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Abstrat. In this paper, based on a general approximation framework developed by the authorsfor nonlinear funtional di�erential equations with state- and time-dependent delays, we presentnumerial experiments for the above lass of equations using approximating equations with piee-wise onstant arguments (EPCA).1991 Mathematis Subjet Classi�ation: 34K05, 65Q05

1. IntrodutionIn this paper we present numerial experiments for a lass of funtional di�erential equa-tions (FDEs) with time- and state-dependent delays. The omputational sheme used hereis based on approximation of funtional di�erential equations by equations with pieewiseonstant arguments (EPCA). Related (theoretial) onvergene and rate of onvergeneresults of this method for FDEs with time- and state-dependent delays are disussed bythe authors in [7℄. (See also Theorem 2.1. below.)Numerial �ndings summarized in Setion 3 show good agreement with the theoretialpreditions onerning the onvergene properties of our method (Example 3.1. { 3.4.) andfurthermore they reveal interesting dynamis of the partiular equations onsidered (seee.g., Example 3.8.). For the sake of omparison we onstruted and implemented a seondorder sheme, but as Example 3.3. shows the auray of higher order shemes an breakdown if ertain \jump disontinuities" are not properly traked (see [9℄ for details) bythe numerial method. In Examples 3.5. { 3.7. we study initial value problems where theLipshitz-ontinuity of the initial funtion is violated ( and thus uniqueness of the solutionis not guaranteed by Theorem 2.1.) and in Example 3.7 we see how numerial solutions ap-proah asymptotially the stable branh of the solution. We observed the most interestingdynami behavior in Example 3.8, where the delay equation has a unique unstable periodisolution whih our method approximates on �nite intervals (the length of whih dependson the disretization parameter), but afterward the numerial solutions approah �1 ina very \regular" fashion. In fat, in [8℄ we establish results on asymptoti behavior of thesolutions, orresponding to small initial data, of the delay equation studied in Example 3.8.



2 I. Gy}ori, F. Hartung, J. Turi(see also Theorem 3.9. below) whih shows that the numerial solution produed by ourmethod in that ase approximate the stable unbounded solutions of the delay equation.
2. Approximation shemes for FDEswith time- and state-dependent delaysIn this setion we onsider the delay di�erential equation_x(t) = f�t; x(t); x�t� �(t; x(t))��; t � 0 (2:1)with initial ondition x(t) = �(t); t 2 [��; 0℄; (2:2)where � � �infft� �(t; u) : t � 0; u 2 Rg: In the ase when � is not �nite, [��; 0℄ de-notes the interval (�1; 0℄.Furthermore, we assume, that�(t; u) � 0; for all t � 0; u 2 R; (2:3)i.e., equation (2.1) is a delay di�erential equation.Fix a positive number h. Replaing t by [t=h℄h in the right hand side of (2.1) ([�℄ is thegreatest integer funtion) and disretizing the delay funtion as well we get the followingequation with pieewise onstant argument._yh(t) = f [t=h℄h; yh([t=h℄h); yh � th�h� ���[t=h℄h; yh([t=h℄h)�h �h!!; t � 0; (2:4)with initial ondition orresponding to (2.2)yh(�kh) = �(�kh); k = 0; 1; 2; : : : ; �� � �kh � 0: (2:5)It is easy to hek that for all t � 0 we have�� �� th�h� ���[t=h℄h; yh([t=h℄h)�h �h � 0;i.e., (2.4) is also a delay equation and it has the same initial interval as equation (2.1).By a solution of the initial value problem (2.1)-(2.2) we mean a funtion yh de�ned onf�kh : k = 0; 1; : : : ; �� � �kh � 0g by (2.5), whih satis�es the following propertieson [0;1):(i) the funtion yh is ontinuous on [0;1),(ii) the derivative _yh(t) exists at eah point t 2 [0;1) with the possible exeption of thepoints kh (k = 0; 1; : : :) where �nite one-sided derivatives exist(iii) the funtion yh satis�es (2.4) on eah interval [kh; (k + 1)h) for k = 0; 1; : : :.



