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Abstract. In this paper we formulate sufficient conditions for the asymptotic stablity of
linear delay systems of the form

ẋk(t) = −
m

X

ℓ=0

n
X

j=1

a
(ℓ)
kj

xj(t − τ
(ℓ)
kj

), k = 1, . . . , n, t ≥ 0,

where a
(0)
kj

, a
(ℓ)
kj

∈ R, τ
(0)
kj

= 0, τ
(ℓ)
kj

≥ 0, k, j = 1, . . . , n, ℓ = 1, . . . , m. In order to apply our

results, we give estimates for the integral
R

∞

0 |v(t)| dt, where v is the fundamental solution

of certain associated scalar linear delay differential equations with multiple delays.

Keywords. linear delay differential equations, fundamental solution, asymptotic stability

AMS (MOS) subject classification: 34K20, 34K06

1 Introduction

Consider the delay system

ẋk(t) = −

n
∑

j=1

akjxj(t) −

n
∑

j=1

bkjxj(t − τkj), k = 1, . . . , n, t ≥ 0, (1.1)

where akj , bkj ∈ R, τkj ≥ 0, k, j = 1, . . . , n. The stability of the trivial (zero)
solution of special classes of (1.1) has been studied, e.g., [3]–[19]. In this
paper we extend and improve these results for (1.1). Moreover, we formulate
our results for the more general linear delay system

ẋk(t) = −

m
∑

ℓ=0

n
∑

j=1

a
(ℓ)
kj xj(t − τ

(ℓ)
kj ), k = 1, . . . , n, t ≥ 0, (1.2)

where a
(0)
kj , a

(ℓ)
kj ∈ R, τ

(0)
kj = 0, τ

(ℓ)
kj ≥ 0, k, j = 1, . . . , n, ℓ = 1, . . . , m.

First we recall some known results for the stability of (1.1). All these
results rely on the notion of an M-matix. A square matrix is called non-
singular M-matrix, if all its off-diagonal elements are non-positive, and all
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its principal minors are positive. We refer, e.g., to [2] for many equivalent
form of this definition. We recall one equivalent property: the inverse of the
matrix is a positive matrix.

Necessary and sufficient condition of the asymptotic stability of the trivial
solution of (1.1) independently of the selection of the delays τkj ≥ 0 (k, j =
1, . . . , n) was given by Hofbauer and So in [15] for the case when the coefficient
matrix (akj) is diagonal, i.e., akj = 0 (k 6= j, k, j = 1, . . . , n) and there is
no delay in the main diagonal terms, i.e., bkk = 0 (k = 1, . . . , n). Later
this result was extended by Campbell ([3]) for the case when akj = 0 (k 6= j,
k, j = 1, . . . , n) but bkk is not necessary zero. It was shown in [3] for this latter
case that the trivial solution of (1.1) is asymptotically stable independently
of the delays, if and only if the n × n matrix C with components

ckj =

{

akk − |bkk|, k = j,
−|bkj |, k 6= j

(1.3)

is a nonsingular M-matrix.
The sufficient part of the above result was extended in [10] to the general

case of (1.1). It was shown that if the n × n matrix D with components

dkj =

{

akk − |bkk|, k = j,
−|akk| − |bkj |, k 6= j

(1.4)

is a nonsingular M-matrix, then the trivial solution of (1.1) is asymptotically
stable independently of the selection of the delays τkj ≥ 0 (k, j = 1, . . . , n).

For the case when the stability depends on the delays there are not many
known conditions. Next we recall two results in this direction, which are
given for the special case of (1.1), when there is no instantaneous negative
feedback in the system, i.e., consider

ẋk(t) = −

n
∑

j=1

bkjxj(t − τkj), k = 1, . . . , n, t ≥ 0, (1.5)

where bkj ∈ R, τkj ≥ 0, k, j = 1, . . . , n.
In [5] the following result was proved.

Theorem 1.1 (Theorem 3.2 in [5]) If

0 < bkkτkk <
π

2
, k = 1, . . . , n, (1.6)

and the n × n matrix E with elements

ekj =

{

α2
0k

α2
0k

+β2
0k

bkk, k = j,

−|bkj |, k 6= j
(1.7)

is a nonsingular M-matrix, where α0k + iβ0k is the leading characteristic root
of the equation

ẏk(t) = −bkkyk(t − τkk), t ≥ 0, (1.8)

then the trivial solution of (1.5) is asymptotically stable.
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We say that λ0k = α0k + iβ0k is a leading characteristic root of (1.8), if
it is a solution of the characteristic equation

λ = −bkke−λτkk , λ ∈ C, (1.9)

and for any other root λ = α + iβ of (1.9), α < α0k holds, assuming λ 6=
α0k ± iβ0k. Note that the above condition gives back the optimal condition
of stability for small delays, since if

0 < bkkτkk <
1

e
, k = 1, . . . , n, (1.10)

then the leading characteristic root of (1.8) is real for all k = 1, . . . , n, so the
matrix E in (1.7) simplifies to Ẽ defined by

ẽkj =

{

bkk, k = j,
−|bkj |, k 6= j.

(1.11)

If Ẽ is a nonsingular M-matrix, the the corresponding ODE

ẋk(t) = −
n
∑

k=1

bkjxj(t), k = 1, . . . , n

is asymptotically stable (see, e.g., [1]). It was shown in [6] that if bkj ≥ 0

for all k 6= j, (k, j = 1, . . . , n) and (1.10) holds, then Ẽ beeing a nonsingular
M-matrix is the necessary and sufficient condition of the asymptotic stability
of (1.5).

