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Abstract

In this paper we consider a class of differential equations with state-dependent
delays. We show differentiability of the solution with respect to the initial function
and the initial time for each fixed time value assuming that the state-dependent
time lag function is strictly monotone increasing.
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1 Introduction

In this paper we consider a class of state-dependent delay equations (SD-DDEs) of the
form
i(t) = f(tanalt —7(t),  te o T, (1.1)
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where the associated initial condition is
z(t) = p(t — o), telo—rol. (1.2)

Here and throughout the manuscript » > 0 is a fixed constant and z;: [—r,0] — R",
x4(0) := x(t + 0) is the segment function. The particular form of the Eq. (1.1) assumes
that the growth rate of the system depends on past values of the state, and one delay
function is state-dependent, i.e., the delay function depends not only on time, but also on
past values of the state. We suppose that this function is given explicitly, and it is denoted
by 7 in (1.1). It is easy to see that a function of the form C 3 ¢ — (—7(t,¢)) € R™ is
not smooth, even if 7 is a smooth function (see [9]). On the other hand, if 7 in the above
map is independent of v, then the map is linear, and hence it is smooth. The dependence
of f on x; represents all the other delayed terms in the equation. Later we will assume
that f depends smoothly on its second argument, so this dependence will represent “non
state-dependent “ delayed terms in the equation. We note that, for simplicity, Eq. (1.1)
contains only one state-dependent term, but all the results can be easily generalized to
the case when in Eq. (1.1) there are several state-dependent delays. We refer the reader
to [9] for a survey, which contains a brief summary of the general theory and also several
applications of SD-DDEs.

In this paper we consider the initial time ¢ and the initial function ¢ as parameters
in the initial value problem (IVP) (1.1)-(1.2), and we denote the corresponding solution
by z(t,0,¢). The main goal of this paper is to discuss the differentiability of z(¢, o, )
with respect to (wrt) o and . More precisely, we study the differentiability of the
following four types of parameter maps: ¢ — xz(t,0,p), 0 — z(t,0,p), p — x:(-,0,9),
and o — x4(-,0,¢). In the first two cases differentiability is considered in a pointwise
sense, and in the last two cases the differentiability of the solution segment functions
is studied. Clearly, in the last two cases the differentiability depends on the selection
of the state space, i.e., the space of the segment functions z;. By differentiability we
mean Fréchet-differentiability throughout this paper. We note that a natural application
of differentiability of solutions wrt to parameters was given in [8], where a parameter
estimation method was formulated and numerically tested which uses point evaluations
of the derivatives of the solution wrt parameters.

Differentiability of solutions wrt parameters for SD-DDEs was studied in [2, 7, 10, 12,
13]. In all these papers the initial time o was fixed to o = 0, but other parameters in
the formula of f and the delay function 7 were also considered. Next we formulate these
results for the IVP (1.1)-(1.2).

In [7] differentiability of the parameter maps W1 3> o — z(¢,0,¢) € R?, Wl >
0 — 24(-,0,0) € C and WH>® 3 ¢ — x4(+,0,p) € WH™ was shown. (For the definition
of the spaces and norms see Section 2 below.) Here differentiability was obtained using

strong norms, the C- and W*-norms on the state space, but a strong assumption was



needed to prove the result: it was assumed that ¢ € C! and it satisfies the compatibility
condition

$(0—) = f(0, 0, 0(=7(0,9))). (1.3)
Note that this condition yields that the corresponding solution is continuously differen-
tiable wrt time on its whole domain. On the other hand, differentiability was shown only
at a particular parameter value ¢ where the above compatibility condition is satisfied.

Walther in [12] and [13] obtained C'-smoothness of the solution semiflow for large
classes of SD-DDESs restricting the set of initial functions to those which satisfy the com-
patibility condition (1.3).

In [10] differentiability of the map W' 3 ¢ — x,(-,0,¢) € WP (1 < p < o) was
proved without the compatibility condition (1.3), but it was assumed that the time lag
function t — t—7(t, z;) corresponding to a fixed solution z is strictly monotone increasing,
more precisely,

d
ess inf a(t —7(t,z)) > 0, (1.4)

0<t<a
when « > 0 is such that the solution exists on [—r, «|. It was shown that the differentia-
bility holds in a small neighborhood of the fixed initial function where the monotonicity
condition is also satisfied. On the other hand, the differentiability was obtained using
only a weak norm, the W'P-norm (1 < p < oo) on the state space.

Chen, Hu and Wu in [2] extended the above result to proving second-order differentia-
bility of the parameter map using the monotonicity condition (1.4) of the state-dependent
time lag function, the W'P-norm on the state space, and the W?P-norm on the space of
initial functions. Note that 7 was not given explicitly in [2], it was defined through a
coupled differential equation, but it satisfied the monotonicity condition.

In this paper we combine the techniques of [7] and [10], and assuming the monotonicity
condition (1.4) of the state-dependent time lag function we show (see Theorem 4.7 below)

the continuous differentiability of the parameter maps
Wt s o 2(t,0,0) € R and W 3 @ a4(-,0,0) € C

for a fixed t and o. Note that here differentiability is proved in a pointwise sense and in
the C-norm, respectively, like in [7], but without assuming the compatibility condition
(1.3).

In Theorem 5.1 below we show that the parameter maps

R0 z(t,o,p) € R” and R0 a(-,0,p) €C



are both differentiable at a fixed ¢, ¢ and ¢, where a compatibility condition similar to
(1.3) is satisfied. Assuming some additional conditions on f and 7, in Theorem 5.3 below
we prove the differentiability of o +— x(t, 0, ¢) using the monotonicity assumption (1.4),
but without the compatibility condition (1.3). Note that in this case a similar result does
not hold for the map o — x4(+,0,¢) using the C-norm, which is not surprising, since
the map o — x(t, 0, ) is differentiable at the point ¢ = ¢ if and only if a compatibility
condition similar to (1.3) is satisfied (see Remark 5.4 below). We note that the derivative
of the solution wrt the initial function and the initial time is a solution of an associated
linear variational equation (see (4.27)-(4.28) and (5.9)-(5.11) below). We comment that
differentiability wrt the initial time has not been studied before for SD-DDEs.

This paper is organized as follows. Section 2 introduces notations and some prelimi-
nary results, Section 3 discusses the well-posedness of the IVP (1.1)-(1.2), and Sections 4
and 5 study differentiability of the parameter map wrt the initial function and the initial

time, respectively.

2 Notations and preliminaries

Throughout the manuscript r > 0 is a fixed constant and z; : [—r,0] — R”, x,(0) :=
x(t + 0) is the segment function. To avoid confusion with the notation of the segment
function, sequences of functions are denoted using the upper index: z*.

A fixed norm on R" and its induced matrix norm on R™*™ are both denoted by |- |.
C' denotes the Banach space of continuous functions ¢: [—7,0] — R" equipped with the
norm |¢|c = sup{|¢(s)|: s € [-r,0]}. C' is the space of continuously differentiable
functions ¢ : [—r,0] — R™ where the norm is defined by [¢|c1 = max{|i|c, [|c}. L™
is the space of Lebesgue-measurable functions ¢ : [—r,0] — R"™ which are essentially
bounded. The norm on L™ is denoted by | - |r~. WP denotes the Banach space of

absolutely continuous functions ¢: [—r,0] — R" of finite norm defined by

0 . 1/p
[Wlre = ( / |¢<s>|ﬁ+|¢<s>|ﬁds) L 1<p<s

and for p = oo

lwaoe = max { bl oo |



We note that W1 is equal to the space of Lipschitz-continuous functions from [—r, 0] to
R™. If the domain or the range of the functions is different from [—r, 0] and R", respec-
tively, we will use a more detailed notation. E.g., C'(X,Y") denotes the space of continuous
functions mapping from X to Y. Finally, £(X,Y’) denotes the space of bounded linear
operators from X to Y, where X and Y are normed linear spaces.

An open ball in the normed linear space X centered at a point x € X with radius ¢ is
denoted by Bx(z; 6) :={y € Y: |z —y| < 0}. The corresponding closed ball is denoted
by Bx(z; 6).

The partial derivatives of a function g: X XY — Z wrt the first and second variable
will be denoted by D;g and Dsg, respectively. All derivatives in this paper are Fréchet-

derivatives.

The following result is a simple consequence of Gronwall’s lemma.

Lemma 2.1 Suppose a > 0, b: [o,a] — [0,00) and u: [0 —r,a] — R™ are continuous

functions such that a > |u,|c, and

() §a+/ bs)|uslods, € oal. (2.5)

Then
lu(®)] < |ule < aels "%t e o al. (2.6)

Proof (2.5) yields

t+0 t

lu(t +6)| <a —i—/ b(s)|uslcds < a +/ b(s)|us|c ds
for t € [o,a] and 0 € [—r,0] such that ¢t + 6 > o, and
ult + )] < Juslc < a

for t € [o,a] and 6 € [—r,0] such that t + 6 < 0. Therefore (2.5) implies

t
\utycga+/ b(s)uslods, ¢ € loal,

and Gronwall’s lemma yields (2.6). O



We recall the following result from [1], which was essential to prove differentiability
wrt parameters in SD-DDEs in [2] and [10]. Note that the second part of the lemma was
stated in [1] under the assumption |u* — u|y1.ec(p.01r) — 0 as k — oo, but this stronger
assumption on the convergence is not needed in the proof. See also the proof of Lemma
4.26 in [6].

Lemma 2.2 ([1]) Letp € [1,00), g € LP([oc — r,a],R"), ¢ > 0, and u € A(e), where

Ae) = {v e Wh([o,0a],[0 —r,a]) : ©(s) > ¢ for a.e. s € [0,a]}. (2.7)

1 [0
/|g PP ds < L / 9(s)|? ds.

Moreover, if the sequence u¥ € A(e) is such that |[u* — u|c(par) — 0 as k — oo, then

Then

o P

Jim [ [atut(s)) = atut)| as = . (2.8)
3 Well-posedness
Consider the nonlinear SD-DDE
(t) = f(t,xp, x(t — 7(t, 24))), t € lo,T], (3.1)
and the corresponding initial condition
x(t) = p(t — o), te€lo—rol. (3.2)

Let 2, C C, Q5 C R" be open subsets of the respective spaces. T > 0 is finite or
T = oo, in which case [0, 7] denotes the interval [0, 00), and o € [0, T).

Next we list our assumptions used later in our results.
(Al) (i) f:RxCxR"DI0,7] x 2y x Q9 — R™ is continuous,

(i) f(t,%,u) is locally Lipschitz-continuous in ¢ and w, i.e., for every finite o > 0,
My, C Q1 and My C o, where M; and M, are compact subsets of C' and R",
respectively, there exists a constant L, = L;(a, My, Ms) such that

[t w) = f(t 0 0)] < L (J = dlo + |u—al).
for t € [0,a], ¥,v € My and u,u € M,
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(iii) f: RxCxR"D[0,7T] x Q; x Q9 — R™ is continuously differentiable wrt its

second and third arguments,

(A2) (i) 7: RxCD[0,T] x Q — [0,7] is continuous,

(ii) 7(¢,%) is locally Lipschitz-continuous in v, i.e., for every a > 0 and M; C {4

compact subset of C' there exists a constant Ly = Lo(a, M) such that

‘T(tv W - T(t7d_})‘ < L2W - IZ|C

for t € [0,0[], wﬂz S Mla

(iii) 7 : RxC D [0, 7] x§; — Ris continuously differentiable wrt both arguments.

We introduce the set of admissible parameters

= {(a, 0) €0,T) x W o € Qy, p(—7(0,9)) € 92}.

The next theorem shows that every admissible parameter (¢, ¢) € II has a neighborhood
P and there exists a constant o > ¢ such that the IVP (3.1)-(3.2) has a unique solution
on [0 —r, a] corresponding to all parameters (o, ¢) € P. This solution will be denoted by
x(t,0, ), and its segment function at ¢ is denoted by (-, o, ).

