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Abstra
tUnwanted relative vibrations between the tool and the workpie
e representsigni�
ant 
hallenges in high-speed ma
hining. In order to avoid this problem,one needs to spe
ify ranges for system parameters (spindle speed, depth of 
ut)for whi
h the pro
ess is stable, i.e., to obtain a so-
alled stability 
hart. Su
hstability 
harts usually 
an only be given by numeri
al means whi
h is illustratedin the paper for a single degree of freedom model of milling. In this paper, weestablish the 
onvergen
e of the semi-dis
retization approximation method for a
lass of delay equations modeling the milling pro
ess. Moreover, we show thatsemi-dis
retization preserves asymptoti
 stability of the original equation, thus it
an be used to obtain good approximations for the stability 
harts.1 Introdu
tionIt has been known for a long time, that past e�e
ts need to be in
luded in the modelingof 
ertain dynami
 problems. One of the 
lassi
al examples is the predator-prey modelof Volterra [1℄, where the growth rate of predators depends not only on the present
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1 INTRODUCTION 2quality of food (say, prey), but also on the past quantities (say, in the period of ges-tation). The �rst delay models in engineering appeared for wheel shimmy [2℄, and forship stabilization [3℄. There are several other problems in engineering, where time de-lays arise, like in the modeling of ma
hine tool vibrations in 
utting pro
esses [4,5℄, inroboti
s telemanipulation with transport delay [6℄, or in neural network models, wherethe intera
tions of the neurons are delayed [7℄. Qualitative and quantitative analysisof delayed systems is therefore an important issue in many appli
ations.A numeri
al te
hnique, the so-
alled semi-dis
retization was used in [8℄ to obtainapproximate solutions for retarded fun
tional di�erential equations (RFDEs). Theessen
e of the method is that the delayed and the time dependent terms are approxi-mated by pie
ewise 
onstant values (zeroth order approximation), and, 
onsequently,the RFDE is approximated by a series of ordinary di�erential equations (ODEs). Thesolutions of these ODEs lead to a �nite dimensional dis
rete map approximation of theRFDE. The semi-dis
retization method 
an e�e
tively be used for analysing 
uttingpro
esses, like the milling pro
ess for whi
h the governing RFDE has time periodi

oe�
ients [5℄, the turning pro
ess with varying spindle speed for whi
h the time delayitself is also time dependent in the governing RFDE [9℄, or feedba
k 
ontrol systems[10, 11℄. We note that the method was re
ently re�ned in [12℄ and [13℄.The main goal of this paper is to provide a 
onvergen
e proof for the semi-dis
reti-zation method for a 
lass of RFDEs whi
h appear in engineering appli
ations. It willbe also shown, using a perturbation argument, that the semi-dis
retization method 
anbe used to 
onstru
t approximate stability 
harts for these appli
ations.In parti
ular, we investigate linear, T-periodi
, RFDEs of the form
ẋ(t) = A(t)x(t) +

r
∑

j=1

Rj(t)x(t − τj) +

∫ 0

−σ

W(ϑ, t)x(t + ϑ)dϑ , (1)
A(t + T ) = A(t), Rj(t + T ) = Rj(t), (j = 1, . . . , r), W(ϑ, t + T ) = W(ϑ, t) ,where A(t), Rj(t) and W(ϑ, t) are matrix valued fun
tions.In the present investigation, it is assumed that the matri
es A(t) and W(ϑ, t) havedis
ontinuities in t. These dis
ontinuities arise in the me
hani
al model: during themilling pro
ess, the number of working teeth are 
hanging 
orresponding to the entryand exit of the teeth into and from the 
ut.The rest of the paper is organized as follows. In Se
tion 2, we provide an example:numeri
al simulations using semi- and full-dis
retization for 
onstru
ting approximatestability 
harts for a single degree of freedom milling model. In Se
tion 3, we presenttheoreti
al results for 
onvergen
e of approximations and preservation of asymptoti
stability under approximation for a 
lass of delay-di�erential equations using the so-
alled semi-dis
retization method.



2 MOTIVATION: STABILITY ANALYSIS OF THE MILLING PROCESS 32 Motivation: stability analysis of the milling pro
essIn engineering problems, stability properties of dynami
al systems are usually demon-strated by stability 
harts. These 
harts present the parameter values for whi
h thesystem is stable or unstable. The 
urrent investigation was motivated by the analysisof the milling pro
ess. For milling, stability 
harts are given in the parameter plane ofthe spindle speed and the depth of 
ut. A

urate modeling of both the regenerative andthe tooth pass ex
itation e�e
ts in milling results in an RFDE with periodi
ally vary-ing 
oe�
ients. In [8, 5℄, the semi-dis
retization method was used to 
reate stability
harts for RFDE's modeling the milling pro
ess.2.1 A model of the milling pro
essDynami
al models of the milling pro
ess assume that either the tool or the workpie
e orboth of them are �exible, and due to the ex
iting e�e
t of the 
utting for
e, vibrationsmay arise. There are two essential phenomena in the milling pro
ess that 
hara
terizeits dynami
s. One is the regenerative e�e
t: the tool 
uts the surfa
e that was formedby the previous tooth pass, therefore the 
hip thi
kness, and 
onsequently the 
uttingfor
e depends on the a
tual tool position and the position one tooth pass earlier.Se
ond is the tooth passing ex
itation e�e
t: sin
e the tool is rotating and the teethperiodi
ally enter and leave the 
ut, the 
utting for
e is a time periodi
 fun
tion oftime with period equal to the tooth passing period. A

urate modeling of both e�e
tsleads to a time periodi
 RFDE.In the following preliminary example, we investigate the equation of a single degreeof freedom milling model (see [5℄ for details):
ẍ(t) + 2ζωnẋ(t) + ω2

nx(t) =
bK(t)