The main idea of the proof of Theorem 1.1 is to consider (1.5) as the
perturbation of (1.8). Let vk denote the fundamental solution of (1.5), i.e.,
the solution of the initial value problem

v̇k(t) = −bkkvk(t − τkk), t ≥ 0, (1.12)

vk(t) =

{

1, t = 0,
0, t < 0.

(1.13)

Then knowing an estimate of the form

∫ ∞

0

|vk(t)| dt ≤
1

bkk

γk, (1.14)

one can repeat the proof of Theorem 1.1 and show

Theorem 1.2 Assume (1.6). If (1.14) holds and the matrix F with elements

fkj =

{

1
γk

bkk, k = j,

−|bkj |, k 6= j.

is an M-matrix, then (1.5) is asymptotically stable.
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Recently So, Tang and Zou [19] gave the following sufficient condition for
the asymptotic stability of (1.5):

Theorem 1.3 (Theorem 1.3 in [19]) Suppose

0 < bkkτkk <
3

2
, k = 1, . . . , n, (1.15)

and the matrix G with elements

gkj =







bkk, k = j,

−
1 + 1

9bkkτkk(3 + 2bkkτkk)

1 − 1
9bkkτkk(3 + 2bkkτkk)

|bkj |, k 6= j
(1.16)

is a nonsingular M-matrix, then the trivial solution of (1.5) is asymptotically
stable.

Clearly, matrix G is a nonsingular M-matrix, if and only if the matrix G̃
defined by

g̃kj =







1 − 1
9bkkτkk(3 + 2bkkτkk)

1 + 1
9bkkτkk(3 + 2bkkτkk)

bkk, k = j,

−|bkj |, k 6= j

(1.17)

is a nonsingular M-matrix.

In Corollary 4.3 (see Section 4 below) we get, as a special case of our
main result, Theorem 4.1, that if

0 < bkkτkk < 1 +
1

e
, k = 1, . . . , n, (1.18)

and the matrix H with components

hkj =







1 − (bkkτkk − 1
e
)+

1 + (bkkτkk − 1
e
)+

bkk, k = j,

−|bkj |, k 6= j.

(1.19)

is a nonsingular M-matrix, then the trivial solution of (1.5) is asymptoti-
cally stable. Here a+ denotes the positive part of the number a, i.e., a+ =
max(a, 0).

The perturbation technique used to prove Theorems 1.1 and 1.2 is well-
known for obtaining stability results for different classes of scalar and non-
scalar differential and difference equations. See, e.g., [5] and [8]–[18] for
applications of this method. The applicability of these and similar theorems
depends on if we can compute or estimate the absolute integral of the fun-
damental solution in (1.14), which is a difficult task in the case when the
fundamental solution changes sign (see [5] and [8] for more details). To the
best of our knowledge, Theorem 2.1 in [5] is the only known estimate of this
integral in this case, and it is formulated only for the simple single delay
equation (1.8):
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Theorem 1.4 (Theorem 2.1 in [5]) Assume (1.6), and let λ0k = α0k +
iβ0k be the leading characteristic root of (1.8). Then

∫ ∞

0

|vk(t)| dt ≤
1

bkk

α2
0k + β2

0k

α2
0k

. (1.20)

The main goal of this paper is to extend and improve Theorem 1.4 for
much larger classes of linear delay equations, and apply the above pertur-
bation technique for the general linear delay system (1.2). In Section 2 we
study scalar linear differential equations with multiple delay, and give es-
timates (1.14) for its fundamental solution using a characteristic root (see
Theorem 2.2) and also in a special case, in terms of the parameters of the
equation (see Theorem 2.4). In Section 3 we investigate in details scalar
linear single delay equations, and give explicit necessary and sufficient condi-
tions (see Theorem 3.1) for that estimate given in Theorem 2.2 be applicable.
In Section 4 we formulate sufficient conditions for the asymptotic stability of
(1.2) using estimates of absolute integral of the fundamental solutions of cer-
tain associated scalar multiple delay equations. We give applications of our
general stability condition on simpler examples, and compare the conditions
of Theorems 1.1, 1.2, 1.3 and Corollary 4.3 for Equation (1.5).

2 Multiple Delay Case

In this section we study the scalar delay equation with multiple delays

ẋ(t) = −

m
∑

k=0

akx(t − τk), t ≥ 0. (2.1)

We shall assume that

(H1) a0 ∈ R, ak ≥ 0 (k = 1, . . . , m),
∑m

k=0 ak 6= 0, and 0 = τ0 < τ1 < . . . <
τm.

(H2) The trivial solution of (2.1) is asymptotically stable.

The characteristic equation of (2.1) is

λ = −
m
∑

k=0

ake−λτk . (2.2)

Let α and β denote the real and imaginary part of λ, i.e., λ = α + iβ. In
terms of α and β Equation (2.2) is equivalent to the system

α + a0 = −

m
∑

k=1

ake−ατk cosβτk, (2.3)

β =

m
∑

k=1

ake−ατk sin βτk. (2.4)
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Since ak are real numbers, we can assume that β ≥ 0, since if λ is a solution
of (2.2), then its conjugate is also a solution.

Let v denote the fundamental solution of (2.1), i.e., the solution of the
initial value problem

v̇(t) = −
m
∑

k=0

akv(t − τk), t ≥ 0, (2.5)

v(t) =

{

1, t = 0,
0, t ∈ [−τm, 0).

(2.6)

We have collected some well-known results from the literature in the next
proposition related to the fundamental solution. For the proof of part (i) see,
e.g., [14], part (ii) is a simple generalization of a result found, e.g., in [6], and
part (iii) is proved, e.g., in [12], and (iv) and (v) can be found, e.g., in [13].

