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Abstract

In this paper we consider a class of differential equations with state-dependent delays.
We show first and second-order differentiability of the solution with respect to parameters
in a pointwise sense and also using the C-norm on the state-space, assuming that the state-
dependent time lag function is piecewise strictly monotone.
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1 Introduction
In this paper we study the SD-DDE
z(t) = f(t,z, x(t — 7(t, 24,8)), 0), te[0,T7, (1.1)
and the corresponding initial condition
z(t) = (1), t e [—r0l. (1.2)

Let © and = be normed linear spaces with norms | - |@ and | - |z, respectively, and suppose
f € O and £ € =. Here we consider the initial function ¢, # and £ as parameters in the IVP
(1.1)-(1.2), and we denote the corresponding solution by z(t,¢,0,£). The main goal of this
paper is to discuss the differentiability of x(¢,¢,0,£) wrt ¢, 6 and £. By differentiability we
mean Fréchet-differentiability throughout the manuscript.

Differentiability of solutions wrt parameters is an important qualitative question, but it also
has a natural application in the problem of identification of parameters (see [10]). But even for
simple constant delay equations this problem leads to technical difficulties if the parameter is
the delay [6, 17]. Similar difficulty arises in SD-DDEs.

*This research was partially supported by the Hungarian National Foundation for Scientific Research Grant
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Theorem 3.1 below yields that, under natural assumptions, Lipschitz continuous initial func-
tions generate unique solutions of (1.1). As it is common for delay equations, as the time
increases, the solution of (1.1) gets smoother wrt the time: on the interval [0, 7] the solution is
C1, on [r,2r] it is a C? function, etc. But for ¢ € [0, 7] the solution segment function x; is only
Lipschitz continuous. Therefore the linearization of the composite function x(t — 7(t, x¢,§)) is
not straightforward, which is clearly needed at some point of the proof to obtain differentiability
wrt parameters.

To illustrate the difficulty of this problem in the case when we cannot assume continuous
differentiability of x, we recall a result of Brokate and Colonius [1]. They studied SD-DDEs of
the form

(1) = f(t,:z(t—r(t,x(t)))), t € [a, b,

and investigated differentiability of the composition operator
A W ([0, B R) S X o DP(la, b R),  A@)(t) = a(t - 7(t,2(1))).

They assumed that 7 is twice continuously differentiable satisfying a < ¢ — 7(¢,v) < b for all
t € [a,b] and v € R, and considered as domain of A the set

d
X = {:1; € WhH([a,b]; R): There exists ¢ > 0 s.t. 7 (t — T(t,x(t))) > ¢ forae. te [a,b]}.
It was shown in [1] that under these assumptions A is continuously differentiable with the
derivative given by

(DA(z)u)(t) = —@(t — 7(t,2(t))) Dot (t, z(t))u(t) + u(t — 7(t, z(t)))

for u € W1°([a,b],R). Both the strong W1>°-norm on the domain and the weak LP-norm on
the range, together with the choice of the domain seemed to be necessary to obtain the results
in [1]. Note that Manitius in [18] used a similar domain and norm when he studied linearization
for a class of SD-DDEs.

Differentiability of solutions wrt parameters for SD-DDEs was studied in [2, 9, 12, 16, 21, 22].
In [9] differentiability of the parameter map was established at parameter values where the
compatibility condition

pE Clv 90(0_) = f(07 90790(_7-(079076))’0) (13)

is satisfied. It was proved that the parameter map is differentiable in a pointwise sense, i.e., the
map
WEx @ xE=R",  (9,0,6) = a(t, 0,0, (1.4)

is differentiable for every fixed ¢ from the domain of the solution. Moreover, it was shown that
the map
W™ x 0 x 2= C, (,0,8) = (-, 0,6, 8), (1.5)

and, under a little more smoothness assumptions, the map
Whex @ x 25 Whe, (9,0,€) = z:(,0,0,€) (1.6)

is also differentiable at fixed parameter values satisfying (1.3). Note that a condition similar to
(1.3) was used by Walter in [21] and [22], where he proved the existence of a C''-smooth solution
semiflow for large classes of SD-DDES.



In [16] differentiability of the parameter map was proved without assuming the compati-
bility condition (1.3). Instead, it was assumed that the time lag function ¢ — t — 7(t, 24, €)
corresponding to a fixed solution x is strictly monotone increasing, more precisely,

d
inf — (¢t —7(t 1.
%Sgstlgna dt( T( )$t)§)) > Oa ( 7)
where o > 0 is such that the solution exists on [—r, . Also, instead of a “pointwise” differen-
tiability, the differentiability of the map

Wl,oo X O x=E— Wl’p; (907 676) = xt(’a 2 97&)

was proved in a small neighborhood of the fixed parameter value. Note that here the differen-
tiability was obtained using only a weak norm, the W!P-norm (1 < p < oo) on the state-space.

Chen, Hu and Wu in [2] extended the above result to proving second-order differentiability
of the parameter map using the monotonicity condition (1.7) of the state-dependent time lag
function, the W1P-norm (1 < p < oo) on the state space, and the W?P-norm on the space of
initial functions. Note that 7 was not given explicitly in [2], it was defined through a coupled
differential equation, but it satisfied the monotonicity condition (1.7).

In [12] the IVP

z(t) = f(t,z,x(t —7(t 240))), t € lo,T], (1.8)
z(t) = @(t—o), t€lo—r,o] (1.9)

was considered. In this IVP the parameters 6 and & were omitted for simplicity, but the initial
time o was considered together with the initial function as parameters in the equation. Combin-
ing the techniques of [9] and [16], and assuming the appropriate monotonicity condition (1.7),
but without assuming the compatibility condition (1.3), the continuous differentiability of the
parameter maps

Wwhe - R™, o= x(t,o,p)

and
WLOO — Ca 2 — mt('vaa SO)

were proved for a fixed ¢ and ¢ in a neighborhood of a fixed initial function. Note that with this
technique similar result can’t be given using the W%*-norm on the state-space without using
the compatibility condition.

Assuming the compatibility condition (1.3) it was also shown in [12] that the maps

[0,a) — R", o x(t,o,p)

and
[0,0é) _>C” U’—Hlft(‘a(f,@)

are differentiable for all ¢ € [0 — 7, a] and t € [0, o], respectively, and o, ¢ in a neighborhood of
a fixed parameter (o, ), and where a > 0 is a certain constant. Assuming that the functions f
and 7 have a special form in (1.8), i.e., for equations of the form
0
B(t) = f(t,x(t AN, a(t = AT(), [ Al O)a(s + 0) ds,

-r

0

o(t=7[tat - €0, ate - €0, |

b

B(t,0)z(s + 0) dsD)



the differentiability of the map
[0,a) — R", o x(t,o,p)

was shown in [12] for ¢t € [o,«] using the monotonicity assumption (1.7), but without the
compatibility condition (1.3). Note that in this case similar result does not hold for the map
o +— (-, 0,9) using the C-norm, which is not surprising, since it is easy to see [12] that the
map o — x(t,0,¢) is differentiable at the point ¢ = ¢ if and only if a compatibility condition
similar to (1.3) is satisfied.

We refer the interested reader for related works on dependence of the solutions on parameters
in SD-DDEs to [19, 20], and for similar works in neutral SD-DDEs to [11, 13, 23].

The organization of this paper is the following. In Section 2 we summarize some notations
and preliminary results that will be used in the manuscript. In Section 3 we formulate a well-
posedness result (Theorem 3.1) concerning the IVP (1.1)-(1.2).

In Section 4 using and extending the method introduced in [12], we discuss first order dif-
ferentiability of the parameter maps associated to the IVP (1.1)-(1.2). In the main result of
this section (see Theorem 4.9 below) we show the differentiability of the parameter maps (1.4)
and (1.5) without using the compatibility condition (1.3), and also relaxing the monotonicity
condition (1.7) to the condition that the time lag function ¢ — ¢ —7(¢, x4, ) is “piecewise strictly
monotone” in the sense of Definition 2.6. The key assumption in Theorem 4.9 is (apart from
the regularity of f and 7) that the initial function belongs to W1*. Note that omitting the
compatibility condition is essential in the application of this results in [14], where we prove the
convergence of the quasilinearization method in the problem of parameter estimation. Also, in
this application the existence of the derivative is needed in this strong, pointwise sense, i.e., the
differentiability of the map (1.4) is used in [14].

In Section 5 the main result is Theorem 5.17, which proves twice continuous differentiability
of the maps

W2* x 0 x 2 — R, (©0,0,6) — x(t, 0, 0,&)

and
W?® x 0 x 2= C, (p,0,8) = (-, 9,0,8)

at a parameter value (p,6,&) satisfying the compatibility condition (1.3) and such that the
corresponding time lag function t — 7(¢,2,&) is piecewise strictly monotone in the sense of
Definition 2.6. Here the assumptions that f and 7 are twice continuously differentiable and the
initial functions belong to W2 are needed to obtain the second-order differentiability. The
only result known in the literature for the existence of a second derivative wrt the parameters in
SD-DDEs is the result of Chen, Hu and Wu [2], where the second-order differentiability is proved
only using a weak W1P-norm on the state-space. Note that our result shows the existence of
the second derivative in a pointwise sense, i.e., at each fixed ¢, moreover, the technique of the
proof is simpler.

We comment that the results of this paper do not imply the existence C' or C?-smooth
semiflows of solutions, since in both Theorems 4.9 and 5.17 only C-norm is used in the final
segments (-, 0,0, &), but the W1 and W?2>-norms respectively are needed for the initial
functions. So the existence of C?-smooth solution semiflows is still an open question for SD-
DDEs.



2 Notations and preliminaries

Throughout the manuscript © > 0 is a fixed constant and x;: [—7,0] — R", 24(0) := x(t + 0) is
the segment function. To avoid confusion with the notation of the segment function, sequences
of functions are denoted using the upper index: z¥.

N and Ny denote the set of positive and nonnegative integers, respectively. A fixed norm
on R™ and its induced matrix norm on R™*™ are both denoted by | -|. C' denotes the Banach
space of continuous functions ¢ : [—7,0] — R™ equipped with the norm |¢|c = max{|({)]:
¢ € [-r,0]}. C! is the space of continuously differentiable functions ¢ : [~r,0] — R™ where
the norm is defined by [¢h|c1 = max{|¢|c, [)|c}. L is the space of Lebesgue-measurable
functions ¢ : [—r,0] — R™ which are essentially bounded. The norm on L is denoted by
[¥| e = esssup{|¥(¢)|: ¢ € [-r,0]}. WP denotes the Banach-space of absolutely continuous
functions ¢: [—r, 0] — R™ of finite norm defined by

0 ) 1/p
e = (/ |w<<>\p+w<c>|w<) C l<pes,

=T

and for p = oo

e = max { [l [l }

We note that W1 is equal to the space of Lipschitz continuous functions from [—r, 0] to R™. The
subset of W1 consisting of those functions which have absolutely continuous first derivative
and essentially bounded second derivative is denoted by W2, where the norm is defined by

[lwaee = max {[Vlo, Wle, [} .

If the domain or the range of the functions is different from [—r, 0] and R"™, respectively, we will
use a more detailed notation. E.g., C(X,Y’) denotes the space of continuous functions mapping
from X to Y. Finally, £(X,Y) denotes the space of bounded linear operators from X to Y,
where X and Y are normed linear spaces. An open ball in the normed linear space X centered
at a point z € X with radius § is denoted by Bx(z; §) :={y € X: |x —y|x < ¢}, where |-|x is
the norm defined on X.

The derivative of a single variable function v(¢) wrt ¢ is denoted by v. Note that all derivatives
we use in this paper are Fréchet derivatives. The partial derivatives of a function g: X1 x Xy — Y
wrt the first and second variables will be denoted by Dig and Dsg, respectively. The second-
order partial derivative wrt its ¢th and jth variables (i, j = 1,2) of the function g: X; x Xo - Y
at the point (z1,22) € X1 x X3 is the bounded bilinear operator A(-,-): X; x X; =Y, if

D; j s )b — D; ) -4 ’
b |Dig(x1 4 kd1j, w2 4 kdoj)h g(w1,m2)h (h, k)|y — 0, heX;, keX;j,

lim su

k—0 p£0 |h|x; k|,
where §;; = 1 for ¢ = j and d;; = 0 for ¢ # j is the Kronecker-delta. We will use the notation
D;jg(x1,22) = A. The norm of the bilinear operator A(:,-): X; x X; — Y is defined by

|Afh, k) ly

BRI e X h 0, k:er,k;AO}.
|h’Xi’k‘Xj

’A\ﬁ(xixxj,y) ‘= sup {

In the case when X; = R, we simply write Dig(x1,z2) instead of the more precise notation
D1g(x1,x2)1, i.e., here D;g denotes the value in Y instead of the linear operator L(R,Y"). In the



case when, let say, Xo = R™ =Y, then we identify the linear operator Dog(z1,z2) € L(R™, R™)
by an n X n matrix.

Next we formulate a result which is a simple consequence of the Gronwall’s lemma.

Lemma 2.1 (see, e.g., [12]) Suppose a > 0, b: [0,a] — [0,00) and u: [-r,a] — R" are
continuous functions such that a > |ug|c, and

|MW<a+AMQMb%, te0,al. (2.1)

Then .
lu(®)] < |ule < aeo P&t e0,q]. (2.2)

We recall the following variant of the Mean Value Theorem.

Lemma 2.2 Let X1, X3,Y be normed linear spaces, U C X7 and V C Xo convex and open
subsets, g: X1 X Xo DU xV =Y continuously differentiable. Then for every (x,y),(Z,y) €
UxV
o(.9) ~ 9@ Dy < max [DfE +v(e = £).5+ v(y ~ 5)lecnn |~ Fx,
+Vrél[%>§] |Daf(Z+v(z—2), 7+ vy —9)|cxe )y — Ulx,-

We recall the following result from [1], which was essential to prove differentiability wrt
parameters in SD-DDEs in [2], [12] and [16]. We state the result in a simplified form we need
later, it is formulated in a more general form in [1]. Note that the second part of the lemma
was stated in [1] under the assumption |u* — ulp1.eo(0,0,r) — 0 @s k — oo, but this stronger
assumption on the convergence is not needed in the proof. See also the proof of Lemma 4.26 in

[8].
Lemma 2.3 ([1]) Let g € L*([c,d],R"), ¢ > 0, and u € A(g), where
A(e) :== {v e W*°([a,b],[c,d]) : 0(s) > e for a.e. s € [a,b]}.
Then
b 1 rd
[ latunlds <2 [lgs)lds (2.3
Moreover, if the sequence uF € A(g) is such that |u* — u|c(jap),R) — 0 as k — oo, then
b

lim
k—oco J,

gt (s)) = glu(s))| ds = 0. (2.4)

Remark 2.4 Changing to the new variable s = —t in the integrals in (2.3) and (2.4) give easily
that the statements of Lemma 2.3 hold also in the case when conditions u, u* € A(e) are replaced
by —u, —uF € A(e).



In the next lemma we relax the condition u € A(e) of the previous lemma.