M
(x(t − τ) − x(t)) . (2)The left-hand side of the equation is asso
iated to the single degree of freedom dampedos
illator, the term in right-hand side 
omes from the 
utting for
e. The time delay in(2) is equal to the tooth passing period: τ = 60/(NΩ), where Ω is the spindle speedgiven in [rpm℄ and N is the number of teeth. The periodi
 fun
tion K(t) = K(t + τ)reads

K(t) =
N
∑

p=1

{

gp(t)

(

Kt cos

(

2πΩ

60
t + p

2π

N

)

+ Kn sin

(

2πΩ

60
t + p

2π

N

))

× sin

(

2πΩ

60
t + p

2π

N

)}

. (3)



2 MOTIVATION: STABILITY ANALYSIS OF THE MILLING PROCESS 4The fun
tion gp(t) determines if the tooth denoted by p is 
utting or not:
gp(t) =

{

1 if ϕenter < ϕp < ϕexit

0 otherwise , (4)where ϕenter and ϕexit are the angles where the teeth enter and exit the 
ut, respe
tively(see Figure 1).

Figure 1: Modeling the entering end exiting teeth in the milling pro
essAll the other parameters are summarized in Table 1. For these parameters, thegraph of fun
tion K(t) is shown in Figure 2. The dis
ontinuity of the fun
tion is dueto the tooth passing e�e
t. In the present 
ase the number of teeth is 2, and the enterand exit angles are 0◦ and 150◦, respe
tively. If the angular position of the teeth are
150◦ < ϕ1 < 180◦ and 330◦ < ϕ2 < 360◦, then both teeth are out of 
ut and thefun
tion K(t) is zero. natural frequen
y ωn = 920.5 rad/srelative damping ζ = 0.0032modal mass M = 2.573 kgtangential 
utting 
oe�
ient Kt = 5.5 × 108 N/m2normal 
utting 
oe�
ient Kn = 2 × 108 N/m2number of teeth N = 2tooth enter angle ϕenter = 0◦tooth exit angle ϕexit = 150◦depth of 
ut b = 1 mmspindle speed Ω = 9000 rpmTable 1: Parameters for milling pro
ess
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Figure 2: Graph of K(t)2.2 Comparison of semi-dis
retized and fully-dis
retized simu-lationsIn [8, 5℄, semi-dis
retization was used to 
onstru
t stability 
harts 
orresponding to(2). However, the method 
an be used for simulating the solutions of RFDEs, as well.Pie
ewise 
onstant approximation of the delayed term x(t−τ) and the time dependent
oe�
ient K(t) in (2) leads to the semi-dis
retized equation
ẍ(t) + 2ζωnẋ(t) +

(

ω2
n +

bKi

m

)

x(t) =
bKi

m
xi−m , t ∈ [ih, (i + 1)h] , i ∈ Z (5)where

Ki =

∫ (i+1)h

ih

K(s)ds , (6)
xi−m = x((i − m)h) and h = τ/m, m ∈ Z. Here, m is an approximation parameter, itde�nes the number of dis
retization steps over a time interval of length τ .For initial 
onditions x(ih) = xi, ẋ(ih) = vi and for a known xi−m, (5) 
an be solvedfor ea
h dis
retization step as an ordinary di�erential equation. The displa
ement andthe velo
ity for the next dis
retization step 
an be expressed as the linear 
ombinationof the dis
rete values xi, vi, xi−m:

x((i + 1)h) = xi+1 = a1,ixi + a2,ivi + a3,ixi−m , (7)
ẋ((i + 1)h) = vi+1 = a4,ixi + a5,ivi + a6,ixi−m , (8)where the 
oe�
ients ak,i (k = 1, . . . , 6, i ∈ Z) 
an be 
omputed using the parameterssummarized in Table 1 (for details, see [8, 5℄). If the initial values xi, xi−1, . . . , xi−mand vi are given, then the semi-dis
retized solution 
an be 
ontinued in the subsequentdis
retization steps (semi-dis
retized simulation).



2 MOTIVATION: STABILITY ANALYSIS OF THE MILLING PROCESS 6The step-by-step solution of (5) is presented in Figure 3 for di�erent approximationparameters m. The initial 
ondition was 
hosen to be xi = xi−1 = xi−2 = · · · = xi−m =

10−4 [m℄ for the a
tual and the delayed displa
ements and vi = 0 for the velo
ity. Thisinitial 
ondition 
orresponds to a reasonable perturbation around the x ≡ 0 solution.The parameters are given in Table 1. Note, that the spindle speed Ω and the depthof 
ut b parameters were set so that the system is 
lose to the boundary of stability(see Figure 5). Consequently, the solution is an almost periodi
 fun
tion. Figure 3indi
ates the 
onvergen
e of the semi-dis
retized solutions.
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Figure 3: Semi-dis
retized simulation for (2) with di�erent step sizesThe main di�eren
e in semi-dis
retization, as opposed to the traditional full-dis
re-tization, is that only the delayed states and the time dependent 
oe�
ients are dis-
retized. In order to see the di�eren
e between semi- and full-dis
retization, (2) is alsosolved by using full-dis
retization. The derivatives are approximated as:
ẋ(t) ≈

xi+1 − xi

h
, (9)

ẍ(t) ≈
xi+2 − 2xi+1 + xi

h2
, (10)where xi = x(ih), again. The fully-dis
retized equation reads

xi+2 − 2xi+1 + xi

h2
+ 2ζωn

xi+1 − xi

h
+ ω2

nxi =
bKi

m
(xi−m − xi) . (11)Here, xi+2 
an be expressed as the linear 
ombination of xi+1, xi and xi−m:

xi+2 = b1xi+1 + b2,ixi + b3,ixi−m , (12)where b1 = 2(1−hζωn), b2,i = 2hζωn−
(

ω2
n + bKi

m

)

h2 −1 and b3,i = bKi

m
h2. If the initialvalues xi+1, xi, . . . , xi−m are given, then the fully-dis
retized solution 
an be 
ontinuedin the subsequent dis
retization steps (fully-dis
retized simulation). The 
onvergen
e



