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AbstratUnwanted relative vibrations between the tool and the workpiee representsigni�ant hallenges in high-speed mahining. In order to avoid this problem,one needs to speify ranges for system parameters (spindle speed, depth of ut)for whih the proess is stable, i.e., to obtain a so-alled stability hart. Suhstability harts usually an only be given by numerial means whih is illustratedin the paper for a single degree of freedom model of milling. In this paper, weestablish the onvergene of the semi-disretization approximation method for alass of delay equations modeling the milling proess. Moreover, we show thatsemi-disretization preserves asymptoti stability of the original equation, thus itan be used to obtain good approximations for the stability harts.1 IntrodutionIt has been known for a long time, that past e�ets need to be inluded in the modelingof ertain dynami problems. One of the lassial examples is the predator-prey modelof Volterra [1℄, where the growth rate of predators depends not only on the present
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1 INTRODUCTION 2quality of food (say, prey), but also on the past quantities (say, in the period of ges-tation). The �rst delay models in engineering appeared for wheel shimmy [2℄, and forship stabilization [3℄. There are several other problems in engineering, where time de-lays arise, like in the modeling of mahine tool vibrations in utting proesses [4,5℄, inrobotis telemanipulation with transport delay [6℄, or in neural network models, wherethe interations of the neurons are delayed [7℄. Qualitative and quantitative analysisof delayed systems is therefore an important issue in many appliations.A numerial tehnique, the so-alled semi-disretization was used in [8℄ to obtainapproximate solutions for retarded funtional di�erential equations (RFDEs). Theessene of the method is that the delayed and the time dependent terms are approxi-mated by pieewise onstant values (zeroth order approximation), and, onsequently,the RFDE is approximated by a series of ordinary di�erential equations (ODEs). Thesolutions of these ODEs lead to a �nite dimensional disrete map approximation of theRFDE. The semi-disretization method an e�etively be used for analysing uttingproesses, like the milling proess for whih the governing RFDE has time periodioe�ients [5℄, the turning proess with varying spindle speed for whih the time delayitself is also time dependent in the governing RFDE [9℄, or feedbak ontrol systems[10, 11℄. We note that the method was reently re�ned in [12℄ and [13℄.The main goal of this paper is to provide a onvergene proof for the semi-disreti-zation method for a lass of RFDEs whih appear in engineering appliations. It willbe also shown, using a perturbation argument, that the semi-disretization method anbe used to onstrut approximate stability harts for these appliations.In partiular, we investigate linear, T-periodi, RFDEs of the form
ẋ(t) = A(t)x(t) +

r
∑

j=1

Rj(t)x(t − τj) +

∫ 0

−σ

W(ϑ, t)x(t + ϑ)dϑ , (1)
A(t + T ) = A(t), Rj(t + T ) = Rj(t), (j = 1, . . . , r), W(ϑ, t + T ) = W(ϑ, t) ,where A(t), Rj(t) and W(ϑ, t) are matrix valued funtions.In the present investigation, it is assumed that the matries A(t) and W(ϑ, t) havedisontinuities in t. These disontinuities arise in the mehanial model: during themilling proess, the number of working teeth are hanging orresponding to the entryand exit of the teeth into and from the ut.The rest of the paper is organized as follows. In Setion 2, we provide an example:numerial simulations using semi- and full-disretization for onstruting approximatestability harts for a single degree of freedom milling model. In Setion 3, we presenttheoretial results for onvergene of approximations and preservation of asymptotistability under approximation for a lass of delay-di�erential equations using the so-alled semi-disretization method.



2 MOTIVATION: STABILITY ANALYSIS OF THE MILLING PROCESS 32 Motivation: stability analysis of the milling proessIn engineering problems, stability properties of dynamial systems are usually demon-strated by stability harts. These harts present the parameter values for whih thesystem is stable or unstable. The urrent investigation was motivated by the analysisof the milling proess. For milling, stability harts are given in the parameter plane ofthe spindle speed and the depth of ut. Aurate modeling of both the regenerative andthe tooth pass exitation e�ets in milling results in an RFDE with periodially vary-ing oe�ients. In [8, 5℄, the semi-disretization method was used to reate stabilityharts for RFDE's modeling the milling proess.2.1 A model of the milling proessDynamial models of the milling proess assume that either the tool or the workpiee orboth of them are �exible, and due to the exiting e�et of the utting fore, vibrationsmay arise. There are two essential phenomena in the milling proess that haraterizeits dynamis. One is the regenerative e�et: the tool uts the surfae that was formedby the previous tooth pass, therefore the hip thikness, and onsequently the uttingfore depends on the atual tool position and the position one tooth pass earlier.Seond is the tooth passing exitation e�et: sine the tool is rotating and the teethperiodially enter and leave the ut, the utting fore is a time periodi funtion oftime with period equal to the tooth passing period. Aurate modeling of both e�etsleads to a time periodi RFDE.In the following preliminary example, we investigate the equation of a single degreeof freedom milling model (see [5℄ for details):
ẍ(t) + 2ζωnẋ(t) + ω2

nx(t) =
bK(t)

M
(x(t − τ) − x(t)) . (2)The left-hand side of the equation is assoiated to the single degree of freedom dampedosillator, the term in right-hand side omes from the utting fore. The time delay in(2) is equal to the tooth passing period: τ = 60/(NΩ), where Ω is the spindle speedgiven in [rpm℄ and N is the number of teeth. The periodi funtion K(t) = K(t + τ)reads

K(t) =
N
∑

p=1

{

gp(t)

(

Kt cos

(

2πΩ

60
t + p

2π

N

)

+ Kn sin

(

2πΩ

60
t + p

2π

N

))

× sin

(

2πΩ

60
t + p

2π

N

)}

. (3)



2 MOTIVATION: STABILITY ANALYSIS OF THE MILLING PROCESS 4The funtion gp(t) determines if the tooth denoted by p is utting or not:
gp(t) =

{

1 if ϕenter < ϕp < ϕexit

0 otherwise , (4)where ϕenter and ϕexit are the angles where the teeth enter and exit the ut, respetively(see Figure 1).