Lemma 2.5 Suppose g € L*([c,d],R), and u: [a,b] — [c,d] is an absolutely continuous func-
tion, and
essinf{u(s): s € [d',b]} > 0, for all [d', V] C (a,b). (2.5)

Then the composite function g ou € L*([a,b],R), and |g o u|eo(ap)r) < [9]Lo0((c,d),R) -

Proof First note that since u is absolutely continuous, it is a.e. differentiable on [a,b], and
condition (2.5) yields that u is strictly monotone increasing on [a,b]. Let G := {v € [¢,d]:
g(v) is not defined or [g(v)| > |g|pec(car)}. Then meas(G) = 0. Let A := {t € [a,b] :
g(u(t)) is not defined or |g(u(t))| > |g|re(c,ar)}- Clearly, A =u 1(G). Let 0 < e < (b—a)/2
be fixed. Then let ¢ := u(a +¢), d' := u(b—¢), and let M := essinf{u(s): s € [a +¢,b — €]}
Then (2.5) yields M > 0. Since G is of measure 0, there exist open intervals (¢;, d;), i € N such
that

G C U(Cl,dl) and Z(dl—cz) <eM.
=1 =1

We have
A=u1G)=u"? (G N e, c’]) Uu? (G N, d’]) Uu? <G N [d',d}),

and the monotonicity of u yields u " (G N e, c’]) Cla,a+e¢], u! (G nid, d]) C [b—¢,b], and

i=1

u™! (G N [c/,d/]) cut ([c/,d/] N U[ci, dz]) = U u! ([c’, d' N e, dz]) = U[ai, bi,
i=1 i=1
where a; := u~!(max{c, ¢;}) and b; := v~ (min{d’, d;}). The definition of M yields

b;
d; — ¢; > min{d', d;} — max{c,c;} = u(b;) — u(a;) = / u(s)ds > M(b; — a;).
;i
Therefore A C [a,a+e]U[b—e,b]UJ;2,[a;, bs], and the sum of the length of the closed intervals
covering A is less than 3e. Since £ > 0 is arbitrary, we get that A is Lebesgue-measurable and
meas(A) = 0.

We show that g o u is Lebesgue-measurable. Let x € R, and define Gy, := {v € [¢,d] :
g(v) is defined and g(v) < k}. G, is a Lebesgue-measurable set, since ¢ € L*([c,d],R).
Therefore there exists a closed set Fy, such that F,, C Gy and meas(G, \ F;) = 0. Since
u is continuous, u~!(F) is a closed set, and therefore, it is Lebesgue-measurable. Moreover,
u HGy) = v (F)Uu"(Gy \ Fk), and as in the first part of the proof, we get that u=1(G, \ Fy)
is measurable, and so is u~!(G,). a

Clearly, the statement of the previous Lemma is also valid if (2.5) is changed to

esssup{u(s): s € [d,V]} <0, for all [d’,V'] C (a,b).

We will use the following notation.



Definition 2.6 PM([a,b],[c,d]) denotes the set of absolutely continuous functions u: [a,b] —
[c, d] which are piecewise strictly monotone on [a,b] in the sense that there exists a finite mesh
a=ty <ty < - <tm1 <tm=>b ofla,b] such that for alli=0,1,...,m — 1 either

essinf{u(s): s € [d',V]} > 0, for all [a’, V'] C (ti,tit1)
or
esssup{u(s): s € [d,b]} <0, for all [a', V] C (ti,tit1).

Lemma 2.5 implies the next result immediately.

Lemma 2.7 Suppose g € L*([c,d],R"), and u € PM([a,b],[c,d]). Then the composite func-
tion gou € L>([a,b],R") and |g o u|peo (), k) < |9]1o0 (e,d), R -

The next lemma generalizes the convergence property (2.4) to the class PM. We comment
that to prove the convergence property (2.4) for u,u* € PM([a,b], [c, d]), we need the stronger
assumption |u® — ulpyi00([ap), R) — O instead of |uk — u|o(jap, R) — 0 what is used in Lemma 2.3.

Lemma 2.8 Suppose g € L= ([c,d],R"), and u,u* € PM([a,b], [c,d]) (k € N) satisfying
lu® — ul .00 (a0, R) — 0, as k — oo. (2.6)
Then )
/ lg(u®(s)) — g(u(s))|ds — 0, as k — oo. (2.7)
Proof Clearly, it is enough to show (2.7) for the case when g is real valued, i.e., n = 1.
First note that Lemma 2.7 yields g ou, g o u¥ € L>([a,b],R). We prove (2.7) in three steps.
(i) First suppose that g € L>([c, d],R) is the characteristic function of an interval [e, f] C
[c,d], i.e., g = Xfe,y;- Then |x s (uF(s)) — Xle,)(u(8))] is either 0 or 1, hence
meas({s € [a,b]: X[, 7 (t"(5)) # Xje.p1(u())}) < 4u* — | r)s

and so
b k k
/ IX[e, 1) (W (8)) = Xe, s (u(8)) ds < 4u” — ulo(apr) = 0, as k — oo

(ii) Suppose g is a step function, i.e., g = Zle CiXA;, Where A; are pairwise disjoint intervals
with U¢_; 4; = [e,d]. Then

14

b
[ 196 = gul)]ds < 3 et~ uleanzy >0, ask .
a i=1

(iii) Let a =to < t1 < --- < t;, = b be the mesh points of u from the Definition 2.6, and let
0 < e <min{tj1—t;: i=0,...,m—1}/2 be fixed, and introduce ¢} :=t;+efori =0,...,m—1

and t] :=t, —efori=1,...,m, t{ :=a, t,, :=b, and let
M := min  essinf |u(t)|. (2.8)
i=0,....m—1teltit] ]



We have M > 0, since u € PM([a,b], [c,d]).
The set of step functions is dense in L*([c, d], R) (see, e.g., [4]), so for a fixed g € L>([¢,d], R)
and 0 < 0 < eM/m there exists a step function h: [c,d] — R such that [g — |1 (e qr) < 9

Let h = Zl L CiX4,, where A; are pairwise disjoint intervals with U%_; 4; = [¢,d], and define
h* = Zf 1CiXx4,;, where

Ci, if ¢; < [glros(je,d) )
ci =19 l9lre(ear)y, i ¢ > 19lree(e,d,r)s
—9lzeo (e, r), i i < —|9|poe (e, R)-
Then it is easy to check that

l9(v) = h*(v)] < 2[g|pe(eaqr) — for ae v € lcd] (2.9)

and

d
/yg( s |dv</ 19(v) — h(v)| dv < 6. (2.10)

We have therefore by using relations (2.9), (2.10), t; — t! = 2¢, the definition of M in (2.8) and
a change of variables v = u(s)

b
/ l9(u(s)) — B (u(s))| ds

t”

- i/tt lg(u(s)) |ds+2/ — h*(u(s))| ds

2(/.//

z+1 « . ]_
< (m+1)2e2[g]roo (fe,qr) + Z/ —h (U(S)NU(S)@ ds
m—1 1"
1 u(tiJrl) .
< delmt Dlglieeam + 7 30| [ lo) = W)l do
i—0 |7 ult])
om
< de(m+1)|g|peo (e ®) + 31
<

de(m + 1)|g| Lo (je,q k) + €

Assumption (2.6) yields that there exist kg > 0 such that [u* — U100 ([a,4], R) < % for k > ko.
Then for k > ko it follows |i*(s)| > & for a.e. s € [t},#/,,] and i = 0,...,m — 1. Therefore
similarly to the previous estimate we have for k > kg

b 20m
/ lg(u*(s)) — h* (u*(s))| ds < de(m + 1)|g| oo (je.a)r) + S de(m + 1)|glp((c,a,r) + 26

Using the above inequalities we get

b
/ 19(u(5)) — glu(s))] ds

b b
< / lg(u(s)) — h*(ub (5)) ds + / I (u () — B (u(s))] ds
a b a
+ / lg(u(s)) — h*(u(s))] ds
b
< Selm+ Dlgleeeam + 35+ [ W) < B (sl ds k> ko

9



which yields (2.7) using part (ii), since € > 0 is arbitrary close to 0. a

Lemma 2.9 Suppose f*" ¢ L®([c,d],R") for k € N and h € H for some fized parameter set
H,

hm Sup/ |fRh(s)|ds = 0,

k—oo heq
and there exists A > 0 such that |f*"(s)] < A for k € N, h € H and a.e. s € [c,d]. Let
u,u® € PM([a,b], [c,d]) (k € N) be such that (2.6) holds. Then

b
lim sup / |fk’h(uk(s))| ds = 0.
k—ooheH Ja

Proof Leta=1ty<t; <---<t,; = b be the mesh points of u from the Definition 2.6, and let
0<e<min{tiy1 —t;: 1 =0,...,m—1}/2 be fixed, let ¢, and ¢/ be defined as in the proof of
Lemma 2.8, and let M be defined by (2.8). Let ko be such that [u* — uly1.00((q), r) < M/2 for
k > ko. Then for k > ko it follows |a*(s)| > & for a.e. s € [t], ¢/, ;] and i = 0,...,m — 1. Since
uk € PM([a,b], [c,d]), it follows from Lemma 2.7 that | f*"(u¥(s))| < A for k € N, h € H and
a.e. s € [a,b]. Therefore for any k € N and h € H we have

t”

m tg
[ atenras = > [7 it ks |ds+z/ 7ER((5)) ds
=0 """

< (m+1)A2 + m/ 7R (s)] ds.
M /.
Then
d
Sup/ |FoP(uF (s))| ds < (m + 1) A2 + sup 7 / |20 ()| ds,
heH c
which proves the statement, since ¢ is arbitrarily close to 0. O

3 Well-posedness and continuous dependence on parameters

In this section we discuss the well-posedness of the IVP (1.1)-(1.2) and Lipschitz continuous
dependence of the solutions on the parameters ¢, 8 and £. Note that in this manuscript 8 does
not represent parameters in the delayed terms (e.g. delays) since later we will assume that f
is continuously differentible wrt 8. We concentrate on parameters only in the state-dependent
delayed term represented by £. Note that the results can be easily generalized to the case when
there are several state-dependent delayed terms in the equation.

The parameters 6 and £ can be finite dimensional parameters in the formula of f and the
delay function 7, respectively, but also we are interested in the case when 6 and £ are infinite
dimensional parameters, e.g., coefficient functions. A simple example of (1.1) for this case is
when 7 and f have the form

0

r(t9,8) = 7 (LU (= (1), V(=1 @), | AGOVQ G (1)) (3.1)

-
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and
0

f(t.0,0,0) = (Lo O). v 0), [ BEOVO G u00),  (32)

respectively. To keep the notation and the possible applications quite general we investigate
Equation (1.1), and assume that the parameters 6 and £ belong to some normed linear spaces
© and Z, respectively. The conditions on the spaces © and = we assume later will be satisfied
for finite dimensional parameters and for the cases (3.1) and (3.2) too.

We introduce the parameter space

F=Whr*x0x=

equipped with the product norm ||t := |¢|w1.~ + |0le + [£|z for v = (,0,§) € T, and the set
of admissible parameters

I := {(cp,@,f) el pe U NWh®, o(—7(0,9)) €, € Qs, £ 94} crT.

The next theorem shows that for every admissible parameter 4 = (¢,6,€) € II there exist a
neighborhood P of 4 and a time a > 0 such that the IVP (1.1)-(1.2) has a unique solution
on [—r, a] corresponding to all parameters v = (¢, 6,¢) € P. This solution will be denoted by
x(t,7), and its segment function at t is denoted by x¢(-, 7).

The well-posedness of several classes of SD-DDEs was studied in many papers (see, e.g.,
[5, 15, 16, 19, 21, 22]. The next result is a variant of a result from [12] where the initial time is
also considered as a parameter, but the parameters 6 and £ were missing in the equation. The
proof is similar to that of Theorem 3.1 in [12], (see also the analogous proof of Theorem 3.2 of
the neutral case in [13]), therefore it is omitted here. The notations and estimates introduced
in the next theorem will be essential in the following sections.

Suppose 1 C C, Q5 C R”, Q3 C O, Oy C = are open subsets of the respective spaces. T > 0
is finite or 7' = oo, in which case [0, 7] denotes the interval [0, co).

Theorem 3.1 Assume

(i) f : RxCxR"x0O D [0,T] x Q1 x Qy x Q3 — R" is continuous and it is locally
Lipschitz continuous wrt its second, third and fourth arguments in the following sense:
for every finite a € (0,T], for every compact subset My C Qy of C, compact subset
My C Qo of R™, and closed and bounded subset M3 C Q3 of © there exists a constant
L1 = Ll(a, Ml,MQ,Mg) such that

(s 0,0) = £, ,0)] < Li ([ = dle + Ju—al +10 — o).

fort € [0,al], ¥, € My, u, i € My and 0,0 € Ms;

(ii)) 7 : RxC xZ2[0,T] x Q1 x Qs — [0,7] CR is continuous and it is locally Lipschitz
continuous wrt its second and third arguments in the following sense: for every finite
a € (0,T], compact subset My C Q1 of C, and closed and bounded subset My C Q4 of E
there exists a constant Ly = Lo(a, My, My) such that

71,0, €) = 7(t,9,6)| < La (|6 — dle + € — &)

fO’I"t € {0704]7 wad—) € Ml; f,f_e M4-

11



Then there exist a radius § > 0 and a time 0 < o < T such that

(i) for all v = (p,0,&) € P := Br(%; 6) the IVP (1.1)-(1.2) has a unique solution z(t,~) on
[—T‘, O‘];

(ii) there exist My C Q1 and M3 C Qo compact and conver subsets of the spaces C' and R",
respectively, such that

xt('v’)/) € Ml* and .CC(t - T(tvxt('a’Y)aE)v’Y) € M2*a Y= (@7‘955) € Pu te [0,04; (33)
and

(iii) x4(-,y) € WH for v € P and t € [0,qa], and there exist a bound N = N(«a,d) and a
Lipschitz constant Lo = Lo(a, 0) such that

’xt('77)‘W1v°° <N, v E P te [07 Oé], (34>

and
|It('77) - xt('?’_YNWlﬂoo < LOW - ’7|F7 aSs VRS [Oaa]' (3'5)

We note that the strong assumptions (i) and (ii) of Theorem 3.1 that f and 7 are locally
Lipschitz continuous on closed and bounded subsets of the parameter spaces © and = are needed
to guarantee the existence and uniqueness of the solutions in an open ball of I'. If © and =
are locally compact normed linear spaces then this property can be changed to the usual local
Lipschitz continuity (on compact sets).

The following result is obvious.

Remark 3.2 Suppose the conditions of Theorem 3.1 hold, P and « are defined by Theorem 3.1,
and let P denote the subset of P consisting of those parameters which satisfy the compatibility
condition, i.e.,

P = {((‘0’0’{) € P: ¥ S 017 (,b(()—) = f(oﬂov@(_T(Ov(Pvg))?e)} crI. (3.6)

Then for all parameter values v € P the corresponding solution z(¢,~) is continuously differen-
tiable wrt ¢ for ¢ € [—r, a].

Motivated by Theorem 3.1 throughout the rest of the paper we will assume that

(AO) there exist an open subset P of I', a time 0 < o < T', M{ C Q and M5 C Q3 compact
and convex subsets of the spaces C' and R", respectively, such that the solution x(¢,~) of
the IVP (1.1)-(1.2) exists and it is unique on the interval [—r, a] for all v € P, moreover
relations (3.3), (3.4) and (3.5) are satisfied for v € P and ¢ € [0, «].

12



4 First-order differentiability wrt the parameters

In this section we study the differentiability of the solution z(t,~y) of the IVP (1.1)-(1.2) wrt ~.
We start this section with an example which shows a case when the solution of a state-
dependent delay equation is not differentiable wrt a parameter.