The well-posedness of several classes of SD-DDEs was studied in many papers (see,
e.g., [4,9, 10, 11]). The next result is an extension of a result from [7] to the case when the
initial time o is also considered as a parameter. The notations and estimates introduced

in the next theorem will be essential in the following sections.

Theorem 3.1 Assume (A1) (i), (ii), (A2) (i), (i), and let (6,¢) € II. Then there exist
0>0,0<09<0d,0<a<T finite numbers such that 0 < o9 < if ¢ >0, and o9 =0
if o =0, and

(i) for all (o,p) € P := |09, ) X By (p; 0) the IVP (3.1)-(3.2) has a unique solution

LL’(t7 g, QO) on [U -, a];

(i) there exist My C C' and My C R™ compact subsets of the respective spaces such that
x(y0,0) € My and x(t — 7(t, z4(-, 0,9)),0,0) € My for (o,0) € P and t € [0, a;

and



(iii) z,(-,0,0) € W for (o,¢) € P and t € [o,a], and there exist constants N =
N(og,,0,9) and L = L(og, «, 0, 9) such that

[2:(-, 0, ) lwre <N, (0,9) € P, t €0, (3.3)

and
|xt('7 0, QO) - xt(’? , 95)|W1’°° < L(|U - 5-| + |90 - 95|W1’°°) (34)
for (o,¢),(a,9) € P and t € [max{o,c},al.

Proof Let (6,9) € 11, and let §; > 0 and d, > 0 be such that Bo(¢; §1) € ©p and
Br, (p(—7(6,9)); d2) C Q. Let &g > 0 be fixed. The definition of IT and the continuity
of the maps [0,T] x Q; — R"™, (0,9) — ¢(—7(0,%)) and f: [0,T] x Q1 x Qy — R™ yield
that there exist finite numbers oy, 77 and 0 < 3 < §; such that 0 < og <o < T} < T, and
(=r(0,8)) — $(=7(6, 8))| < & and |f(o, b, 9(=7(0,0))) — £(6, 6, $(~7(6, )] < 2o
for o € [09,T1] and ¥ € Bo($; d3). Note that if 6 > 0, then oy can be selected so that
0<og<o.
For a fixed o € [0, T3] and for a function ¢ € W* we define the notation

. (s — o), s€lo—rol,
Pls) = { 22(0), s> 0.

The new variable y(t) = z(t) — ¢(t) transforms Eq. (3.1) to
y(t) = f<t7 Y + Gyt — 7(Lye + @) + @t — 7(t ye + th))>> t=>o.

We define the constants K := |f(d,9,¢(—7(5,9)))| + €0, 0 = %, G =90, a =

ndl T —gn B
oo + mln{K,Tl 00: (5], 15 and the set

E .= {y € O(lo — r,a],R™): y(s) =0 for s € [o — r,0] and |y(s)| < 3 for s € [0, a]}.

Then for y € E, ¢ € By1x($; 0), s € [0,a] and 6 € [—r, 0] we have

ly(s+0) +@(s+0) —a0)] < [y(s+0)+[p(s+0) —@(0) + [p(0) — 4(6)]
< B+sl@re +4
< B4 s(lie + 1o — Plie) +6
< 03,



and hence |ys + ¢s — ¢|c < d3. Consequently, ys + @5 € Bo(¢; d3) C Q4, and so

(ys + 955)(_7—(57 Ys + (;55)) S BR” (@(_T(é—7 @))7 52)

and
(b + Gyt =l + @) + @t = Tty + @) | < K

fory € B, ¢ € Byyr=(p; 6) and s € [0, a].
Now, it is easy to show that the operator T'(-, o, ) defined by

0, telo—rol,

T(y,0.9)(t) := { I f<5, Ys + P, yY(s — 7(5,ys + Ps)) + P(s — 7(s,ys + 953))) ds

for t € [0, a] maps the closed bounded convex set E into £. Then the Schauder fixed
point theorem provides the existence of the fixed point y of T'(-,0,¢), i.e., a solution
x(t) = y(t) + @(t) of the IVP (3.1)-(3.2) on [0 — r, ). This concludes the existence of the
solution in part (i). The uniqueness of the solution corresponding to a fixed parameter
(0,p) € P will follow from (3.4) with ¢ = & and ¢ = @. So for the rest of the proof now
x(t, o, @) will denote any fixed solution of the IVP (3.1)-(3.2) corresponding to parameter
(0,9) € P.
To prove (ii) define the sets

My = {0 € Bo(@: 05) "W il < max{| @l + 6, K} }

and My = Bgn($(—7(6,8)); 62). Then My C Be(p; d3) C Bo(p; 81) € € and the
Arzela-Ascoli Theorem yields that M; is compact in C'. The proof of part (i) implies that
M, and M, satisfy (ii).

To prove the first part of (iii), let (o, ) € P. Then by part (ii) and by the definition

of K we have
|:t(t70-7 90)| = |f(t,:L‘t(',O', 90)717@ - T(t,IL‘t(~,O', 90)))70-7 @))' < K7 le [0-7 a]7

[plwree < [Blwree + [0 = Glwre < [@lwre + 6, and

t
lz(t,0,0)] < |90(0)|+/ |f(s,25(-,0,0),2(s = 7(s,25(-,0,0))), 0,¢))| ds
< |90|0+K04
< |Qlwre + 0 + Ka, teloal



So z4(-,0,0) € WH™ for all (0,0) € P and t € [o,a], and (3.3) holds with N :=
max{ K, |p|lwre + 9§ + Ka}.

Finally, to prove (3.4) let (o,¢),(d,p) € P, and for a shorter notation let z(t) :=
x(t,o,0), T(t) = z(t,0,9), u(s) := s — 7(s,z,) and u(s) := s — 7(s,Ts). Then

z(t) = ¢(0) +/ f(s,xs,x(u(s))) ds, t € [o,q]

and

z(t) = ¢(0) +[ f(s,zs, z(u(s))) ds, t€lo,al

Suppose that @ > 0. (The opposite case is identical.) Then

o) =0 = 90 =GO+ [ (Flosmauls)) = Fs, 72, 7(a(5)) s
+ /U f(s,xs, x(u(s))) ds, t €la,al.

Hence, using part (ii), assumption (A1) (ii) and the definition of K, we get

t

()~ 2(0)] < 190) = 2O + [ La(jos ~ilo + folu(s) ~2(a(s))| s + Klo — o] (35

o

for t € [7,a]. The Mean Value Theorem, (3.3), part (ii) and assumption (A2) (ii) yield

[z(u(s)) —z(uls))] < [z(uls)) — x(uls))| + |z(als)) — z(uls))|
< Nlu(s) —u(s)| + |z(a(s)) — z(u(s))|
= Nlr(s,z5) = 7(s,25)| + |2(u(s)) — z(u(s))|
< (NLy+1)|xs — Z4le, s € [0, aql. (3.6)

Introduce the constants
No:=NLy+2,  Nj:=elhoe (3.7)

Then combining (3.5) and (3.6) together with the definition of Ny we obtain
t

2 (t) — T(t)] < ]gp—gb\w1,oo+K]0—6|+/ LiNolwy — Tsleds,  te[o,a].  (3.8)

[
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Next we estimate |25 — Z5|¢. Let 6 € [—r,0] N [0 — 7,0]. Then

+

g+0
l[ F(s, 25, 2(u(s))) ds — 3(6)
9(0) = F(B)] + K (5 +6— o)
9(0) = 3(0)] + |5(0) — 3(8)] + Ko — 5
o — Plwie + (Plwre + K)o — ]
o = Plwse + (N + K)o — o]

lz(c+6)—z(c+0) = ‘(,0(0)

IA

(
(

IA A

IN

Now let § € [—r,0] N (—o0,0 — 7). Then

(@ +0) —2(@+0)] = [p(@+0—0)—p0)]
(0 +0 —0) —p(0)| + |0(0) — @(0)]
lplwrelo — o] + | — @l

IA A

IN

Nlo = 5] + ¢ — Plwie.

Therefore |x5; — 5| < | — @|wr~ + (N + K)|o — 7], and so (3.8) implies

t

lz(t) — z(t)| < | — @lwre + (N + K)|o — o] —|—/ LiNo|zs — Zs|c ds, telo,al.
Employing Lemma 2.1 we get
[z(t) —2(t)] < (lp = @lwre + (N + K)o —a|)N1, L €]o,0], (3.9)

where N is defined by (3.7). For t € [7, o] relations (3.6), (3.7) and (3.9) and assumption
(A1) (ii) yield

@(t) =30 = [F(twea(®) = F(tma ()
L (| = @lo + fe(u(t)) - 2(a(t)))

Ly No|xy — Tl o

< LiNymax{l, N + K} Ni(|lo — 7| + |¢ — @|w1r.=),

IA

IN

hence (3.4) holds with L = max{1, N + K} Ny max{1, L Ny}. d
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Let (6,¢) € 11 be fixed, and let 0g, v, § and P be given by Theorem 3.1. We introduce

the following set:
H:={(t,o0,0) ER* x Wh>®: (0,0) € P, t € [0,0]}. (3.10)

Theorem 3.1 has the following corollary.

Corollary 3.2 Let (6,¢) € II be fized, and let oy, and § be given by Theorem 3.1, and
let H be defined by (3.10). Then there exists L* > 0 such that

|2(,0,0) — i, 0, 9)le < L7 ([t = t] + |0 — 7] + | — @lwree)
for (t,o,0), (t,0,p) € H.

Proof Let (¢,0,¢),(t,0,p) € H, and suppose & > o. (The opposite case is similar.)
Then t,t € [0,a] and t € [max{7, o}, a], therefore Theorem 3.1 yields
|xt('7 g, ()0) - xf('a o, @>|C
S ’xt('> g, ) xf('a g, 90)|C + ‘xt_('a g, (70) - .CE{(', 5a @)‘C
< NE— 1+ Lo — 3] + |p — Plwe).

Hence the statement follows with L* = max{N, L}. O

The following result is obvious.

Remark 3.3 Suppose the conditions of Theorem 3.1 hold, P and o are defined by The-

orem 3.1, and let

P = {(0',90> e P: QOGCq’ @(0_):f(0,90,§0<0'—7'(0,<,0))>}, (3'11>

Then for all parameter values (o, ) € P the corresponding solution x(t, o, ) is continu-

ously differentiable wrt t fort € [o —r, a].
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4 Differentiability wrt the initial function

In this section we study the differentiability of the solution z(¢, o, ¢) of the IVP (3.1)-(3.2)
wrt ¢. The differentiability of (¢, o, ¢) wrt o will be discussed in Section 5.
Throughout the rest of the manuscript we will use the following notations. The pa-
rameters (0,¢) € II are fixed, and the constants 6 > 0,0 < oy < dand 6 < a < T
are defined by Theorem 3.1, and let P := [0g, @) X By (; 0). The sets M; C C' and
M, C R™ are defined by Theorem 3.1 (ii), Ly = Lq(a, My, Ms) and Ly = Lo(a, M;) denote
the corresponding Lipschitz constants from (A1) (ii) and (A2) (ii), respectively, and the
constants N = N(«,00,d) and L = L(«, 0¢,0) are defined by Theorem 3.1 (iii).

The proof of our differentiability results will be based on the following lemmas.