Figure 1: Modeling the entering end exiting teeth in the milling proessAll the other parameters are summarized in Table 1. For these parameters, thegraph of funtion K(t) is shown in Figure 2. The disontinuity of the funtion is dueto the tooth passing e�et. In the present ase the number of teeth is 2, and the enterand exit angles are 0◦ and 150◦, respetively. If the angular position of the teeth are
150◦ < ϕ1 < 180◦ and 330◦ < ϕ2 < 360◦, then both teeth are out of ut and thefuntion K(t) is zero. natural frequeny ωn = 920.5 rad/srelative damping ζ = 0.0032modal mass M = 2.573 kgtangential utting oe�ient Kt = 5.5 × 108 N/m2normal utting oe�ient Kn = 2 × 108 N/m2number of teeth N = 2tooth enter angle ϕenter = 0◦tooth exit angle ϕexit = 150◦depth of ut b = 1 mmspindle speed Ω = 9000 rpmTable 1: Parameters for milling proess
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Figure 2: Graph of K(t)2.2 Comparison of semi-disretized and fully-disretized simu-lationsIn [8, 5℄, semi-disretization was used to onstrut stability harts orresponding to(2). However, the method an be used for simulating the solutions of RFDEs, as well.Pieewise onstant approximation of the delayed term x(t−τ) and the time dependentoe�ient K(t) in (2) leads to the semi-disretized equation
ẍ(t) + 2ζωnẋ(t) +

(

ω2
n +

bKi

m

)

x(t) =
bKi

m
xi−m , t ∈ [ih, (i + 1)h] , i ∈ Z (5)where

Ki =

∫ (i+1)h

ih

K(s)ds , (6)
xi−m = x((i − m)h) and h = τ/m, m ∈ Z. Here, m is an approximation parameter, itde�nes the number of disretization steps over a time interval of length τ .For initial onditions x(ih) = xi, ẋ(ih) = vi and for a known xi−m, (5) an be solvedfor eah disretization step as an ordinary di�erential equation. The displaement andthe veloity for the next disretization step an be expressed as the linear ombinationof the disrete values xi, vi, xi−m:

x((i + 1)h) = xi+1 = a1,ixi + a2,ivi + a3,ixi−m , (7)
ẋ((i + 1)h) = vi+1 = a4,ixi + a5,ivi + a6,ixi−m , (8)where the oe�ients ak,i (k = 1, . . . , 6, i ∈ Z) an be omputed using the parameterssummarized in Table 1 (for details, see [8, 5℄). If the initial values xi, xi−1, . . . , xi−mand vi are given, then the semi-disretized solution an be ontinued in the subsequentdisretization steps (semi-disretized simulation).



2 MOTIVATION: STABILITY ANALYSIS OF THE MILLING PROCESS 6The step-by-step solution of (5) is presented in Figure 3 for di�erent approximationparameters m. The initial ondition was hosen to be xi = xi−1 = xi−2 = · · · = xi−m =

10−4 [m℄ for the atual and the delayed displaements and vi = 0 for the veloity. Thisinitial ondition orresponds to a reasonable perturbation around the x ≡ 0 solution.The parameters are given in Table 1. Note, that the spindle speed Ω and the depthof ut b parameters were set so that the system is lose to the boundary of stability(see Figure 5). Consequently, the solution is an almost periodi funtion. Figure 3indiates the onvergene of the semi-disretized solutions.
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Figure 3: Semi-disretized simulation for (2) with di�erent step sizesThe main di�erene in semi-disretization, as opposed to the traditional full-disre-tization, is that only the delayed states and the time dependent oe�ients are dis-retized. In order to see the di�erene between semi- and full-disretization, (2) is alsosolved by using full-disretization. The derivatives are approximated as:
ẋ(t) ≈

xi+1 − xi

h
, (9)

ẍ(t) ≈
xi+2 − 2xi+1 + xi

h2
, (10)where xi = x(ih), again. The fully-disretized equation reads

xi+2 − 2xi+1 + xi

h2
+ 2ζωn

xi+1 − xi

h
+ ω2

nxi =
bKi

m
(xi−m − xi) . (11)Here, xi+2 an be expressed as the linear ombination of xi+1, xi and xi−m:

xi+2 = b1xi+1 + b2,ixi + b3,ixi−m , (12)where b1 = 2(1−hζωn), b2,i = 2hζωn−
(

ω2
n + bKi

m

)

h2 −1 and b3,i = bKi

m
h2. If the initialvalues xi+1, xi, . . . , xi−m are given, then the fully-disretized solution an be ontinuedin the subsequent disretization steps (fully-disretized simulation). The onvergene