Example 4.1 Consider the scalar initial value problem

z(t) = xz(t—cx(t)), t €[0,2], (4.1)
t+2, te[-2,-1),
z(t) { 1, te[-1,0], (42)

where ¢ > 0.
If ¢ € (2/3,1], then the solution of the IVP (4.1)-(4.2) is

x(tye) =z(t) =t+1,
since the time lag function is
t—cx(t)=t—c(t+1)=(1—-c)t—ce[-1,0], t €[0,2].

If ¢ € (1,2), then 0 — cx(0) = —c € (—2,—1), so for small £ > 0 the IVP (4.1)-(4.2) is equivalent
to
z(t) =t — cx(t) + 2, z(0) =1,

i.e.,
1
o(t) = 3 (1—c)?e +ct+2c—1).
We have t — cx(t) € [-2,—1) for t > 0. Therefore the solution of the IVP (4.1)-(4.2) is
o t+1, ce(2/3,1],
z(t ) = { S ((1—ce+ct+2c—1), ce(1,2).

For ¢ € (2/3,1) we have
Dox(t,c) =0, t €10,2],

and for ¢ € (1,2) and t € [0, 2]

2
Dyx(t,c) = ~ 3 ((1 — )% et +2¢ — 1)
1
+— (—2(1—c)e " — (1 - c)’ce +t+2).
c

For ¢ € (1,2) and ¢t € [0, 2]

t,c) —x(t,1 1 1
x(’ci_ﬂf(’) = | (=cPe et t2e—1) —(t+1)
1
= S[le=1)e—ct+1—|
c
—  —t, hac—1+.

Therefore z(t, ¢) is not differentiable wrt ¢ at ¢ = 1 for any ¢t > 0. Note that for ¢ = 1 the time
lag is t — cx(t) = —1 for t > 0, and the initial function is not differentiable at —1. O

13



In Theorem 4.9 below we will show differentiability of the solution wrt the parameters under
the condition that the time lag function is piecewise monotone. The above example illustrates
that this monotonicity assumption is essential in the proofs, since the failure of this condition
may result in the loss of differentiability wrt the parameters.

Beside of assumption (A0) for the first-order differentiability results we suppose

(A1) (i) f: RxCxR"x0 D[0,T] x 21 x Oy x Q3 — R™ is continuous and it is continuously
differentiable wrt its second, third and fourth arguments;

(A2) (i) 7 : [0,T] x C xZE D [0,T] x Q1 x Q4 — R is continuous and it is continuously
differentiable wrt its second and third arguments;

(i) 7(t,1,&) is locally Lipschitz continuous in ¢, i.e., for every finite o € (0, 7], compact
subset My C €y of C, and compact subset My C €4 of = there exists a constant
L, = Li(a, My, My) such that

|T(t77f%§) - T(E’ w7§)| < L,2|t - ﬂ

for t,t € [0,a], ¥ € My, & € My;

(iii) for every finite a € (0,7T], compact subset M7 C € of C, and compact subset
My C Q4 of = there exists Ly = Lg(a, M1, My) > 0 such that

d d i .
%T(taytaé) - %T(taytvf)’ < L3<’yt - yt|le°° + |£ - §|E)7 a.e. te [0,0é],

where &, & € My, and y,y € WH*°([—r, a],R") are such that y;, 9, € M for t € [0, a.

We note that (A2) (iii) holds under natural assumptions for functions of the form (3.1). Here
= = W1([0,T],R) can be used, and then we have under straightforward assumptions that for
ae. t €[0,a], y € WHo([—r,a], R?)

0

St = Dir(tylt 'Ol ©), [ A Qu+ O d )

¢ 0
+ ZDmf(t,y(t =0t @)yt =" @), | AR Qy(t+ Q) dC,§(t))

=1
xg(t =11 (1)) (1 — 7' ())
0

Do (tyt = ' (). y(t = '), [ AW Qult+0)dC.E(0))

-r

< [ DA Qe+ O + Ak, e+ O)dC

0

+Dga™ (L y(t = 0" ().t = 0" (1), [ AL Qe+ dC.E()E().

So if 7 is twice continuously differentiable and 1’ are continuously differentiable, then it is easy
to argue that (A2) (iii) holds.

The proof of our differentiability results will be based on the following lemmas.
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Lemma 4.2 Let y € Wh([—r,a],R"), wp € (0,00) (k € N) be a sequence satisfying wy — 0
as k — oo. Let u,uf € PM([0,a],[~r,a]) (k € N) be such that

|uk — U|W1,oo([0’a]7]R) < wg, k e N. (43)
Then
. 1 * k . k
lim /0 ly(u”(s)) — y(u(s)) — y(u(s))(u”(s) —u(s))| ds = 0. (4.4)

Proof Let 0=ty <t; < - <tp_1 <ty = a be the mesh points of v from the Definition 2.6,
and let 0 < ¢ < min{t;4; —t;: ¢ = 0,...,m — 1}/2 be fixed, and introduce t; := ¢; + ¢ for

i=0,....m—11t=ti—cfori=1,...,m, tj:=0, t], := «, and let
M := min  essinf |u(t)|.
i=0,..m—1 e[t/ ]

We have M > 0, since u € PM([0,a], [—r, a]). Assumption (4.3) yields that there exists ko > 0
such that |[uf — ulpieo([0,0], R) < % for k > kg. Then for k > ko it follows |u*(s)| > % and
[u(s) + v(ik(s) — a(s))| > Y for ae. s € [t),t/ ], i =0,...,m —1and v € [0,1]. Let
ap = |y|lwr ([—7, @], R™). Then simple manipulations, (4.3) and Fubini’s theorem yield

/Oa ly(u®(s)) = y(u(s)) = gu(s))(u*(s) — u(s))| ds

= i /:; (|y(uk(5)) —y(u(s))| + \y(u(s))Huk(s) — u(s)’) ds
i=0 7t
mo Lot pub(s)
+ ; /t; /u(s) <y(v) - y(u(s)))dv‘ ds
< (m+1)2e2a0|u* — ulc([0,0],R)

/O i (u) + 20 (5) — uls))) - (6] (0 (5) — us)) do s

m—1 i
+Z/
i—0 /1t
moloer et
< wk[(m—l—l)élage—i—Z//
i=0 70/t

It follows from Lemma 2.3 and Remark 2.4 that for every v € [0, 1]

3 (u(s) + v (s) — u(s) ) - ’(u(s))’ ds dv].

/
. t'LIJrl
lim
k—o0 Jyr
1

g'/(u(s) +u(uF(s) u(s))) - y(u(s))‘ ds=0, i=0,...,m—1,
hence we get by using the Lebesgue’s Dominated Convergence Theorem that

lim sup L /a [y(u*(5)) — y(uls)) — guls)) (w*(s) — u(s))| ds < (m+ 1)dage.
k—oo Wk Jo

This concludes the proof of (4.4), since € > 0 can be arbitrary close to 0. O
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We introduce the notations

wy(t, ¥, 0,0,9,u,0) = f(t,9,u,0) = f(t,9,7,0) — Daf (t,%,3,0)(¢ — )
—Daf(t,,u,0)(u—1u) = Daf(t,,u,0)(0 ), (4.5)

wr(t,9,6,9,8) = T(t,1,8) = 7(t,9,8) — Dar(t, 9, ) (¥ — 1))
—Ds7(t,9,€)(€ — €) (4.6)

for t € [0,T], ¥, 9 € Qq, G,u € Qa, 0,0 € Q3, £, & € Q.

The following result is an easy generalization of Lemma 4.2 of [12] for the IVP (1.1)-(1.2),
therefore we omit its proof here. (See also the related proof of Lemma 5.8 below.)

Lemma 4.3 (see [12]) Suppose (A0), (A1) (i) and (A2) (i). Let v = (¢,0,§) € P be fized,
and hy, = (h{, hz,hi) €T (k € N) be a sequence satisfying |hg|lr — 0 as k — oo, and v+ h € P
for k € N. Let z(t) := z(t,7), 28(t) = x(t,y + hg), u(t) == t — 7(t,2,€) and uF(t) =
t—7(t, 2%, €+ h%). Then

im o [ oy ala(s) . (). 0 + R s = 0 (@.7)
k—o0 ‘hk’F
and
i o [ (s, 2k 64 R ds = (4.8)
k—o0 |hk|p

A solution z(+,v) of the IVP (1.1)-(1.2) for v € P is, in general, only a W1*-function on the
interval [—r, 0], but it is continuously differentiable for ¢ > 0. In [16] (see also [12]) a parameter
set

P = {’7: (@7975) € P: ‘T(afy) GX(Oé,f)}

was considered, where
X(o, &) = {x e Whoo([—=r,a], R"): ap € Q, a(t — 7(t,24,€)) € Q for t € [0, al,

and essinf { i

dt(t—T(t,xt,é“)): a.e. t € [O,a*]} > 0}

and o* := min{r,a}. Then Lemma 2.3 yields that the function ¢ — &(t — 7(t,2¢,§)) is well-
defined for a.e. t € [0,a*], it is integrable on [0, a*], and it is well-defined and continuous on
[a*, a]. Note that it was shown in [16] (see also [12]) that P is an open subset of the parameter
set P. In this section we relax this condition. We define the parameter set

P, = {7 = (()07075) € P: the map [0,0é*] - R, t—1t— T(t?xt('77)7€)
belongs to PM([0, o], [-r,a])} C T (4.9)

Then we have P, C P» C P C I', and Lemma 2.7 yields that for a solution x corresponding to
parameter v € Py the function t — &(t — 7(t, x4, &)) is well-defined for a.e. ¢t € [0,a*] and it is
integrable on [0, a*]. Therefore, as the next discussion will show, the parameter set where the
variational equation is defined, and correspondingly the differentiability of the solution wrt the
parameters can be obtained is larger than in the previous papers [9, 12, 16].
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Let v = (p,0,€&) € Py be fixed, and let 2:(t) := z(t,7). Consider the space C' x © x = equipped
with the product norm |(h?, h?, h¢)|oxexz = |h¥|c + |h®|e + |h¢|z. Then for a.e. t € [0,a] we
introduce the linear operator L(t,x): C' x © x £ — R™ by

L(t, )(h?, h?, h%)
= D2f(t7 T, ‘T(t - T(t’ I, 5))7 9)h¢ + DSf(tv T, l’(t - T(t7 I, 6))’ 0)
x|t = 7(t00,0) (Dar(t, 20, O + Dar(t, 20, B ) + h# (=7 (t, 21, €))
+Daf(t wra(t = 7(t 21, €)), )b (4.10)

for (h?,h? h¢) € C x © x Z. We have by (A1) (i) and (A2) (i) and the compactness of M; and
M that the following constants are well-defined

Li(0) := ,I_Ila?f(4max{’Dif(ta1/17%9)’[;(3@,]1@)3 tel0,a], v € M, ue My} (4.11)

4y

and
LZ(&) = ?:lg’)g max{’DiT(tﬂ/}aé)‘L(Zi,R): te [07 Oé], 1/} € Mf}7 (412)

)

where Yy = Zy = C, Y3 =R", Y, = ©, Z3 = =. Then (3.4), (4.11) and (4.12) yield

|L(t,2) (B2, B0 h8)| < Lu(0)[h?|e + Li(0) [N L2(&)(|h¥|c + |ho]z) + [h]c |+ Li(0)[h]e
Li(0)(NLa(§) +3)|(h#, h%, h)|oxexz,  ae tE€[0a].  (4.13)

A

Therefore
L, @)l c(cxoxzrn) < Li(0)(NL2(€) +3),  ae te€[0,al

Hence L(t, ) is a bounded linear operator for all ¢ for which &(t — 7(t, x¢,)) exists, i.e., for a.e.
t € [0,al.
For v € P, we define the variational equation associated to x = z(-,7) as

i) = L(t,z)(z,h8, 08 ae tel0,0q], (4.14)
2(t) = het), tel[-r0], (4.15)

where h = (h¥,h? h€) € C x © x E is fixed. The IVP (4.14)-(4.15) is a Carathéodory type
linear delay equation. By its solution we mean a continuous function z: [—r,a] — R™, which
is absolutely continuous on [0, ], and it satisfies (4.14) for a.e. ¢t € [0,a] and (4.15) for all
t € [-r,0]. Standard argument ([3], [7]) shows that the IVP (4.14)-(4.15) has a unique solution
2(t) = 2(t,v,h) for t € [-r,a], v € Py and h = (h?,h¥ h¥) € C x © x E.

The following result was proved in [12] for the parameter set P; (see Lemma 4.4 in [12]), but
the proof is identical for the parameter set P», as well.

Lemma 4.4 (see [12]) Assume (A0), (A1) (i) and (A2) (i). Let vy € Ps, and z(t) := z(t,7)
fort € [-r,a]. Let h € C x © x Z and let z(t,,h) be the corresponding solution of the IVP
(4.14)-(4.15) on [—r,a]. Then

(i) z(t,7v, ) € LICxOxZE R™), the map CxOxZE — C, h— z(-,7,h) isin LICxOxE,C),
and there exists N1 > 0 such that

|z(t, v, h)| < |zt(-,7, h)|o < Nilhloxexz, tel0,a], ye Py heCx0OxE; (4.16)
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(ii) there exists No > 0 such that

|2t (-, v, h) lwieo < Nalh|r, tel0,a], y€ P, hel. (4.17)

In Lemma 4.7 below we show that the linear operators z(¢,, ) and z(+,7, ) are continuous
in t and v, assuming that v belongs to P». First we prove that the time lag function u(t) :=
t—7(t, x, &) along the solution z(t) = x(¢,~) depends continuously on the parameters. Moreover,
under the additional smoothness assumption (A2) (ii) and (iii), we show that the map I' D P >
v = u(-) € WEee([0,a], R) is continuous. This is the key property in order to apply Lemma 2.8
in the proof of the next lemma.

Lemma 4.5 Assume (A0), (A1) (i) and (A2) (i), v = (¢,§,0) € P, hy, = (hf,hi,hz) elisa
sequence such that v+ hy € P for k € N and |hi|r — 0 as k — oo. Let 2(t) := z(t,7), 2¥(t) :=
x(t,y+hy) be the corresponding solutions of the IVP (1.1)-(1.2), and u*(s) := t —(t, a:f,ﬁ—i—hi)
and u(t) ==t — 7(t,x¢,&). Then there exists Ko = Ko(y, hr) > 0 such that

Wk (8) — u(t)] < Kolhalr,  te[0,a], keN. (4.18)

If, in addition, (A2) (i) holds, then u,u* € W1°°([0,a],R), and if (A2) (iii) is also satisfied,
then there exists K1 = Ki(vy, hi) > 0 such that

\uk - U|W1,oo([07a]7R) S K1|hk|F, k e N. (419)

Proof Define the compact set My := {{} U{¢ + hi: k € N}. Then by the compatness of M;
and M} and assumption (A2) (i) we get that

L := max max{| Dir (£, €) oz, ¢ € [0.0), ¥ € M, € € Mj} (4.20)

is finite, where Zy = C' and Z3 = Z. Then the definition of M| and M} and the Mean Value
Theorem imply

[uf(8) = u(t)] = |7(t,af, & + 1Y) = 7(t, 20, €)| < Li(|af — @il + |hilz), t€ 0,0,

o (3.5) yields (4.18) with Ky := L5(Lo + 1).

