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Abstract

Unwanted relative vibrations between the tool and the workpiece represent
significant challenges in high-speed machining. In order to avoid this problem,
one needs to specify ranges for system parameters (spindle speed, depth of cut)
for which the process is stable, i.e., to obtain a so-called stability chart. Such
stability charts usually can only be given by numerical means which is illustrated
in the paper for a single degree of freedom model of milling. In this paper, we
establish the convergence of the semi-discretization approximation method for a
class of delay equations modeling the milling process. Moreover, we show that
semi-discretization preserves asymptotic stability of the original equation, thus it

can be used to obtain good approximations for the stability charts.

1 Introduction

It has been known for a long time, that past effects need to be included in the modeling
of certain dynamic problems. One of the classical examples is the predator-prey model

of Volterra [1|, where the growth rate of predators depends not only on the present
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quality of food (say, prey), but also on the past quantities (say, in the period of ges-
tation). The first delay models in engineering appeared for wheel shimmy [2], and for
ship stabilization [3]. There are several other problems in engineering, where time de-
lays arise, like in the modeling of machine tool vibrations in cutting processes [4,5], in
robotics telemanipulation with transport delay [6], or in neural network models, where
the interactions of the neurons are delayed [7]. Qualitative and quantitative analysis
of delayed systems is therefore an important issue in many applications.

A numerical technique, the so-called semi-discretization was used in [8] to obtain
approximate solutions for retarded functional differential equations (RFDEs). The
essence of the method is that the delayed and the time dependent terms are approxi-
mated by piecewise constant values (zeroth order approximation), and, consequently,
the RFDE is approximated by a series of ordinary differential equations (ODEs). The
solutions of these ODEs lead to a finite dimensional discrete map approximation of the
RFEFDE. The semi-discretization method can effectively be used for analysing cutting
processes, like the milling process for which the governing RFDE has time periodic
coefficients [5], the turning process with varying spindle speed for which the time delay
itself is also time dependent in the governing RFDE [9], or feedback control systems
[10, 11]. We note that the method was recently refined in [12] and [13].

The main goal of this paper is to provide a convergence proof for the semi-discreti-
zation method for a class of RFDEs which appear in engineering applications. It will
be also shown, using a perturbation argument, that the semi-discretization method can
be used to construct approximate stability charts for these applications.

In particular, we investigate linear, T-periodic, RFDEs of the form

x(t) = A(t)x(t) + Z R;(t)x(t — ;) + / 0 W (0, 1)x(t + 9)do, (1)
At+T)=At), RUE+T)=R;t),(j=1,....r), WE,t+T)=W(,1),

where A(t), R;(t) and W (9, ¢) are matrix valued functions.

In the present investigation, it is assumed that the matrices A(¢) and W (¢, ) have
discontinuities in ¢. These discontinuities arise in the mechanical model: during the
milling process, the number of working teeth are changing corresponding to the entry
and exit of the teeth into and from the cut.

The rest of the paper is organized as follows. In Section 2, we provide an example:
numerical simulations using semi- and full-discretization for constructing approximate
stability charts for a single degree of freedom milling model. In Section 3, we present
theoretical results for convergence of approximations and preservation of asymptotic
stability under approximation for a class of delay-differential equations using the so-

called semi-discretization method.
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2 Motivation: stability analysis of the milling process

In engineering problems, stability properties of dynamical systems are usually demon-
strated by stability charts. These charts present the parameter values for which the
system is stable or unstable. The current investigation was motivated by the analysis
of the milling process. For milling, stability charts are given in the parameter plane of
the spindle speed and the depth of cut. Accurate modeling of both the regenerative and
the tooth pass excitation effects in milling results in an RFDE with periodically vary-
ing coefficients. In [8, 5|, the semi-discretization method was used to create stability

charts for REFDE’s modeling the milling process.

2.1 A model of the milling process

Dynamical models of the milling process assume that either the tool or the workpiece or
both of them are flexible, and due to the exciting effect of the cutting force, vibrations
may arise. There are two essential phenomena in the milling process that characterize
its dynamics. One is the regenerative effect: the tool cuts the surface that was formed
by the previous tooth pass, therefore the chip thickness, and consequently the cutting
force depends on the actual tool position and the position one tooth pass earlier.
Second is the tooth passing excitation effect: since the tool is rotating and the teeth
periodically enter and leave the cut, the cutting force is a time periodic function of
time with period equal to the tooth passing period. Accurate modeling of both effects
leads to a time periodic RFDE.

In the following preliminary example, we investigate the equation of a single degree
of freedom milling model (see [5] for details):

F(t) + 2Cwnd(t) + wia(t) = b[](\/;t) (x(t—71)—2x(t)) . (2)

The left-hand side of the equation is associated to the single degree of freedom damped
oscillator, the term in right-hand side comes from the cutting force. The time delay in
(2) is equal to the tooth passing period: 7 = 60/(NN{2), where (2 is the spindle speed
given in [rpm| and N is the number of teeth. The periodic function K(t) = K(t + 7)

reads
N 21w (2 2 272 27
K(t) = Z {gp(t) (Kt oS (Wt +pﬁ) + K, sin (Wt erﬁ))

X sin wth 2 (3)
60 PN
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The function g,(t) determines if the tooth denoted by p is cutting or not:

1 if Penter < Pp < Pexit
gp(t) = .p s (4)
0 otherwise

where @epter and @..;; are the angles where the teeth enter and exit the cut, respectively
(see Figure 1).