2 MOTIVATION: STABILITY ANALYSIS OF THE MILLING PROCESS 7of the fully-disretized sheme for linear and later for general RFDEs with time- andstate-dependent delays was proved in [14, 15℄.For omputations, the same reasonable initial ondition was hosen as for the semi-disretization: xi = 10−4 m, vi ≈ (xi+1 − xi)/h = 0, xi−2 = xi−3 = · · · = xi−m = 10−4[m℄. The solution obtained by full-disretization an be seen in Figure 4. It an beseen that the solutions onverge to the almost periodi funtion as the semi-disretizedsimulations does in Figure 3, but the onvergene is muh slower than that of semi-disretization. Here, approximation parameter m = 500 should be used to obtainaeptable result.
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Figure 4: Fully-disretized simulation for (2) for di�erent step sizes
2.3 Comparison of stability harts obtained by semi- and full-disretizationTo onstrut stability harts, values for parameters Ω and b should be found so that thesystem is stable. Therefore, in this setion, the parameters Ω and b are not �xed, theyare onsidered as independent variables (all the other parameters are �xed aordingto Table 1).For stability analysis of (2) by semi-disretization, the same stepwise solution isused as in equations (7) and (8), but now, the oe�ients depend on the parameters
Ω and b: ak,i = ak,i(Ω, b), k = 1, . . . , 6, i ∈ Z. This stepwise solution provides thedisrete map

yi+1 = Bi(Ω, b)yi , (13)where the m + 2 dimensional state vetor is
yi = col(vi xi xi−1 . . . xi−m) , (14)



2 MOTIVATION: STABILITY ANALYSIS OF THE MILLING PROCESS 8and the oe�ient matrix has the form
Bi(Ω, b) =





























a5,i(Ω, b) a4,i(Ω, b) 0 0 . . . 0 a6,i(Ω, b)

a2,i(Ω, b) a1,i(Ω, b) 0 0 . . . 0 a3,i(Ω, b)

0 1 0 0 . . . 0 0

0 0 1 0 . . . 0 0... ... ... ... . . . ... ...
0 0 0 0 . . . 0 0

0 0 0 0 . . . 1 0





























. (15)
Apply (13) over the prinipal period τ = mh to obtain the transition matrix

Φs(Ω, b) = Bm−1(Ω, b)Bm−2(Ω, b) . . .B0(Ω, b) . (16)This matrix gives the onnetion between y0 and ym: ym = Φs(Ω, b)y0. It is a �nite,(m + 2) dimensional, approximation of the in�nite dimensional monodromy operatorof (2). If the eigenvalues of Φs(Ω, b) are in modulus less than 1, then the disrete map,onsequently, the semi-disretized solution is asymptotially stable [16℄. For any Ωand b, the transition matrix an be determined, and its eigenvalues an be evaluated.Stability harts are onstruted by omputing the ritial eigenvalues for a set of �xedspindle speeds Ω and depth of uts b.Semi-disretized stability harts are presented in Figure 5 for di�erent approxima-tion parameters m. It an be seen that as the parameter m is inreased, that is, asthe step-size h is dereased, the stability boundaries onverge. Even, for m = 20, theauray of the boundaries are aeptable from the engineering view of point.
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Figure 5: Semi-disretized stability harts for (2) for di�erent step sizesThe parameter values Ω = 9000 [rpm℄ and b = 10−4 [m℄ represent the oordinatesof the P in Figure 5. These parameter values were used for the simulations in theprevious setion. As it an be seen, this point is really lose to the stability boundary.



2 MOTIVATION: STABILITY ANALYSIS OF THE MILLING PROCESS 9For omparison, the same stability harts are determined by full-disretization teh-nique. If the oe�ients in (12) are onsidered to be dependent on the parameters Ωand b: b1 = b1(Ω, b) and bk,i = bk,i(Ω, b), k = 2, 3, i ∈ Z, then the fully-disretizedsolution determines the disrete map
zi+1 = Ci(Ω, b)zi , (17)where the m + 2 dimensional state vetor is

zi = col(xi+1 xi . . . xi−m) , (18)and the oe�ient matrix has the form
Ci(Ω, b) =





























b1(Ω, b) b2,i(Ω, b) 0 0 . . . 0 b3,i(Ω, b)

1 0 0 0 . . . 0 0

0 1 0 0 . . . 0 0

0 0 1 0 . . . 0 0... ... ... ... . . . ... ...
0 0 0 0 . . . 0 0

0 0 0 0 . . . 1 0





























. (19)
Here, the transition matrix is obtained as

Φf(Ω, b) = Cm−1(Ω, b)Cm−2(Ω, b) . . .C0(Ω, b) . (20)This matrix is also a �nite, (m + 2) dimensional, approximation of the in�nite dimen-sional monodromy operator. Stability analysis an be done by eigenvalue analysis ofthe matrix Φf(Ω, b), again.Fully-disretized stability harts are presented in Figure 6 for di�erent approxima-tion parameters m. It an be seen that the approximation parameters are muh largerand the boundaries onverge muh slower than in the semi-disretized harts in Figure5. For m = 500, the in�nite dimensional system is approximated by a 502 dimensionalone, but the stability boundaries are still not aurate enough omparing to the hartsobtained by semi-disretization.Point P assoiated to the parameters Ω = 9000 [rpm℄ and b = 10−4 [m℄ is alsopresented in Figure 6. It an be seen that even for the ase m = 500, point P is inthe unstable domain, although, aording to the stability hart determined by semi-disretization, point P is lose to the stability boundary.In Table 2, omputation times are shown orresponding to the stability boundariesin Figures 5 and 6. The ritial eigenvalues were evaluated over 100 × 100 number ofdisrete spindle speed and depth of ut values. As it an be seen, the omputation times
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Figure 6: Fully-disretized stability harts for (2) for di�erent step sizesfor semi-disretization are signi�antly shorter than those for full-disretization. Forfull-disretization with approximation parameter m = 500, the omputation takes morethan 12 days, and the auray is still poor. Comparison to the hart obtained by thesemi-disretization with m = 40 and the orresponding 2.33 minutes of omputationtime shows that the semi-disretization method is muh more e�etive than the full-disretization tehnique.semi-disretization full-disretization
m = 10 0.24 min m = 50 2.69 min
m = 20 0.58 min m = 100 35.00 min
m = 30 1.21 min m = 200 8 h 43.40 min
m = 40 2.33 min m = 500 307 h 0.47 minTable 2: Computation times for the stability harts determined by semi- and full-disretization in Figures 5 and 6In the remaining part of the paper, the a mathematial analysis of the semi-disretization tehnique is presented inluding the proof of onvergene of the solutionsand the preservation of asymptoti stability under semi-disretization.3 Analysis of the semi-disretization methodIn this setion, we onsider a lass of delay di�erential equations whih inludes equa-tions proposed as mathematial models of the milling proess. We introdue an as-soiated disretized equation by applying the method of semi-disretization, and we