2 MOTIVATION: STABILITY ANALYSIS OF THE MILLING PROCESS 7of the fully-dis
retized s
heme for linear and later for general RFDEs with time- andstate-dependent delays was proved in [14, 15℄.For 
omputations, the same reasonable initial 
ondition was 
hosen as for the semi-dis
retization: xi = 10−4 m, vi ≈ (xi+1 − xi)/h = 0, xi−2 = xi−3 = · · · = xi−m = 10−4[m℄. The solution obtained by full-dis
retization 
an be seen in Figure 4. It 
an beseen that the solutions 
onverge to the almost periodi
 fun
tion as the semi-dis
retizedsimulations does in Figure 3, but the 
onvergen
e is mu
h slower than that of semi-dis
retization. Here, approximation parameter m = 500 should be used to obtaina

eptable result.
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Figure 4: Fully-dis
retized simulation for (2) for di�erent step sizes
2.3 Comparison of stability 
harts obtained by semi- and full-dis
retizationTo 
onstru
t stability 
harts, values for parameters Ω and b should be found so that thesystem is stable. Therefore, in this se
tion, the parameters Ω and b are not �xed, theyare 
onsidered as independent variables (all the other parameters are �xed a

ordingto Table 1).For stability analysis of (2) by semi-dis
retization, the same stepwise solution isused as in equations (7) and (8), but now, the 
oe�
ients depend on the parameters
Ω and b: ak,i = ak,i(Ω, b), k = 1, . . . , 6, i ∈ Z. This stepwise solution provides thedis
rete map

yi+1 = Bi(Ω, b)yi , (13)where the m + 2 dimensional state ve
tor is
yi = col(vi xi xi−1 . . . xi−m) , (14)



2 MOTIVATION: STABILITY ANALYSIS OF THE MILLING PROCESS 8and the 
oe�
ient matrix has the form
Bi(Ω, b) =





























a5,i(Ω, b) a4,i(Ω, b) 0 0 . . . 0 a6,i(Ω, b)

a2,i(Ω, b) a1,i(Ω, b) 0 0 . . . 0 a3,i(Ω, b)

0 1 0 0 . . . 0 0

0 0 1 0 . . . 0 0... ... ... ... . . . ... ...
0 0 0 0 . . . 0 0

0 0 0 0 . . . 1 0





























. (15)
Apply (13) over the prin
ipal period τ = mh to obtain the transition matrix

Φs(Ω, b) = Bm−1(Ω, b)Bm−2(Ω, b) . . .B0(Ω, b) . (16)This matrix gives the 
onne
tion between y0 and ym: ym = Φs(Ω, b)y0. It is a �nite,(m + 2) dimensional, approximation of the in�nite dimensional monodromy operatorof (2). If the eigenvalues of Φs(Ω, b) are in modulus less than 1, then the dis
rete map,
onsequently, the semi-dis
retized solution is asymptoti
ally stable [16℄. For any Ωand b, the transition matrix 
an be determined, and its eigenvalues 
an be evaluated.Stability 
harts are 
onstru
ted by 
omputing the 
riti
al eigenvalues for a set of �xedspindle speeds Ω and depth of 
uts b.Semi-dis
retized stability 
harts are presented in Figure 5 for di�erent approxima-tion parameters m. It 
an be seen that as the parameter m is in
reased, that is, asthe step-size h is de
reased, the stability boundaries 
onverge. Even, for m = 20, thea

ura
y of the boundaries are a

eptable from the engineering view of point.
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Figure 5: Semi-dis
retized stability 
harts for (2) for di�erent step sizesThe parameter values Ω = 9000 [rpm℄ and b = 10−4 [m℄ represent the 
oordinatesof the P in Figure 5. These parameter values were used for the simulations in theprevious se
tion. As it 
an be seen, this point is really 
lose to the stability boundary.



2 MOTIVATION: STABILITY ANALYSIS OF THE MILLING PROCESS 9For 
omparison, the same stability 
harts are determined by full-dis
retization te
h-nique. If the 
oe�
ients in (12) are 
onsidered to be dependent on the parameters Ωand b: b1 = b1(Ω, b) and bk,i = bk,i(Ω, b), k = 2, 3, i ∈ Z, then the fully-dis
retizedsolution determines the dis
rete map
zi+1 = Ci(Ω, b)zi , (17)where the m + 2 dimensional state ve
tor is

zi = col(xi+1 xi . . . xi−m) , (18)and the 
oe�
ient matrix has the form
Ci(Ω, b) =





























b1(Ω, b) b2,i(Ω, b) 0 0 . . . 0 b3,i(Ω, b)

1 0 0 0 . . . 0 0

0 1 0 0 . . . 0 0

0 0 1 0 . . . 0 0... ... ... ... . . . ... ...
0 0 0 0 . . . 0 0

0 0 0 0 . . . 1 0





























. (19)
Here, the transition matrix is obtained as

Φf(Ω, b) = Cm−1(Ω, b)Cm−2(Ω, b) . . .C0(Ω, b) . (20)This matrix is also a �nite, (m + 2) dimensional, approximation of the in�nite dimen-sional monodromy operator. Stability analysis 
an be done by eigenvalue analysis ofthe matrix Φf(Ω, b), again.Fully-dis
retized stability 
harts are presented in Figure 6 for di�erent approxima-tion parameters m. It 
an be seen that the approximation parameters are mu
h largerand the boundaries 
onverge mu
h slower than in the semi-dis
retized 
harts in Figure5. For m = 500, the in�nite dimensional system is approximated by a 502 dimensionalone, but the stability boundaries are still not a

urate enough 
omparing to the 
hartsobtained by semi-dis
retization.Point P asso
iated to the parameters Ω = 9000 [rpm℄ and b = 10−4 [m℄ is alsopresented in Figure 6. It 
an be seen that even for the 
ase m = 500, point P is inthe unstable domain, although, a

