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Abstract

In this paper we study exponential stability of solutions of a class of nonlinear differ-
ential equations including differential equations with state-dependent delays by means of
linearization.
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1 Introduction

In this paper we consider the nonlinear functional differential equations of the form

ẋ(t) = f(t, xt), t ≥ t0, (1.1)

where r > 0 is fixed, and the solution segment function xt : [−r, 0] → R
n is defined by

xt(s) = x(t + s). We assume that x = 0 is an equilibrium of the equation. This general
class of equations includes differential equations with state-dependent delays (SD-DDEs),
e.g., equations of the form

ẋ(t) = h(t, x(t), x(t − τ(t, xt))), t ≥ t0, (1.2)

or more general classes of SD-DDEs. We refer to [11] for a survey on basic theory and
applications of SD-DDEs.

One of the most frequently used qualitative technique in applications is the linearized
stability principle. It has been formulated in many papers for different classes of SD-DDEs
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([1], [3], [4], [7], [8], [9], [10], [12]). The main technical difficulty to prove a linearized stability
theorem in SD-DDEs is that the map C ∋ ψ 7→ h(t, ψ(0), ψ(−τ(t, ψ))) ∈ R

n is not Fréchet-
differentiable. See [11, 13] for more details and discussions on this topic.

In this paper we formulate a new sufficient condition for exponential stability for a large
class of nonlinear functional differential equations assuming exponential stability of an asso-
ciated a linear delay equation. The idea of the proof uses the fact that the solution of (1.1) is
continuously differentiable for t > t0 + r under mild assumptions and a careful useage of the
variation-of-constants formula. These tricks make the proof much simpler than the proofs of
the existing linearization results for SD-DDEs.

In Section 2 we formulate our main result (see Theorem 2.3 below), and on a simplified
version of (1.2) we demonstrate how easy to apply our linearization method. We present
the technique to obtain exponential stability of the trivial solution, and also exponential
stability of an arbitrary (e.g., periodic) solution of the equation. Note that a linearized
stability theorem for periodic SD-DDEs was given in [7], but only for the case when the
examined solution is continuously differentiable. In our theorem here we do not need this
strong assumption. Section 3 contains the proofs of our general linearized stability theorem.

Note that a necessary and sufficient condition was formulated in [5] using a linearization
method for a special class of (1.2). It is an interesting open question whether the statement
in Theorem 2.3 can be reversed, possibly under more rectrictive conditions.

2 Main Results

Throughout this paper a fixed norm on R
n and its induced matrix norm on R

n×n is denoted
by | · |. The Banach space of continuous functions ψ : [−r, 0] → R

n equipped with the norm
‖ψ‖ = sup{|ψ(s)| : s ∈ [−r, 0]} is denoted by C. The ball in C centered at 0 with radious
ρ is denoted by BC(ρ). The Banach space of bounded linear operators mapping C to R

n is
denoted by L(C,Rn).

Consider the delay system

ẋ(t) = f(t, xt), t ≥ t0. (2.1)

and the corresponding initial condition

xt0 = ϕ, ϕ ∈ C, (2.2)

where t0 ∈ R is fixed.
We assume

(H1) f : [t0,∞)×C → R
n is continuous, and there exist δ1 = δ1(t0) > 0 andM1 = M1(t0) > 0

such that
|f(t, ϕ)| ≤M1‖ϕ‖, ϕ ∈ BC(δ1) , t ≥ t0.

(H2) There exists a mapping L : [t0,∞) → L(C,Rn) satisfying

(i) the linear operator L(t) is uniformly bounded in time, i.e., |L(t)ψ| ≤ M2‖ψ‖ for
any t ≥ t0 and ψ ∈ C, where M2 = M2(t0) ≥ 0 is independent of ψ and t;
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(ii) there are two continuous and monotone nondecreasing functions ω1, ω2 : [0, δ1) →
[0,∞) for which ω1(0) = ω2(0) = 0, and

|f(t, ψ) − L(t)ψ| ≤ ‖ψ‖ω1(‖ψ‖) + ‖ψ̇‖ω2(‖ψ‖)

for t ≥ t0 + r and ψ ∈ C1 ∩ BC(δ1).