3 ANALYSIS OF THE SEMI-DISCRETIZATION METHOD 11establish the onvergene of the method for this lass of equations. Finally, we showthat asymptoti stability is preserved under approximations.3.1 Notations and Preliminary ResultsWe say a funtion g : [0,∞) → X (where X = R, R
n or R

n×n) is pieewise-ontinuous,if for any �nite A > 0, g is ontinuous on [0, A] exept possibly at �nitely many
t1, . . . , tm, where �nite one-sided limits exist. The set of all pieewise-ontinuous fun-tions over [0,∞) is denoted by PC([0,∞), X).We denote a �xed vetor norm and the orresponding matrix norm on R

n and R
n×n,respetively, by | · |.Fix a positive onstant h. We introdue the notation

[t]h :=

[

t

h

]

hwhere [·] denotes the greatest integer part funtion. This funtion is pieewise onstant,and it is right-ontinuous at the mesh points kh, (k = 0,±1,±2, . . .). Clearly, t − h <

[t]h ≤ t, hene
lim

h→0+
max
t∈R

|[t]h − t| = 0.We introdue the notation
〈t〉h := [t]h +

h

2
.Its graph an be seen in Figure 7. Sine

t −
h

2
< 〈t〉h ≤ t +

h

2
,we have

lim
h→0+

max
t∈R

|〈t〉h − t| = 0. (21)
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Figure 7: The graph of 〈t〉h



3 ANALYSIS OF THE SEMI-DISCRETIZATION METHOD 12For a funtion G ∈ PC([0,∞), Rn×n) we de�ne
PhG : [0,∞) → R

n×n, (PhG)(t) :=
1

h

∫ [t]h+h

[t]h

G(s) ds. (22)This operator Ph has the following properties:Lemma 1 Let G ∈ PC([0,∞), Rn×n). Then(i) for any t ≥ 0

lim sup
h→0+

|(PhG)(t) − G(t)| ≤ |G(t−) − G(t)| + |G(t+) − G(t)|;(ii) PhG ∈ PC([0,∞), Rn×n);(iii) if |G(t)| ≤ K for t ≥ 0, then |(PhG)(t)| ≤ K for t ≥ 0.Proof If G is ontinuous at t, then there exists a neigbourhood of t where G isuniformly ontinuous. In pariular, for a �xed ε > 0 there exists δ > 0 suh that
|G(s)−G(s̃)| < ε for s, s̃ ∈ [t−δ, t+δ]. For 0 < h < δ it folows [t]h, [t]h+h ∈ [t−δ, t+δ],and so

lim
h→0+

|(PhG)(t) − G(t)| ≤ lim
h→0+

1

h

∫ [t]h+h

[t]h

|G(s) − G(t)| ds ≤ ε.But this yields
lim

h→0+
|(PhG)(t) −G(t)| = 0sine ε is arbitrary small.Now suppose G is not ontinuous at t, but it has �nite left and right limits at t. If

h is suh that [t]h < t < [t]h + h, then
|(PhG)(t) −G(t)|

=
1

h

∣

∣

∣

∣

∣

∫ [t]h+h

[t]h

(G(s) −G(t)) ds

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

1

t − [t]h

∫ t

[t]h

(G(s) − G(t)) ds
t− [t]h

h

+
1

[t]h + h − t

∫ [t]h+h

t

(G(s) −G(t)) ds
[t]h + h − t

h

∣

∣

∣

∣

≤
1

t − [t]h

∫ t

[t]h

|G(s) − G(t−)| ds + |G(t−) − G(t)|

+
1

[t]h + h − t

∫ [t]h+h

t

|G(s) −G(t+)| ds + |G(t+) − G(t)|.If h is suh that t = [t]h, then
|(PhG)(t) − G(t)| ≤

1

h

∫ t+h

t

|G(s) − G(t+)| ds + |G(t+) − G(t)|.



3 ANALYSIS OF THE SEMI-DISCRETIZATION METHOD 13Therefore in both ases we get statement (i), using an argument similar to that of the�rst ase.Clearly, G is onstant on the intervals [kh, (k + 1)h), k = 0, 1, . . ., therefore (ii)holds. Part (iii) is also obvious. 2Remark 1 Let G ∈ PC1([0,∞), Rn×n), i.e., it is pieewise ontinuously di�erentiable,and G and its derivative have �nite one-sided limits at the points of disontinuities,moreover suppose there exists h̄ > 0 suh that onseutive points of disontinuities of
G have distane at least h̄, then the proof of the previous lemma shows that for every
T > 0 there exists L > 0 suh that
|(PhG)(t) −G(t)| ≤ Lh + |G(t−) −G(t)| + |G(t+)−G(t)|, t ∈ [0, T ], 0 < h < h̄.3.2 Semi-disretizationConsider again the delay system