Lemma 4.1 Let x € W'*°([o — r,a],R"), and let wy, € (0,00) (k € N) be a sequence
satisfying w, — 0 as k — oo. Let ¢ > 0, A(e) be defined by (2.7), and u,u* € A(e) be
such that
Ju* — Ule(jo,0]R) < W, k € N. (4.1)
Then N
lim i/ l2(uF(s)) — 2 (u(s)) — @(u(s))(u"(s) — u(s))|ds = 0. (4.2)

k—oo Wy

Proof Simple manipulations, (4.1) and Fubini’s theorem yield

/a [2(u(s)) — 2(u(s)) — @(uls))(u"(s) — u(s))| ds

_ /Ua /uuk(8)<jc(v)—m'(u(s)))dv‘ds

(s)
= [1[ () 00 - ) = sttt 6) ~ ulsas

0
« 1
< Iuk—u!cua,am)/ /0

< W /01 /qa :t(u(s)+u(uk(s) —u(s))> - '(u(s))’dsdy.

It follows from Lemma 2.2 that for every v € [0, 1]

i (u(s) + v(u'(s) — u(s))) = i(u(s))

hence we conclude (4.2) by using the Lebesgue’s Dominated Convergence Theorem.

ds

i(u(s) +u(ub(s) — u(s))) - j:(u(s))’ dv ds

o
lim
k—o0 o

ds =0,

g
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We introduce the notations

wf(tv w7 ’l_L, w7 u) = f(tv w7 U)—f(t, r&? ﬁ) _DZf(tv 1;7 ﬂ)(w_&) _D3f(t7 1;7 ﬂ)(u—ﬂ) (43>

and

WT(t_7 QZa t ¢) = T(ta 77Z)) - T(t_a ¢) - DlT(tv 77E)<t - E) - DQT(t7 1/_))(1# - @Z_)) (44>

for t,t € [0,T], ¥,v € Q; and 4, u € Q.

Lemma 4.2 Suppose (A1) (i)-(iii), (A2) (i)-(iii). Let P and o > 0 be defined by The-
orem 3.1, let (o,p) € P be fized, and (o1,¢") € P (k € N) be a sequence satisfying
lox — | + |¢* — plwre — 0 as k — oco. Let x(t) := z(t,0,¢) and 2*(t) := x(t, op, ©F).
Then

1 o
lim / |w (s,xs,x(s—T(s,ms)),$§,xk(s—7(s, xf)))| ds =0
k—o0 ‘O'k - U‘ + ‘Sok - SO‘WLOO max{o,01 } d
(4.5)
and . N
lim - / |w. (s, 24,5, 2%)| ds = 0. (4.6)
k=00 ’Uk - O| + |<P - S0|W1’°° max{o,0 }

Proof It follows from the definition of w; that

wpt, 0,1, 0,u) = /0 (Do 0.5+ 0w = D).+ vl — ) = Daf(05.)) 5 — )
+(Daf (4.5 + v = 0), 7+ vlu — ) = Daf(t,,) ) (u — @) |,

therefore
|wi(t, ¥, 1, ¢, u)|
< swp (| Daf (1,0 + vl = 0). i+ v(u =) = Daf (1.0 0)|, e =l
+ D3f(t7775 + V(¢ - 77Z_))7ﬂ + V(U - ﬂ)) - D3f(tazzaa)’|u - ﬂ|> (47>

for t € [0,T), 1, € Q; and 4, u € . Define

Qf<€) = sup{max(!Dgf(t,w,u) - D2f<t71;7ﬂ)|ﬁ(C,R")7 |D3f<t7 Wu) - D3f(t7 ";7?])') :
W—?/NJ‘C‘F |U—7:L| S g, te [O'(),O(], 2/171; € M17 u,ﬂe M2}
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Note that €2 is well-defined and Qs(¢) — 0 as ¢ — 0, since M; and M, are compact, and
Dy f and Dsf are continuous and, therefore, uniformly continuous on [og, a] X My x Ms.

By our assumptions and Theorem 3.1 we have
zy, ¥ € My, x(t —7(t,xp)), 2"t — 7(t,2¥)) € My,
and
|2 =z} [wre < L(log — o] + 0" — plwiee)
for t € [max{o, o}, @], k € N. Then the definitions of Ly, L and N and the Mean Value
Theorem yield
jw(t = 7(t,20)) — &"(t = 7(t, 7))

< ot —7(t @) — et — 7t @) + ot — 7(t, 7)) — 2" (t — 7(t,27))|

< N7t @) = 7(t27)| + L(low — o] + 10" = @lwre)

< NLs|z, — afle + L(lox — o] + 0" = ¢lwi=)

< (NLy+1)L(log — o] + |¢" — ¢lwiec) (4.8)
for t € [0, a] and k € N. Then (3.7), (4.7), (4.8) and the definition of Qf imply

/a \wr(s, s, (s — 7(s,24)), o* 2k (s — 7(s,2%)))| ds

max{o,o }

< ay(NoL(lox = o] +1¢* = glwr) ) NoL(low — | + " = olwoe),

which proves (4.5), since Qy (NOL(|0;C — o]+ | — <p|W1,oo)> — 0 as k — oo.
Define
(z) = sup{max(|IDir(t, ) = Dir(E, )], |Dar(t, ¥) = Dor(F, D)lccem )
t— 7| + [ — Do <e, t,T€ [oo,al, ¢,1Z6M1}. (4.9)
Similarly to (4.7) we can obtain

wrlf, 0t 0)| < sup (|Dar(@4 wlt = 1), 6+ v( = 6) = Dyr(@, D)1t ~ 1

O<r<1

+ |Darlf 4 vt = 0,0+ =) = Dor(E.0)] [0 = dle). (410)
for £,t € [0,T] and 1,v € ;. Then it is easy to see that
|  Jorlo 2 ds S 0 (Lo o+ 16—l llow o1+ g ).
max{o,o%
which, together with the assumed continuity of D;7 and Da7, implies (4.6). d
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Let o := min{o + r,a}. We introduce a certain class of functions
X(o,a) = {x e WE([o — r,a],R"): zs € O, a(t — 7(t,2,)) € Qs for t € [0, 0],

d
and essinf {

=Tt m): ae teo a;]} >0}, (4.11)

The next lemma shows that if a solution z(t) := z(t,d,¢) of the IVP (3.1)-(3.2)
belongs to X (o, a), then there exists a small neighborhood P, of the parameters (d,¢)
so that all solutions which correspond to parameters from P; will belong to X (o, a), as
well. The next result is a generalization of Lemma 5.2 of [10] for the case when o varies,

and here assuming less smoothness of 7 wrt its second argument.

Lemma 4.3 Suppose (A2) (i)-(iii), (6,¢) € 11, and let the constants 6 >0, 0 < oy < &
and 6 < a < T and the set P be defined by Theorem 3.1, and let z(t) := xz(t,0,9) for
t €0 —r,al. Suppose & € X(6,a). Then there exist v* > 0 and 0 < 6* < § such that for

P = ([Oo, a)N (G =6+ 7")) X Byoe (5 07)

we have

z(-,0,0) € X(0,q), (o,p) € Py.

Proof Let x(t) := z(t,0,¢) for (5,¢) € P and t € [0,a]. We have 4(t — 7(t,z;)) =

1— %T(t, x;), therefore x € X (o, «) is equivalent to that there exists £ > 0 such that
d *
ET(t,xt) <1-—¢, a.e. t € [o,a}]. (4.12)

Let L3 := max{|Dy7(s,¢)|: s € [09,a], ¥ € M;}. Then the definitions of L,, L3 and N
yield

It 21) = 7t wi)| < [r(t @) = 7(8 2| + |7(8 20) = 78 22)| < (Ls + LaN)|t — 1],

for t,t € [0, a], hence t — 7(t, ;) is Lipschitz-continuous, and so it is almost everywhere
differentiable on [0, a]. To prove (4.12), it is enough to argue that there exist v* > 0,
0 < ¢* <6 and € > 0 such that for every o € [0g,a) N (6 —v*, 6 + %), ¢ € By (p; 0%)
and a.e. t € (0, ) there exists n = n(o, ¢,t) > 0 such that

T(t + hv :Bt-ﬁ-h) - T(ta xt)
h

<1l-—c¢, 0<|h|<n. (4.13)
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Since & € X (6, ), there exists e; > 0 such that 47(¢,2,) <1 — ¢, for a.e. t € [6,a}], so

for a.e. t € (6,a}) there exists n; = n;(t) > 0 such that

T(t + h, Zi't_t,_h) — T(t, jft)
h

<1—e¢y, 0 < |h] <m. (4.14)

Using the definition of w, introduced in (4.4) we get for t € (7, )

F R dn) — T(t2) 1 ) o . 1 ) )
T( xt+}lz) T< xt) = E<D17—(t7$t)h+D27_(taxt)(mt—i-h_xt)) +Ew7(t,$t,t+h, SEH_h),

and %wT(t,i"t,t + h,Z4yn) — 0 as h — 0, since |Tyyp — T4l — 0 as h — 0, and 7 is
Fréchet-differentiable at (¢,2;) by (A2) (iii). Therefore for every 0 < g5 < &; and a.e.
t € (0,0a) there exists ny = na(e2,t) such that 0 < ny < n; and

1
- <D17'(t, #)h + Dot (t, &) (G — ;et)) <l-e,  0<]|h| < (4.15)

We will distinguish three cases.

Case (i): Suppose 0 > &. Then for t € (0,a%) there exists 0 < 73 < 7, such that
t+h € (0,0%), and SO Ty, Tyip, Ty, Teyp are all defined, for |h| < ns. For t € (0,a) and
0 < |h| < n3 consider

T(t+ h, zeon) — 7(t, x¢)

(DlT(ta l’t)h + D27<t7 xt)<xt+h - l’t) + wr(t, T, T+ h, 5Ut+h)>

(Dlr(t, #)h + Dot (t, &) (o — azt)>

+ ST

(Dur(t, ) = Dur(t,20)) + 3 (Dor(t, ) = Dor(t,20)) (e — )

1 1
+ED27_<t, .flAft) (xt+h — jt-‘y—h — Tt ‘I— it) + Ew7—<t, Ty, t + h, It-}—h)' (416)

We have |z; — Z¢|lwie < L(|lo — 6| + | — ¢|lwr=) from (3.4). Using the definition of 2,
(see (4.9)), the Mean Value Theorem, (3.3) and (4.10), we obtain

1 . . . .
]— (Dr(t,20) = Dor(t, 50) ) (@ — 20)| < Q0 (Lllo = 61+ | = Blus) ) il zoiorapn

h

< (Lo = 5]+ lp = plun=) )N
— 0, as 0 — o+ and |p — @y — 0.

(4.17)
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Similarly, for ¢ € (o, aZ)

]le(t, ) — Dir(t, &)

< (L(lo = 6] +1p = Plwix) ) = 0, (4.18)

as 0 — 0+ and | — @l — 0. By employing the Mean Value Theorem and (3.4) we
find for t € (0,a) and |h| < n3 that

— Ry — A < i — 2|
Tiph — Lpph — Tt + Tt < UIQ%XOJ% T¢| oo B
< R/ o |h
< max |o — Belwie|hl
< L(lo = o]+ ¢ — plwree)|B]. (4.19)

Therefore for ¢t € (o, ) and 0 < |h| < 73
1
ED2T(t’ flAft) (.Tt+h — .fIAjH_h — Ty + .f?ft) — O, as 0 — 0+ and |g0 — Qbywl,oo — O, (420)

since |Do7(t, &) | ccr) < Lo for t € [6,a].
Finally, with the help of (4.10) and (3.3), we get for t € (0,a) and |h| < 93

1 1
m’wr(twt;t +h, )| < WQT(W + @een — zelc)(|b] + |wern — 24lc)
< Qu((1+ MR+ N)
— 0, as |h| — 0. (4.21)

Therefore, combining relations (4.17)—(4.21) with (4.15) and (4.16) yields that for every
0 < €3 < &9 there exists 0 < §; < § and 0 < 73 < a — & such that for every o € [6,5 + 71)
and ¢ € Byi(p; 01), and for a.e. ¢t € (0,a) there exist 0 < 1y < n3 such that (4.13)
holds with ¢ = €3 and n = 4.

