which shows that the numerical solution produced by our
method in that case approximate the stable unbounded solutions of the delay equation.

2. Approximation schemes for FDEs
with time- and state-dependent delays

In this section we consider the delay differential equation

o(t) = f(t,:c(t),x(t — T(t,x(t)))>, t>0 (2.1)
with initial condition
z(t) = B(t), te[-A0], (2.2)

where A = —inf{t — 7(¢t,u) : t >0, u € R}. In the case when A is not finite, [—\, 0] de-
notes the interval (—oo, 0].
Furthermore, we assume, that

T(t,u) >0, forallt >0, wueR, (2.3)
i.e., equation (2.1) is a delay differential equation.
Fix a positive number h. Replacing ¢ by [t/h]h in the right hand side of (2.1) ([:] is the

greatest integer function) and discretizing the delay function as well we get the following
equation with piecewise constant argument.

yh(t):f([t P /h]h)vthﬂh_[T([t/h]h,z}/lh([t/h]h))]h))7 b0 (24)

with initial condition corresponding to (2.2)
yn(—kh) = ®(—kh), k=0,1,2,..., A< —-kh<0. (2.5)
It is easy to check that for all ¢ > 0 we have

A< [ﬂ I [T([t/h]h, z;lh([t/h]h))

]h <o,
i.e., (2.4) is also a delay equation and it has the same initial interval as equation (2.1).

By a solution of the initial value problem (2.1)-(2.2) we mean a function y; defined on
{=kh : E=0,1,..., —X< —kh <0} by (2.5), which satisfies the following properties
on [0, 00):

(i) the function yj is continuous on [0, 0c),

(ii) the derivative gy, () exists at each point ¢ € [0, 00) with the possible exception of the

points kh (k= 0,1,...) where finite one-sided derivatives exist
(iii) the function y;, satisfies (2.4) on each interval [kh, (k + 1)h) for k = 0,1, .. ..
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In [7] we have shown that the solutions of this equations approximate uniformly the
solution of (2.1) on finite time intervals as h — 0. We have shown also existence and unique-
ness of the solution of initial value problem (2.1)-(2.2) under some smoothness conditions.
In particular, we have the following theorem:

Theorem 2.1. (see also [7]): Fix T > 0. If
(i) f € C([0,00) x R®,R), @€ C([-\0],R), & isbounded on [—X,0],
7 € C([0,00] X R, [0,0))
then the IVP (2.1)-(2.2) has a solution.
Moreover, if in addition
(ii) f(t,u,v) is Lipschitz-continuous on [0,T] x R?, i.e., there exists constant Ly > 0
such that for all t1,t2 € [0,T], uy,us,v1,v2 € R

|f(t1, u1,v1) — f(t2, u2, v2)| < Ly(|t1 — t2| + Jur — uz| + |v1 — val)

(iii) The initial function ®(t) is Lipschitz-continuous on [—A, 0],
(iv) The delay function is Lipschitz-continuous on [0, T] x R?, i.e., there exists constant
Ly > 0 such that for all t1,t5 € [0,T], u,us € R

3

[T(t1, u1) — 7(t2, u2)| < La(|t1 — ta] + [ur — ual)

then the solution of IVP (2.1)-(2.2) is unique and there exists a constant M (T,®) > 0
such that

(t) — yn(t)| < Mh,  t€[0,T], h>0, (2.6)
where x(-) is the solution of IVP (2.1)-(2.2) and yy(+) is the solution of IVP (2.4)-(2.5).

Using the method of steps on the intervals [kh, (k 4+ 1)h] one can easily see that IVP
(2.4)-(2.5) has a unique solution on [0,0¢c). Let ¢t € [kh, (k + 1)h). Integrating (2.4) we get

Yn(t)
= yn(kh) +/t f([s/h]h,yh([S/h]h),yh ([%}h— {T([S/h]h, z}/lh([S/h]h))}h» s

— yn(kh) + f (kh, yn(kh), yn ((k - [M] ) h)) (t — nk). (2.7)

Introducing the notation a(k) = yn(kh) from (2.7) we obtain the following difference
equation for the sequence a(k):

a(k—i-l):a(k)+f<kh,a(k),a(k—dk),>-h, k=0,1,2,...,
a(—k) = B(—kh), k=0,1,2,..., —A<—kh<0,

(2.8)

where we have used the notation

b = [T as)



4 I. Gyéri, F. Hartung, J. Turi

From computational point of view method (2.8)-(2.9) is very simple, because it requires
only function evaluations at mesh points, and we have an explicit difference equation for
the approximate values at the mesh points. From (2.6) we see that (2.8)-(2.9) defines a
first order scheme for the approximation solutions of (2.1)-(2.2). Similar method works for
the several delay case (see [7]).