ẋ(t) = A(t)x(t) +
r
∑

j=1

Rj(t)x(t − τj) +

∫ 0

−σ

W(ϑ, t)x(t + ϑ) dϑ , (23)and an assoiated initial ondition
x(t) = ϕ(t), t ∈ [−ρ, 0], (24)where ρ := max{τ1, . . . , τr, σ}.We assume that(H1) the matrix valued funtions A,Rj ∈ PC([0,∞), Rn×n) (j = 1, . . . , p), and theonstants σ, τ1, . . . , τr > 0.(H2) The weight funtion W : [−σ, 0] × [0,∞) → R

n×n is suh that(i) W(·, t) : [−σ, 0] → R
n×n is ontinuous for eah t ∈ [0,∞),(ii) W(ϑ, ·) : [0,∞) → R
n×n is pieewise-ontinuous for eah ϑ ∈ [−σ, 0].(H3) The initial funtion ϕ ∈ C([−ρ, 0], Rn).(H4) Funtions A,Rj (j = 1, . . . , p), and for eah ϑ, W(ϑ, ·) are T -periodi, i.e.,

A(t + T ) = A(t), Rj(t + T ) = Rj(t) and W(ϑ, t + T ) = W(ϑ, t) for t ≥ 0,
ϑ ∈ [−σ, 0] and j = 1, . . . , r.



3 ANALYSIS OF THE SEMI-DISCRETIZATION METHOD 14For a �xed positive integer m we de�ne the disretization parameter h = σ/m, andonsider the approximating equation orresponding to (23)
ẏh(t) = (PhA)(t)yh(t) +

r
∑

j=1

(PhRj)(t)yh(〈t〉h − 〈τj〉h)

+

∫ 0

−σ

(PhW)(ϑ, t)yh(〈t〉h + 〈ϑ〉h) dϑ, t ≥ 0, (25)together with the assoiated initial ondition
yh(t) = ϕ(t), t ∈ [−ρ, 0]. (26)Here we interpret (PhW) as

(PhW)(ϑ, t) =
1

h

∫ [t]h+h

[t]h

W(ϑ, s) ds.If h < τj for all j, then
〈t〉h − 〈τj〉h ≤ t − τj + h < t,therefore (25) is a retarded equation.Introdue the notations

Ai := (PhA)(ih) =
1

h

∫ (i+1)h

ih

A(s) ds,

Ri,j := (PhRj)(ih) =
1

h

∫ (i+1)h

ih

Rj(s) ds,and
Wi,j :=

∫ −(j−1)h

−jh

(PhW)(ϑ, ih) dϑ =
1

h

∫ −(j−1)h

−jh

∫ (i+1)h

ih

W(ϑ, s) dϑ ds.Suppose t ∈ [ih, (i+1)h), i.e., [t]h = ih, and let mj := [τj ]h. Then using these notations(25) an be written as
ẏh(t) = Aiyh(t) +

r
∑

j=1

Ri,jyh(ih − mjh) +
m
∑

j=1

Wi,jyh(ih − jh + h).If we introdue
yi := yh(ih), i ∈ Z, ih ≥ −ρ,then we get

ẏh(t) = Aiyh(t) +

r
∑

j=1

Ri,jyi−mj
+

m
∑

j=1

Wi,jyi−j+1, ih ≤ t < (i + 1)h, i = 0, 1, . . . .(27)Clearly, (27) has a unique solution de�ned for all t ≥ 0. We refer the reader for moredetails on the omputation of the solution of (27) to [8℄.



3 ANALYSIS OF THE SEMI-DISCRETIZATION METHOD 153.3 Convergene of the shemeWe now show in the next theorem that the solution of initial value problem (25)-(26)approximate that of (23)-(24).Theorem 1 Assume (H1)�(H3), then the solution of (25)-(26) approximate the so-lution of (23)-(24) uniformly on ompat time intervals as h → 0+ (or equivalently,
m → ∞), i.e., for every S > 0

lim
h→0+

max
0≤t≤S

|x(t) − yh(t)| = 0.Proof Integrating (23) and (25) from 0 to t, respetively, we get
x(t) = ϕ(0)+

∫ t

0

A(u)x(u) du+

r
∑

j=1

∫ t

0

Rj(u)x(u−τj) du+

∫ t

0

∫ 0

−σ

W(ϑ, u)x(u+ϑ) dϑdu,and
yh(t) = ϕ(0) +

∫ t

0

(PhA)(u)yh(u) du +

r
∑

j=1

∫ t

0

(PhRj)(u)yh(〈u〉h − 〈τj〉h) du

+

∫ t

0

∫ 0

−σ

(PhW)(ϑ, u)yh(〈u〉h + 〈ϑ〉h) dϑ du.Therefore simple manipulations give
|x(t) − yh(t)|

≤ αh(t) +

∫ t

0

|(PhA)(s)||x(u) − yh(u)| du

+

r
∑

j=1

∫ t

0

|(PhRj)(u)||x(〈u〉h − 〈τj〉h) − yh(〈u〉h − 〈τj〉h)| du

+

∫ t

0

∫ 0

−σ

|(PhW)(ϑ, u)||x(〈u〉h + 〈ϑ〉h) − yh(〈u〉h + 〈ϑ〉h)| dϑ du, (28)where
αh(t) :=

∫ t

0

|A(u)− (PhA)(u)||x(u)| du +

r
∑

j=1

∫ t

0

|Rj(u) − (PhRj)(u)||x(u− τj)| du

+
r
∑

j=1

∫ t

0

|(PhRj)(u)||x(u − τj) − x(〈u〉h − 〈τj〉h)| du

+

∫ t

0

∫ 0

−σ

|W(ϑ, u) − (PhW)(ϑ, u)||x(u + ϑ)| dϑ du

+

∫ t

0

∫ 0

−σ

|(PhW)(ϑ, u)||x(u + ϑ) − x(〈u〉h + 〈ϑ〉h)| dϑ du.