Figure 1: Modeling the entering end exiting teeth in the milling process

All the other parameters are summarized in Table 1. For these parameters, the
graph of function K (t) is shown in Figure 2. The discontinuity of the function is due
to the tooth passing effect. In the present case the number of teeth is 2, and the enter
and exit angles are 0° and 150°, respectively. If the angular position of the teeth are
150° < ¢1 < 180° and 330° < ¢ < 360°, then both teeth are out of cut and the
function K (t) is zero.

natural frequency wy, = 920.5 rad/s
relative damping ¢ = 0.0032
modal mass M = 2.573 kg
tangential cutting coefficient | K; = 5.5 x 10* N/m?
normal cutting coefficient | K, =2 x 10% N/m?
number of teeth N =2
tooth enter angle Penter = 0°
tooth exit angle Pezit = 100°
depth of cut b=1mm
spindle speed 2 =9000 rpm

Table 1: Parameters for milling process
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Figure 2: Graph of K(t)

2.2 Comparison of semi-discretized and fully-discretized simu-

lations

In [8, 5], semi-discretization was used to construct stability charts corresponding to
(2). However, the method can be used for simulating the solutions of RFDEs, as well.
Piecewise constant approximation of the delayed term z(¢ —7) and the time dependent

coefficient K (t) in (2) leads to the semi-discretized equation

() + 2Cwn (t) + (wg + bﬂf) z(t) = bﬂfxm telih,(i+1)h], i€Z (5)

where
(i+1)h
K = / K(s)ds (6)
ih

Ti—m = 2((i —m)h) and h = 7/m, m € Z. Here, m is an approximation parameter, it
defines the number of discretization steps over a time interval of length 7.

For initial conditions z(ih) = z;, ©(ih) = v; and for a known x;_,, (5) can be solved
for each discretization step as an ordinary differential equation. The displacement and
the velocity for the next discretization step can be expressed as the linear combination

of the discrete values x;, v;, T;_,:

{L‘((’L + 1)h) = Tijp1 = Q14T + a2 ;U5 + A3,iTi—m , (7)
{L‘((l + 1)h) = Vi1 = Q4,7 + 5 ;V; + A6 Li—m , (8)
where the coefficients a;; (k= 1,...,6, i € Z) can be computed using the parameters
summarized in Table 1 (for details, see [8, 5|). If the initial values x;, x;_1, ..., Ti_m

and v; are given, then the semi-discretized solution can be continued in the subsequent

discretization steps (semi-discretized simulation).
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The step-by-step solution of (5) is presented in Figure 3 for different approximation
parameters m. The initial condition was chosen tobe z; =z, 1 =2, o= - - =x;_,, =
10~* [m]| for the actual and the delayed displacements and v; = 0 for the velocity. This
initial condition corresponds to a reasonable perturbation around the z = 0 solution.
The parameters are given in Table 1. Note, that the spindle speed {2 and the depth
of cut b parameters were set so that the system is close to the boundary of stability
(see Figure 5). Consequently, the solution is an almost periodic function. Figure 3

indicates the convergence of the semi-discretized solutions.

-4

x 10
4fl - m=10
—- m=20
— - m=30
2| — m=40

0 0.005 0.01 0.015 0.02
t[s]

Figure 3: Semi-discretized simulation for (2) with different step sizes

The main difference in semi-discretization, as opposed to the traditional full-discre-
tization, is that only the delayed states and the time dependent coefficients are dis-
cretized. In order to see the difference between semi- and full-discretization, (2) is also

solved by using full-discretization. The derivatives are approximated as:

#(t) ~ S (9)
it2 — 2% i
() & T o (10)

where z; = x(ih), again. The fully-discretized equation reads

i1~ T bK;
+ 2@%% + Wt = W('xi—m — ;). (11)

Tipo — 2Xi41 + X5
72

Here, ;.5 can be expressed as the linear combination of z;,1, x; and z;_,,:
Tiva = b1Tiq1 + bo i + b3 ;25 (12)

where by = 2(1—h(wy), ba; = 2hCw, — (w2 + 221) A2 — 1 and by; = YEip?. If the initial
values z;1, @;, ..., x;_,, are given, then the fully-discretized solution can be continued

in the subsequent discretization steps (fully-discretized simulation). The convergence
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of the fully-discretized scheme for linear and later for general RFDEs with time- and
state-dependent delays was proved in [14, 15].