Now assume (A2) (ii) also holds, and let L}, = L, (a, My, M3) be the Lipschitz constant from
(A2) (ii), and let LY := max{L}, L4}. For simplicity of the notation let hg := 0 = (0,0,0) € T,
and so 2° := x and u" := u. Then (A2) (ii), the Mean Value Theorem and (3.4) imply for k € Ny
and t,t € [0, o]

(b €+ hy) = T(Eaf, €+ hy)| < Ly (|t — T + af —aflo) < LY+ N =1, (421)
Hence u” is Lipschitz continuous, and so it is almost everywhere differentiable on [0, ], and

|uk|Lw([O,a],R) < LY(1+ N) for k € Ng. Therefore u* € W1°°(]0, o], R) for k € Np.
Let Lj = Lz(a, My, My) be defined by (A2) (iii). Assumption (A2) (iii) and (3.5) give

: : d d i i
() — i(t)] = | (e, 2 € 4 B — (e, €)] < L(lak — ailo + [h]=) < L§(Lo + 1)lAxle
for a.e. t € [0,a]. Therefore (4.19) holds with K := max{Ky, L5(Lo + 1)}. a
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The next result shows a key estimate will be used in the proofs of Lemma 4.7 and Lemma 5.14.

Lemma 4.6 Assume (A0), (A1) (i) and (A2) (i). Let v € Py, hy = (hf,hz,hi) el (keN)
be a sequence such that |hglr — 0 as k — oo, and v+ hy € Py for k € N. Let x(s) := z(s,),
2k (s) i= (8,7 + hi), u(s) := s — 7(s, 5, €), and u¥(s) .= s — 7(s, 2%, € + hi) Then there exist
a nonnegative sequence co — 0 as k — 0o and a constant N3 = N3(v, hy) such that

|L(s,a*)h — L(s, 2)h| < coxlhlr + Nsli(u"(s)) — @ (u(s))[hlr (4.22)
for a.e. s€0,a], ke Nand heT.
Proof Let = (i2,0,) € Py be fixed. We have
L(s,z*)(h#,h®, h%) — L(s, x)(h?, b, hE)
= (Daf(s, 2k, 2R (uh(s)), 0.+ BY) = Daf (s, w5, 2(u(s)), 0) ) b*
+(Daf (s, ok 2k (5)),0+ ) = Daf (s, 2, w(u(s)), 6)
x(=a*(uh(s))) (Dar (s, a5, € + BERE + Dyr(s, ok, € + RHAE)
+Daf(s, @5, 2(u(s)),0) (—i* (u" (5)) + i(u"(5)))
x (Dar(s, ok, € + BER? + Dyr(s, ok, € + RHAE)
+Daf(s, @5, 2(u(s)),0) (—(u (5)) + i(u(s)))
x (Dar(s,ak, € + BERE + Dyr(s, ok, € + RHAE)
+Dsf (5,20, w(u(s)), 0) (i (
x| (Do (s, 2k, € + B§) = Dar(s, s, ) ) 1
+(Dar(s, 2k, € + h§) — Dyr(s,w,,€) ) 0¢]
+(Daf (s, 8, 2 (4(5)), 0+ hi) = D f (5,00, 2(u(s)), 0) ) 0¥ (=7 (s, 2%, € + 1)
+Daf (5,2 2(u(5)), 0) (19 (=7(s, 0k, € 4+ 1)) = h#(—7(5,20,)))
+(Daf(s,k, 2" (W (5)),0 4 b) = Daf (s, 2, 2(u(s)),0) )0, s € [0,a].

Relations (3.4), (3.5), (4.18) and the Mean Value Theorem give

2" (uF(5)) = z(u(s))| < |2*(uF(s)) — 2(uF(s))] + |2(u"(s)) — z(u(s))]
< Lolhklr + Nu"(s) — u(s))
< Kslhglr, (4.23)

with Ko := Lo+ N Ky, where the constants Lo, N and K| are defined in (3.5), (3.4) and (4.18),
respectively, and

% — sle + |2 (u¥(s)) — 2 (u(s))| + |hile < Kslhlr, (4.24)
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with Kg = LQ + K2 + 1, and
ok — 24l + [hf|= < (Lo + 1) halr. (4.25)

Define the sets M3 := {0} U{0+h{: k € N} and M} := {{}U{é—i—hi: k € N}, and the modulus
of continuity of D;f (i =2,3,4) and D;7 (i = 2,3) by

Qf(g) = Inax Sup{’le(tﬂZ}aa)é) _le(t)qz}vﬂa é)|£(Y¢,R”):

1=2,3,4

Qr(e) = gggsnp{wﬂ(t,&@ — Dit(t,9,8) 2z, ) W — Pl + 1€ =€z <e,
€[0,a], ¥, € My, €€ MI}, (4.27)

where Y5 := C, Y3 := R", Y, := O, Zy := C and Z3 := =. The compactness of the sets
[0, ] x M x M3 x M3 and [0, ] x My x Mj in the respective spaces and the continuity of the
partial derivatives of f and 7 yield that Q(e) — 0 and Q.(¢) — 0 as € — 0. Define

L := ‘7m2a§{4max{‘Dif(t,¢,U,0)|£(Y27Rn): te[0,a], v € M{, we My, 0 € M3}, (4.28)

and let L3 be defined by (4.20). Combining the definitions of Q¢, Q., L] and L3 with (3.4),
(3.5), (4.18), (4.24), (4.25) and (4.25) we get

|L(s,2*)(h?,h? h&) — L(s,z)(h?, hY he)|
< (Kslhalr) 0o + 0 (Kslhulr ) NL3(1h]c + =)
+Li Lol hilr L3 (Ih€ o + [h8|2) + Li| @ (u*(s)) — &(u(s))
FLING: (Lo + Dlkelr) ) (B¢ + [1]=) + 2 (Kslhelr ) 111

L1 | Kolilr + 2 (Kslhilr ) IR%le, s € [0,0],

Ly(|h?c + |hé|z)

which yields (4.22) with co . = (NL3+3)92 (Kslhelr ) + LoLi Ll + LENQ: ((Lo+1) e ) +
LTKO‘hk‘F and N3 := LTL; O

Now we show that z(¢,7,-) and z(-,~, ) are continuous in ¢ and ~.

Lemma 4.7 Assume (A0), (A1) (i), (A2) (i)-(iii). Let v € Py, and x(t) := x(t,7) fort €
[-r,al. Let h € C x Q x E and let z(t,7y,h) be the corresponding solution of the IVP (4.14)-
(4.15) on [—r,a]. Then the maps

RxT D0,a] x Po — L(T,R™), (t,7) — z(t,7,")

and
RxI'D [0,0é] XPQH’C’(Fvc)? (ta’Y) Hzt('a’%')

are continuous.

20



Proof Let v € P, be fixed, and let hy = (hf,hz,hi) € I' (k € N) be a sequence such that
|hglr — 0 as k — oo and v + hy € P, for k € N. For a fixed h = (h?,h% h%) € T we
define the short notations x*(t) := z(t,y + hi), z(t) := z(t,7), uF(t) =t — 7(t, 25, & + hi),
u(t) =t — 7(t, 2, &), 280 (t) := 2(t,y + hg, h) and 2"*(t) := 2(t,y, h). The functions %" and 2"

satisfy
LRy = re0) + /Ot L(s, z)(2Fh O he)ds, t €10,al,
L) = he0)+ /Ot L(s,z) (2", h?, h&) ds, t €0,al,
and therefore for t € [0, o]
|80 () — 2 ()| < /Ot‘ (L(s,a:k) - L(s,x)) (2P WO h&) + L(s, 2%) (28" — 21, 0,0)| ds.

We have by (4.17) that

(20, 1, h8)|p < No|hlr + |16 + |hS|z < (No + 1)|lr.

(4.29)

(4.30)

Let L7 and L3 be defined by (4.28) and (4.20), respectively. Then (4.11) and (4.12) yield

Li(0+hY) < Lt and Ly(€ + hS) < L for k € N, so (4.13) yields

|L(t,2)h| < Nalh|loxoxz, |L(t,z")h] < Nulhlcxoxz, fort € [0,a], hel, ke N, (4.31)

where Ny := Lj(NL5 + 3). Then (4.31), (4.22), (4.29) and (4.30) imply
40~ 0] < enslhle + N [ = Hlods, te 0.0l
where
c1p = acor(Na+1)+ N3(Na+1) /Oa 12(uF(s)) — (u(s))| ds.

Relation (4.19) and Lemma 2.8 yield that

lim i 1Z(u®(s)) — @ (u(s))|ds = 0.

k—o00 0

Hence c¢1, — 0 as k — oo.
Lemma 2.1 is applicable for (4.32) since |z§ h_ 28e =0, and it gives

[P0 (t) — ()] < 2" = 2o < cLpNslhle,  te0,q],

Naa - Therefore we get for ¢ € [0, a

where N5 := ¢
|2(t,y + his ) — 2(8, 7, ) cwroe mey < J2e(5 7 + by ) = 20,7, ) cwnos o) < €16 N5

for all £ € N. This proves the continuity of the maps wrt ~.
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Let t € [0, a] be fixed, and let v be a sequence of real numbers such that ¢ + v, € [0, a] for
k € N and v — 0 as k — oco. Then (4.17) and the Mean Value Theorem yield

‘Zt"rl/k('ufy—i_hkah)_Zt('7’y+hk)h)|c§N2|Vk||h|r7 kaO, hEF
Combining this relation with (4.35) we get
|Z(t + vk, Y + hka h) - Z(t777 h)|
|Zt+l/k(') Y + hkv h‘) - Zt(‘, v, h)|C

<
< |Zt+1/k('77 + hkv h) - Zt('v’y + hka h)‘C + |Zt('77 + hka h) - Zt(‘/% h)’c
< (N2|I/k‘ + ClykN5)|h|F, hel,

which completes the proof, since |v;| +¢1p — 0 as k — oo. O

Remark 4.8 Note that if in the statement of Lemma 4.7 the parameter set P is replaced by
the smaller set Pj, then assumptions (A2) (ii) and (iii) are not needed to prove the statement,
since in this case (4.18) and Lemma 2.3 can be used to show that ¢;; — 0 as k — oo.

Now we are ready to prove the Fréchet-differentiability of the function x(¢,~y) wrt v. We will
denote this derivative by Daxz(t, ).

Theorem 4.9 Assume (A0), f satisfies (A1) (i), T satisfies (A2) (i)—(iii), and let Py be defined
by (4.9). Then the functions

RxT D[0,a] x P—R", (t, ) — x(t,7)

and
RxT'D[0,a] x P—C, (t,7) = @e(+,7)

are both differentiable wrt v for every v € Ps, and
Dox(t,y)h = z(t,~,h), hel, te|0,a], v€ Py, (4.36)

and
D2xt('77)h = Zt('afy’ h)7 h € Fv te [07 Oé], gAS P27 (437)

where z(t,v,h) is the solution of the IVP (4.14)-(4.15) for t € [0,a], v € P> and h € T.
Moreover, the functions

RxT D[0,a] x P, — L(I';R"), (t,v) = Dax(t,~)

and
RxI'D [0,0é] XP2_>£(F70)? (t77)'_>D2xt('77)

are continuous.
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Proof Lety = (p,0,£) € P, be fixed, and let hy, = (h{, hz, hi) € I' (k € N) be a sequence with
|hglr — 0 as k — oo and v + hy, € P for k € N. To simplify notation, let z¥(t) := z(t,v + hy),
z(t) := z(t,7), u(s) := s — 7(s, x4, &), uF(s) := s —T(S,:I}I;,f—i-hi) and 2" (t) := z(t,v, hy). Then

() = 0) + hi (0 / f(s, 2k, 2P (uk(s)), 0 + hY) ds, t €10,q],
$(t) = (10 +/ f S,iL’s,ZL'U S a Sa te[()?a]’
0
and .
2 () = R (0) —I—/ L(s,z) (2", hY, hi) ds, t € [0,ql.
0
We have
D) —alt) ) = [ (705, h )0+ B — S, 2(u(9),0)
0
- L(s,x)(zgk,hz,hi))ds. (4.38)

The definitions of wy and L(s,x) (see (4.5) and (4.10), respectively) yield for s € [0, o]
f (s, ak, 2 (ub(5)),0 + BY) = f (s, 25, 2(uls)),0) — L(s, x) (2%, hi, b}
= Daf(s,sw(u(s)), 0)(ak — wy — 21%) + Daf (s, 3, 0(u(s)),0) (2" (u(5)) — 2(u(s)))
+ Dy (s, w0, 2(u(s)), 0) (i(u(s)) (Dar(s, 05, €)21% + Dyr(s, 20, OB ) — 2" (u(s))
+ wi(s, zs, z(u(s), 0, =%, 2% (WP (s)), 0 + h). (4.39)

Relation (4.6) and simple manipulations give

7 (1 (5)) = w(uls)) + i(u(s)) (Dar(s, 2, €)1 + Dyr(s, s, 1) — 2" (u(s))

= 2"(uf(s)) — 2(u(s)) — 2" (u"(5)) + 2(u(5)) — 2(u(s)) — d(u(s))(u"(s) — uls))
—@(u(s))wr (8 fvs,f x4, €+ hy) — d(u(s)) Dot (s, x4, ) (0 — w — 20%)
+2M (WP (s)) — 2 (u(s)). (4.40)

Relation (4.17) and (4.18) imply
|2 (uF(5)) — 2" (u(s))] < Nalhglr|u®(s) = uls)| < N2Kolhg|f. (4.41)

Let L} and L} be defined by (4.28) and (4.20), respectively. Then using (3.4), (4.38), (4.39),
(4.40) and (4.41) we get

2k (£) — () — 2 (1)
< APK%—%—%%%MWNW—MM@%wWW@H

+ [a(uf(s)) — 2 (u(s)) — @(u(s)(u"(s) — u(s))|
+ Nlwr(s, x5, &, 2%, €+ BS)| + NLj|ak — 2y — 2P| + N2K0|hk|%)

T |wy (s, 20, 0(u(s)), 0, 28, b (u(5)), 0 + Bl |ds,  te0,a)  (4.42)
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Then
5 () — 2(t) — M (8)] < ax + br + o + di + N /Ot of —zy — Mr|ods,  te0al,
where Ng := Li(NL5 + 2), and
ap = /Oa lws (s, zs, x(u(s)), O,x’s“, wk(uk(s)), 0+ hz)] ds,
be = TN [ oo s,k € 4 )] ds.
o = Lj /Oa\fﬂ(uk(s)) — z(uls)) — d(u(s)(u*(s) = u(s))| ds,

and
dy, := aL}NoKo|hy|2.

Since |zf — 29 — 20| = 0, Lemma 2.1 is applicable for (4.43), and it yields

24 (8) — 2(t) — ()] < Jaf — 20— zle < (ax + b+ + )™, te[0,a],
and hence
k() —2(t) — 2 ()] _ ek — 2 — 2|0 _ ax+bp+ o+ D Noa 4 [0, ]
[l = mle B[ ’ o

which proves both (4.36) and (4.37), since Lemmas 4.2, 4.3 and (4.47) show that

ap + by + ¢ + dy, —0

li

The continuity of Dox(t, ) follows from Lemma 4.7.

(4.43)

(4.44)
(4.45)

(4.46)

(4.47)

(4.48)

(4.49)

(4.50)

Remark 4.10 We comment that if in the statement of Theorem 4.9 the set P, is replaced
by P, the statements are valid without assumptions (A2) (ii) and (iii). To see this we refer to
Remark 4.8, and in the proof of Theorem 4.9 we use Lemma 4.1 of [12] to show that ¢ /|hx|r — 0
as k — o0o. We also note that continuous differentiability of  wrt the parameters holds in a

neighborhood of v, since P; is open in P. See Theorem 4.7 in [12] for a related result.