On numerial solutions for a lass of nonlinear delay equations 3In [7℄ we have shown that the solutions of this equations approximate uniformly thesolution of (2.1) on �nite time intervals as h! 0. We have shown also existene and unique-ness of the solution of initial value problem (2.1)-(2.2) under some smoothness onditions.In partiular, we have the following theorem:Theorem 2.1. (see also [7℄): Fix T > 0. If(i) f 2 C([0;1)�R2;R), � 2 C([��; 0℄;R), � is bounded on [��; 0℄,� 2 C([0;1℄�R; [0;1))then the IVP (2.1)-(2.2) has a solution.Moreover, if in addition(ii) f(t; u; v) is Lipshitz-ontinuous on [0; T ℄ � R2, i.e., there exists onstant L1 > 0suh that for all t1; t2 2 [0; T ℄; u1; u2; v1; v2 2 Rjf(t1; u1; v1)� f(t2; u2; v2)j � L1(jt1 � t2j+ ju1 � u2j+ jv1 � v2j)(iii) The initial funtion �(t) is Lipshitz-ontinuous on [��; 0℄,(iv) The delay funtion is Lipshitz-ontinuous on [0; T ℄�R2, i.e., there exists onstantL2 > 0 suh that for all t1; t2 2 [0; T ℄; u1; u2 2 Rj�(t1; u1)� �(t2; u2)j � L2(jt1 � t2j+ ju1 � u2j)then the solution of IVP (2.1)-(2.2) is unique and there exists a onstant M(T;�) > 0suh that jx(t)� yh(t)j �Mh; t 2 [0; T ℄; h > 0; (2:6)where x(�) is the solution of IVP (2.1)-(2.2) and yh(�) is the solution of IVP (2.4)-(2.5).Using the method of steps on the intervals [kh; (k + 1)h℄ one an easily see that IVP(2.4)-(2.5) has a unique solution on [0;1). Let t 2 [kh; (k+ 1)h). Integrating (2.4) we getyh(t)= yh(kh) + Z tkh f [s=h℄h; yh([s=h℄h); yh � sh�h� ���[s=h℄h; yh([s=h℄h)�h �h!! ds= yh(kh) + f kh; yh(kh); yh �k � ��(kh; yh(kh)h ��h!! � (t� nk): (2:7)Introduing the notation a(k) � yh(kh) from (2.7) we obtain the following di�ereneequation for the sequene a(k):a(k + 1) = a(k) + f�kh; a(k); a(k� dk);��h; k = 0; 1; 2; : : : ;a(�k) = �(�kh); k = 0; 1; 2; : : : ; �� � �kh � 0; (2:8)where we have used the notation dk � ��(kh; a(k))h � : (2:9)



4 I. Gy}ori, F. Hartung, J. TuriFrom omputational point of view method (2.8)-(2.9) is very simple, beause it requiresonly funtion evaluations at mesh points, and we have an expliit di�erene equation forthe approximate values at the mesh points. From (2.6) we see that (2.8)-(2.9) de�nes a�rst order sheme for the approximation solutions of (2.1)-(2.2). Similar method works forthe several delay ase (see [7℄).Remark 2.2. Using a modi�ation of Heun method for the lass of IVPs desribedby (2.1)-(2.2) and a pieewise linear approximation between mesh points we obtain thefollowing numerial shemexn+1 = xn + �f(tn; xn; yn) + f(tn+1; ~xn+1; ~yn+1)�h2 ; n = 0; 1; 2; : : : (2:10)where for n = 0; 1; 2; : : :tn � nhx0 � �(0)~xn+1 � xn + f(tn; xn; yn)hln � tn � �(tn; xn)kn � [ln=h℄yn � (�(ln); ln � 0xkn+1 � xknh (ln � knh) + xkn ; ln > 0~ln+1 � tn+1 � �(tn+1; ~xn+1)~kn+1 � [~ln+1=h℄~yn+1 � 8>>>>><>>>>>:�(~ln+1); ~ln+1 � 0x~kn+1+1 � x~kn+1h (~ln+1 � ~kn+1h) + x~kn+1 ; 0 < ~ln+1 � tn~xn+1 � xnh (~ln+1 � tnh) + xn; tn < ~ln+1 < tn+1~xn+1; ~ln+1 = tn+1
(2:11)

Our numerial studies indiate that the method has seond order onvergene. Higherorder methods ould be onstruted similarly. We refer the interested reader to [10℄ andthe referenes therein for an exhaustive survey on that topi.
3. Numerial ExamplesIn this setion, as indiated in the introdution, we present ase studies to test the perfor-mane of our numerial sheme. Note that all runs were performed on SUN workstationsat the University of Texas at Dallas. (Program listings are available upon request.)