Note that (H1) yields the existence, but not the uniqueness of the solutions of the IVP (2.1)-
(2.2) (see, e.g., [2], [9], [11]). Any fixed solution of (2.1)-(2.2) will be denoted by x(t; t0, ϕ).

We consider the time-dependent linear equation

ẏ(t) = L(t)yt, t ≥ t0. (2.3)

The solution of (2.3) corresponding to initial condition (2.2) is denoted by y(t; t0, ϕ).

Definition 2.1 We say that the trivial (zero) solution of the equation (2.1) is exponentially
stable on [t0,∞), if there exist constants δ = δ(t0) > 0, K1 = K1(t0) ≥ 1 and α1 = α1(t0) > 0
such that for any t0 ≥ 0

|x(t; t0, ϕ)| ≤ K1e
−α1(t−t0)‖ϕ‖, t ≥ t0, ϕ ∈ BC(δ) . (2.4)

Definition 2.2 We say that the trivial (zero) solution of the linear equation (2.3) is uni-
formly exponentially stable on [t0,∞), if there exist constants K2 = K2(t0) ≥ 1 and α2 =
α2(t0) > 0 such that for any s ≥ t0

|y(t; s, ϕ)| ≤ K2e
−α2(t−s)‖ϕ‖, t ≥ s, ϕ ∈ C. (2.5)

Now we can formulate the main result of this paper.

Theorem 2.3 Assume (H1) and (H2), moreover, the zero solution of (2.3) is uniformly
exponentially stable on [t0,∞). Then the zero solution of (2.1) is exponentially stable on
[t0,∞), as well.

Next consider the scalar equation with state-dependent delay

ẋ(t) = a(t)g(x(t − τ(t, xt))), t ≥ t0. (2.6)

On this simple nonlinear equation we show the applicability of our main theorem. We assume

(A1) a : [t0,∞) → R is continuous and there exists a0 such that |a(t)| ≤ a0 for t ≥ t0;

(A2) g : (−σ, σ) → R is continuously differentiable, g(0) = 0;

(A3) τ : [0,∞) × C → [0, r] is continuous, and there exists a continuous and monotone
nonincreasing function ωτ : (−σ, σ) → [0,∞) such that |τ(t, ψ)− τ(t,0)| ≤ ωτ (‖ψ‖) for
ψ ∈ BC(σ), t ≥ t0.
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Now (A1) and (A2) yield (H1) with f(t, ψ) = a(t)g(ψ(−τ(t, ψ))). Consider the time-
dependent linear operator defined by

L(t)ψ = a(t)g′(0)ψ(−τ(t,0)), (2.7)

where 0 is the constant 0 function in C. Then (A1) and (A2) imply (H2) (i). To show (H2)
(ii), let ψ ∈ C1 ∩ BC(σ). Simple estimates, assumption (A3) and the Mean Value Theorem
yield

|f(t, ψ) − L(t)ψ| = |a(t)g(ψ(−τ(t, ψ))) − a(t)g′(0)ψ(−τ(t,0))|

≤ |a(t)||g(ψ(−τ(t, ψ))) − g′(0)ψ(−τ(t, ψ))|

+ |a(t)||g′(0)||ψ(−τ(t, ψ)) − ψ(−τ(t,0))|

≤ a0|ψ(−τ(t, ψ))|ωg(|ψ(−τ(t, ψ))|) + a0|g
′(0)|‖ψ̇‖|τ(t, ψ) − τ(t,0)|

≤ a0‖ψ‖ωg(‖ψ‖) + a0|g
′(0)|‖ψ̇‖ωτ (‖ψ‖),

where

ωg(u) =







sup
|s|≤u

|g(s) − g′(0)s|

|s|
, u > 0,

0, u = 0.