ording to the stability 
hart determined by semi-dis
retization, point P is 
lose to the stability boundary.In Table 2, 
omputation times are shown 
orresponding to the stability boundariesin Figures 5 and 6. The 
riti
al eigenvalues were evaluated over 100 × 100 number ofdis
rete spindle speed and depth of 
ut values. As it 
an be seen, the 
omputation times
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Figure 6: Fully-dis
retized stability 
harts for (2) for di�erent step sizesfor semi-dis
retization are signi�
antly shorter than those for full-dis
retization. Forfull-dis
retization with approximation parameter m = 500, the 
omputation takes morethan 12 days, and the a

ura
y is still poor. Comparison to the 
hart obtained by thesemi-dis
retization with m = 40 and the 
orresponding 2.33 minutes of 
omputationtime shows that the semi-dis
retization method is mu
h more e�e
tive than the full-dis
retization te
hnique.semi-dis
retization full-dis
retization
m = 10 0.24 min m = 50 2.69 min
m = 20 0.58 min m = 100 35.00 min
m = 30 1.21 min m = 200 8 h 43.40 min
m = 40 2.33 min m = 500 307 h 0.47 minTable 2: Computation times for the stability 
harts determined by semi- and full-dis
retization in Figures 5 and 6In the remaining part of the paper, the a mathemati
al analysis of the semi-dis
retization te
hnique is presented in
luding the proof of 
onvergen
e of the solutionsand the preservation of asymptoti
 stability under semi-dis
retization.3 Analysis of the semi-dis
retization methodIn this se
tion, we 
onsider a 
lass of delay di�erential equations whi
h in
ludes equa-tions proposed as mathemati
al models of the milling pro
ess. We introdu
e an as-so
iated dis
retized equation by applying the method of semi-dis
retization, and we



3 ANALYSIS OF THE SEMI-DISCRETIZATION METHOD 11establish the 
onvergen
e of the method for this 
lass of equations. Finally, we showthat asymptoti
 stability is preserved under approximations.3.1 Notations and Preliminary ResultsWe say a fun
tion g : [0,∞) → X (where X = R, R
n or R

n×n) is pie
ewise-
ontinuous,if for any �nite A > 0, g is 
ontinuous on [0, A] ex
ept possibly at �nitely many
t1, . . . , tm, where �nite one-sided limits exist. The set of all pie
ewise-
ontinuous fun
-tions over [0,∞) is denoted by PC([0,∞), X).We denote a �xed ve
tor norm and the 
orresponding matrix norm on R

n and R
n×n,respe
tively, by | · |.Fix a positive 
onstant h. We introdu
e the notation

[t]h :=

[

t

h

]

hwhere [·] denotes the greatest integer part fun
tion. This fun
tion is pie
ewise 
onstant,and it is right-
ontinuous at the mesh points kh, (k = 0,±1,±2, . . .). Clearly, t − h <

[t]h ≤ t, hen
e
lim

h→0+
max
t∈R

|[t]h − t| = 0.We introdu
e the notation
〈t〉h := [t]h +

h

2
.Its graph 
an be seen in Figure 7. Sin
e

t −
h

2
< 〈t〉h ≤ t +

h

2
,we have

lim
h→0+

max
t∈R

|〈t〉h − t| = 0. (21)

−2h −h 0 h 2h 3h 4h 5h 6h
−2h

−h

0

h

2h

3h

4h

5h

6h

Figure 7: The graph of 〈t〉h



3 ANALYSIS OF THE SEMI-DISCRETIZATION METHOD 12For a fun
tion G ∈ PC([0,∞), Rn×n) we de�ne
PhG : [0,∞) → R

n×n, (PhG)(t) :=
1

h

∫ [t]h+h

[t]h

G(s) ds. (22)This operator Ph has the following properties:Lemma 1 Let G ∈ PC([0,∞), Rn×n). Then(i) for any t ≥ 0

lim sup
h→0+

|(PhG)(t) − G(t)| ≤ |G(t−) − G(t)| + |G(t+) − G(t)|;(ii) PhG ∈ PC([0,∞), Rn×n);(iii) if |G(t)| ≤ K for t ≥ 0, then |(PhG)(t)| ≤ K for t ≥ 0.Proof If G is 
ontinuous at t, then there exists a neigbourhood of t where G isuniformly 
ontinuous. In pari
ular, for a �xed ε > 0 there exists δ > 0 su
h that
|G(s)−G(s̃)| < ε for s, s̃ ∈ [t−δ, t+δ]. For 0 < h < δ it folows [t]h, [t]h+h ∈ [t−δ, t+δ],and so

lim
h→0+

|(PhG)(t) − G(t)| ≤ lim
h→0+

1

h

∫ [t]h+h

[t]h

|G(s) − G(t)| ds ≤ ε.But this yields
lim

h→0+
|(PhG)(t) −G(t)| = 0sin
e ε is arbitrary small.Now suppose G is not 
ontinuous at t, but it has �nite left and right limits at t. If

h is su
h that [t]h < t < [t]h + h, then
|(PhG)(t) −G(t)|

=
1

h

∣

∣

∣

∣

∣

∫ [t]h+h

[t]h

(G(s) −G(t)) ds

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

1

t − [t]h

∫ t

[t]h

(G(s) − G(t)) ds
t− [t]h

h

+
1

[t]h + h − t

∫ [t]h+h

t

(G(s) −G(t)) ds
[t]h + h − t

h

∣

∣

∣

∣

≤
1

t − [t]h

∫ t

[t]h

|G(s) − G(t−)| ds + |G(t−) − G(t)|

+
1

[t]h + h − t

∫ [t]h+h

t

|G(s) −G(t+)| ds + |G(t+) − G(t)|.If h is su
h that t = [t]h, then
|(PhG)(t) − G(t)| ≤

1

h

∫ t+h

t

|G(s) − G(t+)| ds + |G(t+) − G(t)|.