3 ANALYSIS OF THE SEMI-DISCRETIZATION METHOD 16Note that αh(t) is a monotone inreasing funtion in t. It follows from (21), Lemma 1(i), (iii), the boundedness of the funtions A, PhA, Rj , PhRj, W, PhW, and x overompat time intervals, and the Lebesgue's Dominated Convergene Theorem, that
lim

h→0+
αh(S) = 0, S ≥ 0. (29)We introdue

wh(t) := max{|x(s) − yh(s)| : 0 ≤ s ≤ t}.Then wh(t) is a monotone inreasing funtion of t, so (28) implies
|x(t) − yh(t)| ≤ αh(t) +

∫ t

0

βh(u)wh(u) duwhere
βh(u) := |(PhA)(u)| +

r
∑

j=1

|(PhRj)(u)| +

∫ 0

−σ

|(PhW)(ϑ, u)| dϑ.Then the monotoniity of αh and wh and (28) yield for s < t

|x(s)−yh(s)| ≤ αh(s)+

∫ s

0

βh(u)wh(u) du ≤ αh(t)+

∫ t

0

βh(u)wh(u) du, 0 ≤ s < t,therefore
wh(t) ≤ αh(t) +

∫ t

0

βh(u)wh(u) du, t ≥ 0.Hene, using Growall's inequality, we obtain
|x(t) − yh(t)| ≤ wh(t) ≤ αh(t)e

R t

0
βh(u) du, t ≥ 0.Then the statement of the theorem follows from (29), sine βh is bounded by a onstantindependent of h over [0, S]. 2We omment that in the previous proof the partiular form of the disretizationoperator Ph and the funtion 〈t〉h was not important, the proof uses only the propertiesof Ph summarized in Lemma 1 and relation (21).Remark 2 If in addition to (H1)�(H3) we assume

A,Rj,W(ϑ, ·) ∈ PC1([0,∞), Rn×n), (j = 1, . . . , p, ϑ ∈ [−σ, 0]),and the distane between onseutive points of disontinuities of all funtions is atleast h̄ > 0, and ϕ ∈ C1([−ρ, 0], Rn), then it is easy to show, using Remark 1, that theonvergene in the statement of Theorem 1 is �rst order, i.e., for every S > 0 thereexists M > 0 suh that
max
0≤t≤S

|x(t) − yh(t)| ≤ Mh, 0 < h < h̄.



3 ANALYSIS OF THE SEMI-DISCRETIZATION METHOD 173.4 Preservation of Asymptoti StabilityThe next theorem shows that the asymptoti stability of (23) is preserved under thesemi-disretization (25). Suh issue was studied for several lasses of funtional di�er-ential equations in [17℄ and [18℄ using spline based shemes. For the full-disretizationmethod we refer to [19℄ and [20℄ for related works.Theorem 2 Assume (H1)�(H4) and that the trivial solution of (23) is asymptotiallystable. Then there exists h0 > 0 suh that the trivial solution of (25) is asymptotiallystable for all 0 < h < h0.Proof We assoiate initial onditions (24) and (26) (with the same initial funtion ϕ)to (23) and (25), respetively. The fundamental matrix solution of (23) is the n × nmatrix solution of the initial value problem
V̇(t, s) = A(t)V(t, s) +

r
∑

j=1

Rj(t)V(t− τj , s) +

∫ 0

−σ

W(ϑ, t)V(t + ϑ, s) dϑ, t ≥ 0,(30)
V(t, s) =

{

I, t = s,

0, t < s,
(31)where I is the identity and 0 is the zero matrix. Sine (23) is periodi, it is known(see, e.g., [21℄) that the trivial solution of (23) is asymptotially stable, if and only ifit is exponentially stable, i.e., there exist onstants K ≥ 1 and α ≥ 0 suh that

|x(t)| ≤ Ke−αt‖ϕ‖, t ≥ 0, (32)where ‖ϕ‖ = max{|ϕ(t)| : t ∈ [−ρ, 0]}. This is also equivalent to that the fundamentalsolution of (23) is exponentially bounded, i.e., there exist onstants K0, α0 > 0 suhthat
|V(t, s)| ≤ K0e

−α0(t−s), t ≥ s. (33)We an rewrite (25) as
ẏh(t) = A(t)yh(t) +

r
∑

j=1

Rj(t)yh(t − τj) +

∫ 0

−σ

W(ϑ, t)yh(t + ϑ) dϑ + γh(t) + δh(t),where
γh(t) =

(

(PhA)(t) −A(t)
)

yh(t) +

r
∑

j=1

(

(PhRj)(t) −Rj(t)
)

yh(t − τj)

+

∫ 0

−σ

(

(PhW)(ϑ, t) − W(ϑ, t)
)

yh(t + ϑ) dϑ, t ≥ 0,
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δh(t) =

r
∑

j=1

(PhRj)(t)
(

yh(〈t〉h − 〈τj〉h) − yh(t − τj)
)

+

∫ 0

−σ

(PhW)(ϑ, t)
(

yh(〈t〉h + 〈ϑ〉h) − yh(t + ϑ)
)

dϑ, t ≥ 0.Therefore, (25) an be onsidered as a perturbation of (23) with γh + δh, hene thevariation of onstants formula (see, e.g., [21℄) yields
yh(t) = x(t) +

∫ t

0

V(t, s)(γh(s) + δh(s)) ds, t ≥ 0. (34)We prove the theorem in two steps: �rst we show that yh will be bounded on [0,∞)for small h, then prove that yh(t) → 0 as t → ∞ for small h.1. We estimate both perturbation terms, ∫ t