All conditions of Theorem 2.3 are satisfied, therefore we get immediately the next result.

Theorem 2.4 Assume (A1)–(A3), moreover, the trivial solution of

ẏ(t) = a(t)g′(0)y(t− τ(t,0)), t ≥ t0

is uniformly exponentially stable on [t0,∞). Then the trivial solution of (2.6) is exponentially
stable, as well.

Now suppose x̄ : [t0−r,∞) → R is a fixed solution of (2.6). Next we study the exponential
stability of this solution. Consider the new variable z(t) = x(t) − x̄(t). It satisfies

ż(t) = a(t)g
(

z(t− τ(t, zt + x̄t)) + x̄(t− τ(t, zt + x̄t))
)

− a(t)g(x̄(t− τ(t, x̄t))) (2.8)

In order to show the exponential stability of solution x̄ of (2.6), we apply our Theorem 2.3
to show that the trivial solution of (2.8) is exponentially stable. Let

f(t, ψ) = a(t)
[

g
(

ψ(−τ(t, ψ + x̄t)) + x̄(t− τ(t, ψ + x̄t))
)

− g(x̄(t− τ(t, x̄t)))
]

,

and we define the time-dependent linear operator

L(t)ψ = a(t)g′(x̄(t− τ(t, x̄t)))ψ(−τ(t, x̄t)), t ≥ t0, ψ ∈ C. (2.9)

We assume x̄ : [t0 − r,∞) → R is a bounded solution of (2.6), i.e., there exists b0 ≥ 0 such
that |x̄(t)| ≤ b0 for t ≥ t0 − r. We need stronger versions of (A2) and (A3):
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(A2’) g : (−σ, σ) → R is twice continuously differentiable, where b0 < σ, and g(0) = 0;

(A3’) τ : [t0,∞)×C → [0, r] is continuous, and also Lipschitz-continuous in its second variable,
i.e., there exists N1 > 0 such that |τ(t, ψ) − τ(t, ψ̃)| ≤ N1‖ψ − ψ̃‖ for ψ, ψ̃ ∈ BC(σ),
t ≥ t0.

Let b1 be such that b0 < b1 < σ, and define N2 = max{|g′(u)| : u ∈ [−b1, b1]} and
N3 = max{|g′′(u)| : u ∈ [−b1, b1]}. Then

|g(u) − g(s)| ≤ N2|u− s| and |g(u) − g(s) − g′(s)(u− s)| ≤ N3(u− s)2

for u, s ∈ [−b1, b1]. Let ε = b1 − b0. It follows from (2.6)

| ˙̄x(t)| = |a(t)||g(x̄(t− τ(t, x̄t))) − g(0)| ≤ a0N2|x̄(t− τ(t, x̄t))| ≤ a0N2b0, t ≥ t0,

therefore
|x̄(u) − x̄(s)| ≤ N4|u− s|, u, s ≥ t0,

where N4 = a0N2b0.
Now we can show that (H1) and (H2) are satisfied for this example. (H1) follows from

the estimates

|f(t, ψ)| ≤ a0N2|ψ(−τ(t, ψ + x̄t)) + x̄(t− τ(t, ψ + x̄t)) − x̄(t− τ(t, x̄t))|

≤ a0N2(1 +N1N4)‖ψ‖, t ≥ t0, ψ ∈ BC(ε) .