For computations, the same reasonable initial condition was chosen as for the semi-
discretization: x; = 107 m, v; ~ (v, —2;)/h =0, 3, o = x; 3 = -+ = 3;_,, = 1074
[m]. The solution obtained by full-discretization can be seen in Figure 4. It can be
seen that the solutions converge to the almost periodic function as the semi-discretized
simulations does in Figure 3, but the convergence is much slower than that of semi-
discretization. Here, approximation parameter m = 500 should be used to obtain

acceptable result.

-4

x 10
4| - m=50
-—- m=100
— - m=200 ;
2r] — m =500 A

0 0.005 0.01 0.015 0.02
t[s]

Figure 4: Fully-discretized simulation for (2) for different step sizes

2.3 Comparison of stability charts obtained by semi- and full-

discretization

To construct stability charts, values for parameters {2 and b should be found so that the
system is stable. Therefore, in this section, the parameters {2 and b are not fixed, they
are considered as independent variables (all the other parameters are fixed according
to Table 1).

For stability analysis of (2) by semi-discretization, the same stepwise solution is
used as in equations (7) and (8), but now, the coefficients depend on the parameters
2 and b: ap; = ax;(£2,0), k = 1,...,6, i € Z. This stepwise solution provides the
discrete map

Yi+1 = BZ(‘(Zu b))’z ) (13)

where the m + 2 dimensional state vector is

V. = COl(Ui Ty Ti—1 ... xifm> ) (14)
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and the coefficient matrix has the form

as;(2,0) ag;(£2,6) 0 0 0 agi(92,0)
azi(92,b) a1,;(£2,0) 0 0 0 asi(£2,0)
0 1 0 0 0 0
Bi(£2,b) = 0 0 10 0 0 _ (15)
0 0 00 ... 0 0
0 0 00 ... 1 0

Apply (13) over the principal period 7 = mh to obtain the transition matrix
D, (2,0) =B, 1(£2,0)B,,,_2(£2,0) .. . Bo(£2,0) . (16)

This matrix gives the connection between yo and y,,: ¥, = ®5(£2,b)yo. It is a finite,
(m + 2) dimensional, approximation of the infinite dimensional monodromy operator
of (2). If the eigenvalues of ®,(2,b) are in modulus less than 1, then the discrete map,
consequently, the semi-discretized solution is asymptotically stable [16]. For any {2
and b, the transition matrix can be determined, and its eigenvalues can be evaluated.
Stability charts are constructed by computing the critical eigenvalues for a set of fixed
spindle speeds 2 and depth of cuts b.

Semi-discretized stability charts are presented in Figure 5 for different approxima-
tion parameters m. It can be seen that as the parameter m is increased, that is, as
the step-size h is decreased, the stability boundaries converge. Even, for m = 20, the

accuracy of the boundaries are acceptable from the engineering view of point.

7
6_
5| unstable
EYf
.D3- 4
- m=10
2 - m=20 []
— - m=30 ||
1 — m=40
O 1
3
Q [rpm] x 10"

Figure 5: Semi-discretized stability charts for (2) for different step sizes

The parameter values 2 = 9000 [rpm| and b = 10~* [m] represent the coordinates
of the P in Figure 5. These parameter values were used for the simulations in the

previous section. As it can be seen, this point is really close to the stability boundary.
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For comparison, the same stability charts are determined by full-discretization tech-
nique. If the coefficients in (12) are considered to be dependent on the parameters {2
and b: by = b1(£2,0) and by; = by;(£2,0), k = 2,3, i € Z, then the fully-discretized

solution determines the discrete map
zi1 = Ci(92,0)z; (17)
where the m + 2 dimensional state vector is
z; = col(zi1 T ... Tiim), (18)

and the coefficient matrix has the form

bi(£2,0) boi(£2,6) 0 0 0 bs,(£2,0)
1 0 00 0 0

0 1 00 0
C;(£2,b) = 0 0 10 0 (19)

0 ... 0

1

Here, the transition matrix is obtained as

D(92,0) = Cpm1(92,0)Cp2(92,0) ... Cy(£2,0) . (20)

This matrix is also a finite, (m + 2) dimensional, approximation of the infinite dimen-
sional monodromy operator. Stability analysis can be done by eigenvalue analysis of
the matrix ®,((2,0), again.

Fully-discretized stability charts are presented in Figure 6 for different approxima-
tion parameters m. It can be seen that the approximation parameters are much larger
and the boundaries converge much slower than in the semi-discretized charts in Figure
5. For m = 500, the infinite dimensional system is approximated by a 502 dimensional
one, but the stability boundaries are still not accurate enough comparing to the charts
obtained by semi-discretization.

Point P associated to the parameters 2 = 9000 [rpm] and b = 10~* [m] is also
presented in Figure 6. It can be seen that even for the case m = 500, point P is in
the unstable domain, although, according to the stability chart determined by semi-
discretization, point P is close to the stability boundary.