3 ANALYSIS OF THE SEMI-DISCRETIZATION METHOD 13Therefore in both 
ases we get statement (i), using an argument similar to that of the�rst 
ase.Clearly, G is 
onstant on the intervals [kh, (k + 1)h), k = 0, 1, . . ., therefore (ii)holds. Part (iii) is also obvious. 2Remark 1 Let G ∈ PC1([0,∞), Rn×n), i.e., it is pie
ewise 
ontinuously di�erentiable,and G and its derivative have �nite one-sided limits at the points of dis
ontinuities,moreover suppose there exists h̄ > 0 su
h that 
onse
utive points of dis
ontinuities of
G have distan
e at least h̄, then the proof of the previous lemma shows that for every
T > 0 there exists L > 0 su
h that
|(PhG)(t) −G(t)| ≤ Lh + |G(t−) −G(t)| + |G(t+)−G(t)|, t ∈ [0, T ], 0 < h < h̄.3.2 Semi-dis
retizationConsider again the delay system

ẋ(t) = A(t)x(t) +
r
∑

j=1

Rj(t)x(t − τj) +

∫ 0

−σ

W(ϑ, t)x(t + ϑ) dϑ , (23)and an asso
iated initial 
ondition
x(t) = ϕ(t), t ∈ [−ρ, 0], (24)where ρ := max{τ1, . . . , τr, σ}.We assume that(H1) the matrix valued fun
tions A,Rj ∈ PC([0,∞), Rn×n) (j = 1, . . . , p), and the
onstants σ, τ1, . . . , τr > 0.(H2) The weight fun
tion W : [−σ, 0] × [0,∞) → R

n×n is su
h that(i) W(·, t) : [−σ, 0] → R
n×n is 
ontinuous for ea
h t ∈ [0,∞),(ii) W(ϑ, ·) : [0,∞) → R
n×n is pie
ewise-
ontinuous for ea
h ϑ ∈ [−σ, 0].(H3) The initial fun
tion ϕ ∈ C([−ρ, 0], Rn).(H4) Fun
tions A,Rj (j = 1, . . . , p), and for ea
h ϑ, W(ϑ, ·) are T -periodi
, i.e.,

A(t + T ) = A(t), Rj(t + T ) = Rj(t) and W(ϑ, t + T ) = W(ϑ, t) for t ≥ 0,
ϑ ∈ [−σ, 0] and j = 1, . . . , r.



3 ANALYSIS OF THE SEMI-DISCRETIZATION METHOD 14For a �xed positive integer m we de�ne the dis
retization parameter h = σ/m, and
onsider the approximating equation 
orresponding to (23)
ẏh(t) = (PhA)(t)yh(t) +

r
∑

j=1

(PhRj)(t)yh(〈t〉h − 〈τj〉h)

+

∫ 0

−σ

(PhW)(ϑ, t)yh(〈t〉h + 〈ϑ〉h) dϑ, t ≥ 0, (25)together with the asso
iated initial 
ondition
yh(t) = ϕ(t), t ∈ [−ρ, 0]. (26)Here we interpret (PhW) as

(PhW)(ϑ, t) =
1

h

∫ [t]h+h

[t]h

W(ϑ, s) ds.If h < τj for all j, then
〈t〉h − 〈τj〉h ≤ t − τj + h < t,therefore (25) is a retarded equation.Introdu
e the notations

Ai := (PhA)(ih) =
1

h

∫ (i+1)h

ih

A(s) ds,

Ri,j := (PhRj)(ih) =
1

h

∫ (i+1)h

ih

Rj(s) ds,and
Wi,j :=

∫ −(j−1)h

−jh

(PhW)(ϑ, ih) dϑ =
1

h

∫ −(j−1)h

−jh

∫ (i+1)h

ih

W(ϑ, s) dϑ ds.Suppose t ∈ [ih, (i+1)h), i.e., [t]h = ih, and let mj := [τj ]h. Then using these notations(25) 
an be written as
ẏh(t) = Aiyh(t) +

r
∑

j=1

Ri,jyh(ih − mjh) +
m
∑

j=1

Wi,jyh(ih − jh + h).If we introdu
e
yi := yh(ih), i ∈ Z, ih ≥ −ρ,then we get

ẏh(t) = Aiyh(t) +

r
∑

j=1

Ri,jyi−mj
+

m
∑

j=1

Wi,jyi−j+1, ih ≤ t < (i + 1)h, i = 0, 1, . . . .(27)Clearly, (27) has a unique solution de�ned for all t ≥ 0. We refer the reader for moredetails on the 
omputation of the solution of (27) to [8℄.
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e of the s
hemeWe now show in the next theorem that the solution of initial value problem (25)-(26)approximate that of (23)-(24).Theorem 1 Assume (H1)�(H3), then the solution of (25)-(26) approximate the so-lution of (23)-(24) uniformly on 
ompa
t time intervals as h → 0+ (or equivalently,
m → ∞), i.e., for every S > 0

lim
h→0+

max
0≤t≤S

|x(t) − yh(t)| = 0.Proof Integrating (23) and (25) from 0 to t, respe
tively, we get
x(t) = ϕ(0)+

∫ t

0

A(u)x(u) du+

r
∑

j=1

∫ t

0

Rj(u)x(u−τj) du+

∫ t

0

∫ 0

−σ

W(ϑ, u)x(u+ϑ) dϑdu,and
yh(t) = ϕ(0) +

∫ t

0

(PhA)(u)yh(u) du +

r
∑

j=1

∫ t

0

(PhRj)(u)yh(〈u〉h − 〈τj〉h) du

+

∫ t

0

∫ 0

−σ

(PhW)(ϑ, u)yh(〈u〉h + 〈ϑ〉h) dϑ du.Therefore simple manipulations give
|x(t) − yh(t)|