5 Second-order differentiability wrt the parameters

To obtain second-order differentiability wrt the parameters we need more smoothness of the

initial functions. Therefore we introduce the parameter set

[y:=W»® x 0 xE
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equipped with the norm |h|r, := |h¥?|y2.00 + |hf|e + |h¢|z. We will show in Theorem 5.17 below
that the parameter map

Iy D (P,NTeNP)— R", v = xz(t,7)

is twice continuously differentiable, where P and P» are defined in (3.6) and (4.9), respectively.

In addition to (A0), (A1) (i), (A2) (i)—(iii) for the second-order differentiability result we
assume that f and 7 satisfy

(A1) (i)

(A2) (iv)

(vi)

f(t, 1, u,0) is locally Lipschitz continuous wrt ¢, i.e., for every finite o € (0,77, for
every compact subset My C Q; of C, compact subset My C € of R", and compact
subset M3 C Q3 of © there exists a constant L] = L) («, My, Ma, M3) such that

for t,t € 0,a], ¥ € My, u € My and 6 € Ms;
Dsf, D3f and Dy f are continuously differentiable wrt their second, third and fourth
arguments on [0, 7] x Q1 x Qg x Qs;

Dsof, Dsf and D4f are locally Lipschitz continuous wrt ¢, i.e., for every finite o €
(0,71, for every compact subset My C € of C, compact subset My C Q9 of R", and
compact subset M3 C Q3 of © there exists L), = L/, (o, M1, Ma, M3) such that

|-D2f(t7 %Ua 0) - Dif(t_7¢>u7 9)‘L(Yi,R") < Lil’t - t_’

fori =2,3,4, t,t € [0,a], » € My, u € My and § € Ms, where Y3 := C, Y3 := R"
and Yy := ©;

Dyt and D37 are continuously differentiable wrt their second and third arguments
on [O,T] X Ql X Q4;

Dy7 and D3t are locally Lipschitz continuous wrt ¢, i.e., for every finite a € (0,77,
compact subset M; C Q; of C, and compact subset M, C €4 of = there exists a
constant Lt = Li(«, My, My) such that

|DiT(t,40,) — Dit(t, 40, €)| (2, m) < Lt — 1

fori =2,3,t,t€[0,a], ¥, € My, &€ € My, where Z5 := C and Z3 := =;

for every finite a € (0,T], for every compact subset M; C €; of C, compact sub-
set My C €y of R”, compact subsets M3z C 23 of © and My C Q4 of =, for every
7y = (¢,0,€) € T satisfying § € M3 and £ € My, for every § € W2([—r,a], R"?)
satisfying 9 € My and g(t — 7(¢,9:,€)) € My for t € [0,a] there exists Lg =
Lﬁ(a,Ml,MQ,Mg,M4,’_}/,ﬂ) such that

%f(t, v y(t =7t 91, €)),0) — %f(t, e 3t = 71,51, €)),0)|

< Lo(l — Gilwrs +lE = El=+10 - Olz), ac. te[0,a],

where § € M3, £ € My, and y € WH°([—r,a],R?) are such that 1 € M; and
y(t - T(t7yta§)) € M for t € [Ova]'
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If f and 7 are twice continuously differentiable wrt all variables then conditions (A1) (i)-(iv)
and (A2) (i),(ii),(iv) and (v) are satisfied. Differentiability wrt ¢ is not needed, only the weaker
assumption, Lipschitz continuity is needed for our proofs. We note that assumption (A2) (iii)
and (vi) are satisfied for 7 and f of the form (3.1) and (3.2) under natural assumptions.

We use throughout this section the following notations

(H) v = (9,0,6) € P,NTy, b = (B, k% h8) € T, by = (b, h,hS) € T (k € N) are so
that |hglr — 0 as k — oo, v+ hy € Py for k € N, and |hg|r # 0 for £ € N. Let
Mg = {0} U{0+nY: ke N}and Mj := {e}U{E+hi: ke N}. Let a¥(t) := x(t,y + hy)
and z(t) := x(t,~) be the solutions of the IVP (1.1)-(1.2), 25" (t) := Dyx(t,y + hy)h and
2"(t) := Dyx(t,y)h be the solutions of the IVP (4.14)-(4.15).

The simplifying notations for ¢ € [0,a] and k € N

u(t) = t—r71(t,z, &),
uk(t) = t—7(taf & +hY),
v(t) = (tz,x(u(t)),0),
vE(@t) = (et 2 (uM(1), 0),
A(t,h? h&) = Dor(t,xs, €)h? + D3t (t, x4, )RS,
A*(t,h? RE) Do (t, ¥, € + h§)R? + Dar(t, ¥ € + h§)RS,
E(t, h¥, h%) —&(u(t))A(t, h?, h&) + hP(—7(t, 21, E)), ae. t€[0,al,
E*(t,h%, n®) — ik (WP () AR, 0P hE) + WP (=7 (t,af €+ BS)), ae. te[0,al,
F(t,h? h8) = —i(u(t))A(t, h?, h8) + h¥ (=7 (t,21,€)), ae. t € 0,0l
FRt,h?, RS) = =Rk (1) AR (t, b, hE) + h? (—7(t,2F, € + 1Y), ae. te€0,a]

will be used throughout this section. For simplicity of the notation we define hy := 0 = (0,0,0) €
I', and accordingly, z° := z, u® := u, 20" := 2", A% .= A, EY := E. Note that in all the above
abbreviations the dependence on « is omitted from the notation but it should be kept in mind.
With these notations the operator L(t,z) defined by (4.10) can be written shortly as

L(t,x)h = Dof (v(t))h? + Daf(v(£) E(t, h#,h€) + Daf (v())'. (5.1)

The proof of second-order differentiability (Theorem 5.17) is broken up to several lemmas.
First we show that if the compatibility condition v € P holds then the solution of the IVP
(1.1)-(1.2) is a W?*-smooth function.

Lemma 5.1 Assume (A0), (A1) (i), (i), (A2) (i)-(ii) and v = (p,0,§) € PNT9. Then there
exists K4y = Ka(y) > 0 such that the solution x(t) = x(t,~y) of the IVP (1.1)-(1.2) satisfies

|z(t) — 2(t)| < Kyt — 1 fort,t € [-r,0) and t,t€(0,q] (5.2)
Moreover, if in addition v € P, then x € W2 ([—r,a],R"), and

|z(t) — (t)| < Kylt — 1] for t,t € [-r, a]. (5.3)
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Proof The Mean Value Theorem and the definition of the W?>-norm yield

&(t) = 2(B)] = [@(t) — @(B)] < lplwawlt =2, ¢, €[-r,0).
Let L1(0) and L2(§) be defined by (4.11) and (4.12), respectively, and L} = L} («, My, M3, {0})
and L) = Li(a, My, {&}) be the Lipschitz constants from (A1) (ii) and (A2) (ii), respectively.
Define L] := max(L1(0), L)) and L} := max(L2(), Lh). For t,t € (0,¢a] it follows from the
definitions of L} and L} and the Mean Value Theorem, (3.4) and (4.21) with k =0
(t) =2 = [f(tz,2(u(t)),0) = [z x(ulf)),0)]
< LYt = 0+ lo = il + lo(u(®) — o(u(d)))
< L’l’(l + N+ NLj(1 —|—N))|t — 1.
Hence (5.2) is satisfied with K4 := max{|¢|y2.0,L{[1 + N+ NLJ(1+ N)|}.

If v € P, then & is continuous, and (5.2) yields that it is Lipschitz continuous on [—r, ] with
the Lipschitz constant K4, so, in particular, x € W2 ([—r, o, R"). O

Lemma 5.2 Assume (A0), (A1) (i), (A2) (i)-(iii) and (H). Then

i "k —i(s) — 2 (s)|ds =
Jim o [k s) — (s) = £74(5) ds = 0 (5.4
and o
i iF (ub — g (uPF(s)) — &M (uF (s s =0. .
Jim o [t 9) = (0 (5) = ()] ds = 0 (55)

Proof Using (4.38), (4.42), (4.43) and (4.48) we get
| 1) = (o) - 21 ds
0

/0 [ (1 = - 2Pl 4 2 (5) - a(ut(s)) - ()

+ |2 (uf(s)) — z(u(s)) — & (u(s)) (" (s) — u(s))|
Nl (5,0, &8, €+ BD| + NLJok — @, = 2250 + NpKolhl?)

IN

+ (s, 2o, 2(u(s)), 0,28, 2" (uF (5)), 0 + h)| | ds
< ak+bk+ck+dk+N6/ |xl§—:z:s—z§’“|cds
0
< (ag + by + i + di) (1 + Nae™o),

where ay, by, ¢ and dj are defined by (4.44)—(4.47), respectively. Then (5.4) is obtained from

(4.50).
Relation (5.5) follows from (5.4), #¥(s) — x(s) — 2" (s) = 0 for s € [~7,0], |&¥(s) — @(s) —
2k (s)] < (Lo + No)|hg|r for s € [-r,0], and Lemmas 2.9 and 4.5. a
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Next we show that 2"(t) is Lipschitz continuous in ¢ for any h € I'y. For this property we
assume Lipschitz continuity of f, D;f (i = 2,3,4) and 7, D;7 (i = 2,3) in t. Note that the
restriction of h to I'y instead of I' is essential.

Lemma 5.3 Assume (A0), (A1) (i)-(iv), (A2) (i)-(v), (H) and v € P, NT9N'P. Then there
exists N7 = N7(y) > 0 such that

|27(s) — 2"(3)| < Ny|h|r,|s — 5|, for s,5€[-r,0) and s,5€ (0,a], heTy. (5.6)
Proof For h € I'y, i.e., h¥ € W2, the function h? is continuous, and for s,5 € [—7,0)
" (s) = 2"(5)| = [ (s) = B9 ()] < |h¥|yp2ce|s — 5| < |hlry|s — 3.

Let L1(0) and Lo(§) be defined by (4.11) and (4.12), respectively, let L, = L (e, M{,{&})
be the Lipschitz constant from (A2) (ii), and let LY := max{L2(0), L}}. Since v € P, L(s,x) is
defined and continuous for all s € [0, a], so 2 is continuous on (0,a]. For s,5 € (0,a] (4.13),
(4.14) and (5.1) imply

£"(s) = 2"(3)| = |L(s,2)(20, b, 1%) — L(5,2)(z{, 1°, 1))

[L(s,z) = L(5,2)] (=, 1°, h)| + |L(5,2) (2% — 2£,0,0)]

[D2f(v(s)) = D2 f(v(35))2!] +[Dsf (v(s)) = D3 f(v(5)]E(s, 22, h°)]
+H D3 f(v(3))[E(s, 28, h*) — E(5, 24, h*)]]

R

H[Daf (v(s)) = Daf (v(E)IR’| + Li(0)(NLa(8) + 3)[=L — 2l (5.7)

VANVA

We have by (3.4) and (4.21) with k£ =0 for s,5 € [0, &
V(s) = v(8)] == [s — 8] + |25 — z5lc + [z (u(s)) — z(u(s))| < Ks|s — 5] (5-8)
with K5 := (14+ N + NLj(1+ N)), and
|(s,25,€) = (5, 25,€)] = [s = 8] + |25 — wslo < (1 + N)|s — 5. (5.9)
The definition of A, (4.12) and (4.16) give
[A(s, 2 h°)| < Do (5,20, €)20| + | Ds7(s, 20, )hF| < Kelhlp, s €[0,0], hel  (5.10)

with K6 = Lg({)(Nl + 1) Let

L4(0) = ijm:%)§4max{]Dijf(t,@/},u,9)]£2(1/ix1/j7Rn): t e [O,Ck], P e Mik, u € ]\4';}7 (511)

where Y5 :=C, Y3 :=R", Y, := 0, and

Ls(§) := max max{|Di;7(t,%,E)|c2(zixz;m: T € [0,0], ¥ € My}, (5.12)

1,j=2,

where Zy := C, Z3 := E. Let L) :== L)(a, M, M5 ,{0}) and Lf := Li (o, M{,{£}) be defined by
(A1) (iv) and (A2) (v), respectively, and define

L) := max{L4(0), L)}, Y= max{L;5(£), L5} (5.13)
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Then the Mean Value Theorem and (5.8) yield for i = 2,3, 4
[Dif (v(s)) = Dif (v(5))|c(virny < LiKs|s — 5|, s,5€[0,0]. (5.14)

Similarly, the Mean Value Theorem, (4.16), (4.17) and (5.9) give

|A(s, 20 h%) — A(5, 2, h%)| < |[Dar(s, x5, &) — Dar(5, w5, €)|2 | + | Dar (5, w5, €) 20 — 22]]
+HD3T(87$S7§> - D3T(§a x§7£)]h‘§’
< Krl|s —5l||h|p, s,5 € [0,q] (5.15)

with K7 := LY(1 4+ N)Ny + La(§) N2 + LZ(1 + N). Relations (3.4), (4.16) and (5.10) yield

|B(s, 20, B0)| < Ji(u(s))|A(s, 28, h)| + " (u(s))]

»~S P

< Ksglh|r, sel0,a], hel, ye P (5.16)

with Kg := NKg + Ny, and using (3.4), (4.21) with k = 0, (4.17), (5.3), (5.10) and (5.15)

‘E(Sv z?, hg) - E(§7 Z?a hf)‘
< l#(u(s)) = @(u(3)]A(s, 25, B0 + [a(u(3))[A(s, 20, h*) — A5, 22, h*)]]
— 2" (u(9))|
5,8 €10,q] (5.17)

A
&
C3
|
w1
=
z

with Kg = Kg(vy) := K4L(1+ N)Kg+ NK7+ NoLY(1+ N). Then combining (5.7) with (4.11),
(4.16), (5.14), (5.16) and (5.17) yields

|21 (s) — M(5)| < (LYKsNy + L K5Kg + L1(0)Kg + L'{K5 + L1(0)(NLy(#) + 3)No)|s — 5||h|r

for s,5 € [0,a] and h € T'. Hence N7 := max{l,L]KsN, + L|K;Kg + LiKg + L|K5 +
L1(0)(NLy(0) + 3) Ny} satisfies (5.6). a

The next two results will be used in the proof of Lemma 5.7.

Lemma 5.4 Assume (A0), (A1) (i)-(iv), (A2) (i)-(v), (H) and v € PoNToNP. Then

o
lim — / (2P (i (5)) — 2P (u(s))| ds = 0. (5.18)
k—o0 ‘hk‘l“g 0
Proof Since v € P, and u(0) < 0, it follows that u has finitely many zeros on [0,«]. Let
0 < s <83 < -+ < s < a be the mesh points where u(s;) = 0, 0 < ¢ < min{s;41 — $; :
i=1,...,0 —1}/2 be fixed, and introduce s, := min{s; + ¢,a} and s/ := max{s; —¢,0} for
i=1,...,0, 8,:=0, sy, =, and let

M = min min  |u(s)|.
Z':L...,f—lse[s;,sél_kl]

We have M > 0. Relation (4.18) yields that there exist kg > 0 such that [u* — ule(o,a],R) < u
for k > ko. Then for k > ko it follows |u*(s)| > & for s € [s},s/,,] and i = 0,...,¢. Note
that hj, € Iy and v € P yield 2" is continuous on [~r,0) and (0,a], and (4.17) implies
|27 (5)] < Na|hi|r < Nalhg|r, for s # 0 and k € N. Therefore |2 (u*(s))| < Na|hy|r, for a.e.
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s € [0, a], since, by assumption (H), v + hi € Py, hence u* € PM([0,a],[~r,a]). Then (4.17),
(4.18) and (5.6) yield for k£ > kg

/0 "5 (b (5)) — £ (u(s))] ds

IN

¢ s ¢ s
i i+1
3 / [ ()] + |2 (u(s)) ] ds + 3 / [ (uF (5)) — 2% (u(s))| ds
i1 Vst i—0 /s
< 4£6N2|h]€‘r2 + (f + 1)0&N7K0‘h1€’r2’hk|p.