In Table 2, computation times are shown corresponding to the stability boundaries
in Figures 5 and 6. The critical eigenvalues were evaluated over 100 x 100 number of

discrete spindle speed and depth of cut values. As it can be seen, the computation times
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- m=50
-—- m=100 )
— - m=200 ]
— m =500

b [m]

O P N W b 00 O N

unstable stable |
1.5 2 2.5 3
Q [rpm] x 10"

Figure 6: Fully-discretized stability charts for (2) for different step sizes

for semi-discretization are significantly shorter than those for full-discretization. For
full-discretization with approximation parameter m = 500, the computation takes more
than 12 days, and the accuracy is still poor. Comparison to the chart obtained by the
semi-discretization with m = 40 and the corresponding 2.33 minutes of computation
time shows that the semi-discretization method is much more effective than the full-

discretization technique.

semi-discretization full-discretization
m = 10 0.24 min m = 50 2.69 min
m = 20 0.58 min m = 100 35.00 min
m = 30 1.21 min m = 200 8 h 43.40 min
m = 40 2.33 min m =500 | 307 h 0.47 min

Table 2: Computation times for the stability charts determined by semi- and full-

discretization in Figures 5 and 6

In the remaining part of the paper, the a mathematical analysis of the semi-
discretization technique is presented including the proof of convergence of the solutions

and the preservation of asymptotic stability under semi-discretization.

3 Analysis of the semi-discretization method

In this section, we consider a class of delay differential equations which includes equa-
tions proposed as mathematical models of the milling process. We introduce an as-

sociated discretized equation by applying the method of semi-discretization, and we
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establish the convergence of the method for this class of equations. Finally, we show

that asymptotic stability is preserved under approximations.

3.1 Notations and Preliminary Results

We say a function g: [0,00) — X (where X = R, R™ or R"*") is piecewise-continuous,
if for any finite A > 0, g is continuous on [0, A] except possibly at finitely many
t1,...,tnm, where finite one-sided limits exist. The set of all piecewise-continuous func-
tions over [0, 00) is denoted by PC(]0,00), X).

We denote a fixed vector norm and the corresponding matrix norm on R™ and R™*",
respectively, by | - |.

Fix a positive constant h. We introduce the notation

where [-] denotes the greatest integer part function. This function is piecewise constant,
and it is right-continuous at the mesh points kh, (k = 0,£1,42,...). Clearly, t — h <
[t]n < t, hence

lim max|[t], —t| = 0.
h—0+ teR

We introduce the notation

h
(&= [t + 5
Its graph can be seen in Figure 7. Since

..
2 h > 27

we have

hlir& rilez%KXKt)h —t=0. (21)

2 h 0 h 2h 3h ah 5h 6h

Figure 7: The graph of (t),
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For a function G € PC([0, 00), R"*") we define
[tlnth
PrG: [0,00) — R™" (PrG)(t) := / G(s)ds. (22)
[t

This operator P, has the following properties:

Lemma 1 Let G € PC([0,00),R™™™). Then
(i) for anyt >0

limsup [(PLG)(t) — G(1)| < |G(t—) — G(t)] + |G(t+) — G0

h—0-+
(i) PG € PC([0,00), R™*");
(111) if |G(t)| < K fort >0, then |(P,G)(t)| < K fort > 0.

Proof If G is continuous at ¢, then there exists a neigbourhood of ¢ where G is
uniformly continuous. In paricular, for a fixed € > 0 there exists 6 > 0 such that
|G(s)—G(5)| < efors,s e [t—0d,t+d]. For 0 < h < § it folows [t]p, [t]n+h € [t—0,t+7],
and so

1 [Hnth
i — < lim — — <e.
Jip [(PL@)(0) GO < Jiy 5 [ 7 1G() — Gl <

But this yields
lim |(P,G)(t) — G(t)| =0

h—0+
since ¢ is arbitrary small.
Now suppose G is not continuous at ¢, but it has finite left and right limits at . If

h is such that [t], <t < [t], + h, then
[(PnG)(t) — G(1)]
1 [t]n+h
G(s) — G(t))ds
/[t (G(s) - G(1)

In

h

:' l_ﬂuG@y_G@»@E%ﬁﬁ

t= [t Ji,
1
[tlh+h—t
o ), 166 Gl ds G- G
1
Eh+ h—t

If h is such that ¢ = [t],, then

tlh+h—t

[tln+h
+ Z‘ (Gls) — (1)) ds

[t]n+h
N [ G (s) — G(t4)] ds + |G(t+) — G(D)].

KﬂGW%%M)g%[ G(s) — G(t+) ds + |G(t+) — G().
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Therefore in both cases we get statement (i), using an argument similar to that of the

first case.
Clearly, G is constant on the intervals [kh, (k + 1)h), k = 0,1,..., therefore (ii)
holds. Part (iii) is also obvious. O

Remark 1 Let G € PC([0,00), R™*"), i.e., it is piecewise continuously differentiable,
and G and its derivative have finite one-sided limits at the points of discontinuities,
moreover suppose there exists h > 0 such that consecutive points of discontinuities of
G have distance at least h, then the proof of the previous lemma shows that for every
T > 0 there exists L > 0 such that

|(PLG)(t) — G(t)| < Lh+ |G(t—) — G(t)| + |G(t+) — G(t)], t€[0,T], 0<h<h.