(H2) (i) can be shown easily. To prove (H2) (ii) consider

|f(t, ψ) − L(t)ψ| ≤ |a(t)|
∣

∣

∣
g
(

ψ(−τ(t, ψ + x̄t)) + x̄(t− τ(t, ψ + x̄t))
)

− g
(

x̄(t− τ(t, x̄t))
)

− g′(x̄(t− τ(t, x̄t)))ψ(−τ(t, ψ + x̄t))
∣

∣

∣

+|a(t)||g′(x̄(t− τ(t, x̄t))||ψ(−τ(t, ψ + x̄t)) − ψ(−τ(t, x̄t))|

≤ a0N3(ψ(−τ(t, ψ + x̄t)) + x̄(t− τ(t, ψ + x̄t)) − x̄(t− τ(t, x̄t)))
2

+a0N2‖ψ̇‖|τ(t, ψ + x̄t) − τ(t, x̄t)|

≤ a0N3(1 +N1N4)
2‖ψ‖2 + a0N1N2‖ψ̇‖‖ψ‖, t ≥ t0, ψ ∈ BC(ε) ∩ C1.

Now the following result is the consequence of Theorem 2.3.

Theorem 2.5 Assume (A1), (A2’), (A3’), and let x̄ = x̄(·; t0, ϕ̄) : [t0 − r,∞) → R be a
bounded solution of (2.6). Then if the trivial solution of

ẏ(t) = a(t)g′(x̄(t− τ(t, x̄t)))y(t− τ(t, x̄t)), t ≥ t0

is uniformly exponentially stable on [t0,∞), then x̄ is an exponentially stable solution of (2.6)
on [t0,∞), i.e., there exist constants δ = δ(t0) > 0, K1 = K1(t0) ≥ 1 and α1 = α1(t0) > 0
such that

|x(t; t0, ϕ) − x̄(t; t0, ϕ̄)| ≤ K1e
−α1(t−t0)‖ϕ− ϕ̄‖, t ≥ t0, ‖ϕ− ϕ̄‖ < δ, ϕ ∈ C.
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3 Proof of Theorem 2.3

Lemma 3.1 Assume (H1). For any initial function ϕ ∈ BC

(

e−M1rδ1
)

the solution x(t; t0, ϕ)
of the IVP (2.1)-(2.2) satisfies

|x(t; t0, ϕ)| ≤ eM1r‖ϕ‖ < δ1, t0 ≤ t ≤ t0 + r. (3.1)

Proof Since ‖ϕ‖ ≤ e−M1rδ1 < δ1, it follows |x(t0; t0, ϕ)| < δ1. Suppose there exists
t1 ∈ (t0, t0 + r) such that

|x(t; t0, ϕ)| < eM1r‖ϕ‖, t ∈ [t0, t1), and |x(t1; t0, ϕ)| = eM1r‖ϕ‖.

Integrating (2.1) we get

|x(t; t0, ϕ)| ≤ |ϕ(0)| +

∫ t

t0

|f(s, xs(·; t0, ϕ))| ds

≤ ‖ϕ‖ +M1

∫ t

t0

‖xs(·; t0, ϕ)‖ ds

≤ ‖ϕ‖ +M1

∫ t

t0

max
t0−r≤u≤s

|x(u; t0, ϕ)| ds, t0 ≤ t ≤ t1. (3.2)

Define the function z(t) = maxt0−r≤u≤t |x(u; t0, ϕ)|. The monotonicity of the right-hand-side
of (3.2) in t and z(0) ≤ ‖ϕ‖ imply that the function z satisfies

z(t) ≤ ‖ϕ‖ +M1

∫ t

t0

z(s) ds, t0 ≤ t ≤ t1.

Thus Gronwall’s inequility yields

z(t) ≤ eM1(t−t0)‖ϕ‖, t0 ≤ t ≤ t1,

and hence
|x(t1; t0, ϕ)| ≤ z(t1) ≤ eM1(t1−t0)‖ϕ‖ < eM1r‖ϕ‖.

This contradicts to the definition of t1, therefore (3.1) holds. �

Similarly to the proof of Lemma 3.1 one can prove the following estimate for the solutions
of the linear equation (2.3).

Lemma 3.2 Assume (H2) (i). For any initial function ϕ ∈ C the solution y(t; t0, ϕ) of the
IVP (2.3)-(2.2) satisfies

|y(t; t0, ϕ)| ≤ eM2r‖ϕ‖, t ≥ t0.