≤ αh(t) +

∫ t

0

|(PhA)(s)||x(u) − yh(u)| du

+

r
∑

j=1

∫ t

0

|(PhRj)(u)||x(〈u〉h − 〈τj〉h) − yh(〈u〉h − 〈τj〉h)| du

+

∫ t

0

∫ 0

−σ

|(PhW)(ϑ, u)||x(〈u〉h + 〈ϑ〉h) − yh(〈u〉h + 〈ϑ〉h)| dϑ du, (28)where
αh(t) :=

∫ t

0

|A(u)− (PhA)(u)||x(u)| du +

r
∑

j=1

∫ t

0

|Rj(u) − (PhRj)(u)||x(u− τj)| du

+
r
∑

j=1

∫ t

0

|(PhRj)(u)||x(u − τj) − x(〈u〉h − 〈τj〉h)| du

+

∫ t

0

∫ 0

−σ

|W(ϑ, u) − (PhW)(ϑ, u)||x(u + ϑ)| dϑ du

+

∫ t

0

∫ 0

−σ

|(PhW)(ϑ, u)||x(u + ϑ) − x(〈u〉h + 〈ϑ〉h)| dϑ du.



3 ANALYSIS OF THE SEMI-DISCRETIZATION METHOD 16Note that αh(t) is a monotone in
reasing fun
tion in t. It follows from (21), Lemma 1(i), (iii), the boundedness of the fun
tions A, PhA, Rj , PhRj, W, PhW, and x over
ompa
t time intervals, and the Lebesgue's Dominated Convergen
e Theorem, that
lim

h→0+
αh(S) = 0, S ≥ 0. (29)We introdu
e

wh(t) := max{|x(s) − yh(s)| : 0 ≤ s ≤ t}.Then wh(t) is a monotone in
reasing fun
tion of t, so (28) implies
|x(t) − yh(t)| ≤ αh(t) +

∫ t

0

βh(u)wh(u) duwhere
βh(u) := |(PhA)(u)| +

r
∑

j=1

|(PhRj)(u)| +

∫ 0

−σ

|(PhW)(ϑ, u)| dϑ.Then the monotoni
ity of αh and wh and (28) yield for s < t

|x(s)−yh(s)| ≤ αh(s)+

∫ s

0

βh(u)wh(u) du ≤ αh(t)+

∫ t

0

βh(u)wh(u) du, 0 ≤ s < t,therefore
wh(t) ≤ αh(t) +

∫ t

0

βh(u)wh(u) du, t ≥ 0.Hen
e, using Growall's inequality, we obtain
|x(t) − yh(t)| ≤ wh(t) ≤ αh(t)e

R t

0
βh(u) du, t ≥ 0.Then the statement of the theorem follows from (29), sin
e βh is bounded by a 
onstantindependent of h over [0, S]. 2We 
omment that in the previous proof the parti
ular form of the dis
retizationoperator Ph and the fun
tion 〈t〉h was not important, the proof uses only the propertiesof Ph summarized in Lemma 1 and relation (21).Remark 2 If in addition to (H1)�(H3) we assume

A,Rj,W(ϑ, ·) ∈ PC1([0,∞), Rn×n), (j = 1, . . . , p, ϑ ∈ [−σ, 0]),and the distan
e between 
onse
utive points of dis
ontinuities of all fun
tions is atleast h̄ > 0, and ϕ ∈ C1([−ρ, 0], Rn), then it is easy to show, using Remark 1, that the
onvergen
e in the statement of Theorem 1 is �rst order, i.e., for every S > 0 thereexists M > 0 su
h that
max
0≤t≤S

|x(t) − yh(t)| ≤ Mh, 0 < h < h̄.
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 StabilityThe next theorem shows that the asymptoti
 stability of (23) is preserved under thesemi-dis
retization (25). Su
h issue was studied for several 
lasses of fun
tional di�er-ential equations in [17℄ and [18℄ using spline based s
hemes. For the full-dis
retizationmethod we refer to [19℄ and [20℄ for related works.Theorem 2 Assume (H1)�(H4) and that the trivial solution of (23) is asymptoti
allystable. Then there exists h0 > 0 su
h that the trivial solution of (25) is asymptoti
allystable for all 0 < h < h0.Proof We asso
iate initial 
onditions (24) and (26) (with the same initial fun
tion ϕ)to (23) and (25), respe
tively. The fundamental matrix solution of (23) is the n × nmatrix solution of the initial value problem
V̇(t, s) = A(t)V(t, s) +

r
∑

j=1

Rj(t)V(t− τj , s) +

∫ 0

−σ

W(ϑ, t)V(t + ϑ, s) dϑ, t ≥ 0,(30)
V(t, s) =

{

I, t = s,

0, t < s,
(31)where I is the identity and 0 is the zero matrix. Sin
e (23) is periodi
, it is known(see, e.g., [21℄) that the trivial solution of (23) is asymptoti
ally stable, if and only ifit is exponentially stable, i.e., there exist 
onstants K ≥ 1 and α ≥ 0 su
h that

|x(t)| ≤ Ke−αt‖ϕ‖, t ≥ 0, (32)where ‖ϕ‖ = max{|ϕ(t)| : t ∈ [−ρ, 0]}. This is also equivalent to that the fundamentalsolution of (23) is exponentially bounded, i.e., there exist 
onstants K0, α0 > 0 su
hthat
|V(t, s)| ≤ K0e

−α0(t−s), t ≥ s. (33)We 
an rewrite (25) as
ẏh(t) = A(t)yh(t) +

r
∑

j=1

Rj(t)yh(t − τj) +

∫ 0

−σ

W(ϑ, t)yh(t + ϑ) dϑ + γh(t) + δh(t),where
γh(t) =

(

(PhA)(t) −A(t)
)

yh(t) +

r
∑

j=1

(

(PhRj)(t) −Rj(t)
)

yh(t − τj)

+

∫ 0

−σ

(

(PhW)(ϑ, t) − W(ϑ, t)
)

yh(t + ϑ) dϑ, t ≥ 0,
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δh(t) =

r
∑

j=1

(PhRj)(t)
(

yh(〈t〉h − 〈τj〉h) − yh(t − τj)
)