On numerial solutions for a lass of nonlinear delay equations 5Example 3.1. _x(t) = 8t+ 1 � x�t� � t2 + 12�� ; t � 0x(t) = (t+ 1)2; t 2 [�12 ; 0℄Analyti solution of the IVP is x(t) = (t + 1)2. Applying our method we obtain thefollowing approximation equation with pieewise onstant arguments:_y(t) = 8[t=h℄h+ 1 � y�� th � � [t=h℄h+ 12h ��h� ; t � 0y(�ih) = (�ih+ 1)2; �12 � �ih � 0; i 2 N:The resulting di�erene equation isa(k + 1) = a(k) + 8kh+ 1 � a(k � dk)ha(�k) = (�kh+ 1)2dk � �k2 + 12h� :We list numerial results for the �rst (see above) and seond order methods (see Remark2.2.) in Table 1. Table 1. Example 3.1.1st order method 2nd order methodh t error rel. error error rel. error10�2 100 6.10411e+01 5.98383e{03 5.34280e{02 5.23753e{06150 1.36729e+02 5.99664e{03 1.19423e{01 5.23761e{06200 2.42558e+02 6.00377e{03 2.11600e{01 5.23749e{0610�3 100 5.82027e+00 5.70559e{04 5.34287e{04 5.23759e{08150 1.30371e+01 5.71778e{04 1.19424e{03 5.23768e{08200 2.31211e+01 5.72290e{04 2.11603e{03 5.23756e{0810�4 100 7.64026e{01 7.48972e{05 5.34288e{06 5.23760e{10150 1.71034e+00 7.50115e{05 1.19425e{05 5.23770e{10200 3.03396e+00 7.50961e{05 2.11603e{05 5.23756e{10Example 3.2. (see also [9℄):_x(t) = os t � x(x(t)� 2); t 2 [0; T ℄x(t) = 1; t 2 [�2; 0℄Note that in general it is not possible to determine in advane if this equation is a delayequation beause of the state-dependent delay (i.e, x(t) � 2 ould be greater than t). Toprevent advaned arguments, our program heks at every step if the approximate delay isnonnegative and stops with error message if it is negative. In this ase the exat solution



6 I. Gy}ori, F. Hartung, J. Turiis x(t) = sin t+ 1, i.e., we have a delay equation, whih is preserved by the approximationsheme. For numerial results see Table 2.Table 2. Example 3.2.h t x(t) yh(t) error10�2 10.0 4.55979e{01 4.65168e{01 9.18946e{0320.0 1.91295e+00 1.91587e+00 2.92592e{0330.0 1.19684e{02 1.61671e{02 4.19871e{0340.0 1.74511e+00 1.75338e+00 8.26352e{0310�3 10.0 4.55979e{01 4.56898e{01 9.19535e{0420.0 1.91295e+00 1.91324e+00 2.95784e{0430.0 1.19684e{02 1.23912e{02 4.22788e{0440.0 1.74511e+00 1.74595e+00 8.33183e{0410�4 10.0 4.55979e{01 4.56071e{01 9.19538e{0520.0 1.91295e+00 1.91297e+00 2.95947e{0530.0 1.19684e{02 1.20107e{02 4.22876e{0540.0 1.74511e+00 1.74520e+00 8.33455e{0510�5 10.0 4.55987e{01 4.55996e{01 9.19539e{0620.0 1.91294e+00 1.91294e+00 2.95949e{0630.0 1.19637e{02 1.19680e{02 4.22890e{0640.0 1.74514e+00 1.74515e+00 8.33453e{06Example 3.3. _x(t) = x�t� 1� 1t+ 1� ; t � 0
x(t) = 8<: 23(t+ 2); �2 � t � �0:51; �0:5 � t � 0The exat solution is x(t) = 1 + 23 t+ t33 � 23 log (t+ 1) on [0; 1℄ and x(t) = 1� 23 log 2 + ton [1; 2℄. The �rst derivative of the solution is not ontinuous at t = �0:5 and at t = 0,therefore the seond derivative also has a jump at the points where the time lag is equalto �0:5 and 0, i.e. when t � 1 � 1t+1 = �0:5 and when t � 1 � 1t+1 = 0, or equivalently,at t = 1 and at t = p2. It is known ([9℄) that disontinuities of the seond derivative maylead to the loss of the seond order onvergene if disontinuities our at points whihare not mesh points. In our example t = 1 is a mesh point, and the seond order methodkeeps the seond order onvergene at t = 1, on the other hand t = p2 is not a meshpoint, and a breakdown in the order of onvergene ours at t = p2. (See [4℄, [9℄ and[10℄ for a detailed disussion about propagation of the jump disontinuities and orretiontehniques for the preservation of higher order onvergene.)