0
V(t, s)γh(s) ds and ∫ t

0
V(t, s)δh(s) ds.Let zh(t) = max{|yh(s)| : −ρ ≤ s ≤ t}.To estimate ∫ t

0
V(t, s)γh(s) ds we �rst introdue m = [ t

T
]. Then (33), the de�nitionof zh, relation mT ≤ t < (m + 1)T and simple estimates yield

∣

∣

∣

∣

∫ t

0

V(t, s)γh(s) ds

∣

∣

∣

∣

≤

∫ t

0

|V(t, s)|
(∣

∣

∣
(PhA)(s) −A(s)

∣

∣

∣
|yh(s)| +

r
∑

j=1

∣

∣

∣
(PhRj)(s) −Rj(s)

∣

∣

∣
|yh(s − τj)|

+

∫ 0

−σ

∣

∣

∣
(PhW)(ϑ, s) −W(ϑ, s)

∣

∣

∣
|yh(s + ϑ)| dϑ

)

ds

≤ K0e
−α0t

∫ t

0

eα0s
(∣

∣

∣
(PhA)(s) − A(s)

∣

∣

∣
+

r
∑

j=1

∣

∣

∣
(PhRj)(s) −Rj(s)

∣

∣

∣

+

∫ 0

−σ

∣

∣

∣
(PhW)(ϑ, s) −W(ϑ, s)

∣

∣

∣
dϑ
)

ds · zh(t)

≤ K0e
−α0mT

m
∑

k=0

∫ (k+1)T

kT

eα0s
(∣

∣

∣
(PhA)(s) − A(s)

∣

∣

∣
+

r
∑

j=1

∣

∣

∣
(PhRj)(s) − Rj(s)

∣

∣

∣

+

∫ 0

−σ

∣

∣

∣
(PhW)(ϑ, s) −W(ϑ, s)

∣

∣

∣
dϑ
)

ds · zh(t), t ≥ 0.



3 ANALYSIS OF THE SEMI-DISCRETIZATION METHOD 19Therefore, using the T -periodiity of the funtions A, PhA, Rj, PhRj, W(ϑ, ·), and
PhW(ϑ, ·),
∣

∣

∣

∣

∫ t

0

V(t, s)γh(s) ds

∣

∣

∣

∣

≤ K0e
−α0mT

m
∑

k=0

eα0(k+1)T

∫ T

0

(∣

∣

∣(PhA)(s) − A(s)
∣

∣

∣+

r
∑

j=1

∣

∣

∣(PhRj)(s) −Rj(s)
∣

∣

∣

+

∫ 0

−σ

∣

∣

∣
(PhW)(ϑ, s) − W(ϑ, s)

∣

∣

∣
dϑ
)

ds · zh(t)

≤ Ahzh(t), t ≥ 0, (35)where
Ah =

K0e
2α0T

eα0T − 1

∫ T

0

(∣

∣

∣
(PhA)(s) − A(s)

∣

∣

∣
+

r
∑

j=1

∣

∣

∣
(PhRj)(s) −Rj(s)

∣

∣

∣

+

∫ 0

−σ

∣

∣

∣
(PhW)(ϑ, s) − W(ϑ, s)

∣

∣

∣
dϑ
)

ds.It follows from Lemma 1 and the Lebesgue's Dominated Convergene Theorem that
Ah → 0 as h → 0+.To estimate ∫ t

0
V(t, s)δh(s) ds we �rst introdue some additional notation. Assump-tions (H1)�(H4) imply that there exist onstants M0, M1, . . . , Mr+1 > 0 suh that

|A(t)| ≤ M0, |Rj(t)| ≤ Mj , (j = 1, . . . , r) |W(ϑ, t)| ≤
Mr+1

σ
, t ≥ 0, ϑ ∈ [−σ, 0],and hene, by Lemma 1,

|(PhA)(t)| ≤ M0, |(PhRj)(t)| ≤ Mj, (j = 1, . . . , r) |(PhW)(ϑ, t)| ≤
Mr+1

σ
,for t ≥ 0, ϑ ∈ [−σ, 0]. Using (25) we get for t ≥ ρ

δh(t) =
r
∑

j=1

(PhRj)(t)

∫ 〈t〉h−〈τj〉h

t−τj

ẏh(u) du +

∫ 0

−σ

(PhW)(ϑ, t)

∫ 〈t〉h+〈ϑ〉h

t+ϑ

ẏh(u) du dϑ

=

r
∑

j=1

(PhRj)(t)

∫ 〈t〉h−〈τj〉h

t−τj

(

(PhA)(u)yh(u) +

r
∑

k=1

(PhRk)(u)yh(〈u〉h − 〈τk〉h)

+

∫ 0

−σ

(PhW)(ϑ, u)yh(〈u〉h + 〈ϑ〉h) dϑ
)

du

+

∫ 0

−σ

(PhW)(ϑ, t)

∫ 〈t〉h+〈ϑ〉h

t+ϑ

(

(PhA)(u)yh(u) +
r
∑

k=1

(PhRk)(u)yh(〈u〉h − 〈τk〉h)

+

∫ 0

−σ

(PhW)(λ, u)yh(〈u〉h + 〈λ〉h) dλ
)

du dϑ. (36)