Remark 2.2. Using a modification of Heun method for the class of IVPs described
by (2.1)-(2.2) and a piecewise linear approximation between mesh points we obtain the
following numerical scheme

- _ h
Zni = Tn+ ([t @n o) + F(ni1, st Gnsn) )5, n=0.1,2.. (2.10)
where for n =0,1,2, ...
tn, = nh
jn+1 =Tn+ f(tn:xnvyn)h
ln =tn — 7(tn, )

kn = [ln/h]
@(ln)? ln S 0
Yn = M(ln_knh)-l'xkn’ ln >0
. (2.11)

an-I—l = tn-i—l - T(tn-l-h i‘n-i-l)
Fnt1 = [lng1/h]

(@ (1), a1 <0
T — xj - - ~
) kn+1+1h knt1 (lpt1 — kny1h) + Ti o 0 <lpt1 <tn
yn-l-l = j- — T ~ 7
%(ln—l—l - tnh) + Zn, bn < ln+1 <lnt1
\ &1, i""'l = bn1

Our numerical studies indicate that the method has second order convergence. Higher
order methods could be constructed similarly. We refer the interested reader to [10] and
the references therein for an exhaustive survey on that topic.

3. Numerical Examples

In this section, as indicated in the introduction, we present case studies to test the perfor-
mance of our numerical scheme. Note that all runs were performed on SUN workstations
at the University of Texas at Dallas. (Program listings are available upon request.)
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(1)

te [—5,0]

Analytic solution of the TVP is x(t) = (¢ + 1)2. Applying our method we obtain the
following approximation equation with piecewise constant arguments:

Example 3.1.

i 8 t [t/h]h + 1
t) = — . —— || h t>
0= g ([ [P ]n) - 20
y(—ih) = (—ih + 1), —— < —ih <0, i€eN.
The resulting difference equation is
8
k+1)=a(k —dg)h
alk+1) = a(k) + 1 -alk = di)
a(—k) = (=kh +1)?
k 1

We list numerical results for the first (see above) and second order methods (see Remark
2.2.) in Table 1.

Table 1. Example 3.1.
1st order method

2nd order method

h t error rel. error error rel. error
1072 100 6.10411e+01 5.98383e-03 5.34280e—02 5.23753e—06
150 1.36729¢4+02 5.99664e—03 1.19423e-01 5.23761e-06
200 2.42558e+02 6.00377e—03 2.11600e-01 5.23749e-06
1072 100 5.82027e+00 5.70559e-04 5.34287e¢-04 5.23759¢—08
150 1.30371e4+01 5.71778¢—04 1.19424e-03 5.23768¢-08
200 2.31211e+01 5.72290e-04 2.11603e-03 5.23756e—08
1072 100 7.64026e-01 7.48972e-05 5.34288¢-06 5.23760e—10
150 1.71034e+00 7.50115e—05 1.19425e-05 5.23770e-10
200 3.03396e+00 7.50961e-05 2.11603e-05 5.23756e-10
Example 3.2. (see also [9)):
z(t) = cost - x(x(t) — 2), t€0,T]

z(t) =1, t€[-2,0]

Note that in general it is not possible to determine in advance if this equation is a delay
equation because of the state-dependent delay (i.e, () — 2 could be greater than t). To
prevent advanced arguments, our program checks at every step if the approximate delay is
nonnegative and stops with error message if it is negative. In this case the exact solution
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scheme. For numerical results see Table 2.

Example 3.3.