Proposition 2.1 Assume (H1).

(i) Assumption (H2) is equivalent to any of the following conditions

(1) All solutions λ = α + iβ of (2.2) satisfy α < 0.

(2) The fundamental solution v(t) of (2.1) tends to 0 exponentially as
t → ∞.

(3) The fundamental solution v(t) of (2.1) is in L1[0,∞), i.e.,

∫ ∞

0

|v(t)| dt < ∞.

(ii) The fundamental solution v of (2.1) is positive on [0,∞), if and only if
the characteristic equation (2.2) has a real root.

(iii) If (H2) holds, then

∫ ∞

0

v(t) dt =
1

∑m

k=0 ak

.

(iv) If a0 ≥ 0 and
m
∑

k=1

akτk >
1

e
,

then all solutions of (2.1) (including the fundamental solution) are os-
cillatory, i.e., have arbitrary large zeros.
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(v) If a0 ≥ 0 and
(

m
∑

k=0

ak

)

τm ≤
1

e
,

then there exists a nonoscillatory solution of (2.1), in particular, the
fundamental solution v(t) of (2.1) is positive for t > 0.

The next result extends Theorem 1.4 for the multiple delay equation (2.1).

Theorem 2.2 Assume (H1), (H2), and suppose α0 + iβ0 is a solution of
(2.2) such that

0 < β0τm <
π

2
. (2.7)

Then
∫ ∞

0

|v(t)| dt ≤
1

∑m

k=0 ak



1 −
2β0e

α0π

2β0

α0

(

1 − e
α0π

β0

)



 . (2.8)

Proof Since λ0 = α0 + iβ0 is a solution of (2.2), the function

x(t) = eα0t cosβ0t

is a solution of (2.1). On the other hand, the variation of constants formula
(see, e.g., [14]) implies

x(t) = v(t)x(0) −

m
∑

k=1

ak

∫ 0

−τk

v(t − s − τk)x(s) ds, t ≥ 0.

Therefore,

v(t) = eα0t cosβ0t +

m
∑

k=1

ak

∫ 0

−τk

v(t − s − τk)eα0s cosβ0s ds, t ≥ 0.

Introduce the notation A :=
∫∞
0

|v(t)| dt < ∞. Integrating from 0 to ∞ and
using initial condition (2.6) we get

A =

∫ ∞

0

|v(t)| dt

≤

∫ ∞

0

|eα0t cosβ0t| dt +

m
∑

k=1

ak

∫ ∞

0

∫ 0

−τk

|v(t − s − τk)|eα0s| cosβ0s| ds dt

=

∫ ∞

0

|eα0t cosβ0t| dt +

m
∑

k=1

ak

∫ 0

−τk

eα0s| cosβ0s|

∫ ∞

0

|v(t − s − τk)| dt ds

=

∫ ∞

0

|eα0t cosβ0t| dt + A

m
∑

k=1

ak

∫ 0

−τk

eα0s| cosβ0s| ds

=

∫ ∞

0

|eα0t cosβ0t| dt + A

m
∑

k=1

ak

∫ τk

0

e−α0s| cosβ0s| ds.
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Assumption (2.7) yields

cosβ0s ≥ 0, s ∈ [0, τm],

therefore

A ≤

∫ ∞

0

|eα0t cosβ0t| dt + A
m
∑

k=1

ak

∫ τk

0

e−α0s cosβ0s ds. (2.9)

From relations (2.3) and (2.4), it readily follows

m
∑

k=1

ak

∫ τk

0

e−α0s cosβ0s ds

=

m
∑

k=1

ak

−e−α0 τkα0 cos(β0 τk) + e−α0 τkβ0 sin(β0 τk) + α0

α0
2 + β0

2

=
(α0 + a0)α0 + β2

0

α0
2 + β0

2 +
α0

α0
2 + β0

2

m
∑

k=1

ak,

= 1 +
α0

α0
2 + β0

2

m
∑

k=0

ak,

hence

A ≤

∫ ∞

0

|eα0t cosβ0t| dt + A

(

1 +
α0

α0
2 + β0

2

m
∑

k=0

ak

)

,

and so

A ≤
α0

2 + β0
2

−α0

∑m

k=0 ak

∫ ∞

0

|eα0t cosβ0t| dt, (2.10)

since α0 < 0. Now we compute the integral B :=
∫∞
0 |eα0t cosβ0t| dt. Let

tj =
π
2 + jπ

β0
, (j = 0, 1, . . .),

then

B =

∫ t0

0

eα0t cosβ0t dt −

∞
∑

j=0

∫ t2j+1

t2j

eα0t cosβ0t dt

+

∞
∑

j=0

∫ t2j+2

t2j+1

eα0t cosβ0t dt
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=
β0e

α0π

2β0 − α0

α2
0 + β2

0

+
β0

α2
0 + β2

0

∞
∑

j=0

(

e
(3+4j)α0π

2β0 + e
(1+4j)α0π

2β0

)

+
β0

α2
0 + β2

0

∞
∑

j=0

(

e
(5+4j)α0π

2β0 + e
(3+4j)α0π

2β0

)

=
β0e

α0π

2β0 − α0

α2
0 + β2

0

+
β0

α2
0 + β2

0

(

e
5α0π

2β0

1 − e
2α0π

β0

+ 2
e

3α0π

2β0

1 − e
2α0π

β0

+
e

α0π

2β0

1 − e
2α0π

β0

)

=
β0e

α0π

2β0 − α0

α2
0 + β2

0

+
β0e

α0π

2β0

(α2
0 + β2

0)
(

1 − e
2α0π

β0

)

(

e
2α0π

β0 + 2e
α0π

β0 + 1

)

=
β0e

α0π

2β0 − α0

α2
0 + β2

0

+
β0e

α0π

2β0

(

1 + e
α0π

β0

)

(α2
0 + β2

0)
(

1 − e
α0π

β0

)

=
−α0

α2
0 + β2

0

+
2β0e

α0π

2β0

(α2
0 + β2

0)
(

1 − e
α0π

β0

) .