3.2 Semi-discretization

Consider again the delay system

(1) = A(t)x(t) + Z R, (t)x(t — 7)) + /_ 0 W (0, 1)x(t +9) dv, (23)

and an associated initial condition

x(t) = (1),  tel=p0] (24)

where p := max{m,...,7.,0}.

We assume that

(H1) the matrix valued functions A,R; € PC([0,00),R™™) (j = 1,...,p), and the

constants o, 7,...,7. > 0.
(H2) The weight function W: [—0,0] x [0, 00) — R™*" is such that
(i) W(-,t): [—0,0] — R™™ is continuous for each ¢ € [0, 00),
(il) W(d,-): [0,00) — R™ ™ is piecewise-continuous for each ¥ € [—a, 0].
(H3) The initial function ¢ € C([—p, 0], R").

(H4) Functions A,R; (j = 1,...,p), and for each ¥, W(¥,-) are T-periodic, i.e.,
A(t+T) = A(t), Rj(t + T) = Ry(t) and W(5,¢ +T) = W0, 1) for t > 0,
Ve |—o0,00and j=1,...,7.



3 ANALYSIS OF THE SEMI-DISCRETIZATION METHOD 14

For a fixed positive integer m we define the discretization parameter h = o/m, and

consider the approximating equation corresponding to (23)

yu(t) = (PrA)(t +Z (PrRy) () yn({En — (T5)n)

n / (PeW) (0, Oya(O)n + (9))dd, ¢ >0, (25)

—0

together with the associated initial condition

Yh(t) = Qp(t)v te [_pv O] (26)

Here we interpret (P, W) as
1 [lath
(P W) (0,t) = —/ W (4, s) ds.
[t

If h < 7; for all j, then
<t>h_<7_j>h St—7j+h<t,

therefore (25) is a retarded equation.

Introduce the notations

1 (i+1)h
A= (PAYD) = / A(s) ds,

ih
G
Ri,j = (PhRj)(’Lh) = E/ Rj(S) dS,
ih
and
—(=1h G—Dh  p@+1)h
W, ::/ (PrW)(0,ih) d / / W (¥, s)dVds.
—jh

Suppose t € [ih, (i+1)h), i.e., [t], = th, and let m; := [7;],. Then using these notations

(25) can be written as

yh(t) = Alyh(t) + Z Rmyh(ih — m]h) + Z Wi,jyh(ih - jh + h)

j=1 j=1
If we introduce
yi :=yn(ih), i€Z, th> —p,

then we get

yi(t) = Ayn(t) + Z Ri;yiom; + sz‘,jy@'ﬁ‘H’ ih<t<(i+1)h, i=0,1,....
=1 =1

(27)
Clearly, (27) has a unique solution defined for all ¢ > 0. We refer the reader for more
details on the computation of the solution of (27) to [8].



3 ANALYSIS OF THE SEMI-DISCRETIZATION METHOD 15

3.3 Convergence of the scheme

We now show in the next theorem that the solution of initial value problem (25)-(26)
approximate that of (23)-(24).

Theorem 1 Assume (H1)-(H3), then the solution of (25)-(26) approzimate the so-
lution of (23)-(24) uniformly on compact time intervals as h — 0+ (or equivalently,

m — o0), i.e., for every S >0

1 = 0.
5 g2 X =0 =0

Proof Integrating (23) and (25) from 0 to ¢, respectively, we get

0)—|—/OtA(u du+2/ R, (u)x(u—; du+// W (¥, u)x(u+19) diddu,

and
yu(t) = ©(0) +/0 (PrA)(w)yn(u) du + Z/o (PrR;) (w)yn((u)n — (15)n) du

v yl (PAW) Wl + {9 40

Therefore simple manipulations give

+ ZI/O ‘(PhRj)(U)HX(<U>h — <Tj>h) —yn((u), — (Tj>h)| du

n / / ((PaW)(, )| x () + (9)n) — yal () + (9] dd du, (28)

where
_ /O\Aw) WA ()| [x(u |du+Z/\R — (PR (w)lx(u — )| du
+ 2 / |(PaRy) () x(u = 75) = x({upn — (7)) du
= [ W00 = W)@l )] do du

" /0 /_ (PR W) (9, )| |3 (u + 0) — x({uhy, + (9))] dV) du.
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Note that a4 (t) is a monotone increasing function in ¢. It follows from (21), Lemma 1
(i), (iii), the boundedness of the functions A, P,A, R;, P,R;, W, P,W, and x over

compact time intervals, and the Lebesgue’s Dominated Convergence Theorem, that

i = >
hlir(l)le ap(S) =0, S >0. (29)

We introduce
wy(t) := max{|x(s) —yn(s)|: 0 < s <t}

Then wy,(t) is a monotone increasing function of ¢, so (28) implies

|X<t> — | < Ozh / ﬁh U}h
where

B (u) = [(PrA)(u |+Z|PhR / [(PyW) (9, w)| do.