Case (ii): Suppose 0 < ¢ and t € (6,c%). Then again x;, xyip, &y and Ty, are all
defined for small h, therefore the argument of Case (i) can be repeated, and we get
that for every 0 < g4 < €3, there exist 0 < 03 < d and 0 < 75 < 77 such that for
o € [og,a) N (6 — 79,0 +72) and a.e. t € (7,a3) there exists 0 < 75 < 7y such that (4.13)
holds with * = ¢4 and n = 5.

Case (iii): Suppose o < ¢ and t € (0,0), and let oy be such that oy € (6,a}). Then
let 0 < ng < 15 be such that t + h € (0,6) and o1 + h € (6, }) for |h| < ng. Then for
0 < [h| <ne

T(t + ha xt-i—h) — T(ta xt) _ T(Ul + h, -’i'm-i-h) — 7_(Ula i'm)
h B h
+T(t + h,xiin) — 7(01 + hy Toyn) — T(E 0) + 7(01, Ty )

h
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Since o1 € (6, ), by (4.14) we know that o; can be selected so that oy is arbitrary close

to &, and
T<01 + h7 ‘%01+h) - T<017 erl)
h

Using the definition of w, we get

<1 —egy, |h] < ng. (4.22)

T(t + h, xt+h> B T<t7 xt) — T(Ul + h, t%UlJrh) + 7'(0'1, 3%01)

h
- %(Dlr(t, Ty)h + Dot (t, 2¢) (Tegn — xt))
—% (Dlr(al, Toy )b+ Da7(01, Zoy ) (o)1 — 5501))
+%w7(t, Tyt + hyxen) — %WT(Uh Ty, 01+ My Toy1n)
= %(Dﬂ'(t, Ty) — Dﬁ'(ﬁ@m))h
—i—% <D27(t, 1) — Dot (071, i"al)> (Zor+n — Toy)

1
+ED27-(t, xy) (acHh —xy — (Toyon — xgl)>

1 . N
+ED27—(t7 xt) <x01+h — Loy — ($01+h - xm))

1 1 . .
+Ew7(ta T, b+ ha xt-&—h) - EWT(OI, Loy, 01+ h, x(n-l—h)-

Therefore using |t — 01| < |0 — 01|, |Zoy1n — Ty |c < NJh|, (4.19), and the estimates
22— il < 21— Zonlc + o — Fnle < Nlo = ou] + Lo — 8]+ o — Glwr)
and

[T th = Foren = (T, = o)l < max [z, = Blwre bl < L(lo = 6] + o — Gl I,

and the definitions of Ls, €., we obtain

T(t + h7 xt+h) B T(ta xt) — T(Ul + h'7 idl‘f‘h) + 7—(0-17 3%01)
h
< O (max{N, L}2lo = 1| + | = lun) ) (1+ V)

1 . .
g Do) (20— 70 = v = 0))) | + Lol = &1 + 1o = Bhwn)
20, ((1+ N)R)(1 + N). (4.23)
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We show that the second term on the right-hand-side of (4.23) also goes to 0 as h — 0,
o — ¢ and 07 — 0+. Since Do7(t,z;) € L(C,R), it can be represented by a Riemann-
Stieltjes integral, i.e., for each ¢ € [0, o] there exists a function p(t,-): [—r,0] — R>™ of

bounded variation such that
0
Dot (t, xy)1) = / dop(t,0)(0), vel, teloal

Then

1

W‘D27—<t> ) <wt+h — 2t — (Toy4n — xal)> ‘

- %‘/j dop(t,0) (/t+9+ha's(u) du — /Cr01+9+ha':(u) du)‘

_ }/_ deu(t,e)/o(:’c(t+0+z/h)—i‘(01+6+uh))du‘

— 0, asoc—0— andoy —0+. (4.24)

The last relation holds, since the function
1
G (6) = / (i(t + 0+ vh) — (o1 + 0+ vh)) du
0

is continuous on [—r, 0], and for every fixed § € [—r,0] Lemma 2.2 implies |g; 5, 1(0)] <
fol |z(t + 0 + vh) — &(oy + 0 + vh)|dv — 0 as ¢ — 6— (and hence t — 6—) and
o1 — 0+, therefore the Dominated Convergence Theorem for Lebesgue-Stieltjes integrals
yields (4.24).

Therefore, combining (4.22), (4.23) and the above relation, we get that for every
0 < € < g4 thereexist 0 < 0* < §3 and 0 < v* < 7y, such that for o € [0y, a)N(G—~*, 5+7%)
and ¢ € By (@; 6°) (4.13) holds, and therefore the lemma is established. O

If z(t) = z(t,0,¢) is a solution of the IVP (3.1)-(3.2) for (o,¢) € P, then z is, in
general, only a Wh*°-function on the interval [0 —r, o], but it is continuously differentiable
for t > 0. Therefore Lemma 2.2 yields that if z € X (o, «), then the composite function
&(t — 7(t,z¢)) is defined for a.e. t € [0,aZ], it is integrable on [0, o], and it is always

well-defined and continuous for ¢ € (o, a], where o := min{c + r, a}.
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For a.e. t € [0,a] and for any € X (o, a) we introduce the linear operator L(t,x):
C — R" by

L(t, $)¢ = DZf(tv Ty, x(t - T(t7 ft)))f/f
A Daf(t s, a(t — (1, 2))) (—o'c(t —(t, 1)) Dot (t, )t + (7 (t, xt))> (4.25)

for ¢ € C'. We have
Lt )l < m@llo,  ae. te [oal,
where

m(t) = [Dao(t, s, x(t — 7(t,2¢)))|ccrr)
+| D3 f(t, z, 2(t — 7(t,21)))] <|5C(t — 7(t, 2))|| D27 (t, 24) | (o r) + 1)

for a.e. t € [0,a]. Note that Lemma 2.2 implies m € L!([o,a],R). Hence L(t,z) is a
bounded linear operator for all ¢ for which &(t — 7(¢,z;)) exists. Moreover, if for some
(0,¢) € P the function z(t) = x(t, 0, ) is the solution of the IVP (3.1)-(3.2), then

m(t) < Ly N, a.e. t € [o,ql, (4.26)

where Nj is defined by (3.7).
Let P, be defined by Lemma 4.3. Then for (o,¢) € P; we define the variational

equation associated to z = x(-, 0, ) as

2(t) = L(t,z)z, a.e. t € [o,q], (4.27)
2(t) = h(t—o), telo—rol, (4.28)

where the initial function is h € C. The IVP (4.27)-(4.28) is a Carathéodory type linear
delay equation. By its solution we mean a continuous function z : [0 — 7, «| which is
absolutely continuous on [0, a], and it satisfies (4.27) for a.e. t € [0, and (4.28) for
all t € [0 —r,0]. A standard argument ([3], [5]) shows that the IVP (4.27)-(4.28) has a
unique solution z(t) = z(t, 0, ¢, h) for (o,p) € Py and t € [0 — r, .

Lemma 4.4 Assume (A1) (i)-(ii1), (A2) (i)-(iii). Let P, be defined by Lemma 4.3,
(0,p) € P1, and z(t) = x(t,0,¢) fort € [0 —r,a]. Let h € C and let z(t,0,p, h) be the
corresponding solution of the IVP (4.27)-(4.28) on [0 — r,al. Then
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(i) z(t,o,¢,-) € LIC,R"), the map C — C, h— z/(-,0,p,h) is in L(C,C), and
|2(t, 0,0, )leerny < 20,0, )leeoy < N1, (009) € Py t€o,a], (4.29)
where Ny is defined by (3.7);
(i1) there exists Ny > 0 such that
|2¢(-, 0,0, )| cwtoe ey < Ny, (o,p) € Py, t € o,ql. (4.30)

Proof (i) The linearity of z(¢, 0, p,-) is obvious. To show the boundedness fix h € C,
and for simplicity let z(t) := z(t, 0, ¢, h). Then integrating (4.27) we get

2(t) = h(0) +/ L(s,x)zsds, t € o, al.

Hence (4.26) yields

t
|z(t)] < |h|c+/ LiNy|zs|c ds, t € o, al,

o

but then (4.29) follows from Lemma 2.1 with N; defined by (3.7).

To prove (ii) fix h € W' and note that for 2(t) = 2(¢,0,,h) we have 2(t) =
L(t,z)z for a.e. t € [0, al, therefore (4.26) and part (i) give |2(t)| < Ly NoNi|h|c for a.e.
t € [o,a]. On the other hand, |2(t)| < |h|lyr~ for a.e. t € [0 — r, 0], and since N; > 1,
Ny := max{Ny, Ly NgN, } satisfies (4.30). O

The following estimate will be used in the proof of the next lemma.

Lemma 4.5 Assume (A1) (i)-(iii), (A2) (i)-(iii). Let Py be defined by Lemma 4.3,
(Jk’gpk)7 (0’, 90) S Pl; xk(s) = .I(S,Uk?gOk), LE(S) = fL’(S,O’, ()0)7 uk(s) =S5 T(S,SL’];) and
u(s) :=s—1(s,xs). Then

|L(s, 2" — L(s,x)1| < NoQy (NOL(\Uk — ol + |¢* - 90|W1*°°)> [V|c

LI NQ, (L(yak — ol + |¢" - 90|W17°°)) Yle

+LiLaL(jok — 0| + " = plwr)[¢]c

Ly Lai(u(5)) = au(s)) |l

FLaf(=7(s,28) = ¥(=r(s,2.))
where vy, := max{c, ox} and Ny is defined by (3.7).

, s € [y, al, (4.31)
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Proof Let ¢ € C be fixed. Then (4.25) and standard manipulations imply

L(s, %)y — L(s, z)1
- Dgf(S,ZL‘S,LE (uk(s ))¢ - D2f<3 Ts, T (U(S) )¢
<D3f( s, 2% 2" (uF(s))) — Dsf(s, zs x(u(s ))( ¥ ))Da7(s xk)w)
(

+Dsf(s,xs, x(u(s *(u(s)) + 2 (uF(s) )DQT

(
N (- )
Dy f (s, 5, 2(u(5)) (—i(u(s)) + (u(s))) ) Dar(s, 2
+Dsf (s, a0, (u(s))) (—i(u ><D2T s,2%) = Dyr(s, xs>)
+(Daf (s, 2k, 2 (u())) = Daf (5,20 2(u(s))) (=7 (s, b))
Dy (5, 20, 2(u(s)) (W(—7(5,28)) = U(=7(5.2.)) ), s € [al. (432)
We have by (3.4), (3.6) and (3.7) for s € [, a
2 = 2lo + 25 (W (5)) = 2(u(s)] £ Nolek = zilo < NoL(Jow = o] + |¢* = gln).
Therefore, using (3.3), (4.29) and the definitions of Ly, L, € and Q,, we get from (4.32)

Lis,ab) = Lis.a)el = @ (NoL(lox = ol + 6" = plun) ) Ule
+Qf (N()L(|O'k — 0'| + |90k — g0|W1,oo)>NL2|1/}|C

+L1LoL(loy, — o] + |¢" — @lwre) [¥]c
+Ly Ly |i(u"(s)) — @(u(s))

+LNQ, (L(|ak — |+ |p" - 90|le°°)> Yl
—|—Qf (N(]L(’O'k — 0" + ‘Spk - 90|W17°°)> |¢‘C

U(=7(s,27)) = ¥(=7(s, )

+L1 s € [Vk7a]7

which implies (4.31). O

Next we show that the linear operators z(t, o, ¢,-) and z(+, 0, ¢, ) are continuous in

t, o and ¢, assuming that (o, ) belongs to P;.
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Lemma 4.6 Assume (A1) (i)-(iii), (A2) (i)-(iii). Let Py be defined by Lemma 4.3, and
Hy :={(t,o,9): (0,p) € P, t € [0,a]}, (4.33)

let (0,¢) € P1, and x(t) := x(t,0,¢) fort € [c —r,al. Let h € W and let z(t, 0, p, h)
be the corresponding solution of the IVP (4.27)-(4.28) on [0 — r,a]. Then the maps

R?2 x Wh>* > H, — L’(Wl’oo,R”), (t,0,¢0) — z(t,0,p,")

and
R? x Wh® > Hy — LOWE®.C), (t,0,0) — z(-,0,¢,-)

are continuous.