This relation combined with (2.10) implies (2.8).

�

We note that if we use estimate
∫ ∞

0

|eα0t cosβ0t| dt ≤

∫ ∞

0

eα0t dt = −
1

α0
.

in (2.10) instead of the exact value of the integral
∫∞
0 |eα0t cosβ0t| dt, then

we get
∫ ∞

0

|v(t)| dt ≤
1

∑m
k=0 ak

α2
0 + β2

0

α2
0

, (2.11)

which is the multiple delay analogue of (1.20). Of course, the proof of The-
orem 2.2 shows that (2.8) is a better estimate than (2.11) if β0 6= 0.

Remark 2.3 It is easy to see that for any fixed α0 < 0

lim
β0→0+

2β0e
α0π

2β0

α0

(

1 − e
α0π

β0

) = 0. (2.12)

If in the case when the fundamental solution is positive, i.e., β0 = 0, we
interpret the constant on the right-hand side of (2.8) using the limit (2.12),
then in this case (2.8) holds, as well. Moreover, by Proposition 2.1 (ii) and
(iii), in this case (2.8) is satisfied with equality.
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It follows from Proposition 2.1 (v) that if (
∑m

k=1 ak) τm ≤ 1
e
, then the

fundamental solution of (2.1) is positive. Therefore the only interesting case
is to estimate

∫∞
0

|v(t)| dt when (
∑m

k=1 ak) τm > 1
e
. (Note that in this case

the fundamental solution can be positive, as well, see the gap between the
conditions of part (iv) and (v) of Proposition 2.1). In the next Theorem we
formulate an explicit estimate in terms of the parameters of the equation for
this case.

Theorem 2.4 Suppose (H1)-(H2) and a0 ≥ 0, and let v be the fundamental
solution of (2.1). Then if τm is such that

1

e
< Aτm < 1 +

1

e
, (2.13)

where

A =

m
∑

k=0

ak,

then
∫ ∞

0

|v(t)| dt ≤
1

A
·
1 − 1

e
+ Aτm

1 + 1
e
− Aτm

. (2.14)

Proof We define

σm =
1

eA
and σ0 = 0.

Then (2.13) implies
0 < A(τm − σm) < 1.

Fix arbitrary σk ≥ 0 (k = 1, . . . , m − 1) satisfying

τk − (τm − σm) ≤ σk ≤ min(τk, σm).

Then (2.13) yields

0 ≤

m
∑

k=0

ak(τk − σk) ≤ A(τm − σm) < 1.

Let w be the fundamental solution of Equation (2.5) where we replace all τk

by σk, i.e., the solution of

ẇ(t) = −
m
∑

k=0

akw(t − σk), t ≥ 0 (2.15)

and the associated initial condition (2.6). Then the definition of σm and
Proposition 2.1 (v) yield w(t) > 0 for t > 0. We rewrite (2.5) as

v̇(t) = −

m
∑

k=0

akv(t − σk) −

m
∑

k=0

ak

(

v(t − τk) − v(t − σk)
)

.
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Then the variation of constants formula implies

v(t) = w(t) −

m
∑

k=0

ak

∫ t

0

w(t − s)
(

v(s − τk) − v(s − σk)
)

ds,

therefore, using Proposition 2.1 (iii),

∫ ∞

0

|v(t)| dt

≤

∫ ∞

0

w(t) dt +

m
∑

k=0

ak

∫ ∞

0

∫ t

0

w(t − s)
∣

∣

∣v(s − τk) − v(s − σk)
∣

∣

∣ds dt

=

∫ ∞

0

w(t) dt +

m
∑

k=0

ak

∫ ∞

0

w(t) dt

∫ ∞

0

∣

∣

∣v(s − τk) − v(s − σk)
∣

∣

∣ ds

=
1

A

(

1 +

m
∑

k=0

ak

∫ ∞

0

∣

∣

∣v(s − τk) − v(s − σk)
∣

∣

∣ ds

)

. (2.16)

Consider the integral on the right hand side. Simple manipulations and (2.6)
yield

∫ ∞

0

∣

∣

∣v(s − τk) − v(s − σk)
∣

∣

∣ ds

=

∫ τk

0

∣

∣

∣v(s − τk) − v(s − σk)
∣

∣

∣ ds +

∫ ∞

τk

∣

∣

∣

∫ s−σk

s−τk

v̇(u) du
∣

∣

∣ ds

=

∫ τk

0

|v(s − σk)| ds +

∫ ∞

τk

∣

∣

∣

m
∑

j=0

aj

∫ s−σk

s−τk

v(u − τj) du
∣

∣

∣ ds

≤

∫ τk−σk

0

|v(s)| ds +

m
∑

j=0

aj

∫ ∞

τk

∫ s−σk

s−τk

|v(u − τj)| du ds

≤

∫ τk−σk

0

|v(s)| ds +

m
∑

j=0

aj

∫ ∞

0

∫ u+τk

u+σk

|v(u − τj)| ds du

=

∫ τk−σk

0

|v(s)| ds + (τk − σk)

m
∑

j=0

aj

∫ ∞

0

|v(u)| du.