—0

Then the monotonicity of «y, and wy, and (28) yield for s <t

) =6 < anls) + [ utuun(dn < ant)+ [ GGt D<s<t,
therefore
wp(t) < ap(t / B (w)wp (u t>0.
Hence, using Growall’s inequality, we obtain
[x(t) — ya(t)] < wn(t) < ap(t)elo @4 >0,

Then the statement of the theorem follows from (29), since (3, is bounded by a constant
independent of h over [0, S]. O

We comment that in the previous proof the particular form of the discretization
operator Py, and the function (), was not important, the proof uses only the properties

of P, summarized in Lemma 1 and relation (21).
Remark 2 If in addition to (H1)-(H3) we assume
A R;,W(,-) e PC'([0,00),R™™), (j=1,...,p, V€ [-0,0]),

and the distance between consecutive points of discontinuities of all functions is at
least h > 0, and o € C'([—p, 0], R™), then it is easy to show, using Remark 1, that the
convergence in the statement of Theorem 1 is first order, i.e., for every S > 0 there
exists M > 0 such that

max |x(t) — yn(t)] < Mh, 0<h<h.

0<t<S
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3.4 Preservation of Asymptotic Stability

The next theorem shows that the asymptotic stability of (23) is preserved under the
semi-discretization (25). Such issue was studied for several classes of functional differ-
ential equations in [17| and [18] using spline based schemes. For the full-discretization
method we refer to [19] and [20] for related works.

Theorem 2 Assume (H1)-(HJ) and that the trivial solution of (23) is asymptotically
stable. Then there exists hg > 0 such that the trivial solution of (25) is asymptotically
stable for all 0 < h < hy.

Proof We associate initial conditions (24) and (26) (with the same initial function ¢)
to (23) and (25), respectively. The fundamental matrix solution of (23) is the n x n

matrix solution of the initial value problem

V(t,s) = A{)V(ts)+ Z R,;(t)V(t—7,,5) + / : W, )V (t+9,s)dd, t>0,30)

I, t=
V(t,s) = {0’ t<z’ (31)

where I is the identity and 0 is the zero matrix. Since (23) is periodic, it is known
(see, e.g., [21]) that the trivial solution of (23) is asymptotically stable, if and only if

it is exponentially stable, i.e., there exist constants K > 1 and « > 0 such that
x(t)] < Ke ™[lgll, =0, (32)

where [|¢|| = max{|¢(t)|: t € [=p,0]}. This is also equivalent to that the fundamental
solution of (23) is exponentially bounded, i.e., there exist constants Ky, ap > 0 such
that

[V (t,s)| < Koem @) ¢ > (33)

We can rewrite (25) as

yh(t) = A(t)yh(t) + Z R](t)yh(t - Tj) + /_0 W(ﬁ, t)yh(t + 19) dd + ’Yh(t) + 5h<t),

J=1

where

wt) = ((PaA)®) =AM )yalt) + 3 ((PaR)(E) = Ry(0) ) yult = 75)
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and

T

() = S (PR (ya((t = (3)) = yalt = 7))

j=1

+ /0 (PnW)(9,1) (Yh(<t>h + (Dn) — yalt + 19)) dd, t>0.

—0

Therefore, (25) can be considered as a perturbation of (23) with ~, + 05, hence the

variation of constants formula (see, e.g., [21]) yields

m@zﬂﬂﬁAV@M%@+%@M& (>0, (34)

We prove the theorem in two steps: first we show that y, will be bounded on [0, c0)

for small h, then prove that y(t) — 0 as ¢ — oo for small h.

1. We estimate both perturbation terms, [J V(t,s)y(s)ds and [} V(t,s)0(s) ds.
Let z,(t) = max{|yn(s)|: —p < s <t}

To estimate [} V(t, s)y4(s) ds we first introduce m = [£]. Then (33), the definition
of z, relation mT <t < (m + 1)T and simple estimates yield

[ Vst as

< / IV (t,s) |<)(73hA)( )|yh |+Z) (PrR;)(s) — Rj(S)MYh(S—Tj”

+/ (PrW) (¥, 5) — W (Y, s)

—0

t
S Koefaot / (
0

lyn(s + )| dﬁ) ds

(PaA)(s) \Eij ~Ry(s)|

IA
=
D
|
g
3
|
Eond
s
w\
S
A
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Therefore, using the T-periodicity of the functions A, P, A, R;, P,R;, W(¥,-), and
PhW<197 '):

/0 V(t, s)vn(s)ds

< Koe—aomTijewa / (|Puays) - aes)| + Z) (PiR,)(s) - Ry (s
n /0 (PAW)(0,5) — W (D, 5)| d0)ds - (1
< Ahzh(t),o t>0, (35)
where
a = 2 [ (P - A6+ Z\m Ry(s)

+ /O (PhW)(ﬁ,s)—W(ﬁ,s))M)ds.

—0

It follows from Lemma 1 and the Lebesgue’s Dominated Convergence Theorem that
A, — 0as h — 0+.