Proof Let (0,p) € Py be fixed, and let (o4, ¢*) € P (k € N) be a sequence such
that |0y — o| + |¢* — ¢|wi~ — 0 as k — oo. We introduce the short notations
i (t) = x(t, o, 08), 2(t) == x(t,0,0), uk(t) ==t — 7(t,2F), u(t) ==t — 7(t,3y), 2*(t) ==
2(t, o, %, h) and z(t) := 2(t, 0, p, h) for a fixed h € W, The functions z and z* satisfy

() = h(0)+/ L(s,2*)2F ds, t € ok, o,

k

2(t) = h(O)—i—/ L(s,x)zsds, t € o, al.

Suppose first ¢ < g;. Then
ok t
) —2(t) = —/ L(s,x)zsds +/ <L(s,ar;k)ziC — L(s,:r:)zs)ds, t € ok, a.
o Ok
On the other hand, if o > oy, we get

() — 2(t) = /U L(s,2%) 2" ds + /t (L(s, o) 2F — L(s, x)zs>ds, t€lo,al

ok o

Therefore in both cases (4.26) and (4.29) yield for ¢ € [max{c, o}, a]

L(s, %) (2F — 25) + (L(s,2") — L(s, x))z| ds,
(4.34)

t
25 (8) — 2(8)] < |ow — 0| LuNo N1 Bl + /
Vg

where v, := max{o, 0, }. Then Lemma 4.5, (4.29) and
[2(u"(s) = 2(u(s))| < Nofu"(s) —u(s)| < NaLofag — sl < NaLaL(|o — o] +[¢" — plwi)
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imply

¢
|25 (t) — 2(2)| < Ag|h|wre +/ LiNo|2F — 2| ¢ ds, t € v, al, (4.35)

Vg

where Aj, is defined by
Ak = (1 -+ L1N0N1 + aLlLQLNl + OéLlNQLQL)(‘O'k - O" + ’(,Ok - QO’WLOO)
+04N0N1Qf <N0L(’O’k - O'| + ’QOk - gO’WLoo)>

+a Ly NN, Q, (L(|O‘k — o+ |p* — gp\wl,m))

AN / " (s)) — (u(s))| ds.

Next we estimate |z} — z,,|c. Let 6 € [—r,0] N [min{c, 0} — 4,0]. Suppose first that
or < 0. Then (4.26) and (4.29) imply

Vk+9
|25 +0) — 2 +0)| = ’h(O) + / L(s,2")2"ds — h(v, + 0 — o)
Ok

|h(0) - h(l/k + 0 — O')| + LlNoNl‘h|C(Vk + 0 — O'k)
S ’h’wl,oo(l—FLlNoNl)’Uk—U‘.

IN

In the opposite case when oy > o we get for § € [—r, 0] N [min{o, 0%} — vy, 0]
l/k+9
(e +0) — 2(v +0)] = |h(vp + 6 —0p) — h(0) — / L(s,x)zsds

S |h|W1,oo(1+L1NON1)‘O'k—O'|.

For 6 € [—r,0] N (—oo, min{o, 0} — vx] we have
|25 +0) — 2k + 0)| = |W(ve + 0 — o) — h(vp + 0 — 0)| < |h|wre|or — o]

Combining the above three cases we get
— Zuk|C S |h|W1<x>(1 + L1NON1)|O'k — O'|7

|22,

and therefore the definition of Ay implies |zl’fk — 2y, |c < Ag. Hence Lemma 2.1 is applicable
for (4.35), and it gives

125(t) — 2(1)| < |2F — 2]e < ANy |h|wres, t € [, al,
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where N; is defined by (3.7). Therefore we get for t € vy, ]

|2(t, on, ©°, ) = 2(t, 0,0, Moo gy <2105 00, 0%, ) = 20,0, 0, ) o ) < ANy
(4.36)
for all k € N. If 0, < o, then (4.36) holds for all ¢t € [0,a]. If 0 < 0} and ¢ € (o, @], then
(4.36) holds for such t for large enough k, since for large enough k the convergence of oy,
to o yields o < t for large enough k. Finally, for 0 < o4 and ¢t = ¢ (4.36) holds for all
k, since z¥ — 2, = h — h = 0. Consequently, (4.36) holds for all ¢t € [0, a] and for large
enough k.
To show that Ay — 0 as k — oo it is enough to argue that the last term in the

definition of A, tends to 0 as k — oco. If 0, < g, then v, = ¢, and so
[ttt e) —ituts)ds = [l (s)  d(u(slds » 0, koo
Vi o

by Lemma 2.2. If o, > o, then v, = oy, and for every € > 0 there exists kg such that
loy, — o| < e for all k > ko. But then for k > kqy (3.3) yields

/ |t (s)) — (u(s)] ds

o+e
< / [(uh(s)) — (u(s))| ds + / (A (3)) — (u(s))| ds

k o+e

< 2N+ /i | (u*(s5)) — @(u(s))| ds.

Lemma 2.1 yields f:+€ |&(u*(s)) — 2(u(s))|ds — 0 as k — oo, therefore
lim sup / B (s)) — i (u(s)| ds < 2N,
k—o0 vk

Since £ > 0 can be arbitrary small, we get Ay — 0 as kK — oo.

Let t € (o, a] be fixed, and let t; € [0k, a] be a sequence such that ty — t as k — oo.
Since oy, — o, there exists ko € N such that o}, < ¢ for k£ > ky. Then (4.30) and the Mean
Value Theorem yield

|Ztk<'7(7k7S0k7 ) - Zt(',O'k,QOk, ')|E(W1'°°,C) < N2|tk - t|7 k > kO-
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Combining this relation together with (4.36) and A, — 0 we get

|Z(tk7 Ok, 90k7 ) - Z(t7 g, ¢, ')|E(W1v°°7R")
< e (o ") = 20,0, ) e o)
< |Ztk(" Ok, SOk? ) - Zt('? Ok, (ka ’)’ﬂ(WL"O,C) + |zt('7 Ok, 901{7 ) - Zt('v og,y, ')|£(W1,oo,C)

< Noltg —t| + ApNy

!

0, as k — oo.

For the case t = o and o}, < o, the segment function z,(-, 0%, ¥, h) is defined, so the
previous argument works in this case, as well. For the case t = o and o, > o let ¢ > 0
be fixed, and let kg € N be such that o, < o0 + ¢ for k > ko. Let t; € [0k, @] be such that

t, — o as k — oo. Then

IA

|Z(tka Ok, Soka ) - 2(0-7 g, ¢, ')’E(leoo,R”) ’Ztk('> Ok, ka> ) - Za('a g, v, ')‘E(Wlao",C’)

IN

|Ztk('7 Ok, Sok7 ) - 20'+6('7 Ok, Sok7 ')|E(W17°°,C)
+’20+€('7 Ok, Sokv ) - ZU+€('7 g, Y, ')‘ﬁ(Wl"’o,C)
+’ZU+E('> g, P, ) - ZO’('7 g, P, ')|£(le°°,C’)

S Ngltk — 0 — €| —f-AkNl + NQS.

In this case we also get that |z(ty, ox, ", ) — 2(0,0,¢, )| v gny — 0 as k — oo, since

¢ is arbitrarily close to 0. This concludes the proof. O

Now we are ready to prove the Fréchet-differentiability of the function z(¢, 0, @) wrt
. We will denote this derivative by Dsx(t, 0, ). The next theorem shows that not only
the map Wh™ 3 ¢ — z(t,0,¢) € R™, but also the map Wh>® 3 ¢ s x4(-,0,p) € C is
differentiable. We denote the derivative of this latter map by Dszy(-, 0, ), as well.

Theorem 4.7 Assume (A1) (i)-(iii), (A2) (i)-(iii). Suppose (6,¢) € Il is such that
x(-,0,0) € X(6,a). Let Py and Hy be the sets defined by Lemma 4.3 and (4.33), respec-
tively. Then the functions

R? x Wh* > H; — R", (t,0,¢) — x(t,o,p)

and
R? x W 5 H, — C, (t,0,p) — x(-, 0,0),
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are both continuously differentiable wrt ¢, and
de(ta g, Sp)h = Z<t7 0,9, h)7 h e Wl,oo’ (t7 g, gp) € Hl? (437)

and
D3xt('70-7 gp)h: Zt(‘,O', P, h’)7 h € WLOOv (t707 ()0) € H17 (438>

where z(t, o, , h) is the solution of the IVP (4.27)-(4.28) for (t,0, ) € Hy and h € W1,

Proof Let (0,p) € P be fixed, and let h* € W' (k € N) be a sequence with
|h*|y10e — 0 as k — oo, and to simplify notation, let z*(t) := x(t,0, ¢ + h¥), x(t) =
z(t,0,0), u(s) := s — 7(s, 1), u¥(s) := s — 7(s,2%) and z(t) := z(t, 0, 0, h*). Then

() = /f WH(s)ds,  teloal
x(t) = /fs xs, x(u(s))) ds, t €lo,al,

and .
z(t) = z(0) —i—/ L(s,x)zsds, t€loal

We have 2%(c) = ¢(0) + h*(0), z(0) = ¢(0) and z(c) = h*(0), therefore

:vk(t)—as(t)—z(t):/ (f(s,xf,xk(uk(s)))—f(s,:vs,:v(u(s)))—L(s,x)zs>ds. (4.39)

The definitions of wy and L(s,x) defined in (4.3) and (4.25), respectively, and simple
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manipulations yield for s € [0, o]

f(s,2, 2" (u"(s))) = f(s, 25, 2(u(s))) — L(s, 2)2
= Daf(s, w5, x(u(s))) (2] — @

= Duf(s e x(uls))) (2} — 2, — z,)
+ Daf (3,20, w(u(s))) (2 (w5 () = 2 (s)) = 2(u(s)))
+ Dy f (s, 20, (u(s))) (2(u(5)) = 2(u(s) = i(u(s)) (w(s) — u(s)))
+ Dy f (s, 2, 2(u(s)))i(u(s)) (U (5) = uls) + Dar(s, 22k — 2,))
— Dy f(s, wy, a(u(s)))i(u(s)) Dar(s, z,) @k — @, — 2,)
+ Dyf (5,20, 2(u(s)))(2(u () — 2(u(s)))
+ wy(s, 2 x(u(s)), 28, 2 (u(s))) (4.40)

Let Ny and w, be defined by (3.7) and (4.4), respectively, then

t
2% () — 2 (t) — 2(t)] < ak—l—bk—l—ck—i—dk—i—/ LiNo|x¥ — 24 — 2| ¢ ds, t € o,al, (4.41)
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where
ap = /a wi(s, zs, w(u(s)), 2%, 2% (uF(s)))| ds, (4.42)

by = LlN/ |w- (s, 24, 5, 2%)| ds, (4.43)

e, = L /a|x(uk(s)) — z(u(s)) — @ (u(s))(u"(s) — u(s))| ds, (4.44)
and N
dy = Ll/ |2(u"(s)) — z(u(s))] ds. (4.45)

k — 2, — 25]c = 0, Lemma 2.1 is applicable for (4.41), and it yields

Since |zf —
|xk(t) —x(t) — 2(t)| < |$f —x; — zilo < (ag + by + cx + di) Ny, t € o, al,

where N is defined in (3.7). But then

2% (t) — z(t) — 2()] < lz¥ — 2, — 2|c < ap + b + ¢ + d,

N, te
7K 1.0 e T . b o, 0],

which proves both (4.37) and (4.38), since Lemmas 4.1 and 4.2 show that W — 0
w0
as k — oo, and (A2) (ii), (3.4) and (4.30) yield

d «
—|hk| b < L1N2/ |uk(s) —u(s)|ds < aL1N2L2L|hk|W1,oo — 0, ask—oo. (4.46)
Wl,oo o
The continuity of Dsx(t, 0, ) and Dsx(-, o, ) follows from Lemma 4.6. a

5 Differentiability wrt the initial time

The next theorem shows the Fréchet-differentiability of x(¢, 0, ¢) and x4(+, 0, ¢) with re-
spect to o at those parameter values which belong to the set P defined by (3.11). We will
denote these derivatives by Dyx(t, 0, ) and Doxy(-, 0, ), respectively. We recall that if

(0,¢) € P, then z(+, 0, ¢) is continuously differentiable on [0 — r, a/.