Therefore, combining this estimate with (2.16), we get

∫ ∞

0

|v(u)| du≤
1

A

(

1 +

m
∑

k=0

ak

∫ τk−σk

0

|v(s)| ds

)

+

m
∑

k=0

ak(τk−σk)

∫ ∞

0

|v(u)| du,

so
∫ ∞

0

|v(u)| du ≤
1

A

1 +
∑m

k=0 ak

∫ τk−σk

0
|v(s)| ds

1 −
∑m

k=0 ak(τk − σk)
. (2.17)
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Since v̇(0) = −a0 ≤ 0 and v(0) = 1, v(t) is decreasing for small positive t.
There are two cases: either 0 < v(t) < 1 for all t > 0, or there exists t0 > 0
such that 0 < v(t) < 1 for t ∈ [0, t0) and v(t0) = 0. Assume this latter case.
Then integrating (2.5) from 0 to t0 we get

1 =
m
∑

k=0

ak

∫ t0

0

v(s − τk) ds ≤

(

m
∑

k=0

ak

)

t0.

Hence

τk − σk ≤ τm − σm ≤
1

A
≤ t0, k = 0, . . . , m,

therefore in both cases
∫ τk−σk

0

|v(s)| ds ≤ τk − σk, k = 0, . . . , m.

Then (2.14) follows from (2.17), using

m
∑

k=0

ak(τk − σk) ≤ A(τm − σm) = Aτm −
1

e
.

�

Example 2.5 Consider the scalar equation with two delays

ẋ(t) = −0.1x(t) − 0.3x(t − 1) − 0.5x(t − 1.2), t ≥ 0. (2.18)

The graph of its fundamental solution is plotted in Figure 2.1. It can be seen
from the graph that the trivial solution of (2.18) is asymptotically stable.
In Figure 2.2 the two curves defined by (2.3) and (2.4) are plotted for this
equation. The solid lines are the graphs of the curves corresponding to (2.3),
the dotted lines are the curves defined by (2.4). One solution of (2.3)–(2.4)
is α0 = −0.3796769591 and β0 = 1.186675690. This root of (2.2) satisfies
(2.7), therefore Theorem 2.2 can be applied. We get by (2.11)

∫∞
0 |v(t)| dt ≤

11.96519307, and by applying (2.8)
∫∞
0 |v(t)| dt ≤ 7.738495451. Theorem 2.4

can also be applied, since 1/e < (a0 + a1 + a2)τ2 = 1.08 < 1 + 1/e. (2.14)
yields

∫∞
0

|v(t)| dt ≤ 4.337121867.

3 Single Delay Case

In this section we consider the scalar delay equation

ẋ(t) = −ax(t) − bx(t − τ), t ≥ 0, (3.1)
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0 5 10 15 20
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1

Figure 2.1: Fundamental solution of
(2.18).
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Figure 2.2: Characteristic curves of
(2.18).

where a, b ∈ R, τ > 0. The characteristic equation of (2.1) is

λ = −a − be−λτ . (3.2)

We show that the leading characteristic root of (3.2) always satisfies condition
(2.7) of Theorem 2.2 of the previous section. It is known (see, e.g., [14]) that
(3.2) always has a leading root.

Before we formulate the main result of this section we introduce the fol-
lowing notation. For a fixed τ let R(τ) ⊂ R2 be the set of points (a, b)
bounded by the curves b = π

2τ
e−aτ , b = −a and by the curve

a = −s cot(τs), b =
s

sin(τs)
, s ∈

[

0,
π

2τ

]

. (3.3)

The points of the boundaries b = −a and (3.3) do not belong to P , but the
points of b = π

2τ
e−aτ do. (See Figure 3.4.) The next theorem says that R(τ)

is the set of parameters (a, b) for which estimates (2.8) and (2.11) can be
applied.

Theorem 3.1 Let a, b ∈ R, τ > 0.

(i) A leading characteristic root λ0 = α0 + iβ0 of (3.2) is

(1) a real number, if and only if

bτeaτ ≤
1

e
; (3.4)

(2) a complex number satisfying

0 < |β0|τ <
π

2
, (3.5)

if and only if
1

e
< bτeaτ <

π

2
. (3.6)
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(ii) Let v be the fundamental solution of (3.1).

(1) Then v(t) > 0 for t ≥ 0 and v(t) → 0 as t → ∞, if and only if

−a < b ≤
1

eτ
e−aτ . (3.7)

Moreover, in this case

∫ ∞

0

v(t) dt =
1

a + b
. (3.8)

(2) If (a, b) ∈ R(τ), then a leading characteristic root of (3.1) satisfies
(2.7), and v(t) → 0 as t → ∞. Therefore in this case (2.8) and
(2.11) hold.

The stability region of (3.1) is well-known (see, e.g., [14]). To simplify
notation we introduce the open set S(τ) ⊂ R2 as the points bounded below
by the line b = −a and from above by the curve

a = −s cot(τs), b =
s

sin(τs)
, s ∈

[

0,
π

τ

]

.

See Figure 3.4.

Lemma 3.2 (see, e.g., [14]) The trivial solution of (3.1) is asymptotically
stable, if and only if (a, b) ∈ S(τ).

P

A

B
a

b

Figure 3.3: Parameters satisfying
(3.6).