To estimate fot V(t, s)0n(s) ds we first introduce some additional notation. Assump-
tions (H1)-(H4) imply that there exist constants My, My, ..., M,,; > 0 such that

M,
AW <My, Ry <My, (G=1,.0r) W0l < =22 £20, 9 € [-0,0]

and hence, by Lemma 1,

Mr+1
o

(PrA)@)] < Mo, [(PaRy)(D)] < Mj,  (G=1,....7) [(PaW)(0,1)] <

for t > 0, ¥ € [—0,0]. Using (25) we get for t > p

r On—{(T5)n 0 (O n+{O)n
Sl) = S PRY® [ s dus / (PaW)(,1) / ) ds 9

j=1 t—7; —0 t+v
r O n—={j)n

= R [ (A + PRI~ ()
j=1 t=T;

[ PO+ ) a0)du

—0

0 B+ {)n "
w[ Ewien [ (P @it + Y PR @yal (s — ()

+ [ P Wil + ) ) (36)

—0
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Then relations [(t), — (mi)n — (t — )| < h and [{t), + (9, — (¢t + 9)| < h, and the
definitions of My, ..., M, imply

r+1 r+1 r+1
|5h ‘ < hZM (Z Mk>zh —+ hMrJrl <Z Mk> Zh < h(z Mk) Zh t Z P,
k=0
and
r+1
6h ()] <Y Mi2z(p), €0, 0.
k=1

Since, by Theorem 1 and (32),

yr(O)] < [x@)] + lyn(t) —x(@)] < Kl +1,  t€[0,p], 0<h<h,

we get
r+1

()] <D M2(Kllel +1), €[00, 0<h<h

k=1
/VtSéh

Therefore, for 0 < h < hy,

/Vtséh )ds /Vtséh )ds| +

r+1 r+1

2
< Ky S M2(K || +1)+K0/ —ao(t=s) dsh(ZMk) (1)
k=1 P k=0
< B+ Chz(t), t>0, (37)
where
r+1 r+1
B =pKo>_ M2(K|gl| + 1), (Z Mk)
k=1

Combining (34), (35) and (37) yields
y(®)] < Klloll + B + (Ay + Ch)z(t), =0,

and so, using |y (t)| < ||¢|| and that the right hand side is monotone in ¢, we get
2n(t) < K|l + B + (Ap + Ch)z,(t), t>0.

If 0 < hg < hy is such that A, + Ch < 1 for 0 < h < hg, then

K¢l + B
1) < zp(f) < t>

therefore the solutions of (25) are bounded on [0, c0).

2. Now we show that lim; .o |y (¢)] = 0. Consider again (34). Since lim;_, |x(t)| =

0, we get

t
lim sup [y (1)) < limsup Ko / ~0(t=3) (| ()] + [50(5)]) . (38)
0

t—o0 t—o0
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The second part on the right hand side can be estimated using Lemma 2.3 in [22], and
(36) as follows

t 0o
limsupKo/ e~ =95, (s)|ds < KO/ et dt - limsup |()|
0 0

t—o0 t—o0
K r—+1
< =% (sz) limsup|yn(t).  (39)
0 t—o00

The first part requires a more careful estimate, similar to the derivation of (35). Let
e > 0 be fixed, then there exists such N = N (e, h) that |y, (¢)| < limsup,_, . |yn(t)|+¢
for t > NT — p. Let m(t) = [t/T]. Then

t—o00

t
limsup/ e~ =) |, (5)| ds
0

NT ¢
< limsup eaot/ ey (s)| ds + lim sup/ e~ |, (5)| ds
0

t—00 t—o00 NT
. —aom(t)T R [T
< limsupe™ ;V/M ((Ph )(s) ) Z) (PuR;) ()‘
+ /0 (PLW) (¥, s) — W (9, s)’ d19> ds (limsup |y, (t)| + €)
s t—o0
< limsup e~ @m®T Z ao(k+1)T / (‘(PhA) )+Z) (PrR;)( R;(s ))
0

t—o00

+ / (PrW) (1, s) — W (¥, s) d19> ds (limsup |y, (t)| + ¢)

iy t—o0

An
< W(hﬂi}p [ya(t)] +¢).

Since this estimate holds for any ¢, it follows that

t
A
lim sup /0 ey (s)] ds < KOQQ’LOT lim sup |y (t)]- (40)

t—o0

Combining (38), (39) and (40) we get

r+1
lim sup [y (1)] < < Sy —h(z M) ) limsup ly (),

t—o0 t—o0

which concludes the proof, since for small enough h, the coefficient on the right hand

side is less than 1, therefore limsup,_, . |yx(f)| = limy . |ya(t)| = 0. O

Remark 3 If in addition to (H1)—(H4) we suppose the assumptions listed in Remark 2,
then it is easy to find a D > 0 such that A, < Dh, therefore the constant, hg, in the

statement of Theorem 2 can be given explicitly.