Table 2. Example 3.2.

h t

z(t)

yn (t)

error

1072 10.0
20.0
30.0
40.0

4.55979e-01
1.91295e+00
1.19684e-02
1.74511e+00

4.65168e-01
1.91587e+00
1.61671e-02
1.75338e+00

9.18946e-03
2.92592e-03
4.19871e-03
8.26352e-03

1072 10.0
20.0
30.0
40.0

4.55979e-01
1.91295e+00
1.19684e-02
1.74511e+4-00

4.56898e-01
1.91324e+00
1.23912e-02
1.74595e+00

9.19535e-04
2.95784e-04
4.22788e-04
8.33183e-04

10~% 10.0
20.0
30.0
40.0

4.55979e-01
1.91295e+00
1.19684e-02
1.74511e+4-00

4.56071e-01
1.91297e+00
1.20107e-02
1.74520e+00

9.19538e-05
2.95947e-05
4.22876e-05
8.33455e-05

10~° 10.0
20.0
30.0
40.0

4.55987e-01
1.91294e+00
1.19637e-02
1.74514e+00

4.55996e-01
1.91294e+-00
1.19680e—-02
1.74515e+00

9.19539e-06
2.95949e-06
4.22890e-06
8.33453e-06

t+1
2
2442, —2<t<-05
w(t) = q 3
1, —05<t<0
The exact solution is z(t) = 1+ 2t + % — 2log(t+1) on [0,1] and z(t) = 1 — Zlog?2 + ¢t
on [1,2]. The first derivative of the solution is not continuous at ¢ = —0.5 and at ¢t = 0,

therefore the second derivative also has a jump at the points where the time lag is equal

. 1 _ 1 _ .
to —0.5 and 0, i.e. when ¢t — 1 — ;=5 = —0.5 and when ¢t — 1 — ;25 = 0, or equivalently,

at t = 1 and at ¢ = /2. It is known ([9]) that discontinuities of the second derivative may
lead to the loss of the second order convergence if discontinuities occur at points which
are not mesh points. In our example ¢ = 1 is a mesh point, and the second order method
keeps the second order convergence at ¢ = 1, on the other hand ¢t = /2 is not a mesh
point, and a breakdown in the order of convergence occurs at ¢ = /2. (See [4], [9] and
[10] for a detailed discussion about propagation of the jump discontinuities and correction
techniques for the preservation of higher order convergence.)
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Table 3. Example 3.3.

h t

x(t)

1st order method
y1,n(t) error

2nd order method
Y2, (t) error

1072 0.5
1.0
1.4
1.5
2.0

1.1463e+4-00
1.5379e+4-00
1.9379e+4-00
2.0379e+00
2.5379e+00

1.1451e+00 1.2232e-03
1.5361e4-00 1.7685e-03
1.9361e+4-00 1.7685e-03
2.0362e+00 1.6125e-03
2.5870e4-00 4.9096e-02

1.1463e+4-00 3.0863e—-06
1.5379e+4-00 4.1666e-06
1.9379e+4-00 4.1666e-06
2.0380e+00 1.8447e-04
2.5894e4-00 5.1553e-02

1073 0.5
1.0
1.4
1.5

2.0

1.1463e+4-00
1.5379e+00
1.9379e+00
2.0379e+00
2.5379e+00

1.1462e+4-00 1.1859e-04
1.5377e+00 1.7921e-04
1.9377e+00 1.7921e-04
2.0379e+00 5.1257e-06
2.5892e+00 5.1304e-02

1.1463e+4-00 3.0864e-08
1.5379e+4-00 4.1666e—-08
1.9379e+4-00 4.1666e-08
2.0380e+00 1.8657e-04
2.5894e+00 5.1547e-02

107% 05
1.0
1.4
1.5
2.0

1.1463e+00
1.5379e+00
1.9379e+00
2.0379e+00
2.5379e+00

1.1463e+4-00 1.1367e-05
1.5378e+400 1.7113e-05
1.9378e+00 1.7113e-05
2.0380e+00 1.6929e-04
2.5894e+00 5.1524e-02

1.1463e+00 3.0864e-10
1.5379e+4-00 4.1667e-10
1.9379e+4-00 4.1671e-10
2.0380e+00 1.8659e-04
2.5894e+00 5.1547e-02

Example 3.4. (Dynamics of a one block compartmental model with pipe [6].)

z(t) = —(ag + a(t)z(t) + (1 — 7(t))a(t — 7(¢))z(t — 7(¢))

z(t) =1,

t e

[_170]

a(t) =1+ %Sin(t)

agp = 0.1

We examined the dynamics of this equation with constant, 7(¢) = 1, and time-dependent,

1
t) =14 ——,
) =1+
expectations.
Figure 1.