P

A

a

b

S
1

S
2

S
3

Figure 3.4: Partitions of the stability
region of (3.1). S(τ) = S1 ∪ S2 ∪ S3,
R(τ) = S2 ∪ S3



Fundamental Solution and Asymptotic Stability 15

Figure 3.3 illustrates condition (3.6). The upper curve is b = π
2τ

e−aτ ,
and the lower curve is b = 1

eτ
e−aτ . The point A in Figure 3.3 is (0, π

2τ
),

B = (0, 1
eτ

), and P = (− 1
τ
, 1

τ
).

Figure 3.4 shows the stability region S(τ). It is decomposed into three
subregions, S1, S2 and S3 by the curves b = π

2τ
e−aτ and b = 1

eτ
e−aτ . S1

is the part of the stability region where estimates (2.8) and (2.11) can not
be applied. In region S3, Part (ii) (1) of Theorem 3.1 holds, i.e., v(t) > 0.
In S2 the leading root of (3.2) is complex, therefore v(t) is oscillatory, but
estimates (2.11) and (2.8) can be used. With the notation of Theorem 3.1
(ii) (2), R(τ) = S2 ∪ S3.

The proof of Theorem 3.1 will be based on a series of lemmas. First we
need the characterization of the real roots of (3.2). The next lemma will
prove Part (i) (1) of Theorem 3.1. Note that it follows from Corollary 2.2.1
in [13], as well.

Lemma 3.3 Let a, b ∈ R, τ > 0.

(i) If 0 < bτeaτ < 1
e
, then (3.2) has exactly two real roots, λ1, λ2, which

satisfy

λ1 < −a +
1

τ
log(bτ) < −a −

1

τ
< λ2 < −a.

(ii) If bτeaτ = 1
e
, then (3.2) has a unique real root, λ0 = −a − 1

τ
, which is

a double root.

(iii) If bτeaτ > 1
e
, then (3.2) has no real root.

(iv) If b < 0, then (3.2) has a unique real root λ0 > −a.

Moreover, in Case (i) and (iv) all real roots are simple, and all complex roots
have smaller real part than the largest real root.

Proof Introducing the new variable µ = λ + a, (3.2) is transformed into

µ = −beaτe−µτ ,

for which the above properties are well-known (see, e.g., [4] or [17]). �

Next we concentrate on the complex roots of (3.2), therefore we will
assume that

bτeaτ >
1

e
. (3.9)

Let λ = α + iβ, where α, β ∈ R, then (2.2) is equivalent to

α + a = −be−ατ cosβτ, (3.10)

β = be−ατ sin βτ. (3.11)
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Since we investigate the case of the complex roots of (3.2), we can assume
that β 6= 0. In this case simple algebraic manipulation of these equations
yields the equivalent system

α + a = −bβ cotβτ, (3.12)

β2 = b2e−2ατ − (α + a)2. (3.13)

We define the function

h(t) = b2e2aτe−2τt − t2. (3.14)

Then, introducing the new variables t = α+a and s = β, system (3.12)–(3.13)
is equivalent to

t = −bs cot τs, (3.15)

s2 = h(t). (3.16)

The graph of the function −bs cot τs can be seen in Figure 3.5.

0

0

Figure 3.5: The graph of −bs cot τs
for the case b > 0.

0
0

t
1

t
2

Figure 3.6: The graphs of the func-
tions t2 and b2e2aτe−2τt in Case (ii)
of Lemma 3.5.

The following lemmas describe the roots of h′ and h.

Lemma 3.4 Let h be defined by (3.14), and b > 0. Then

(i) if bτeaτ < 1√
2e

, then h′ has two real roots u1 < u2 < 0;

(ii) if bτeaτ = 1√
2e

, then h′ has a unique real root u0 = − 1
2τ

;

(iii) if bτeaτ > 1√
2e

, then h′ has no real root.
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Proof We have h′(t) = 2(−τb2e2aτe−2τt − t). Therefore the statement of
this lemma follows easily from Lemma 3.3. �

Lemma 3.5 Let h be defined by (3.14), and b > 0. Then

(i) if bτeaτ > 1
e
, then h has exactly one real root t0 > 0, which is a simple

root;

(ii) if bτeaτ = 1
e
, then h has exactly two real roots t1 = − 1

τ
and t2 > 0,

where t1 is a double root, t2 is a single root;

(iii) if bτeaτ < 1
e
, then h has exactly three real roots t1, t2 and t3 satisfying

t1 < −
1

τ
< t2 < 0 < t3.

All three roots are simple roots.

Proof Consider first Case (ii). Then simple substitution yields h(t1) =
h′(t1) = 0 for t1 = − 1

τ
. Hence Lemma 3.4 yields h(t) > 0 for t < t1 and

h(t) > 0 for t1 < t < 0. The existence of the root t2 > 0 is trivial. Figure 3.6
contains the graphs of the functions b2e2aτe−2τt and t2 in this case.

Now consider Case (i), i.e., let a, b and τ be such that bτeaτ > 1
e
. Let

h1(t) = b2e2aτe−2τt. Now, decreasing b, we can find b̃ > 0 such that b̃τeaτ =
1
e
, and define the corresponding function h̃1(t) = b̃2e2aτe−2τt. Then h(t) >

h1(t) for all t, so the graph of h has no intersection with that of t2 for negative
t, (see Figure 3.6), so the statement follows.

Case (iii) can be argued similarly. �

Remark 3.6 For the case when b > 0 by the help of the previous two lemmas
we can easily draw the graph of h(t), and therefore the graph of the curve
s2 = h(t), as well. Five cases have to be distinguished: Case 1: 1√

2e
< bτeaτ ,

Case 2: bτeaτ = 1√
2e

, Case 3: 1
e

< bτeaτ < 1√
2e

, Case 4: bτeaτ = 1
e
, and

Case 5: 0 < bτeaτ < 1
e
. We can see the corresponding graphs of h(t) and the

curve s2 = h(t) in Figure 3.7.