Theorem 5.1 Assume (A1) (i)-(ii1), (A2) (i)-(iii). Suppose (6,¢) € 1l is such that
x(-,0,9) € X(6,a). Let Py and Hy be the sets defined by Lemma 4.3 and (4.33), respec-
tively, let P be defined by (3.11), and let

Hy:={(t,o,9): (0,90) e PNP, tE][oal}.
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Then the functions
R? x Wh* > H; — R", (t,0,p) — x(t,0,p)

and
R? x Wb o> H, — C, (t,0,¢0) — x(-,0,¢)

are both differentiable wrt o at every point (t,o, ) € Hy. Moreover,
DQIE(f,O’, 90) :Z(t707§07_¢)7 (t,O’, 90) € Hla

and
D2$t('70’790) :Zt('ao-ﬂ%_sb)a (tang) €H1,
where z(t,0,p, —) is the solution of the IVP (4.27)-(4.28).

Proof Let (0,¢) € PLNP, and let hy € R (k € N) be a sequence satisfying hy — 0 as
k — oo and (o + hy, @) € P, for k € N. To simplify notation, let z*(t) := x(t, 0 + h, ¢),
z(t) == z(t,0,9), u(s) == s — 7(s,z,), u*(s) := s — 7(s,2%), and 2(t) := 2(¢, 0,0, —¢).
Then

oo (t) = 2F(o 4 hy) + f(s, 2% 2% (uF(s))) ds, t € o+ hg,al,

z(t) = z(a)—i—/ L(s,x)zsds, t€lo,ql.

We distinguish two cases.
(i) We assume first that hy < 0 for all £ € N. Then

2+ /fs,xs,x Ks)ds,  teloal,
and hence for ¢ € [0,
() — 2(t) — 2O = 25(0) — (o) — 2(0)
(bt 06D = s (6)) — L)z s

Then, using (4.40) with z is replaced by zshy, similarly to (4.41) we get for ¢ € [0, o

t
|:13k(t) —x(t) — z(t)hi| < ag + b + ¢ + di|hg| + ex +/ L1N0|:EIS€ — x5 — zshi|cds. (5.1)

(o
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Here ay, by and ¢, dy, are defined by formulas (4.42)—(4.45), respectively, and
er = |2¥ — 2, — zohilo.
By the definition of e, Lemma 2.1 is applicable, so it implies
l2%(t) —2(t) — 2(t)he| < |2F —2,—2hi|e < (ap+bpFer+dil b Fer) N1, t € [o,a], (5.2)

where N; is defined by (3.7). Lemmas 4.1 and 4.2 yield that

. ap + bk + C,
lim —— = 0. 5.3

Note that now (4.30) cannot be used to estimate dj, since z restricted to [0 — r, o] is not

in W1 but Lemma 2.2 yields immediately that dj, — 0 as k — oo.
Finally, we estimate e;. Suppose first that 6 € [—r, hi]. Then

2" (0 +0) —2(0+0) = 2(0 +0) | = |p(0 — i) = 2(0) = (0) (= I )| < Q[P la], (5.4)

where
Q, () := max{|p(0) — p(0)]: 0,0 € [-r,0], |0 — 0] <&}
Since ¢ € C', Qu,(e) = 0 as e — 0.
Now suppose 6 € [h,0]. Then using that (o, ) € P we get

|2*(0 +0) — 2(0 +0) — 2(0 +0)hi

= o+ [ stosatat ) ds - 500) + 0
= |e(0 - #l0) + 400+ (40 =0
e[ " s, M0 (5)) ds — 0-)(60 — )
< [(0) — 9(6) + G0 + £(6) — £(0-) I
[ (70t ) = S rlo) s
H [ (1 e(rto ) = T st o) s
< (618 + 01

+ / - Ly (le = @ole + 2" (u*(s)) = w(u(o))] ) ds

+hy,

el max_ | (s, 0(=7(0,0) = SO0 070, 0)|  (55)

o+hp<s<o
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Applying (3.3), (3.4) and (A2) (ii) we obtain

2" (" (s)) — 2 (u(0))|

< Jaf(u(s)) = 2" (u(0))] + 2" (u(0)) — x(u(0))]

< Nls—1(s,2%) — (¢ — 7(0,2,))| + L|ha|

< N(|s —o|+ |7(s,2%) = 7(s,25)| + |7(5,25) — T(5,26)| + |T(5,25) — T(0, xo)|)
+L]|hy|

< N(Jhil + Lofat = 2lo + Lo, = aole + (s, @) = 7(0,0)) + Ll

< N(Ihl + LaLlhgl + LaNlhy| +  max_|7(s,¢) = 7(o,9)]) + i,

o+hp<s<o

for s € [0 + hyg, 0 + 0]. Therefore (5.5) yields

2% (0 +0) — (0 + 0) — z(0 + 0)hy|
< |l [QQw(]th + |hp|(2L1N + LiN Ly L + Ly N? Ly + L1 L)
+ LiN max |T(87 SD) - T(Ja 90)|

o+hp<s<o

+ L max_|[(s.6,0(=7(0,0)) = f(, 0, 0(~7(0, )|

o+hp<s<o
which, together with (5.4), yields

. €L
lim — = 0.
koo ||

Therefore (5.2) and (5.3) imply that z(t, 0, ¢) and z¢(-, 0, ) are differentiable wrt o from
the left at (¢, 0, ) for all ¢t € [0, a].
(ii) Now we assume that hy, > 0 for all k£ € N. Then for t € [0 + hg, o] we have

t

z(t) = x(o + hy) + f(s,zs, x(u(s)))ds
O'+hk
and .
2(t) = z(o + hi) + / L(s,x)zsds,
O’+hk
therefore

() —x(t) — 2(Oh = 2"(0+ hi) —2(0 + hy) — 2(0 + hy)

/O:h <f(8,x’§,xk(uk(s))) — f(s,zs,x(u(s))) — L(S,x)zshk>ds.
k (5.6)
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Then similarly to (5.2) for t € [0 + hy, o] we get

l2%(t) — 2(t) — 2() | < |2F — 20 — 2hi| o < (@p +bp + G +dphp +E) N1, t € [0+ hi,al,
(5.7)
where @y, b, and &, dy are defined by formulas analogous to (4.42)(4.45), respectively,

but where ¢ in the lower limit of the integrals is replaced by o + hy, and

&k = T py, — Tovny, — Zotmhlo:
It follows from Lemmas 4.1 and 4.2 and |u*(s) — u(s)| < LoLhy, for s € [0 + hy,, a] that

_ag+ b+ 6 B

Let € > 0 be fixed, and let ky € N be such that 0 < h, < ¢ for k > ky. The definition of
dj, and (4.29) yield

«

dp = Lalﬂmvw%@>—z@@»mS+LaL%um%w»—4w@M%

< Lie2Ny|ple + Ly / |2(u"(s)) — z(u(s))] ds.

o+e
Therefore Lemma 2.2 gives dj, — 0 as k — 00, since € can be arbitrary close to 0.

Now, we estimate é;. For 6 € [—r, —hy] we have
|2%(0 + hg +0) — (0 + by, + 0) — 2(0 + hy, + 0)hy|
= [p(0) — p(hi +0) + G(hy + 0) Dy
< Qu(hg)hy.
Let 6 € [—hg,0]. Then
|2"(0 4 by +0) — x(0 + hie +0) — 2(0 + hi + 0)hy|

o+hg+0
= ‘@(0) - 90(0) - / f(S,IS,:E(u(S))) ds + S0(0_)hk . /

o e

o+hi+0
[ (5.2 2(u(s))) ds + (0=) (. + 0)

o+hp+0
L(s, x)zshy ds’

< 1e(0) = 9(0) = pl0-)01 + |- |

+ /U+hk+9 L(s,x)zshy ds
< 0(0Do+| [ (Floimaulo)) — Fo,maalu()) ds| + (BPLiNoN: e
< Qu(hg)hi, + hi, max | f(s, s, x(u(s))) — f(o, xg,m(u(a)))) + |hi|*LiNo N1 |l o

o<s<o+hy
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Combining the above estimates we get

€k

lim — =0.
k1—>I£lo hy
This relation, (5.7) and (5.8) yield the statement of the theorem. O

In general, the partial derivatives Dsf and Ds7 can be represented by Riemann-
Stieltjes integrals. Now we consider a special case of (3.1) where we assume a specific

form of Dy f(s,xs, x(s — 7(s,x5))) and Da7(s, ). Let of := min{o + r,a}. We suppose

(A1) (iv) for every (o,¢) € P there exist continuous functions Al,... A™: [o,a] — R™"
and A: [0,a] x [-r,0] — R™" and A',..., \™ € W1*([o,q], [0,7]) such that

(a) for x = x(-,0,¢) and for all ¢ € C, s € [0, ]

Dof(s,xzs,x(s — 7(s,x5)) ZAZ N(s)) + /A(S,@)Q/J(e)de,

T

(b) essinf{L(t — Xi(t)): t € [0,0%]} >0 fori=1,...,m, and
() S 141(s)| + [°, | A(5,6)] d0 < Ly for s € [s, )
(A2) (iv) for every (o,¢) € P there exist continuous functions b',... b*: [0,a] — R>",
b: [o,a] x [=r,0] — R>" and &!,... &5 € W*°([a, o, [0, r]) such that
(a) for x = x(-,0,¢) and for all Y € C, s € [0, a]
0

VA
Dar(s. 2t = S V(-5 + [ b(s,0)u(s)ds.

i

(b) essinf{L(t —&i(t)): t € [o,0z]} >0 for j=1,...,¢, and
(C)Zjl\bj \—i—f b(s,0)|df < Ly for s € [, al.

Our additional assumptions can be naturally satisfied, e.g., for equations of the form

i) = f(t,:c(t—Al(t)),...,:c(t—)\m(t)),/_ A(t,0)2(s + 0) ds,

T

x(t - %[t,x(t —EN), .t — €N, /0 b(t,0)x(s + 0) dsD).

-r
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Assuming (A1) (iv) and (A2) (iv), the operator L(t,x) defined by (4.25) has the form

m

Z A= N (1) + / A(t,0)6(0) dO + Dsf(t, 20, 2(t — 7(t, 1))

T

X (- bt — 7(t, 1)) (Zbﬂ / ’ b(t, 0)1(6) dQ) + ¢(—T(t,xt))).

'

Our assumptions and Lemma 2.2 yield that L(t, z)z; is well-defined for a.e. t € [0, o] for
a function z: [0 —r,a] — R", where z restricted to [0 —r, o] is in L>([o — r, 0], R™), and
z is continuous on [0, a]. We also have in this case that |L(t,x)zs| < L1 Ny|zs|r~ for a.e.
t € [o,a). We can extend the IVP (4.27)-(4.28) to this case by considering

2(t) = L(t,x)zs, a.e. t € [0,q] (5.9)
z(o0) = w, (5.10)
2(t) = h(t—o), a.e. t€lo—r0), (5.11)

where v € R" and h € L*. By a solution of (5.9)-(5.11) we mean a function z: [c—7r, a] —
R™, which is absolutely continuous on [0, o, and satisfies (5.9)-(5.11). It is easy to show

that (5.9)-(5.11), or equivalently, the integral equation
t
2(t) = v+/ L(s,x)zsds, t€lo,al,
z2(t) = h(t—o), a.e. t €o—r,0l.
has a unique solution z(t) = z(t,0,¢,v,h) on [0 — r,a] for all (v,h) € R™ x L*> and

(0,0) € P. On R"™ x L*® we use the norm |(v, h)|gnx e = |v| + |h|L.