12

delays (see Figure 1). The solutions are in good agreement with physical

10 15 20 25 30 35

Example 3.4., solid line: 7(¢) = 1, dotted line: 7(¢) = 1 + t—+1
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Example 3.5. (see also [1], originally introduced by J. A. Yorke):

z(t) = —x(t — 7(t)), te[0,T]
z(0) =1

_Jt—24+V4—-2t, 0<t<2
m(t) = {0, t> 2.

The solution of this problem is

In this example the delay function is not Lipschitz-continuous, but the approximating

ﬂﬂ:{g%§E,0St§2

0,

t> 2.

method converges to the unique solution, see Table 4.

Example 3.6. Our method may work if the initial function is not continuos. Consider

Table 4. Example 3.5.

h t

z(t)

yn ()

error

102 1.0
2.0
3.0

2.50000e-01
0.00000e+4-00
0.00000e+-00

2.51437e-01
2.68572e-04
9.83061e-05

1.43735e-03
2.68572e-04
9.83061e-05

1073 1.0
2.0
3.0

2.50000e-01
0.00000e+4-00
0.00000e+-00

2.50134e-01
1.38094e-05
5.07766e-06

1.34471e-04
1.38094e-05
5.07766e-06

1072 1.0
2.0
3.0

2.50000e-01
0.00000e+4-00
0.00000e+4-00

2.50013e-01
5.26486e-07
1.93674e-07

1.28346e-05
5.26486e-07
1.93674e-07

e.g.,
Bt =ax(t—1), >0
1, t=0
z(t) = {0. t<0.

The analytic solution is

Numerical results, indicating convergence to the true solution, are listed in Table 5.
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Table 5. Example 3.6.

h t

z(t)

Yn ()

error

rel. error

1072 5.00
10.00
15.00
20.00

1.08750e+-01
1.85338e+-02
3.15863e+4-03
5.38314e+4-04

1.08376e+-01
1.83756e+02
3.11569e4-03
0.28283e+4-04

3.73878e-02
1.58103e+00
4.29424e+01
1.00310e+03

3.43795e-03
8.53055e-03
1.35952e-02
1.86341e-02

1072 5.00
10.00
15.00

20.00

1.08750e+-01
1.85338e+-02
3.15863e4-03
5.38314e+404

1.08713e+01
1.85179e+02
3.15431e4-03
5.37300e+4-04

3.74888e-03
1.58949e-01
4.32754e+4-00
1.01324e+02

3.44724e-04
8.57618e-04
1.37007e-03
1.88225e-03

10~% 5.00
10.00
15.00

20.00

1.08750e+-01
1.85338e+-02
3.15863e4-03
5.38314e+4-04

1.08746e+01
1.85322e+02
3.15820e+-03
5.38212e+4-04

3.74989e-04
1.59034e-02
4.33089e-01
1.01426e+01

3.44817e-05
8.58076e-05
1.37113e-04
1.88415e-04

Example 3.7.

a(t) = —a(t — |z(t)),
—1,

L5t +1)Y3—1, —
2t 41, —

t >

x(t) =

o~
I VAN
[ JEN

ININ
~ = =
IA INA
o |

The initial function is not Lipschitz-continuous, therefore the uniqueness is not guaranteed
by Theorem 2.1. In fact, the IVP has two solutions: ¢ 4 1 is solution for all ¢ > 0 and the
analytic expression on [0, 0.25] for the other solution (which eventually goes to zero [2]) is
t+1—th°,

Assuming exact function evaluations, our method should follow the solution z(t) = t+1,
because a(0) = 1 and a(k) = kh + 1 imply that

a(k)—a(k— {@Dh:a(lﬂ)—a@— [’“h}leh

:a(k)—a<— [%tha(k)+h:(k+l)h+l

where we have used the fact that [1/h] > 1 for h < 1. Moreover, if h = 1/N, where N is
a fixed positive integer, then [1/h] = N, and a(k — [(kh + 1)/h]) = a(—N) = ®(—Nh) =
®(—1). In our runs, due to a computer round-off error in the evaluation of the [-] function,
the method actually picks up one value of the initial function on the interval (-1, —7/8)
and then it follows the solution which goes to 0. For A = 0.01 the round-off error occurs
later, so the approximate solution initially follows z(t) = ¢t + 1 (see Figure 2.)

a(k+1) =
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25

1.5 [o] e}

%o

XX ¢ Coog
‘ ‘ ‘ ‘ PO K xx 229 D90900
0 05 1 15 2 25 3 35 4 45 5

Figure 2. Example 3.7., solid line: t + 1 — t1°, 0: h = 0.01, x: h = 0.001

Example 3.8.
@(t) = z(t — |z(t)]) 4 sin 2t — sin?(t — sin*¢t), t>0
x(t) = sin®t, t<0.