This concludes the proof of (5.18), since € > 0 can be arbitrary close to 0. O

Lemma 5.5 Assume (A0), (A1) (i)-(iv), (A2) (i)-(v), (H) and v € P,NToNP. Then

i # azhuks — 2" (u(s)) — 2 (u(s)) (¥ (s) — u(s s =
lim sup ‘h|r2|hk‘r/0| (u(s)) = 2"(u(s)) = 2" (u(s))(u"(s) —u(s))[ds = 0. (5.19)

k—00 h#£0
hETq

Proof Let s;,s.,s/, ¢, e, M and ko be defined as in the proof of Lemma 5.4. Then |u(s) +

v(uF(s) —u(s))| > 2L, and u(s) and u(s) + v(u(s) — u(s)) are both either positive or negative
for s € [s},s7 1], v € [0,1], k> ko and i = 0,..., £, and therefore (4.18) and (5.6) yield

2" (u(s) + v(u®(s) = uls))) — 2" (u(s))| < NrlhlryJu*(s) — u(s)| < NoEo|hlry|hulr.

Hence, using Fubini’s Theorem, (4.18) and (4.17) we have
/Oa |2"(F(s)) — 2" (u(s)) — 2" (u(s)) (u"(s) — u(s))| ds

< Z/ (lz"(u’“(s)) — 2P (u(s))] + |2 (u(s))]|ut (s) — u(s))‘)ds

IN
o
(@)
~
o
5
=
=N
>
=
=

oy I - [ ) 400 6) — o))~ ) — o s
< 4561\;2:10(0\fz|p|hk|p
Kalhide S / 1 / )+ () — ) — 2 () s
i=0 5
< 4elNoKo|hlr, |her + KG(€ + 1)aNz|h|r, bt
This completes the proof of (5.19), since ¢ > 0 is arbitrary close to 0. O
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The following result will be needed in the proof of Lemma 5.10 below.

Lemma 5.6 Assume (A0), (A1) (i), (A2) (i)-(iii) and (H). Then

hm sup —— 7] / |20 (s) — 2h(s)|ds = 0, (5.20)
r

k—00 h;éo

and

m su 1 azk’huks —zhuks —Zk’hus —Zhus s
Jim sp e [ A9 - () — [ ()~ sl s =0 (521)

Proof For a.e. s € [0, o] combining (4.14), (4.22), (4.30), (4.31) and (4.34) we get

#0(s) — 2 (s)
< |L(87 xk)(zf:’h - Z?? 070)‘ + ’(L(57$k) - L(S’ ‘T))(Z?v hev h£)|
< N4Cl7kN5’hh“ + C(Lk(NQ + 1)|h|p + Ng(NQ + 1)\x(uk(s)) — x(u(s))”h\p (5.22)

Hence Lemmas 2.8 and 4.5 yield (5.20).

Define the functions
|50 (5) = 20 (s)

kb
pri(s) s S
and the set H := {h € T': h # 0}. Note that (4.14), (4.16) and (4.31) yield [/ (s)] =
|L(s,2%)zE"| < NyNy|h|p for k € Ng and s € [0,al, so |f5"(s)] < 2N4Ny for ae. s € [—r,al,

k € Nand h € H. Then it follows from (5.20), 2%"(s)—2"(s) = 0 for s € [~r,0], and Lemmas 2.9
and 4.5 that for any fixed v € [0, 1]

lim sup |hl|r /Oa‘,ék’h (u(s) + v(uF(s) — u(s))) — " (u(s) + v(uF(s) — u(s)))

k—o0 h;so

ds=0. (5.23)

Relation (4.18) and Fubini’s Theorem yield
/Oa |25 (uF(s)) = 2" (u"(s5)) = [ (u(s)) — 2" (u(s))]| ds
a, 1
= [T () + vl ) = o)) = £ (uts) + w0 (5) = )

x[uf (s) — u(s) dy‘ds

< K0|hk|p/ / [£59 (u(s) + v (5) — u(s))) — 2 (u(s) + (b (s) — u(s))) | ds v

Therefore (5.23) and the Dominated Convergence Theorem imply (5.21). a
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Introduce the notation
PRt = 2 (1) — w(t) — 2" ().
Then, under the assumptions of Theorem 4.9, (4.49) and (4.50) give

k
lim max P (S)‘ =
k—o0 s€[—r,a] \hk’r

(5.24)

To linearize Equation (4.14) around a fixed solution z we will need the following results,
where we discuss the linearization of u*(s) — u(s), ¥ (u¥(s)) — z(u(s)) and ¥ (u¥(s)) — 2 (u(s)).
Note that for the last formula we need the compatibility assumption.

Lemma 5.7 Assume (A0), (A1) (i)-(iv), (A2) (i)-(v), (H) and v € P,NT'yNP. Then
(1)

uF(s) —u(s) + A(s, 2l h5) = gk(s), s €[0,ql, (5.25)
where
glg(s) = _wT(S>$S7§7$I;7‘£ + hi) - D2T(57x87§)pls€
satisfies
k—>oo Tl / lgk(s)| ds = 0; (5.26)
(it)
2F(uF(s)) — z(u(s)) — E(s, 2, hg) = g¥(s), s € [0, q], (5.27)
where
gi(s) = pF(WF(s)) + 2(uF(s)) — x(uls)) — @(u(s))(u"(s) = uls)) + i (u(s))gp (s)
+2"% (uf () = 2 (u(s))
satisfies
klg](r)lo Tl / lg¥(s)|ds = (5.28)
and
(iii) if hy € I'y for k € N, then
i*(uF(s)) — 2(u(s)) — F(s, z?’“jhé) = g5(s), s € 0,al, (5.29)
where
g(s) = @(uF(s)) — & (u(s)) — 2 (uF(s)) + 2" (uF(s)) — ¥ (u(s))
+i(uf(s)) — @ (u(s)) — #(u(s)(u"(s) — u(s))
—i(u(s))wr (s, 7, & 28, € + h}) — E(u(s)) Dar(s, s, )Pk
satisfies
khﬁrgo \hkh“ / lg5(s)| ds = 0. (5.30)
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Proof The definition of w; and A imply
uP(s) — u(s) + A(s, 2l hg)

y s

= —[T(S,:L‘S,£ + hi) —7(s,xs,&) — DQT(S,$S,€)($§ — ) — DQT(S,I’S,g)hi]
—Dat(s,25,)(2f —ws — 2%), s €[0,0],
which shows (5.25). Let L3 be defined by (4.20). (5.26) follows from |Da7(s, s, &)|z(c,r) < L3

for s € [0,a], (4.8) and (5.24).
Relation (4.40) and the definition of g¥ yield (5.27). We have by (3.4) and (4.41)

«
[l < a max 1+ [ lai(s) - afu(s) - () ) - uls)] ds
N [Tl )] ds + aNoFoul.
0
Therefore (5.24), (5.26), and Lemmas 4.2 and 4.5 yield (5.28).
Simple computation and the definition of g§ imply (5.29) immediately. Note that v € P yields

that & is continuous on [—7, a], and ¢ € W2 and Lemma 5.1 imply that € W2°([—r, o], R™).
Then (4.19) and Lemma 4.2 with y = & yield

li

L [ 9 — ) = () () (o) ds =0 (5.31)
We have by (5.3) and Lemma 2.7 that |Z(u(s))| < K4 for a.e. s € [0, a], therefore
[lkolds < [k - uk(s) - (ks s
0 0
[T ) - ) ds
/ i (uF(s)) — @ (u(s)) — E(u(s))(u*(s) = uls))| ds
G /0 for(s. 6ok € ) ds + oKL} mas e
Hence (4.8), (5.5), (5.18), (5.24) and (5.31) imply (5.30). a

We define the notations

wp,r (8,8, &, 0,&,1)

= Dar(s,0,6)1) — Da7(s,$,£)¢) — Daa7(s,,€) (1, o — @) — Da37(s,,€) (1), € = £)
wpyr (5,3, &,0,&,X)

= Ds37(s,0,&)x — Ds7(s,0,)x — D327(s,8,£) (X, 0 — ) — D337(s,5,8)(x,§ — £

for s € [0,a], @, € Q, £, € Qq, b € C and x € E.

Lemma 5.8 Assume (A0), (A2) (i)—(v) and (H). Then

1 (6%
im sup o /0 (e (5,78, €, 25, € + B, 250) | ds = 0, (5.32)

k—o00 h;éo
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and

lim sup

(5,2, & 28 €4+ 1S, RS ds = 0. 5.33
mwwwmmw/‘”3sx§ &+ 5.0 ds (5.3

Proof Let L} be defined by (5.12). Then the Mean Value Theorem, (3.5), (4.16) and (4.25)
yield for s € [0, a]

| Dot (s, 2%, & 4+ BS) 25" — Dor(s, x5,€)2" < LE(Lo + 1) Ni|hyr|hlr,
| Dot (s, s, &) (25" 2% —x)| < LENyLo|hlr|hilr,
| Dag7(s, x5, ) (250 BS)| < LEN1|A|r|hlr,

and hence,
(Wpar (5, @, &, 2k, € + AL, 28M)| < 2L%(Lo + 1)Ni|hylrlhlr, s € [0,al.

On the other hand, for s € [0,a], k € N and 0 # h € T such that |z¥ — x,]c + \h£|r # 0 and
|25 o £ 0, assumption (A2) (iv), (3.5) and (4.16) yield

Wpyr (s, 25, €, %, € + 1S, 250

sup
]P0 |h|r|he|r
WpDyr\S, Ts, G, Lg, ) S Ty — Ts|C I Z?’h|C
_ wbyr (5,25, & a8, E+ 5, 20M)| (l2k — zle + B )|
meo (k= 2l + [AgIr)|28" o NI

k § _k,h
9 )] M ) +h Y
< (Lo+1)Ny sup 0Dy (5, 2., 75 i k‘is )
mr#0  (|zF — zlc + |3 |r)|zs | o
— 0, k — oo.

Note that for s,k and h such that |z¥ — 2,|c + ’hi’r =0 or |28"c =0, |wpyr (s, zs, &, 2k, € +
hi, 2FM| = 0. Therefore the Dominated Convergence Theorem implies (5.32).
The proof of (5.33) is similar. a

For a.e. s € [0,a], h,y € T" we introduce the bilinear operators by

G(s)((h?,1%), (y?,4")) = Daar(s, 26, §)(h?,y?) + Dagr(s, x5, &) (h?, ¢)
+D3o7(s, s, €) (h*, y¥) + D337 (s, s, §) (W%, %),
H(s)((h#,h8), (y%,4)) = —A(s,h¥, BS)F(s,y%,y*) — (u(s))G(s)((h?, ht), (y%,4*))
—h? (=7 (s, 24, €)A(s, 4%, ),
and
B(s)(h,y) = Danf(v(s))(h?,y?) + Dasf(v(s))(h?, E(s,y%,y")) + Dasf(v(s))(h?,¢")
+Dsa f (v(5))(E(s, h?, h*),y?) + Das f(v(s))(E(s, h?, h%), E(s,y%,4*))
+Dsa f(v(5))(E(s,h?, h*),y°) + Dagf (v(s))(h’, y%)
+Da3 f(v(s))(h’, E(s,y%,5°)) + Daaf(v(s)) (R, y°)
+D3f(v(s))H(s)((h?, h%), (47, y°))
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Note that G, H and B correspond to 7y, but this dependence is omitted for simplicity in the
notation.

For v € P, N Ty consider the corresponding solution z of the IVP (1.1)-(1.2), and let 2" and
z¥ be the solutions of the IVP (4.14)-(4.15) corresponding to a fixed h,y € I'. We consider the
IVP

w(t) = L(t,z)(wy, 0,0) +B(t)((zf,h9,h5),(ziy,ya,yg», a.e. t € [0, q], (5.34)
wlt) = 0,  te[-r0). (5.35)

The IVP (5.34)-(5.35) is a Carathéodory type inhomogeneous linear delay system with time-
dependent but state-independent delays. It is easy to see that under assumptions (A0), (A1) (i),
(iii), (A2) (i),(iv) the IVP (5.34)-(5.35) has a unique solution on [—r, @], which will be denoted by
wh¥(t) := w(t,v, h,y). Tt is easy to see that I' x I' — R™, (h,y) — w(t,v, h,y) is a bilinear map
for a fixed ¢t € [0,a] and v € P, NT'y. In Lemma 5.13 below we will show that this bilinear map
is bounded, and our main Theorem 5.17 will show that it is the second-order partial derivative
of x(t,~y) wrt ~.
The next results show the covergence of A* to A in different senses.

Lemma 5.9 Assume (A0), (A1) (i), (A2) (i)—(v) and (H). Then there exists K19 = Kio(7, hg) >
0 such that

|A¥(s, 20" h®) — A(s, 20", h)| < Kiolhlrlhelr, s €[0,a], k€N, j €Ny, (5.36)

»Ys

and there ewists a sequence ¢y, > 0 satisfying cap, — 0 as k — oo such that

| AR (s, 250 hE) — A(s, 2, hE)| < caplhlr, s€0,a], keN. (5.37)

Pl I

Proof Let L3 be defined by (4.20), and L} be defined by

; = 11}132}{3111&3’({’17@7(@¢,§)’£2(Zixzj,R)1 te [0,&], (S Mika §€ Mi}v (538)

where Zy = C, Z3 = E. To show (5.37) we use (3.5), (4.16), (4.25) and the Mean Value Theorem
to get

|Ak(87 Zg,hv hg) - A(S’ Z?ha hg)‘
< |Dar(s, @k, &+ Bg) 20" — Dar(s,s,) 20" + |Dar(s, @k, & + hi)h® — Dy (s, s, )1
< L;(Lo + 1)’hk|FN1|hh“ + L;(Lo + 1)|hk|p’h‘p, S € [O,Q], ke N, jE Ng,

which yields (5.36). Using (4.34), (5.36), (5.38) and the Mean Value Theorem we get

’Ak(‘S? Z§7ha hf) - A(Sv Z?, h£)|
< |Ak(87 Zg’ha hﬁ) - A(S’ Z?ha h5)| + ‘A(Sa Zg’ha hﬁ) - A(S’ Z;L, h£)|
< Kiolhlr|hilr + [Dar(s, 25, &) (28" — 21|
< K10|hk|p|h|r + L;ClykN5‘h|p, S € [0,0z], ke N,

therefore (5.37) holds. a

35



The next Lemma gives the linearization of A*(s, 2" hé) — A(s, 2l h&) and E¥(s, 2B pEY —
E(s, 2 h%). We need the further notation

qk’h(s) = zk’h(s) — zh(s) — qwlhE (s), sé€l[-ral
Lemma 5.10 Assume (A0), (A1) (i)-(iv), (A2) (i)-(v), (H) and vy € P,NT'aNP. Then
Ak(57 Zf’h, hé) - A(Sv Zs ) hg) G(S)«Z?’ hﬁ)’ (Z?kv hi» - A(Sv w?hk’ 0)