On numerial solutions for a lass of nonlinear delay equations 7Table 3. Example 3.3.1st order method 2nd order methodh t x(t) y1;h(t) error y2;h(t) error10�2 0.5 1.1463e+00 1.1451e+00 1.2232e{03 1.1463e+00 3.0863e{061.0 1.5379e+00 1.5361e+00 1.7685e{03 1.5379e+00 4.1666e{061.4 1.9379e+00 1.9361e+00 1.7685e{03 1.9379e+00 4.1666e{061.5 2.0379e+00 2.0362e+00 1.6125e{03 2.0380e+00 1.8447e{042.0 2.5379e+00 2.5870e+00 4.9096e{02 2.5894e+00 5.1553e{0210�3 0.5 1.1463e+00 1.1462e+00 1.1859e{04 1.1463e+00 3.0864e{081.0 1.5379e+00 1.5377e+00 1.7921e{04 1.5379e+00 4.1666e{081.4 1.9379e+00 1.9377e+00 1.7921e{04 1.9379e+00 4.1666e{081.5 2.0379e+00 2.0379e+00 5.1257e{06 2.0380e+00 1.8657e{042.0 2.5379e+00 2.5892e+00 5.1304e{02 2.5894e+00 5.1547e{0210�4 0.5 1.1463e+00 1.1463e+00 1.1367e{05 1.1463e+00 3.0864e{101.0 1.5379e+00 1.5378e+00 1.7113e{05 1.5379e+00 4.1667e{101.4 1.9379e+00 1.9378e+00 1.7113e{05 1.9379e+00 4.1671e{101.5 2.0379e+00 2.0380e+00 1.6929e{04 2.0380e+00 1.8659e{042.0 2.5379e+00 2.5894e+00 5.1524e{02 2.5894e+00 5.1547e{02Example 3.4. (Dynamis of a one blok ompartmental model with pipe [6℄.)_x(t) = �(a0 + a(t))x(t) + (1� _�(t))a(t� �(t))x(t� �(t))x(t) = 1; t 2 [�1; 0℄a(t) � 1 + 12 sin(t)a0 = 0:1We examined the dynamis of this equation with onstant, �(t) = 1, and time-dependent,�(t) = 1+ 11 + t , delays (see Figure 1). The solutions are in good agreement with physialexpetations.
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Figure 1. Example 3.4., solid line: �(t) = 1, dotted line: �(t) = 1 + 1t+1



8 I. Gy}ori, F. Hartung, J. TuriExample 3.5. (see also [1℄, originally introdued by J. A. Yorke):_x(t) = �x(t� �(t)); t 2 [0; T ℄x(0) = 1�(t) � � t� 2 +p4� 2t; 0 � t � 20; t > 2.The solution of this problem isx(t) = ( (t� 2)24 ; 0 � t � 20; t > 2.In this example the delay funtion is not Lipshitz-ontinuous, but the approximatingmethod onverges to the unique solution, see Table 4.Table 4. Example 3.5.h t x(t) yh(t) error10�2 1.0 2.50000e{01 2.51437e{01 1.43735e{032.0 0.00000e+00 2.68572e{04 2.68572e{043.0 0.00000e+00 9.83061e{05 9.83061e{0510�3 1.0 2.50000e{01 2.50134e{01 1.34471e{042.0 0.00000e+00 1.38094e{05 1.38094e{053.0 0.00000e+00 5.07766e{06 5.07766e{0610�4 1.0 2.50000e{01 2.50013e{01 1.28346e{052.0 0.00000e+00 5.26486e{07 5.26486e{073.0 0.00000e+00 1.93674e{07 1.93674e{07Example 3.6. Our method may work if the initial funtion is not ontinuos. Considere.g., _x(t) = x(t� 1); t � 0x(t) = � 1; t = 00; t < 0.The analyti solution is x(t) = [t℄Xi=0 (t� i)ii! :Numerial results, indiating onvergene to the true solution, are listed in Table 5.