Lemma 5.2 Assume (A1) (i)-(iv), (A2) (i)-(iv). Let P, and H;y be the sets defined by
Lemma 4.3 and (4.33), respectively. Then there exists N3 > 1 such that for all (o,¢) € Py
and (v,h) € R™ x L the corresponding solution z(t,o,p,v,h) of the IVP (5.9)-(5.11)
satisfies

|2(t,0,0,v,h)| < N3(|Jv| + |h|pe), t€lo—r,0al (5.12)

Moreover, the function
R? x Wb 5 H, — R", (t,0,p) — z(t,0, 0,0, h)

is continuous for all fixed (v,h) € R™ x L.
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Proof Let z(t) := z(t,0,¢,v,h) and o := min{o + r,a}. We introduce the functions

B(s) { h(s — o), s€lo—r o),

0, s € [o,al

and y(t) := z(t) — h(t) for t € [~r,a]. Then y(t) =0 for a.e. t € [0 —1r,0), y(t) = 2(t)
for ¢t € [0, a], and it satisfies

¢ t
y(t)=v —I—/ L(s,x)hsds +/ L(s,x)ysds, t€ [o,a]. (5.13)
Define w(t) := max{|y(s)|: o < s <t}. We have that h, = 0 for s > o + r, and hence

t fe% _
/ ]L(s,x)ﬁs] ds < / |L(s,x)hs|ds < 1Ly No|h|pe, t € o, al,

and assumption (A1) (iv) and (A2) (iv) imply

|L(s, x)ys| < [Z\Al H—/ |A(s, 8)|ds + |Dsf(s,zs,z(s — 7(s,x5)))]

|+/ Ib(s,0)| d6 +1)} (s)

MN

X

/N

|T(s — 7(s,25))
< (L1 + Li(NLy 4+ 1)) E)
= LiNow(s), s € [o,al,

hence (5.13) yields

t
w(t) < |v| +rLiNo|h|p< +/ Ly Noyw(s) ds, teloal
Therefore, Gronwall’s inequality gives
12(t)] = ly()| < w(t) < (Jv] + rLiNo|hlL=) Ny, t € [o,al,

where N; is defined by (3.7). Therefore, N5 := max{1,rL; Ny} N, satisfies (5.12), since
N, > 1.

To show the continuity, let (o4, ¢") € P be a sequence such that |0y — o] + |o* —
Qlwie — 0ask — oo, and let 2%(t) := x(t, o, @), 2(t) := x(t, 0,0), u(s) = s—71(s,2%),
u(s) == s — 7(s,x5), and for a fixed (v,h) € R® x L™, let 2*(t) := 2(t, o1, 0", v, h) and
2(t) == z(t,0,p,v,h), and y(t) := z(t) — h(t). Then

t
()= +/ L(s, 2" 2" ds, t € [ok, al,
Ok
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and .
z(t)=wv +/ L(s,x)zsds, t € o, al.

Therefore similarly to (4.34) we have
[25(t) = 2(0)] < low — o LiNo([v] + Al )

/V:L(s,x)(zf—zs)ds‘ +/t

where v := max{o, 0, }. An obvious modification of Lemma 4.5 and

+ (L(s,2") — L(s,2))2%|ds, t €& [w,al,

< [h(uf(s)) = h(u(s))] + ly(u®(s) — y(u(s))|
(u*(5)) = h(u(s))| + ess sup [§(t)|u*(s) — u(s)|

te(o,q]
< [h(u®(s)) = h(u(s))]
+Ly NoNs(|v] + |h|z ) Lo L(|ox — o] + | — plwie), s € [0,a]

yield

[2%(t) — 2(t)] < B(|v] + [h|z) + Ci +

¢
/ L(s,z)(2F — z,) ds‘, t € v, af, (5.14)
Vg
where
By = |0 — o|L1 Ny + aNo€Y; (NOL(|0k — 0|+ | — go\wl,oo)>N3
+al; NQ, (L(|0k —o|+ " - g0|W1,oo)>N3 + aLyLyL(|og — o] 4+ |¢" — @|wr.e) N3

#(u*(s)) — @ (u(s))

ds + aL2?NoNsLyL(lox — o] + |©" — o|wiee),

+L1L2N3/

Vk

and
cr = Ll/ |h(u*(s)) — h(u(s))| ds.

Let € > 0 be fixed. Then for large enough k& we have v, < o + ¢, so for such k

a

[B(u"(5)) = h(u(s))| ds )

+e

Cp = L1</:+g|h(u’“(s))—h(u(s))|ds+/o

< Ll(nghyLw/

o+

[B(u*(s)) = B(u(s))| ds).
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Therefore Lemma 2.2 yields that C? — 0 as k — oo, since & can be arbitrarily close to 0.
A similar argument shows that By — 0 as k — oc.
Now we consider the last term of (5.14). We have

[ nsnes =i
< i [N N0 = - e
+/t /_i\A(5,0)|\zk(s+9)—z(s—l—@)\d@ds-i—h /V:\z’“(u(s))—Z(u(S))\dS
+L1N§ [ Bl - e - (s - s

t 0 . L S »
+/Vk/rlb(s,9)llz (s+0) —2(s+0)|ddds, € [v,al. (5.15)

Using the monotonicity assumptions (Al) (iv) (b), (A2) (iv) (b) and Lemma 4.3,
we define the constants n,v;,u; € [o,a] for i = 1,...,m and j = 1,...,¢ as follows.
If u(a) < o, then let n := «, otherwise let  be the unique solution of u(n) = o. If
a — N(a) < o, then let v; := a, otherwise let v; be the unique solution of v; — \'(v;) = o.
If a—& (a) < o, then let p; := «, otherwise let u; be the unique solution of p;—&7 (p;) = o.

Then we have
u(s) <o fors e lo,n, u(s) > o for s e (n,aql, (5.16)

s—X(s) <o fors €[yl s—A(s)>o forsé€ (y,a] fori=1,...,m, (5.17)

and
s—&(s) <o fors € o, s—&(s)>0o forse (pj,a] forj=1,....0 (518)
Similarly, we define the constants ~,; and py ; as the solutions of
Yoi = N (i) = 0k, png — & (pny) = 0%, and  u(ne) = oy,

or if s — X(s) > oy, for all s € [0,a], then v; := o3 if s — X(s) < oy, for all s € [0, q],
then i == «; if s — &(s) > oy, for all s € [o,a], then g ; = 0; if s — &(s) < oy, for all

s € [0, a], then g ; == a; if u(s) > oy, for all s € [0, a], then 7, := o; and if u(s) < oy, for
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all s € [0, @, then 1, := a. Assumptions (A1) (iv) (b) and (A2) (iv) (b) and Lemma 4.3
yield that there exists a constant ¢y > 0 such that

d , d .
essinf —(t — A'(t)) > ey, essinf —(t — &(t)) > &g and essinf a(t) > &g

tefo,ax] dt tefo,or] dt tefo,at]
fori=1,...,mand j=1,...,¢. Therefore the Mean Value Theorem yields
ol — vl <lo—oxl,  eolpwy —pjl <lo—ox|  and  eofm —n| <o — oy

foralkeN,i=1,..., mand j=1,...,¢.
Fix an € > 0, and let ky € N be such that |0 —oy| < € for k > ky. Let 6 :=e/ey. Then

we have that

s—\(s) < min{o, 01}, s € [, max{vg,vi—0}) and s—\(s) > vy, s € (min{v;+6,a},al
s—pi(s) < min{o, 04}, s € [V, max{vy, pr;—0}) and s—pu;(s) > vg, s € (min{u;+6, a}, a
and

u(s) <min{o, 01}, s € [max{vg, v, n—3}) and wu(s) > g, s € (min{n+0,a},al.
Let w®(t) := max{|2*(s) — 2(s)|: s € [v,t]}. Then the first integral on the right hand
side of (5.15) can be estimated as follows for ¢ € [min{y; + ¢, a}, ]

/ A" (s)[]2"(s = X(5)) — 2(s — X'(s))| ds

max{vy,v;—0} ) )
N / [AY(s)[2" (s = N'(s)) — 2(s — X(s))| ds

Vk

min{y;+d,a} ) )
T / LAT(8)[|(s — X(s)) — 2(s — X (s))] ds

max{vg,y;—0}

+/ A" (s)[]2"(s = X(5)) — 2(s — X(s))| ds

min{vy;+9,a}

max{vg,v;—0} ' ' 4

< / |A*(s)||h(s — A'(s) — ox) — h(s — X'(s) — o)|ds
min{~y;+d,a} 4 t ’
+26N3(|v| + |h|Loo)/ |A"(s)| ds + / \AZ(S)]wk(s) ds
max{vg,y;—0} min{vy;+d,a}

max{vg,y;—0} . . ‘

< / |A*(s)||h(s — A'(s) — ox) — h(s — X'(s) — o)|ds
Vi

+26N3(|v] + |h|L) /a |A"(s)| ds +/ |A%(s)|w”(s) ds.

o Vi
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Note that the final estimate holds for all ¢ € v, o]. Splitting all the integrals on the right
hand side of (5.15) in a similar way, and using assumptions (Al) (iv) (c) and (A2) (iv)
(c), we get the following estimate from (5.15):

t t
/ L(s,z)(2F — 2,) ds’ < DI’ + 2max{0, e Ly NoNs(|v| + |h|) + LlNO/ w*(s) ds,
Vi Vi

(5.19)
for ¢t € [, o, where

m max{vg,y;—0} . . '
- A ($)]IA(s — N(s) — o) — h(s — X(s) — )] ds
i=1 Y Vk
min{o,0x}—s
[ Al Ollh(s +6 — 03) — h(s + 6 — )| d0 s
vk —r

max{vg.n—5}
+14 / |h(u(s) — ox) — h(u(s) — o)|ds

Vk

+L1NZ/ () [h(s — E9(s) — ox) — h(s — £1(s) — o) ds

min{o,0x}—s
+/ / |b(s, 0)||h(s +6 — o) —h(s+6—0)|dbds.
vk —r

Then it is easy to see that the Dominated Convergence Theorem yields that for each fixed
h e L> and(5>0wehaveDZ’5—>0, as k — oo.
Combining (5.14) and (5.19) we get

t
wk(t) < (Br+2max{d, e}aLy NoN3)(|v|+|h| o) +Ch+ D+ Ly Ny / wh(s)ds, t € [, a],
Vg
therefore the Gronwall’s inequality implies
125 () —2 ()| < wh(t) < ((Bk+2max{6,5}aL1N0N3)(|v|+]h]Loo)+C£+DZ’5>N1, te [, al.

This proves the continuity of z wrt o and ¢, since § and € can be arbitrary close to 0.
The continuity of z(t, 0, ¢, -, ) in t, and therefore as a function of ¢, o and ¢, as well,

can be argued as in the proof of Lemma 4.6, using that
|2(t, 0,p,v,h)] < LiNgN3(|v| + |h|1), t € o, al. (5.20)

d
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For (t,0,¢) € H; we define the bounded linear operator
T(t,o,p): R" x L>® — R", T(t,o,0)(v,h):=2(t,0,p,0v,h), (5.21)

where z(t,0,p,v,h) is the solution of the IVP (5.9)-(5.11). Lemma 5.2 yields that for
each (v, h) € R™ x L™ the function R* x W' > H; — R", (t,0,¢) — T(t,0,¢)(v,h) is
continuous.