= A(s,¢""0) + g5"(s),  sel0,a], hel, keN, (5.39)
where
g5"(5) = Dar(s,ws,)(b" — 2l ak — xy) + Daor(s, s, ) (2L pl)
+Day7(s, 1, §) (20" — 2L h£> + Do (s, x5, ) (h*, pl)
Hwpyr (s, xs, €, xk €+ hk, B 4 wpar (s, 26, €, 28 €+ RS, hf)
satisfies

lim su / )| ds = 0; 5.40
k—o00 h;ﬁIO) ‘h|p’hk| ‘g ‘ ( )
and if hy € I'y for k € N, then
Ek(sazgh?hg) - (S,Zs,hg) ( )((z?7h£)7 (ng,hi» - (S wh & 0)

= E(s,qs’h,0)+g4’ (s), a.e. s€0,a], hel, keN (5.41)
with
gy (s) = =Mk () = i(ul(s))][AF (s, 2EM, hE) — A(s, 27 hE)] — g5 (s) A(s, 2", hf)
< <s>>g§’h< )+ 25 (u k( ) = 2wk (s)) = [P (u(s)) — 2" (u(s))]
P (uF(s)) — 2" (u(s)) — 2" (u(s)) (u"(s) — u(s)) + 2" (u(s))gf (s)
satisfying

1 C kh
lim su / "(s)|ds = 0. 5.42
k—o0 h;éIO) ‘h|r2|hk‘p2 0 ’94 ( )| ( )

Proof The definitions of A*, A, G gg’h Wp,r, Wpyr and relation

A(s,zf’h,hg) - A(s,zS , hg) A(s,w?’hk,O) = A(s, zkh zg — w?’h’“,O)
yield
AR(s, 287, hE) = A(s, 28, h%) = G(s)((20, h9), (2%, h)) — A(s, wl"™*, 0)

= AF(s, 28R 1S) — A(s, 250 1) — G(s)((2", 1S), (2P%, 1%)) + A(s, g5, 0)

- DZT(Sa 1"1367€ + hﬁ) kh _ DZT(S x87€) kb D22T(S7.’L‘S,€)<Z§’h,$§ - $5>
—Do37(s,z4,6) (2, ot h§> + Daar (s, $s7f)< Z?ﬂ”f Ts)
+ Do (s, s, €)1, pF) + Doyt (s, x5, €) (2B — 22, Bf)
+D37’(t, :L'I;:; 5 + h»i)h5 — DgT(S, Tg, g)hf - D327-(55 Tsy g) <h§7 xl;? - ZES>
_D33T(37 Ts, E) <h£7 h}i> + D327-(57 Ts, 5) <h£7p§> =+ A(S, q‘ét,h7 0)

= A(s,q"",0) + g5 (s).
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Let L} be defined by (5.38). Then we have by (3.5), (4.16) and (4.34)

(073
/ 95" (s)|ds < aLier j Ns|h|rLolhy|r + aLiNy|hlr selon] IpE|c + aLict ,Ns|hlp|he|r
0
—|—04L5’h‘1“ IEII[(E]iX ’p5’0+/ ‘wDQT(S xsaé? 57£+hk7 s )|d8

+/ (wpyr (5, s, €, 25, € + S, B)] ds.
0

Hence ¢;;, — 0 as k — oo, (5.24), (5.32) and (5.33) imply (5.40).
Relation

E(Sv'z?h’hg) — E(s 2} hs) (saw?hk,@) = E(s, Zkh h w?hk,())

- S

and the definition of E, E¥ and H give
EF (s, 250 1€) — B(s, 2 h8) — H(s)((2l, k), (2 1)) — B (s, w"0)
= BM(s, 2P ) — B(s, 2P0 hS) — H(s)((21, ), (2%, b)) + E(s, ¢, 0)
= —iF (Wb (5)) A (s, 250 ) + i(uls)Als, 2BP, BE) + 2PN (uF(s)) — 2PN (u(s))
+A(s, 28, B F (s, 2% h5) + i (u(s))G(s) (22, hS), (2%, b))

+2"(u(s)) A(s, 2%, h}) + E(s, 45", 0

)
— i(u(s))][A" (s, 28" hE) — A(s, 2" ht)]
— @(u(s)) — F(s, 2™, h§)]A(s, 25", hf)

S

() = " (u(s) = [ (uls)) = " (u(s)]
2" (uh(5)) = 2" (u(s)) = 2 (u(s) (W (5) = u(s))
2" (u(s)) (Ut () = u(s) + As, 204, 1) )+ (s, q5", 0),

which, together with (5.29) and (5.39), yields (5.41).
To prove (5.42) first note that by (3.5), (4.18) and (5.3)

&% (Wh(s)) = @(u(s))] < | (u(s) — @ (" (s))] + |2 (u"(5)) — d(u(s))]

< LO’hkh‘ + K4K0|hk|p. (5.43)
Hence (5.36) and (5 43) give
lim sup ——— / | (u — &(u(s))|| A (s, 28 hE) — A(s, 28" h&)|ds = 0.
k—o00 h;é() |h|]_"|hk|]_"

Relations (3.4), (5.10), (5.30) and (5.40) imply for hy € T'y for k € N

lim su / K(s)A s,zf’h,iﬁ ds < hm / ) ds =0
ks 00 h;él(? ‘h‘F|hk|F2 0 ’92() ( )‘ ‘hkh_‘g |92 |

and

lim su / T ds < lim / )| ds = 0.
k—o0 h;é%) |h|1“’hk|1“ 4 )| k=00 |h|1“’hk|1“ |9 °)

The above limits and (5.19), (5.21), [2"(u(s))| < Na|h|r, and (5.26) yield (5.42).
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The next estimates will be used in the proof of Lemmas 5.12 and 5.16.

Lemma 5.11 Assume (A0), (A1) (i)-(ii), (A2) (i)-(v), (H) and v € P,NToNP. Let F° := F.
Then there exist K11 = Ki1(y) > 0 and a nonnegative sequence c3p = c3 (7, hi) satisfying
c3r — 0 as k — oo such that

[P (s, 24, h°)|

»YS8S )

<
\Ek(s,zf’h,hg) — E(s 2P hé)\ < 3k

) %8

Ku‘h‘p, a.e. s € [0,0é], hel, keNy (5.44)
hlp, a.e. s€[0,a], k€N, (5.45)

and, if in addition, (A2) (vi) holds, there exists a nonnegative sequence cqj = ca (7, hi) satis-
fying ca, — 0 as k — 0o such that

’~8 )8

/ |FF(s, 20 1®) — F(s, 2 18)|ds < caplhlr,, k€N, heTs. (5.46)
0

Proof Let L} be defined by (4.20). A simple generalization of (5.10) yields
|AR(s, 280 h8)| < Kg|hlr,  se€[0,a], heT, ke N (5.47)

with K§ := L5(N1 + 1). The definition of F, (5.3) and (5.47) imply immediately (5.44) with
Ky = KuK§ + 1.

Relations (3.4), (3.5), (4.16), (4.17), (4.18), (4.34), (5.37), (5.43) and (5.47) yield for a.e.
s €[0,q]

|Ek(37 Zf’h7 hé) - E(37 Z?, h£)|
< |28 (b (s)) — @ u(s))||AM(s, 25", )]
i (u(s))] | AR (s, 25" B%) — A(s, 20, )| + 250 (u (5)) — 2" (P (s)))]

+2" (" () — 2" (u(s))]
< (Lo + K4K0)’hkh‘K§|h|r + NCg}k|h|1“ + Cl’kN5|hh“ + N2|h|pK0|hk|p,

which proves (5.45).

|F*(s, 21 h&) — F(s, 2", he)|

»~S8 Y bR I

< (180 (s)) = B ()] + [ (s) = u(s))]) | AF (s, 28 19
i (u(s)]| ARG, 20 1) = Als, 2 1) + 12 (0 (s) = 2 (u(s))]

’ 8

Let L§ = L¢(a, My, My, M3, Mj,~,x) be the Lipschitz constant from (A2) (vi). Then for
t € (0,a] we have by (A2) (vi) that
. . d d
0 0] =[S ok o 0,04 h) — 10,20 2u(r) )
Li(|af — wilwios + [Ble + [hz)
Lg(Lo + 1) hklr
Lg(Lo + 1)|hi|rs-

VARRVANNVAN
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For t € [-r,0) and h € T'y we get
|#5(t) — ()] = [h{ (0)] < [hwlre-

Using that & € L*°([—r, o], R™), similarly to (4.33) we can argue that
«

lim |#(uF(s)) — #(u(s))|ds = 0.

k—o00 0

Then the above relations, |Z(u(s))| < K4 for a.e. s € [0,a], (5.47), (5.18) and (5.36) yield (5.46).
O

For a.e. s € [0,a], h,y € T" and k € N we introduce the bilinear operators by

Gk(8)<(h@, h£)7 (y<p7 y§)> = D22T(87 xls€7 5 + h2)<h¢) y@> + DZST(Sv xlsg) § + hi)<hw7 y£>
+D327-(57 x]sgvé. + hi)<h€> yW> + D337_(87 xs’ 6 =+ hi)<h£a y§>7
H*(s)((h?,1%), (y%,4%)) = —AF(s,h? BS)F¥(s,9%,4")

—i* (u*(5))G*(5)((h?, B%), (47, ¥°))
—h(=7(s, 2", € + 1)) A¥(s, 4%, %),

and
B*(s)(h,y) = Daaf(v*(s))(h?, y?) + Dasf(v*(s))(h?, E*(s,y%,¢"))
+Dz4f(vk(8))<h“",y ) + Daa f(vF () (E* (s, h%, h*), %)
+D33f(vk(8))<E’“(8 h?,h%), E*(s,y%,y*))
+Dga f(VF(5))(E* (s, 1%, h8),4%) + Daa f(vF(5))(h, y#)
+D43f(vk(8))<h9 E*(s,9%,4%)) + Daaf (V¥ (s)) (R, 4°)
+Ds f(vF(s))H" (s)((h?, B%), (4%, 4)).

The next result shows the boundedness of B* and the convergence of B* to B.

Lemma 5.12 Assume (A0), (A1) (i)-(iv), (A2) (i)-(v), (H) and v € P,NToNP. Let B® := B.
Then there exists K12 = Ki2(7y, hg) > 0 such that

|BE(s){(h%,1%), (y#,y))| < Kua[hlrlyle, a.e. s €[0,a], hyy €T, v € Py, k€ No.  (5.48)

If in addition (A2) (vi) and v € Py N Ty NP hold, then there exists a nonnegative sequence
s = ¢55(7y) such that cs ), — 0 as k — oo, and

r

for hyy € T's.

(5)((z8, h%,1%), (2,9, y%)) = B(s){(2, b 1%, (24,97 %)) | ds < cs klhlralylrs,  (5.49)
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Proof Let L} be defined by

LZ = m%>§4max{]D2]f(t W, u, 9)‘52 Y;xY;,R?) tc [O,Ck], (NS Mik, u < M;, RS Mék}, (550)
».7_

where Y2 = C, Y3 = R", Yy = O, and L} be defined by (5.38). Introduce the notations G* := G
and H? := H. Then the definitions of G* and Lt yield

|GF()((h%,1%), (4%, 4°))] sIh?lcly?lc + Ly h¥ oyl + Li|hf[=ly? o + L3P |=lyf|=
Ly (Ih?lc + [h[2) (ly*le + y*|=)

LE|h|r|y|r, h,yeT, s€[0,a], k€ Ny. (5.51)

VAN VAN VAN

Then definition of H*, (3.4), (4.16), (5.2), (5.44), (5.51) and (5.47) imply
[HE (s)((22, h), (22, 4%))| < Kuslhlelyle,  ace. s €[0,0], hyy €T, k € No (5.52)

with Kq3 = Klg("y) = KgKll + NL; + Kék
Let E° := E. An easy generalization of (5.16) yields

|EF(s, 2", h%)| < KA, ke Ng

R R

with K} := NK{ + Ni. Then we have by the definitions of B¥ and L}, (5.16) and (5.52)
|B*(s)(h,y)| < Lj(4 + 4K} + (K3)? + Ku3)|h|r|y|r, a.e. s€[0,a], h,yeT, ke Ny,

which yields (5.48).
Define

Qo,(e) = fjna?XgSUP{\Dm (s 71/;777)_DijT(SﬂZ]uﬁ)‘EQ(ZZ‘XZj,R):

<e)

where Zy := C and Z3 := Z. Assumption (A2) (iv) and the compactness of [0,a] x M7 x M}
yield that Qg ,(¢) — 0 as € — 04+. Then (4.16) and (4.25) give

[I]

[G*(5) — G(s)[{(22, B8), (2V,y%))| < |[Daar(s, ¥, & + hY) — Daor(s, s, )|l 22)]
+|[Dasr(s, 2%, € + hS) — Dagr(s, a¥, € + W) (=, %))
+|[Ds2 (s, 2%, € + h§) — Daar(s,zk, € + h§)|(hS, 2¥)]
+|[D337(s, 2%, & + h3) — Dast(s, 2%, & + B3)|(hS,y°)]

IN

Q7 ((Lo+ DIl ) (V1 + D2 Blrlyle, s € [0,0].

Relations (3.4), (3.5), (4.18), (4.16), (4.17), (5.36), (5.43), (5.44), (5.46), (5.51), (5.53) and
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(5.47) imply

/Oa ’[Hk(s) — H(s)]((zg, h'f), (Zé/, yg)” ds

</ (|[A’f<s,zs,h€> Als, 2 B F(s, 24, 9))
HAR(s, 21 R [F (s, 22, 4) — F(s, 2, 55)]
I (3)) — ()G R, (2, )
() [GH(5) = GEI(E ). (£,5)
[ (u(s) — 2 (u(s))] A (s, 22, 55)|
I ()[4 s, 28, 0) — Als, 2, y0)]]) ds
< aKio|h|r|helr K |ylr + K|hlrearlylr, + (Lo + KaKo)|hi|r LiNZ|hlr|y|r
+NQQT(<L0 - 1>rhk|r) (N1 + 12 helylr
/ 12 u(s)) | ds Kglylr + aNallr Krolhile ol
< ¢ klhlr,|Yr, (5.54)

with some appropriate sequence cg = cg 1 (7y) satisfying cg, — 0 as k — oo, where in the last
estimate we used (5.18).
Simple manipulations give

1B (s) = B(s)]{(24, b, ), (2,4/%, %))
< |[D22f(v*(5)) = Da2f (v ())]<Zf» 2>|
(=

+[Das f(v¥(s)) = Dasf (v(s)l(=l, EF (s, 24, 4))|
+Dasf(v(s)(28, E* (s, 24, 4°) — E(S 2 y0))
H[Da1f(v¥(s)) = Daaf(v(s)))(=2 >|

H[Ds2f(v¥(s)) — Daa f (v(s))(E" (S 24, ht), 24)]

+HDsa f(v($))(E (5,20, h) — E(s, 2 hg) 9l
+[Dss f (v (s)) — D33f( (s)I(E (s, 2, h), B (s, 22, y))]
+H D33 f(v($))(E" (5,20, h*) — E(s, 20, h*), B* (s, 24, 5%))]
+Daaf(v(s)(E(s, 2, h°), B*(s, 2%, y%) — E(s, 2, 4°)))|
H[D30f (v (5)) = Daaf (v(s)(E"(s, 20, 1), 4]

+Daaf (V(s)(E"(s, 28, h) — B(s, 20, 1), y°)]
H[Da2f(v¥(s)) = Dazf (v(s)(H’, )|

+H[Das f(vF(s)) — D43f( (S))]<h9 EF (s, 24, y%))

+HDag f(v(s)){h", E*(s, 24, y*) — B(s, 2,9°))

H[Daa f(vF(s)) ~ D44f( (S))Khe y)l

H[D3f (v (s)) = Daf(v(s)) H" (s)((24, h*), (24, 4%))]

+H D3 f(v(s)[H"(s) — H(s)[((z2, h%), (24, 5%))]. (5.55)



Define

Qo r(e) = Z.JIE%ASUP{!DMJ”(S,&ﬂlﬁ) — Dy f (5,0, 0,0 2(vixv;, R -
s €1[0,a], P9 € My, 5,5 € M3, 7,7 € M3,
[ = Plo+ 15— 5] + 7 — ile < ¢},
where Y := C, Y3 := R" and Y := O. Assumption (A1) (iii) and the compactness of [0, a] X
M7 x M3 x M3 yields that € ¢() — 0 as € — 0+4. Let L] be defined by (4.28). Then combining

(5.55) with (4.24), |Di; f(v*(s)) — Dy f(v(s)|e2(viny, ) < Qg,f(Kgyhm) for i,j = 2.3,4,

|Dif (V¥(5))|cvimny < LY for i = 2,3,4, s € [0,a] and k € Ny, (4.16), (5.16), (5.45), (5.52),
(5.54) and (5.55) yields (5.49). O

Now we prove the boundedness of the bilinear map I'2 3 (h, y) w? Y € W for any fixed
t.