3 ANALYSIS OF THE SEMI-DISCRETIZATION METHOD 20Then relations |〈t〉h − 〈τk〉h − (t − τk)| ≤ h and |〈t〉h + 〈ϑ〉h − (t + ϑ)| ≤ h, and thede�nitions of M0, . . . , Mr+1 imply
|δh(t)| ≤ h

r
∑

j=1

Mj

(

r+1
∑

k=0

Mk

)

zh(t) + hMr+1

(

r+1
∑

k=0

Mk

)

zh(t) ≤ h
(

r+1
∑

k=0

Mk

)2

zh(t), t ≥ ρ,and
|δh(t)| ≤

r+1
∑

k=1

Mk2zh(ρ), t ∈ [0, ρ].Sine, by Theorem 1 and (32),
|yh(t)| ≤ |x(t)| + |yh(t) − x(t)| ≤ K‖ϕ‖ + 1, t ∈ [0, ρ], 0 ≤ h ≤ h1,we get

|δh(t)| ≤
r+1
∑

k=1

Mk2(K‖ϕ‖ + 1), t ∈ [0, ρ], 0 ≤ h ≤ h1.Therefore, for 0 ≤ h ≤ h1,
∣

∣

∣

∣

∫ t

0

V(t, s)δh(s) ds

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ ρ

0

V(t, s)δh(s) ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t

ρ

V(t, s)δh(s) ds

∣

∣

∣

∣

≤ ρK0

r+1
∑

k=1

Mk2(K‖ϕ‖ + 1) + K0

∫ t

ρ

e−α0(t−s) ds h
(

r+1
∑

k=0

Mk

)2

zh(t)

≤ B + Chzh(t), t ≥ 0, (37)where
B = ρK0

r+1
∑

k=1

Mk2(K‖ϕ‖ + 1), C =
K0

α0

(

r+1
∑

k=0

Mk

)2

.Combining (34), (35) and (37) yields
|yh(t)| ≤ K‖ϕ‖ + B + (Ah + Ch)zh(t), t ≥ 0,and so, using |yh(t)| ≤ ‖ϕ‖ and that the right hand side is monotone in t, we get
zh(t) ≤ K‖ϕ‖ + B + (Ah + Ch)zh(t), t ≥ 0.If 0 < h0 ≤ h1 is suh that Ah + Ch < 1 for 0 < h ≤ h0, then

|yh(t)| ≤ zh(t) ≤
K‖ϕ‖ + B

1 − Ah − Ch
, t ≥ 0,therefore the solutions of (25) are bounded on [0,∞).2. Now we show that limt→0 |yh(t)| = 0. Consider again (34). Sine limt→∞ |x(t)| =

0, we get
lim sup

t→∞
|yh(t)| ≤ lim sup

t→∞
K0

∫ t

0

e−α0(t−s)(|γh(s)| + |δh(s)|) ds. (38)



3 ANALYSIS OF THE SEMI-DISCRETIZATION METHOD 21The seond part on the right hand side an be estimated using Lemma 2.3 in [22℄, and(36) as follows
lim sup

t→∞
K0

∫ t

0

e−α0(t−s)|δh(s)| ds ≤ K0

∫ ∞

0

e−α0t dt · lim sup
t→∞

|δh(t)|

≤
K0

α0

h
(

r+1
∑

k=0

Mk

)2

lim sup
t→∞

|yh(t)|. (39)The �rst part requires a more areful estimate, similar to the derivation of (35). Let
ε > 0 be �xed, then there exists suh N = N(ε, h) that |yh(t)| ≤ lim supt→∞ |yh(t)|+ εfor t ≥ NT − ρ. Let m(t) = [t/T ]. Then
lim sup

t→∞

∫ t

0

e−α0(t−s)|γh(s)| ds

≤ lim sup
t→∞

e−α0t

∫ NT

0

eα0s|γh(s)| ds + lim sup
t→∞

∫ t

NT

e−α0(t−s)|γh(s)| ds

≤ lim sup
t→∞

e−α0m(t)T

m(t)
∑

k=N

∫ (k+1)T

kT

eα0s
(∣

∣

∣
(PhA)(s) − A(s)

∣

∣

∣
+

r
∑

j=1

∣

∣

∣
(PhRj)(s) −Rj(s)

∣

∣

∣

+

∫ 0

−σ

∣

∣

∣
(PhW)(ϑ, s) − W(ϑ, s)

∣

∣

∣
dϑ
)

ds (lim sup
t→∞

|yh(t)| + ε)

≤ lim sup
t→∞

e−α0m(t)T

m(t)
∑

k=N

eα0(k+1)T

∫ T

0

(∣

∣

∣
(PhA)(s) − A(s)

∣

∣

∣
+

r
∑

j=1

∣

∣

∣
(PhRj)(s) −Rj(s)

∣

∣

∣

+

∫ 0

−σ

∣

∣

∣
(PhW)(ϑ, s) − W(ϑ, s)

∣

∣

∣
dϑ
)

ds (lim sup
t→∞

|yh(t)| + ε)

≤
Ah

K0e2α0T
(lim sup

t→∞
|yh(t)| + ε).Sine this estimate holds for any ε, it follows that

lim sup
t→∞

∫ t

0

e−α0(t−s)|γh(s)| ds ≤
Ah

K0e2α0T
lim sup

t→∞
|yh(t)|. (40)Combining (38), (39) and (40) we get

lim sup
t→∞

|yh(t)| ≤

(

Ah

e2α0T
+

K0

α0
h
(

r+1
∑

k=0

Mk

)2
)

lim sup
t→∞

|yh(t)|,whih onludes the proof, sine for small enough h, the oe�ient on the right handside is less than 1, therefore lim supt→∞ |yh(t)| = limt→∞ |yh(t)| = 0. 2Remark 3 If in addition to (H1)�(H4) we suppose the assumptions listed in Remark 2,then it is easy to �nd a D > 0 suh that Ah ≤ Dh, therefore the onstant, h0, in thestatement of Theorem 2 an be given expliitly.
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