Consider again (3.10)-(3.11), where we replace α + a by t:

t = −beaτe−τt cos τs

s = beaτe−τt sin τs.

Combining the two equations we get

t = −s
cos τs

sin τs
,
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Case 5,

s
2 = h(t)

Figure 3.7: The graphs of s = h(t) and s2 = h(t).

and substituting this back to the second equation we get

s = beaτ exp
(

τs
cos τs

sin τs

)

sin τs,

hence
τbeaτ =

τs

sin τs
exp

(

−τs
cos τs

sin τs

)

.

Introduce the function
g(u) :=

u

sin u
e−u cos u

sin u . (3.17)

With this notation we have that if t and s solve (3.12)-(3.13), then

τbeaτ = g(τs). (3.18)

Some properties of function g are given in the next lemma.

Lemma 3.7 Let g be defined by (3.17). Then g is strictly monotone increas-
ing on the interval (0, π), and

lim
u→0+

g(u) =
1

e
, g(

π

2
) =

π

2
, lim

u→π−
g(u) = ∞.

Proof The above limits are obvious. Since

g′(u) = e−
u cos u
sin u

1 − 2 u cosu
sin u

+ u2

sin2 u

sin u
= e−

u cos u
sin u

(

u
sin u

− cosu
)2

+ 1 − cos2 u

sin u
,

it follows g′(u) > 0 on (0, π), and the monotonicity of g follows. �
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In general, it is easy to show that

lim
u→0+

g(kπ) = 0, lim
u→2kπ−

g(u) = −∞, and lim
u→(2k+1)π−

g(u) = ∞.

See the graph of g(u) in Figure 3.8.

0
−20
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5

10

15

20

u
π/2 π 2π 3π 4π

Figure 3.8: The graph of g(u).

0
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Γ
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A s* π/2τ π/τ

Figure 3.9: The graphs of Γ1 and Γ2

in Case (iii) of Remark 3.6.

We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1 (i) (2)
Let denote the graph of the function −bs cosαs, s ∈ (0, π

2τ
) by Γ1, and

the part of the curve of (3.16) belonging to the half-plane s ≥ 0 by Γ2. We
first show that under assumption (3.5), Γ1 and Γ2 always has at least one
intersection (s∗, t∗).

Clearly,

A :=
√

h(0) = beaτ <
π

2τ
, B := lim

s→0
−bs cot τs = −

b

τ
.

Let t0 denote the real root of h. Lemma 3.5 yields that t0 > 0. Curve Γ1

starts at (0, B), intersects the s-axis at s = π
2τ

, and it is monotone increasing.
Curve Γ2 starts at the point (0, t0), intersects the s-axis at the point s = A.

Assumption (3.5) yields that the graph of curve Γ2 has type (i), (ii) or
(iii) of Remark 3.6. We plotted Γ1 and Γ2 in Figure 3.9 for Case (iii) of
Remark 3.6. In Cases (i) and (ii) Γ2 is a monotone decreasing curve. In
these cases the intersection of Γ1 and Γ2 is unique, and clearly, all other
intersections of Γ2 and other branches of the curve (3.15) have smaller t-
coordinate.

In Case (iii) of Remark 3.6, it is easy to see that Γ1 and Γ2 has at least
one intersection (s∗, t∗). It follows from Lemma 3.7, (3.18) and (3.5) that in
this case also the intersection is unique. Since the part of curve Γ2 between
the points (0, t0) and (s∗, t∗) has no intersection with other branches of the
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curve (3.15), for all other intersections (s̃, t̃) it follows t̃ < t∗. This completes
the proof, since α0 = t∗ − a and β0 = s∗ is a leading characteristic root.

Conversly, if (3.5) does not hold, then A ≥ π
2τ

, so Γ1 and Γ2 intersect
each other at a point with first coordinate greater or equal than π

2τ
(see

Figure 3.9). �

Proof of Theorem 3.1 (ii) Consider first part (1). Proposition 2.1 (ii)
yields that v(t) > 0 for t ≥ 0, if and only if (3.2) has a real root, which, by
(3.4), is equivalent to that

b ≤
1

eτ
e−aτ .

Proposition 2.1 (i) implies that v(t) → 0 as t → ∞, if and only of the
trivial solution of (3.1) is asymptotically stable. Therefore Lemma 3.2 yields
v(t) → 0, if (3.7) is satisfied. See Figure 3.4, where S3 denotes the set of
parameters satisfying condition (3.7).

Relation (3.8) is the restatement of Proposition 2.1 (iii) for Equation (3.1).
Statement (ii) (2) is a simple application of Lemma 3.2 and Proposi-

tion 2.1 (i). �

4 Stability of linear systems

Consider the delay system

ẋk(t) = −
m
∑

ℓ=0

n
∑

j=1

a
(ℓ)
kj xj(t − τ

(ℓ)
kj ), k = 1, . . . , n, t ≥ 0, (4.1)

where we assume

(A) a
(ℓ)
kj ∈ R, (k, j = 1, . . . , n, ℓ = 0, . . . , m),

∑m

ℓ=0 a
(ℓ)
kk 6= 0, (k = 1, . . . , n),

τ
(0)
kj = 0, τ

(ℓ)
kj ≥ 0, (k, j = 1, . . . , n, ℓ = 1, . . . , m).