On numerial solutions for a lass of nonlinear delay equations 9Table 5. Example 3.6.h t x(t) yh(t) error rel. error10�2 5.00 1.08750e+01 1.08376e+01 3.73878e{02 3.43795e{0310.00 1.85338e+02 1.83756e+02 1.58103e+00 8.53055e{0315.00 3.15863e+03 3.11569e+03 4.29424e+01 1.35952e{0220.00 5.38314e+04 5.28283e+04 1.00310e+03 1.86341e{0210�3 5.00 1.08750e+01 1.08713e+01 3.74888e{03 3.44724e{0410.00 1.85338e+02 1.85179e+02 1.58949e{01 8.57618e{0415.00 3.15863e+03 3.15431e+03 4.32754e+00 1.37007e{0320.00 5.38314e+04 5.37300e+04 1.01324e+02 1.88225e{0310�4 5.00 1.08750e+01 1.08746e+01 3.74989e{04 3.44817e{0510.00 1.85338e+02 1.85322e+02 1.59034e{02 8.58076e{0515.00 3.15863e+03 3.15820e+03 4.33089e{01 1.37113e{0420.00 5.38314e+04 5.38212e+04 1.01426e+01 1.88415e{04Example 3.7. _x(t) = �x(t� jx(t)j); t � 0x(t) = 8<:�1; t � �11:5(t+ 1)1=3 � 1; �1 � t � � 78107 t+ 1; � 78 � t � 0The initial funtion is not Lipshitz-ontinuous, therefore the uniqueness is not guaranteedby Theorem 2.1. In fat, the IVP has two solutions: t+ 1 is solution for all t � 0 and theanalyti expression on [0; 0:25℄ for the other solution (whih eventually goes to zero [2℄) ist+ 1� t1:5.Assuming exat funtion evaluations, our method should follow the solution x(t) = t+1,beause a(0) = 1 and a(k) = kh+ 1 imply thata(k + 1) = a(k)� a�k � �a(k)h ��h = a(k)� a�k � �kh+ 1h ��h= a(k)� a�� � 1h��h = a(k) + h = (k + 1)h+ 1where we have used the fat that [1=h℄ � 1 for h < 1. Moreover, if h = 1=N , where N isa �xed positive integer, then [1=h℄ = N , and a(k � [(kh+ 1)=h℄) = a(�N) = �(�Nh) =�(�1). In our runs, due to a omputer round-o� error in the evaluation of the [�℄ funtion,the method atually piks up one value of the initial funtion on the interval (�1;�7=8)and then it follows the solution whih goes to 0. For h = 0:01 the round-o� error ourslater, so the approximate solution initially follows x(t) = t+ 1 (see Figure 2.)
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Figure 2. Example 3.7., solid line: t+ 1� t1:5, o: h = 0:01, x: h = 0:001Example 3.8. _x(t) = x(t� jx(t)j) + sin 2t� sin2(t� sin2 t); t � 0x(t) = sin2 t; t � 0:
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Figure 3. Example 3.8., solid line: sin2 t, o: h = 0:01, x: h = 0:001, +: h = 0:0001The analyti solution is sin2 t. If we look at the graph of the approximating solutions,we an see an interesting behavior (see Figure 3). The approximate solutions diverge fromthe analyti solution \very regularly". Next we onsider the homogeneous version of theprevious equation, i.e., _z(t) = z(t� jz(t)j); t � 0z(t) = �(t); t � 0 (3:1)



On numerial solutions for a lass of nonlinear delay equations 11For zero initial funtion the unique solution of this problem is z(t) = 0. If the initialfuntion is not zero, even if it is very small in the sup-norm, the orresponding solution isunbounded, moreover, the same type of asymptoti behavior an be observed for variousinitial funtions. In our experimentations we used the following initial funtions:�1(t) = t+ 0:2�2(t) = 0:2 sin 5t+ :01�3(t) = 0:4 os 2tCorresponding solutions are shown on Figure 4. Note that for �(0) < 0, similar behavioran be observed with the exeption that the solutions are dereasing in that ase. As amatter of fat, our numerial �ndings suggested the following onjeture (for details andproofs see [8℄):Theorem 3.9. Let z0 � �(0) > 0, where �(�) is the initial funtion in IVP (3.1). More-over, we assume that either �(�z0) � 1 or �(�z0) > 1 and there exists L > z0 suh that�(�L) = 1. Then there exist a onstant � and a funtion �(t) suh that the solution ofIVP (3.1) has the form z(t) = t+ �+ �(t), where limt!1 �(t) = 0 and limt!1 _�(t) = 0.
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Figure 4. IVP (3.1) with initial funtion o: �1(t), x: �2(t), +: �3(t)
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