We define the fundamental solution of (2.3) as the n× n matrix solution of the IVP

∂

∂t
V (t, s) = L(t)Vt(·, s), t ≥ s ≥ t0, (3.3)

V (t, s) =

{

I, t = s,

0 t < s.
(3.4)
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Here I and 0 denote the identity and the zero matrices, respectively.
If the trivial solution of (2.3) is uniformly exponentially stable on [t0,∞) with exponent

α2, then it is known (see, e.g., [6]), that there exists K3 = K3(t0) ≥ 1 such that

|V (t, s)| ≤ K3e
−α2(t−s), t ≥ s ≥ t0. (3.5)

Suppose ϕ ∈ C is such that the solution x(t; t0, ϕ) of the IVP (2.1)-(2.2) exists on [t0, T )
for some T > t0 + r. We can rewrite equation (2.1) as

ẋ(t; t0, ϕ) = L(t)xt(·; t0, ϕ) + f(t, xt(·; t0, ϕ)) − L(t)xt(·; t0, ϕ), t ≥ t0 + r,

therefore the variation-of-constants formula (see, e.g., [6]) yields

x(t; t0, ϕ) = y(t; t0 + r, xt0+r(·; t0, ϕ))

+

∫ t

t0+r

V (t, s)
(

f(s, xs(·; t0, ϕ)) − L(s)xs(·; t0, ϕ)
)

ds, t0 + r ≤ t < T. (3.6)

Let δ2 = e−M1rδ1, and suppose ϕ ∈ BC(δ2). Then Lemma 3.1 yields that |x(t; t0, ϕ)| < δ1 for
t ∈ [t0, t0 + r]. Therefore |x(t; t0, ϕ)| < δ1 for t ∈ [t0 − r, T ) for some T > t0 + r.

It follows from (2.5) and (3.1) for t ≥ t0 + r

|y(t; t0 + r, xt0+r(·; t0, ϕ))| ≤ K2e
−α2(t−t0−r)‖xt0+r(·; t0, ϕ)‖ ≤ c1e

−α2(t−t0)‖ϕ‖, (3.7)

where c1 = K2e
α2reM1r. Note that c1 ≥ 1. Since xs(·; t0, ϕ) ∈ C1 for s ≥ t0 + r, assumption

(H2) (ii) yields

|f(s, xs(·; t0, ϕ)) − L(s)xs(·; t0, ϕ)| ≤ ‖xs(·; t0, ϕ)‖ω1(‖xs(·; t0, ϕ)‖)

+ ‖ẋs(·; t0, ϕ)‖ω2(‖xs(·; t0, ϕ)‖).

For s ∈ [t0, T ) and u ∈ [−r, 0] (H1) together with ‖xs+u(·; t0, ϕ)‖ < δ1 implies

|ẋ(s+ u; t0, ϕ)| = |f(s+ u, xs+u(·; t0, ϕ))| ≤M1‖xs+u(·; t0, ϕ)‖ ≤M1 max
s−2r≤u≤s

|x(u; t0, ϕ)|,

hence

|f(s, xs(·; t0, ϕ)) − L(s)xs(·; t0, ϕ)| ≤ max
s−2r≤u≤s

|x(u; t0, ϕ)|ω(‖xs(·; t0, ϕ)‖), (3.8)

where ω(u) = ω1(u) +M1ω2(u), u ∈ [0, δ1).
It follows from (3.6) and the above estimates for t ∈ [t0 + r, T )

|x(t; t0, ϕ)| ≤ c1e
−α2(t−t0)‖ϕ‖ +

∫ t

t0+r

K3e
−α2(t−s) max

s−2r≤u≤s
|x(u; t0, ϕ)|ω(‖xs(·; t0, ϕ)‖) ds.