25
o
201 AP0 X
X
15+ o X 4
M

o X
090 506X
° X

o X +
OO sixpX +
° XX ey
o x +

101

X +
0P o
o ><><>o< hatts
o +
0500° 1% St
o X Sy

NN N

0 5 10 15 20 25 30 35

Figure 3. Example 3.8., solid line: sin? t, 0: h =0.01, x: h = 0.001, +: h = 0.0001

The analytic solution is sin? ¢. If we look at the graph of the approximating solutions,
we can see an interesting behavior (see Figure 3). The approximate solutions diverge from
the analytic solution “very regularly”. Next we consider the homogeneous version of the

previous equation, i.e.,

() =20t = [2(0)]), =0

2(t) =@(t), t<0 (3.1)
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For zero initial function the unique solution of this problem is z(¢) = 0. If the initial
function is not zero, even if it is very small in the sup-norm, the corresponding solution is

unbounded, moreover, the same type of asymptotic behavior can be observed for various
initial functions. In our experimentations we used the following initial functions:

@ (t) =t+0.2
By (t) = 0.2sin 5¢ + .01
$3(t) = 0.4cos2t

Corresponding solutions are shown on Figure 4. Note that for ®(0) < 0, similar behavior
can be observed with the exception that the solutions are decreasing in that case. As a
matter of fact, our numerical findings suggested the following conjecture (for details and
proofs see [8]):

Theorem 3.9. Let zo = ®(0) > 0, where ®(-) is the initial function in IVP (3.1). More-
over, we assume that either ®(—zg) < 1 or ®(—z9) > 1 and there exists L > zog such that
®(—L) = 1. Then there exist a constant o and a function ((t) such that the solution of
IVP (3.1) has the form z(t) =t + a+ B(t), where lim;_, o B(t) = 0 and lim;_, o B(t) = 0.

50

5 &
X O+
X O+
X O+
X O+
\/1

35

o+
o+
X O+

30

o+
X

25

X O+
X

20

15-

10r

X O+

ot
o+

ot

X

X O+

X O+

X Ot

X O+

o1 X Of

10

15

20

25

35

50

Figure 4. IVP (3.1) with initial function o: ®1(t), x: ®o(t), +: P3(t)

References
[1] Cooke, K. L., Functional differential equations with asymptotically vanishing lag. Rendicondi
del Circelo Matematico di Palermo, 16 (1967), 39-55.
[2] Cooke, K. L., Asymptotic theory for the delay-differential equation u’(t) = —au(t — r(u(t))),

J. of. Math. Anal. Appl., 19 (1967), 160-173.



12

I. Gy6ri, F. Hartung, J. Turi

Cooke, K. L. and Gyori, I., Numerical approximations of the solutions of delay differential
equations on an infinite interval using piecewise constant arguments, IMA Preprint Series
#633, May 1990, Institute of Mathematics and its Applications, University of Minnesota,
Minneapolis, Minnesota.

Feldstein, A. and Neves, K. W., High order methods for state-dependent delay differential
equations with nonsmooth solutions, SIAM J. Numer. Anal., 21 (5) (1984), 844-863.

Gyéri, I., On approximation of the solutions of delay differential equations by using piecewise
constant arguments, Internat. J. of Math. & Math. Sci., V 14 (1991), 111-126.

Gyori, I. and Eller, J., Compartmental systems with pipes, Math. Biosci, 53 (1981), 223-247.
Gyéri, I., Hartung, F. and Turi, J., Approximation of Functional Differential Equations
with Time- and State-Dependent Delays by Equations with Piecewise Constant Arguments,
preprint.

Hartung, F. and Turi, J., On the asymptotic behavior of the solutions of a state-dependent
delay equation, preprint.

Neves, K. W. and Feldstein, A., Characterization of jump discontinuities for state dependent
delay differential equations, J. Math. Anal. Appl., 56 (1976), 689-707.

[10] Neves, K. W. and Thompson, S., Software for the numerical solution of systems of functional

differential equations with state-dependent delays, Applied Numerical Mathematics, 9 (1992),
385-401.