+

∫ 0

−σ

(PhW)(ϑ, t)
(

yh(〈t〉h + 〈ϑ〉h) − yh(t + ϑ)
)

dϑ, t ≥ 0.Therefore, (25) 
an be 
onsidered as a perturbation of (23) with γh + δh, hen
e thevariation of 
onstants formula (see, e.g., [21℄) yields
yh(t) = x(t) +

∫ t

0

V(t, s)(γh(s) + δh(s)) ds, t ≥ 0. (34)We prove the theorem in two steps: �rst we show that yh will be bounded on [0,∞)for small h, then prove that yh(t) → 0 as t → ∞ for small h.1. We estimate both perturbation terms, ∫ t

0
V(t, s)γh(s) ds and ∫ t

0
V(t, s)δh(s) ds.Let zh(t) = max{|yh(s)| : −ρ ≤ s ≤ t}.To estimate ∫ t

0
V(t, s)γh(s) ds we �rst introdu
e m = [ t

T
]. Then (33), the de�nitionof zh, relation mT ≤ t < (m + 1)T and simple estimates yield

∣

∣

∣

∣

∫ t

0

V(t, s)γh(s) ds

∣

∣

∣

∣

≤

∫ t

0

|V(t, s)|
(∣

∣

∣
(PhA)(s) −A(s)

∣

∣

∣
|yh(s)| +

r
∑

j=1

∣

∣

∣
(PhRj)(s) −Rj(s)

∣

∣

∣
|yh(s − τj)|

+

∫ 0

−σ

∣

∣

∣
(PhW)(ϑ, s) −W(ϑ, s)

∣

∣

∣
|yh(s + ϑ)| dϑ

)

ds

≤ K0e
−α0t

∫ t

0

eα0s
(∣

∣

∣
(PhA)(s) − A(s)

∣

∣

∣
+

r
∑

j=1

∣

∣

∣
(PhRj)(s) −Rj(s)

∣

∣

∣

+

∫ 0

−σ

∣

∣

∣
(PhW)(ϑ, s) −W(ϑ, s)

∣

∣

∣
dϑ
)

ds · zh(t)

≤ K0e
−α0mT

m
∑

k=0

∫ (k+1)T

kT

eα0s
(∣

∣

∣
(PhA)(s) − A(s)

∣

∣

∣
+

r
∑

j=1

∣

∣

∣
(PhRj)(s) − Rj(s)

∣

∣

∣

+

∫ 0

−σ

∣

∣

∣
(PhW)(ϑ, s) −W(ϑ, s)

∣

∣

∣
dϑ
)

ds · zh(t), t ≥ 0.
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ity of the fun
tions A, PhA, Rj, PhRj, W(ϑ, ·), and
PhW(ϑ, ·),
∣

∣

∣

∣

∫ t

0

V(t, s)γh(s) ds

∣

∣

∣

∣

≤ K0e
−α0mT

m
∑

k=0

eα0(k+1)T

∫ T

0

(∣

∣

∣(PhA)(s) − A(s)
∣

∣

∣+

r
∑

j=1

∣

∣

∣(PhRj)(s) −Rj(s)
∣

∣

∣

+

∫ 0

−σ

∣

∣

∣
(PhW)(ϑ, s) − W(ϑ, s)

∣

∣

∣
dϑ
)

ds · zh(t)

≤ Ahzh(t), t ≥ 0, (35)where
Ah =

K0e
2α0T

eα0T − 1

∫ T

0

(∣

∣

∣
(PhA)(s) − A(s)

∣

∣

∣
+

r
∑

j=1

∣

∣

∣
(PhRj)(s) −Rj(s)

∣

∣

∣

+

∫ 0

−σ

∣

∣

∣
(PhW)(ϑ, s) − W(ϑ, s)

∣

∣

∣
dϑ
)

ds.It follows from Lemma 1 and the Lebesgue's Dominated Convergen
e Theorem that
Ah → 0 as h → 0+.To estimate ∫ t

0
V(t, s)δh(s) ds we �rst introdu
e some additional notation. Assump-tions (H1)�(H4) imply that there exist 
onstants M0, M1, . . . , Mr+1 > 0 su
h that

|A(t)| ≤ M0, |Rj(t)| ≤ Mj , (j = 1, . . . , r) |W(ϑ, t)| ≤
Mr+1

σ
, t ≥ 0, ϑ ∈ [−σ, 0],and hen
e, by Lemma 1,

|(PhA)(t)| ≤ M0, |(PhRj)(t)| ≤ Mj, (j = 1, . . . , r) |(PhW)(ϑ, t)| ≤
Mr+1

σ
,for t ≥ 0, ϑ ∈ [−σ, 0]. Using (25) we get for t ≥ ρ

δh(t) =
r
∑

j=1

(PhRj)(t)

∫ 〈t〉h−〈τj〉h

t−τj

ẏh(u) du +

∫ 0

−σ

(PhW)(ϑ, t)

∫ 〈t〉h+〈ϑ〉h

t+ϑ

ẏh(u) du dϑ

=

r
∑

j=1

(PhRj)(t)

∫ 〈t〉h−〈τj〉h

t−τj

(

(PhA)(u)yh(u) +

r
∑

k=1

(PhRk)(u)yh(〈u〉h − 〈τk〉h)

+

∫ 0

−σ

(PhW)(ϑ, u)yh(〈u〉h + 〈ϑ〉h) dϑ
)

du

+

∫ 0

−σ

(PhW)(ϑ, t)

∫ 〈t〉h+〈ϑ〉h

t+ϑ

(

(PhA)(u)yh(u) +
r
∑

k=1

(PhRk)(u)yh(〈u〉h − 〈τk〉h)

+

∫ 0

−σ

(PhW)(λ, u)yh(〈u〉h + 〈λ〉h) dλ
)

du dϑ. (36)