Lemma 5.13 Assume (A0), (A1) (i)-(iv), (A2) (i)—(v) and v € Po N T9. Then there exists
Ng = Ng(v) > 0 such that the solution of the IVP (5.34)-(5.35) satisfies

w10 < Nglhlelyle,  te[0,a], hyel. (5.56)

Proof Let L} and L3 be defined by (4.28) and (4.20), respectively. It follows from (5.34) and
(5.35) that

t t
Wh(t) = / Bs) (", 1, 1), (¥, o, o)) dis + / L(s,2)(w",0,0)ds,  t e [0,a].
0 0

Therefore (4.31) and (5.48) yield
¢
W (0) < aKualhlelylr + No [ [ub¥lcds,  te(0.a)
0

Since w"¥(t) = 0 for t € [~r,0], Lemma 2.1 gives
[w" (1)) < aKioe™ hlrlylr,  t€[0,0], hyeT. (5.57)
Then (5.34) implies
@™ ()] < Lt 2)(w ™, 0,0)] + [B){(2f, b, %), (%, ),

hence (5.56) holds with Ng := max{a K2 NyaKi2eM® + K15}, O

Next we prove the continuity of the bilinear map I'Z > (h,y) — w? Y e C wrt .

Lemma 5.14 Assume (A0), (A1) (i)-(v), (A2) (i)-(vi), (H) and vy € P,NT'oNP. Forh,y € I'y
and k € N let wh¥(t) := w(t,v, h,y) and w*"¥(t) := w(t,y + hg, h,y) be the solutions of the
IVP (5.34)-(5.35). Then there exists a nonnegative sequence ¢y = c7(7y) such that ¢z, — 0 as
k — oo and

|w — wf’y

c < crilhlrs|ylr,, te[0,a], h,yels. (5.58)
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Proof It follows from (5.22) using (4.18) and (5.3) that
|2Bh() — 2h(t)| < <N4c1,kN5 + cop(Na + 1) + N3 K4 Ko(N2 + 1)\hk\p> |h|r, te0,al,

therefore (4.34) gives

28" — 2P €[0,a], heT, keN. (5.59)

with 8.k = max{cl’kNg), N4Cl,kN5 + C(],k(NQ + 1) + N3K4Ko‘hkh“}.
Let L7 and L3 be defined by (4.28) and (4.20), respectively. It follows from (4.22), (4.31),
(4.35), (5.34), (5.48), (5.43), (5.56) and (5.59)

[ (E) — W (1)

t
< [ (L) = L5, 0,0) 4 L)k~ w,0,0)] )
0

+ [ (1B 1, 1), (1 = 2,0,0)+ [BH(s) (R — 28,0,0), (2,515

0
+HBY(s){(20, 1%, h%), (22,3, y%)) — B(s){(z2, 17, ), (22,y97y5)>\)d8

[0}
QCO,kN8|h’F|y|F+N3/ [@:(u(5)) — &(u(s))| dsNs|hlr |yl
0

IN

|y|F2

t
+Ny / |wkhY — ¥ o ds + 200K 15 (Ny + 1)
0
¢ k.h h
< ¢ klhlr, ylr, +N4/ lwg™ —wiY|o ds,
0

where cg 1, = cg () := aco kNg+aN3 Ky KoNg|hg|r+2aK12(No+1)cg p+acs . Then Lemma 2.1
is applicable, since |w hy g’y|c =0, and it yields (5.58) with ¢y, := Cg,k€N4a. O

We define

wpyf(v(5), v¥(5),0) 1= Daf(v*(s))e — Daf (v(s)) — Daaf (v(s)) (e, z¥ — )
—ngf(V(S))< 2F(uF(s)) — x(u(s))) — Daaf (v(s))(1h, hy),

wpap(v(s),v¥(s),v) = D3f(v*(s))v — Dsf(v(s))v — Dsaf (v(s)) (v, 2} — xs)
—Ds3 f(v(t))(v, ( "(s)) — x(u(s))) — Dasf(v <>><v hg),

wp,f(v(s),v*(s),n) == Daf(v*(s))n— Daf(v
—Dysf(v(s))(n, 2" (u

for s € [0,a], ¥ € C, v € R" and n € O.
The proof of the following lemma is similar to that of Lemma 5.8.

)0 — Daa f(v(s))(n, af — )
s)) — x(u(s))) — Daaf(v ())(mh@

(
(
Lemma 5.15 Assume (A0), (A1) (i)-(vi), (A2) (i) and (H). Then

lim sup —————

/ |wp, (5,2, (u(s)), 0, 2%, 2" (u*(5)),0 + hi, 25" ds =0, (5.60)
k=00 120 [lrlhelr Jo
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1 o
lim sup/ |wpy £ (5, s, x(u(s)), 0, 2%, 2P (W (s)), 0 + hY, EF (s, 280 hE))| ds = 0,
|Alrlhklr Jo

k—00 h#0
herl
(5.61)
and
1 (0%
lim sup ———— / |wp, (8, s, (u(s)), 0, 2%, 2 (u¥(s)),0 + hY, hY)| ds = 0. (5.62)
k=00 nzo [hlrlhelr Jo

The proof of the main Theorem 5.17 will be based on the following relation.

Lemma 5.16 Assume (A0), (A1) (i)-(iv), (A2) (i)-(v), (H), v € P,NToNP and hy € Ty for
ke N. Then

L(s, o) (250, B, 1) = L(s, ) (31 + wli, 10, h€) = B(s) (211 17, ), (1, L, B) )

o = L(s,2)(¢"",0,0) + g5"(s),  a.e. s€[0,0], (5.63)
g™ (s) = Daof(v(s))(zh" = 2L, 2k — w.) + Daaf(v(s))(2L, pf)

+Das f(v(9)) (28" — 22, 2" (uF(s)) — z(u(s))) + Dasf(v(s)) (2, gi (s))
+Doa f(v(9)) (28" — 22, h]) + Daa f(v(s))(E(s, 22, h%), k)
+Dsa f (v(8))(E"(s, 28", h®) — E(s, 20", h¥), 2 — )
+Dss f(v(s))(E"(s, 28", h®) — E(s, 2!, h®), a* (u* ( ) — z(u(s)))
+Ds3f(v(s))(E(s, 22 h%), gf (5)) + D3 f(v(s))gy" (s)
+Dsa f(v(8))(E"(s, 28", h®) — E(s, 2!', h¥), b >
+Daa f(v(5))(h’, p5) + Dus f(v(8))(h?, g5 (8)) + wp,p(v(s), v¥(s), 2"
+wD3f(V(s),vk( ) Ek(s zk’h,hg)) +wp,f(v(s ) v (s),hg)

satisfies

hm su / )| ds = 0. 5.64
k—o0 h;éIO) |h|[‘2|hk|r2 | | ( )

Proof Straightforward manipulations yield for a.e. s € [0, o]

L(s,a®) (26", 07 1) = s, @) (21wl 1 €)= Bls){ (2, %, 1), (25, 0l 1))

= Daf (vF(8))20" = Daf(v(s))2" + Daf(v(s)) (20" — 27 — wl"™)
+D3 (v (s)E* (s, 20" B%) — D3 f(v(s)) E" (s, 20", h°)

D3 f(v(s)) (BN (s, 257 1) = Bs. 22, h9)) + Daf V()K= Daf (v(s)h!
Dy f(v(3))E(s, wl,0) = B(s) (1,17, 1), (2%, hf,, b))
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= Dof(VF(5))28" — Daf(v(s))2E" — Doa f (v(s)) (28", xk — =)
— Do f(v(s))(z8", a* (u*(s)) — ( (s))> Daaf(v(s))(zl", b))
+Daf (v (s))q§h+D22f( ()(28" = 22 2k — 20) + Daoaf (v(5))(2l', k)
+Da3 f(v(9)) (2" — 2 2" (uF(s5)) — w(u(s)))
+Da3f(v(s))(l, ’“( ()) w(u(s)) — E(s, 2% h3)) + Daaf(v(s))(2E" — 28 hf)
+Dsf(V¥(s))E* (s, 28" h¥) — D3 f(v(s))E* (s, 25", hf)
—Dso f(v(s))(E*(s, 28, hE), 2k —z,)
—Dss f(v(s))(E"(s, 28", h%), a* (u"(s)) — 2(u(s))) — Daaf(v(s))(E* (s, 25", h%), hy)
+Dso f (v(5))(E"(s, 2", h%) — E(s, 20!, h%), 2k — s) + Daa f(v(s)){E(s, 20", h%), pk)
+Dg3f(v(s))(E*(s, 2", h%) — E(s, 2!, %), 2" (u"(s)) — 2(u(s)))
+Ds3f(v(s))(E(s, 2, h€), a* (uF(s)) — 2 (u(s)) — E(s, 2%, h}))
+D34f(v(s>)<E’“(s,z§h,h5) (s 20, ), h">

[

)
+D4(v*(s)h” = Da(v(s ))he—Dmf( (s ))(h" z§ = as)

), 2* (u*(5)) = w(uls))) — Daaf (v(s))(h’, )
)(h,pE) + Daz f(v(s) (B, 2" (" (5)) = w(u(s)) — B(s, 4%, ),

which implies (5.63), using (5.27) and (5.41). Let L] and L} be defined by (4.28) and (5.50),
respectively. Then (3.5), (4.17), (4.23), (4.34), (5.16), (5.45) and (5.50) yield

/ 165 (s)] ds

< aL4cl kN5’h‘FL0|hk|p =+ OZL4N1VL|F renax ’ps ’C =+ OéL4Cl kN5|h’FK2|hk|F

—|—L4N1|h|1"/ |gl s)|ds + aLjcy , Ns|h|r|hi|r + L} Kg|h|r IEH[B%X] |p§|g
0 s€(0,a
+OéLZCg’k’h’FL0|hk‘r =+ OtLZCg’k’h’FKQIhk’F

LKl [ o) s+ L [ 16" (s)lds + aLieaalhlelhule
0 0
% k % C “ k k,h
+al3|hlr Iél[gx]!ps\c+L4|h!r | tab s+ [ svl. A (0). 25 s
[ oy (6,90 Mo, BB ds [ e (w00, v () ) s,
0

Hence ¢1, — 0, c3, — 0 as k — o0, (5.24), (5.28), (5.40), (5.60), (5.61) and (5.62) imply (5.64).
O

Now we are ready to prove the main result of this section.

Theorem 5.17 Assume (A0), (A1) (i)-(iv), (A2) (i)-(v). Then fort € [0,«] the maps

[y D (PNT) = R, v = x(t,y)
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and
Iy D (PanTy) = C, v = ()

are twice differentiable wrt v for every v € PoNTa NP, and
Doga(t,7)(hyy) = w¥(t),  h,y €Ty,

and
D22xt('77)<h7y> = w;l’y7 hvy € F27

where w'Y is the solution of the IVP (5.34)-(5.35). Moreover, if in addition, (A2) (vi) holds,
then the maps

Rx D25 ([0.0] x (BNT2NP)) - L2(T2 x T, RY),  (£,7) = Dozar(t, )

and
RxTI9D ([Ova] x (P, NIy mP)) — L3(Ty x I5,0),  (t,7) = Daszy(+,7)

are continuous.

Proof It follows from Theorem 4.9 that Dox(t,v) € L(I',R") exists for all v € P, and ¢ € [0, a].
Since |h|p < |h|p, for all h € Ty, it follows that Dza:(t,’y)‘r € L(I'y,R™), and Dgx(t,’y)‘r is the
2

2

derivtive of the map I's D (P,NI'y) — R™, v — x(t,~). For simplicity, the restiction of Dyx(t, )
to I's will be denoted by Dax(t,7), as well. Theorem 4.9 yields that Doz (t,v)h = 2(t,, h), where
z(t,7y, h) is the solution of the IVP (4.14)-(4.15) for h € I's.

Let v € P,N Ty NP be fixed, hy = (hf, hi, hi) € I's (k € N) be a sequence such that hy # 0
and y+hy € Py for k € N, 0 # h = (h?,h?, h&) € T'y. Let 2(t) := x(t,~) and zF(t) := x(t, v+ hy)
be the solutions of the IVP (1.1)-(1.2), 2"(t) := Doz (t,v)h and 25"(t) := Dox(t,y + hg)h be
the solution of the IVP (4.14)-(4.15), and w™" (t) be the solution of the IVP (5.34)-(5.35)
corresponding to parameters h and hg. Then we have for ¢ € [0, o]

t
Fh) = h“"(0)+/ L(s, zF) (28", hY he) ds,
0
t
M) = hv’(0)+/ L(s,z)(z" 1% h%)ds,
0
t
Wi () = /0 (L, ) (l,0,0) + B(s){ (2, b, 1), (1%, B, ) ) ) ds.
Hence Lemma 5.16 and the definition of ¢®" give
t
¢ (t) = / (L(s, 2" (0 O, 1) = Ls, @) (2L + ol O, 1)
0
—B(s)((20,h7,RE), (2%, 1, 1) ) ) dis
t t
= [+ [ LeaEh00ds  teloal
0 0
so (4.31) yields

t t a t
(1)) < /0 g5 (s)| dis + /0 L(s,)(¢"",0,0)| ds < /0 165 (s)] ds + N4 /0 5" ds,
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for t € [0,a]. Using that ¢*"(t) = 0 for t € [~r, 0], Lemma 2.1 implies

(03
()] < 1o < N / () ds,  te (0,0,
0

where N := ¢4, Therefore (5.64) yields for ¢ € [0, ]

|""(1)]

4" e N5 “\ kh
lim sup < lim sup —+—-— < lim sup / lg5" ()| ds = 0,
0

koo nzo ||y |hklr, T k=oo nzo [h|ry|hilr, T K=o nzo [hp,|hklr,
hely heTy heETy

which completes the proof of the second-order differentiability wrt parameters. The continuity
of Dasx(t,~) follows from Lemma 5.14. a

We note that the method used in this section to prove the existence of the second order

derivative Daox(t,7) relied on the assumption that the parameter v satisfies the compatibility
condition v € P.
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