4 ACKNOWLEDGEMENT 22

4

Acknowledgement

This research was supported in part by the Magyary Zoltdn Postdoctoral Fellowship

of Foundation for Hungarian Higher Education and Research (T.I.), by the Hungarian
National Science Foundation under grants no. OTKA T043368 (G.S.), T046929 (F.H.)
and F047318 (T.I.) and by the Domus Hungarica Scientiarium et Artium Foundation
(J.T.).

1]

2]

3]

[4]
[5]

[6]

7]

18]

19]

[10]

References

V. Volterra, Sur la Theorie Mathematique des Phenomenes Hereditares, Journal
de Mathématiques Pures et Appliqués, 7 (1928), pp. 149-192.

B. von Schlippe, R. Dietrich, Shimmying of a Pneumatic Wheel, Lilienthal-
Gesellschaft fiir Luftfahrtforschung, Bericht, 140 (1941), translated for the AAF
in 1947 by Meyer & Company, pp. 125-160.

N., Minorsky, Selfexcited Oscillations in Dynamical Systems Possessing Retarded
Actions, Journal of Applied Mechanics, 9 (1942), pp. 65-71.

G. Stépan, Retarded Dynamical Systems, Longman, Harlow, 1989.

T. Insperger, B. P. Mann, G. Stépan, P. V. Bayly, Stability of up-milling and
down-milling, Part 1: Alternative analytical methods, International Journal of
Machine Tools and Manufacture, 43(1) (2003), pp. 25-34.

G. Stépan, G. Haller, Quasiperiodic oscillations in robot dynamics, Nonlinear
Dynamics, 8 (1995), pp. 513-528.

S. A. Campbell, S. Ruan, J. Wei, Qualitative analysis of a neural network model
with multiple time delays, International Journal of Bifurcation and Chaos, 9(8)
(1999), pp. 1585-1595.

T. Insperger, G. Stépan, Semi-discretization method for delayed systems, In-
ternational Journal for Numerical Methods in Engineering, 55(5) (2002), pp.
503-518.

T. Insperger, G. Stépan, Stability analysis of turning with periodic spindle speed
modulation via semi-discretization, Journal of Vibration and Control, in press

(2004).

L. L. Kovécs, G. Stépan, T. Insperger, Outer-loop force control of industrial

robots, in Proceedings of the 11th World Congress in Mechanism and Machine



5 REFERENCES 23

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

22]

Science (ed.: Tian Huang), Tianjin, China (2004) China Machinery Press, pp.
1746-1750.

O. Elbeyli, J. Q. Sun, G. Unal, A Semi-Discretization Method for Delayed Stochas-
tic Systems, Communication in Nonlinear Science and Numerical Simulation,
10(1) (2005), pp. 85-94.

T. Insperger, G. Stépan, Updated semi-discretization method for periodic delay-
differential equations with discrete delay, International Journal of Numerical
Methods in Engineering, 61(1) (2004) pp. 117-141.

O. Elbeyly, J. Q. Sun, On the semi-discretization method for feedback control
design of linear systems with time delay, Journal of Sound and Vibration, 273(1-
2) (2004), pp. 429-440.

I. Gy6ri, On approximation of the solutions of delay differential equations by
using piecewise constant arguments, Internat. J. of Math. € Math. Sci., 14(1)
(1991), pp. 111-126 .

I. Gyé6ri, F. Hartung, J. Turi, Numerical approximations for a class of differential
equations with time- and state-dependent delays, Applied Mathematics Letters,
8(6) (1995), pp. 19-24.

V. Lakshmikantham, D. Trigiante, Theory of Difference Equations, Numerical
Methods and Applications, Academic Press, London, 1988.

R. H. Fabiano, J. Turi, Preservation of stability under approximation for a neutral
FDE, Dynam. Contin. Discrete Impuls. Systems 5 (1999), pp. 351-364.

R. H. Fabiano, Renorming for stability and approximation of linear systems:
Examples, Math. Comput. Modelling 33 (2001), pp. 159-172.

K. L. Cooke, I. Gy6ri, Numerical approximation of the solutions of delay dif-
ferential equations on an infinite interval using piecewise constant arguments,
Comput. Math. Appl., 28(1-3) (1994), pp. 81-92.

I. Gyéri, F. Hartung, Numerical approximation of neutral differential equations
on infinite interval, J. Difference Equ. Appl. 8(11) (2002), pp. 983-999.

J. K. Hale, Verduyn Lunel, S. M., Introduction to Functional Differential Equa-
tions, Spingler-Verlag, New York, 1993.

I. Gyéri, Global attractivity in delay differential equations using a mixed mono-
tone technique, J. Math. Anal. Appl. 152 (1990) 131-155.



LIST OF FIGURES 24

List of Figures

Modeling the entering end exiting teeth in the milling process . . . . .
Graph of K(t) . . . . . . .«
Semi-discretized simulation for (2) with different step sizes . . . . . ..

Fully-discretized simulation for (2) for different step sizes . . . . . . ..

o N O Ot =

Semi-discretized stability charts for (2) for different step sizes. . . . . .
Fully-discretized stability charts for (2) for different step sizes . . . . . 10
The graph of (t), . . . . . . . . ... 11

~N O Ot s W N