We have the following result concerning the differentiability of solutions wrt ¢ in this

special case.

Theorem 5.3 Assume (A1) (i)-(iwv), (A2) (i)-(iv). Suppose (¢,$) € 11 is such that
z(-,0,¢p) € X(6,a). Let Py and Hy be the sets defined by Lemma 4.3 and (4.33), respec-
tively. Let x(t,0, ) denote the solutions of the IVP (3.1)-(3.2). Then the function

R? x Wbt 5 H, — R", (t,0,0) — x(t,0,p)
1s continuously differentiable wrt o, and

DQx(tv g, ‘10) = T(tv g, @)(_f(aa ©; 90(_7_(0’ 90)))7 _Sb)»

where T'(t, 0, ) is defined by (5.21).

Proof Let (0,¢) € P, t € (0,a]. Let hy € R (k € N) be a sequence such that
hi — 0 as k — oo, (0 + hy, ) € Py and 0 + hy < t for k£ € N. To simplify notation,
let 2%(t) := z(t, 0 + hy, @), 2(t) = z(t,0,0), u(s) := s — 7(s, 1), uF(s) == s — 7(s,2%),
v = —f(o,0,0(—7(0,9))), 2(t) := T(t,0,0)(v,—¢), and a} := min{oc + r,a}. We
distinguish two cases.

(i) First suppose hy, < 0 for all k& € N. Then, as in the proof of Theorem 5.1, we get
for t € [0, a]

2o (t) —z(t) — 2(Ohy = 2%(0) — 2(0) — 2(0)hy
+/ (f(s,xlj,xk(uk(s))) — f(s, x5, x(u(s))) — L(s,x)zshk>ds.
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Let ¢*(s) := 2%(s) — z(s) — z(s)hy, s € [0 —r,a]. Then using (A1) (iv) and (A2) (iv) we
have the relation analogously to (4.40) for s € [, &/

=
»
8
T
8
=
—
S

“(5))) = f(s, x5, x(u(s))) = L(s,x)z
= Z A(s)g (s = Ni(s)) + | A(s,0)¢" (s +0) do

+ Dyf (s, 2(u(s)))d (u¥(s))
Dy f (s, 20, 2(u(s))) (w(u(5)) = a(u(s)) — i(u(s))(u(s) = u(s)))
+ Daf(s.za(u(s))iu(s)) ((s) = uls) + Dar(s,,)(ah — )
— Dy f(s, a0, x(u(s))i(u(s))
y4 0
X <Z V(s)g"(s — &(s)) + / b(s,0)q" (s +6) d@)
+ Dsf (s, 0(u()))(2(u"(s)) — =(u(s)))
+ wi(s, T, w(u(s)), 2%, 2% (uF (s))). (5.22)
Then we get for t € [0, q]
PO < 0+ bt a+ dillul + | (o /(Zw (s = N(s)]

+ [ 1A O s + 0 b+ Lilg" (0 (9)

+L1NZ B (s)llg" (s — &(s)] + lev/ (s 0)lg* (s + 0)] db ) s, (5.23)
=0
where ay, by and ¢, dj, are defined by formulas (4.42)—(4.45), respectively, and N is defined
by (3.3).

Assuming the monotonicity assumptions (A1) (iv) (b), (A2) (iv) (b) and Lemma 4.3,
there exist constants 7, v;, p; € [0,a] for i =1,...,m and j = 1,...,¢ such that (5.16)—-
(5.18) hold. Let 7 be the unique solution of u*(7;,) = o if such a solution exists, otherwise
let 7y := . Introduce the function w*(t) := max{|¢®(s)|: s € [o,t]}. Then (5.16)—(5.18)
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and (5.23) yield

O < ot bt delinl + I+ 30 [ IOl s - M)l ds
min{o+rt} pro—s -
+/ / |A(s,0)]|¢"(s + 0)| df ds
Mk
+L1/ ¢ (u* ds+L1NZ/ k(s —&(s))| ds
min{o+r,t}
+L1N/ / b(s,0)||¢" (s + 0)| db ds

min{o+rt} 0
+Z \AZ )ds+/ / A(s, 0)|w(s) do ds

t t
+/ |A(s,9)|wk(s) df ds +L1/ w*(s) ds
min{aJrT t} Tk
min{o+r,t} 0
+L1Nz k(s)ds +/ / b(s, 0)|w”(s) db ds

+/ |b(s,9)|wk(s) df ds, € [o,al.
min{o+rt} J—r

Therefore using assumptions (A1) (iv) (c), (A2) (iv) (c) and (3.7) we get

t

() < A+ LlNO/ w”(s) ds, t € o, al, (5.24)

[

where
Ap = ak+bk+ck+dk|hk|+|qk(0)|+2/% |A'(s)q" (s — X(s))| ds
/ / A(s,0)|q" (s—|—9)]d9ds+L1/nk " (b (s))| ds
-mwz/ (s = €1(s))] ds

+L1N/ / b(s,0)||¢"(s + 0)| df ds.

The monotonicity of the right-hand-side of (5.24) in ¢ implies

t

wh(t) < Ay + LlNo/ w*(s) ds, t € o, al, (5.25)

[
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and hence Gronwall’s inequality yields
|27 () — 2(t) — 2(t)hy] < wh(t) < ARy, t € o, al, (5.26)

where Nj is defined by (3.7). It is enough to show that ﬁ —0as k — oo.
We have

)] _ 1 ’ g
el m‘w(o)—l— o+hy f(sag, a®(u"(s))) ds — o(0) _vhk’
- |h_1| / " (F(s. 2, 2" (5)) = flov 0. 0(=(0,9)) ) ds
— 0, as k — o0, (5.27)

as it was shown in the proof of Theorem 5.1.
For s € [0 — r,0) such that ¢(s — o) exists, i.e., for a.e. s € [0 —r,0) and for large

enough £ such that s < o} we have

" ()] _ ’w(s —0—h) — (s —0)

A . —¢(s—a)(—>o, as k — 0o (5.28)
k — g

Therefore (5.16)-(5.18) and the Dominated Convergence Theorem imply
Vi ) k(o __ \¢ B k(o __ ¢j
/ |Az(s)|M ds — 0 and / |bj(s)|M ds — 0 (5.29)

| e ||
ask —oofori=1,...,mand j=1,...,¢,
/ / |\q (|Z+| %) dfds — 0, as k — oo, (5.30)
k
and
0
/ / ’|q |=2+| ) dfds — 0, as k — oo. (5.31)
k
Relation (3.4) and Lemma 5.2 yield
k(uP(s 1
CUCD) Lk () — alu(s)) — =(u(s))
| | e
1
< ‘hk|\9«“ (u¥(5)) — x(u"(s))] + [2(u"(s))]
< L+ Ky, a.e. s € [o,0ql, (5.32)

where Ko 1= Ny (1£(, 9, 0(=7(0, )| + @11,
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Let n € [0, a] be such that u(s) < o for s € [o,n] and u(s) > o for s € (n,a]. Then,
clearly, n, — n as k — oo. Suppose first that np > 1. Then for an arbitrarily fixed oy > 0

/U”’“ |¢"(uF(s))| ds = /:60 " (uF(s))| ds + /nk 1" (u*(5))| ds.

n—23o

we have

If m,. < n, then

Tk n—0o n
ki, k k() k ki, k
s < [T et eplas s [t eas

Therefore in both cases using (5.32) we obtain

1n—3do

/nkmk(u’“(s))mss / () ds + L+ Ko)([ —nl + 6)lal. (5.33)

o

Let g := (0 —u(n — &))/2. Then |u*(s) — u(s)| < &y and |hy| < go for sufficiently
large k. Therefore, for such k we have u*(s) < o and u*(s) — hy < o for s € [0, — &,

and so Lemma 2.2 and the Dominated Convergence Theorem show that
/” % |gF (uF (s la* (W ()]
o Il
n—3do
N / |hk|“p — 0 —hy) = (u(s) — ) + p(u(s) — o) | ds
n—
[ [ 1606 o ) — pla) — o)l v
o 0
1 rn—do
[ et =0 = vt = pluts) - ] dsa

/ / — o) — (uls) — o) ds d

k — oo.

Therefore (5.33) implies
M | k(,k
/ [ ()] ds — 0, k — oo, (5.34)

since dp was arbitrarily close to 0.
Combining (5.3), dy — 0 as k — oo by Lemma 2.2, (5.27), (5.29)—(5.31) and (5.34)

we get that Ag/|hx] — 0 as k — oo, which concludes the proof in case (i).

46



(ii) Assume now that hy > 0 for all £ € N. Then (5.6) and (5.22) yield

") < @ + by + G+ dilhi| + | (0 + )

b (Sl =N+ [ 140l + o)l as

=0

‘
+Lalq" (u(s))| + LN Z V7 (s)llg" (s — &7 (s))]
+L1N/O 6(s,0)||¢" (s + )| d@)ds, teclo+h"al (5.35)

where ag, by, ¢ and d, are the constants defined in the proof of Theorem 5.1.
We have

k h 1
| o+ Rl _ —‘xk(a + hy) — 20 + hi) — 2(0 + hi)hy
hk hk

1 o+hy
_ h_k‘gp(o)_gpm)_/ F(5, 20, 2(u(s))) ds — vhy
O’+hk 7
—/ L(s,x)zshkds‘
1

| [ (e matue) - fo e pluto)) ds
+he LiNoN3([v] + [@]r)

— 0, k — oo.

IN

Then using the result from the proof of Theorem 5.1 that a; — 0, by — 0, & — 0
and dj, — 0, an argument similar to the proof of part (i) and Theorem 5.1 shows the
differentiability of z(t, o, ¢) wrt o.

To show the continuity of Dyx(t, 0, ), consider (t,0,¢), (t,7,p) € Hy, and let v :=
flo,o,0(—7(0,9))) and v := f(7,p,¢(—7(7,%))). Then by Lemma 5.2 and (5.20) we
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have

|Dax(t,0,¢p) — Dox(t,a, )|
= |T(t,0,9)(—v,—¢) = T(t,0,0)(—0,—¢)|
< T, 0,0)[(—v, —¢) = (=0, =) +|[T'(t, 0, ¢) — T(t,0,9)](—0, —9)|
H[T(t 0,0) = T(t,0,9)|(-0,—9)]
< Ns(lo =0l + ¢ — @lr=) + |2 (t 0,0, =0, —¢) — z(t, 0,0, =0, —9)|

+z(t, 0,0, -0, -¢) — 2(t,0,0, v, —¢)]
Ns(lv = 0[ + [ = @lwre) + Ly NoNg(!v! + |zt — 2]
t,

IN

+|Z(t,0’,g0, _@7 @) ( 67@7 _U7_SO)|7

which proves the continuity of Dyx(t, 0, ¢). ]

Remark 5.4 We close this paper by noting that if we fix (o, ) € P;, and assume that
@ is differentiable at 0 from the left, then for h > 0 we have

z(o,0+h,¢) — (0,0, p) o(=h) — »(0)

Jiz, i B
and
. x(o,0 —h,p) —x(0,0,9) ) 0) + f;_h f(s 25, 2(u(s)) ds — (0)
lim = lim
h—0+ —h h—0+ —h

= _f(o—a 2 90(0 - T(U’ 90)))

Therefore, if we consider x(t, 0, ¢) on the set {(¢,0,¢): (0,¢) € P, t € [0 —r,a]}, then
Dox(t,0,p) exists at t = o if and only if the compatibility condition

$(0=) = flo,0,0(0 — (0, ¥)))

holds.

We note that in Theorem 5.3 differentiability of z(¢, o, p) wrt o at t = o was considered
only as the right derivative, since we restricted the function to the set Hy, i.e., for (o, ¢) €
Pl, te [O', Oé].
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