3 ANALYSIS OF THE SEMI-DISCRETIZATION METHOD 20Then relations |〈t〉h − 〈τk〉h − (t − τk)| ≤ h and |〈t〉h + 〈ϑ〉h − (t + ϑ)| ≤ h, and thede�nitions of M0, . . . , Mr+1 imply
|δh(t)| ≤ h

r
∑

j=1

Mj

(

r+1
∑

k=0

Mk

)

zh(t) + hMr+1

(

r+1
∑

k=0

Mk

)

zh(t) ≤ h
(

r+1
∑

k=0

Mk

)2

zh(t), t ≥ ρ,and
|δh(t)| ≤

r+1
∑

k=1

Mk2zh(ρ), t ∈ [0, ρ].Sin
e, by Theorem 1 and (32),
|yh(t)| ≤ |x(t)| + |yh(t) − x(t)| ≤ K‖ϕ‖ + 1, t ∈ [0, ρ], 0 ≤ h ≤ h1,we get

|δh(t)| ≤
r+1
∑

k=1

Mk2(K‖ϕ‖ + 1), t ∈ [0, ρ], 0 ≤ h ≤ h1.Therefore, for 0 ≤ h ≤ h1,
∣

∣

∣

∣

∫ t

0

V(t, s)δh(s) ds

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ ρ

0

V(t, s)δh(s) ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t

ρ

V(t, s)δh(s) ds

∣

∣

∣

∣

≤ ρK0

r+1
∑

k=1

Mk2(K‖ϕ‖ + 1) + K0

∫ t

ρ

e−α0(t−s) ds h
(

r+1
∑

k=0

Mk

)2

zh(t)

≤ B + Chzh(t), t ≥ 0, (37)where
B = ρK0

r+1
∑

k=1

Mk2(K‖ϕ‖ + 1), C =
K0

α0

(

r+1
∑

k=0

Mk

)2

.Combining (34), (35) and (37) yields
|yh(t)| ≤ K‖ϕ‖ + B + (Ah + Ch)zh(t), t ≥ 0,and so, using |yh(t)| ≤ ‖ϕ‖ and that the right hand side is monotone in t, we get
zh(t) ≤ K‖ϕ‖ + B + (Ah + Ch)zh(t), t ≥ 0.If 0 < h0 ≤ h1 is su
h that Ah + Ch < 1 for 0 < h ≤ h0, then

|yh(t)| ≤ zh(t) ≤
K‖ϕ‖ + B

1 − Ah − Ch
, t ≥ 0,therefore the solutions of (25) are bounded on [0,∞).2. Now we show that limt→0 |yh(t)| = 0. Consider again (34). Sin
e limt→∞ |x(t)| =

0, we get
lim sup

t→∞
|yh(t)| ≤ lim sup

t→∞
K0

∫ t

0

e−α0(t−s)(|γh(s)| + |δh(s)|) ds. (38)
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ond part on the right hand side 
an be estimated using Lemma 2.3 in [22℄, and(36) as follows
lim sup

t→∞
K0

∫ t

0

e−α0(t−s)|δh(s)| ds ≤ K0

∫ ∞

0

e−α0t dt · lim sup
t→∞

|δh(t)|

≤
K0

α0

h
(

r+1
∑

k=0

Mk

)2

lim sup
t→∞

|yh(t)|. (39)The �rst part requires a more 
areful estimate, similar to the derivation of (35). Let
ε > 0 be �xed, then there exists su
h N = N(ε, h) that |yh(t)| ≤ lim supt→∞ |yh(t)|+ εfor t ≥ NT − ρ. Let m(t) = [t/T ]. Then
lim sup

t→∞

∫ t

0

e−α0(t−s)|γh(s)| ds

≤ lim sup
t→∞

e−α0t

∫ NT

0

eα0s|γh(s)| ds + lim sup
t→∞

∫ t

NT

e−α0(t−s)|γh(s)| ds

≤ lim sup
t→∞

e−α0m(t)T

m(t)
∑

k=N

∫ (k+1)T

kT

eα0s
(∣

∣

∣
(PhA)(s) − A(s)

∣

∣

∣
+

r
∑

j=1

∣

∣

∣
(PhRj)(s) −Rj(s)

∣

∣

∣

+

∫ 0

−σ

∣

∣

∣
(PhW)(ϑ, s) − W(ϑ, s)

∣

∣

∣
dϑ
)

ds (lim sup
t→∞

|yh(t)| + ε)

≤ lim sup
t→∞

e−α0m(t)T

m(t)
∑

k=N

eα0(k+1)T

∫ T

0

(∣

∣

∣
(PhA)(s) − A(s)

∣

∣

∣
+

r
∑

j=1

∣

∣

∣
(PhRj)(s) −Rj(s)

∣

∣

∣

+

∫ 0

−σ

∣

∣

∣
(PhW)(ϑ, s) − W(ϑ, s)

∣

∣

∣
dϑ
)

ds (lim sup
t→∞

|yh(t)| + ε)

≤
Ah

K0e2α0T
(lim sup

t→∞
|yh(t)| + ε).Sin
e this estimate holds for any ε, it follows that

lim sup
t→∞

∫ t

0

e−α0(t−s)|γh(s)| ds ≤
Ah

K0e2α0T
lim sup

t→∞
|yh(t)|. (40)Combining (38), (39) and (40) we get

lim sup
t→∞

|yh(t)| ≤

(

Ah

e2α0T
+

K0

α0
h
(

r+1
∑

k=0

Mk

)2
)

lim sup
t→∞

|yh(t)|,whi
h 
on
ludes the proof, sin
e for small enough h, the 
oe�
ient on the right handside is less than 1, therefore lim supt→∞ |yh(t)| = limt→∞ |yh(t)| = 0. 2Remark 3 If in addition to (H1)�(H4) we suppose the assumptions listed in Remark 2,then it is easy to �nd a D > 0 su
h that Ah ≤ Dh, therefore the 
onstant, h0, in thestatement of Theorem 2 
an be given expli
itly.
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