(3.9)
Let 0 < ε0 < δ1 be such that K3ω(ε0) < α2, and for any 0 < ε < ε0 let δ3 = δ3(ε) be

defined by

δ3 = min

{

δ2,
ε(α2 −K3ω(ε))

c1α2

}

. (3.10)
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Fix any ϕ ∈ BC(δ3), and consider the corresponding solution x(t; t0, ϕ). Since |x(t0; t0, ϕ)| <
δ3 < ε < δ1, the constant T1 = sup{s ≥ t0 : |x(u; t0, ϕ)| < ε for u ∈ [t0, s)} is well-defined
and T1 > t0. Suppose T1 is finite. Then |x(T1; t0, ϕ)| = ε, and (3.9) yields with t = T1

ε ≤ c1e
−α2(T1−t0)‖ϕ‖+

∫ T1

t0+r

K3e
−α2(T1−s)εω(ε) ds < c1‖ϕ‖+

K3εω(ε)

α2
< c1δ3+

K3εω(ε)

α2
≤ ε,

which is a contradiction. Therefore T1 = ∞, and consequently, T = ∞, as well.
Let 0 < α1 < α2 be fixed, and 0 < ε1 < ε0 be such that

K3ω(ε1)

α2 − α1
e2rα1 <

1

2
,

and let δ4 = δ3(ε1) be defined by (3.10). Fix any ϕ ∈ BC(δ4). Then |x(t; t0, ϕ)| < ε for
t ≥ t0 − r, and multiplying (3.9) by eα1(t−t0) yields for t ≥ t0 + r

eα1(t−t0)|x(t; t0, ϕ)| ≤ c1e
−(α2−α1)(t−t0)‖ϕ‖

+eα1(t−t0)

∫ t

t0+r

K3e
−α2(t−s) max

s−2r≤u≤s
|x(u; t0, ϕ)|ω(‖xs(·; t0, ϕ)‖) ds.

Introduce the function z(t) = eα1(t−t0)|x(t; t0, ϕ)|. Then

z(t) ≤ c1‖ϕ‖ +K3ω(ε1)e
−(α2−α1)t−α1t0

∫ t

t0+r

eα2s max
s−2r≤u≤s

e−α1(u−t0)z(u) ds

≤ c1‖ϕ‖ +K3ω(ε1)e
−(α2−α1)t+2rα1

∫ t

t0+r

e(α2−α1)s max
s−2r≤u≤s

z(u) ds

≤ c1‖ϕ‖ +K3ω(ε1)e
−(α2−α1)t+2rα1 max

t0−r≤u≤t
z(u)

∫ t

t0+r

e(α2−α1)s ds

≤ c1‖ϕ‖ +
K3ω(ε1)

α2 − α1
e2rα1 max

t0−r≤u≤t
z(u)

≤ c1‖ϕ‖ +
1

2
max

t0−r≤u≤t
z(u), t ≥ t0 + r. (3.11)

For t ∈ [t0 − r, t0]

z(t) = eα1(t−t0)|x(t; t0, ϕ)| ≤ |ϕ(t− t0)| ≤ ‖ϕ‖ ≤ c1‖ϕ‖,

and for t ∈ [t0, t0 + r]

z(t) = eα1(t−t0)|x(t; t0, ϕ)| ≤ eα1reM1r‖ϕ‖ ≤ c1‖ϕ‖,

therefore (3.11) implies

max
t0−r≤u≤t

z(u) ≤ c1‖ϕ‖ +
1

2
max

t0−r≤u≤t
z(u), t ≥ t0,

and hence
z(t) ≤ max

t0−r≤u≤t
z(u) ≤ 2c1‖ϕ‖, t ≥ t0.
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Consequently,

|x(t; t0, ϕ)| ≤ 2c1e
−α1(t−t0)‖ϕ‖, t ≥ t0, ϕ ∈ BC(δ4) ,

which completes the proof of Theorem 2.3.
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