For given delays 0 ≤ σ
(ℓ)
k ≤ τ

(ℓ)
kk k = 1, . . . , n and ℓ = 1, . . . , m and

σ
(0)
k = 0 (k = 1, . . . , n) we associate the scalar equations

ẏk(t) = −

m
∑

ℓ=0

a
(ℓ)
kk yk(t − σ

(ℓ)
k ), t ≥ 0, k = 1, . . . , n, (4.2)

and let vk denote the fundamental solution of (4.2). Let γk be such that
∫ ∞

0

|vk(t)| dt ≤
1

∑m

ℓ=0 a
(ℓ)
kk

γk. (4.3)

If the trivial solution of (4.2) is asymptotically stable, such estimate can be
given using, e.g., (2.8), (2.11) or (2.14), or in case of a positive fundamental
solution, γk = 1 satisfies (4.3) with equality.
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Theorem 4.1 Suppose (A), and let σk (k = 1, . . . , n) be such that the trivial
solution of (4.2) is asymptotically stable, γk (k = 1, . . . , n) be defined by (4.3),
and let H be the associated n × n matrix with components

hkj =







1
γk

∑m

ℓ=0 a
(ℓ)
kk − (

∑m

ℓ=0 |a
(ℓ)
kk |)

∑m

ℓ=1 |a
(ℓ)
kk |(τ

(ℓ)
kk − σ

(ℓ)
k ), k = j,

−(
∑m

ℓ=0 |a
(ℓ)
kj |)

(

∑m

ℓ=1 |a
(ℓ)
kk |(τ

(ℓ)
kk − σ

(ℓ)
k ) + 1

)

, k 6= j.

Suppose matrix H is a nonsingular M-matrix. Then the trivial solution of

(4.1) is asymptotically stable for any selection of the delays τ
(ℓ)
kj ≥ 0, k 6= j

(k, j = 1, . . . , n, ℓ = 1, . . . , m).

Proof Let xk and yk denote the solutions of (4.1) and (4.2), respecively,
associated to the same initial functions

xk(t) = yk(t) = ϕk(t), k = 1, . . . , n, t ∈ [−r, 0],

where r = max{τ
(ℓ)
kj : k, j = 1, . . . , n, ℓ = 1, . . . , m}. We rewrite (4.1) as

ẋk(t) = −

m
∑

ℓ=0

a
(ℓ)
kk xk(t − σ

(ℓ)
k ) −

m
∑

ℓ=1

a
(ℓ)
kk (xk(t − τ

(ℓ)
kk ) − xk(t − σ

(ℓ)
k ))

−

m
∑

ℓ=0

n
∑

j=1,
j 6=k

a
(ℓ)
kj xj(t − τ

(ℓ)
kj ), k = 1, . . . , n, t ≥ 0,

and therefore

xk(t) = yk(t) −

m
∑

ℓ=1

a
(ℓ)
kk

∫ t

0

vk(t − s)
(

xk(s − τ
(ℓ)
kk ) − xk(s − σ

(ℓ)
k )
)

ds

−

m
∑

ℓ=0

n
∑

j=1,
j 6=k

a
(ℓ)
kj

∫ t

0

vk(t − s)xj(s − τ
(ℓ)
kj ) ds

for k = 1, . . . , n, t ≥ 0. Suppose t ≥ r, then we get

|xk(t)| ≤ |yk(t)| +

m
∑

ℓ=1

|a
(ℓ)
kk |

∫ τ
(ℓ)
kk

0

|vk(t − s)|
∣

∣

∣xk(s − τ
(ℓ)
kk ) − xk(s − σ

(ℓ)
k )
∣

∣

∣ ds

+

m
∑

ℓ=1

|a
(ℓ)
kk |

∫ t

τ
(ℓ)
kk

|vk(t − s)|
∣

∣

∣

∫ s−τ
(ℓ)
kk

s−σ
(ℓ)
k

ẋk(u) du
∣

∣

∣ ds

+

m
∑

ℓ=0

n
∑

j=1,
j 6=k

|a
(ℓ)
kj |

∫ t

0

|vk(t − s)||xj(s − τ
(ℓ)
kj )| ds
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≤ |yk(t)| +

m
∑

ℓ=1

|a
(ℓ)
kk |

∫ τ
(ℓ)
kk

0

|vk(t − s)|
∣

∣

∣xk(s − τ
(ℓ)
kk ) − xk(s − σ

(ℓ)
k )
∣

∣

∣ ds

+

m
∑

ℓ=1

|a
(ℓ)
kk |

∫ t

τ
(ℓ)
kk

|vk(t − s)|
∣

∣

∣

∫ s−τ
(ℓ)
kk

s−σ
(ℓ)
k

m
∑

p=0

n
∑

j=1

a
(p)
kj xj(u − τ

(p)
kj ) du

∣

∣

∣ ds

+
m
∑

ℓ=0

n
∑

j=1,
j 6=k

|a
(ℓ)
kj |

∫ t

0

|vk(t − s)||xj(s − τ
(ℓ)
kj )| ds, t ≥ r. (4.4)

Introduce the functions

zk(t) = max{|xk(s)| : s ∈ [−r, t]}, t ≥ 0, k = 1, . . . , n,

and the constants

Mk = max{|yk(s)| : s ∈ [−r,∞)} and Bk =

m
∑

ℓ=0

a
(ℓ)
kk , k = 1, . . . , n.

Then

|xk(t)| ≤ Mk +

m
∑

ℓ=1

|a
(ℓ)
kk |2zk(r)

∫ τ
(ℓ)
kk

0

|vk(t − s)| ds

+
m
∑

ℓ=1

|a
(ℓ)
kk |(τ

(ℓ)
kk − σ

(ℓ)
k )
(

m
∑

p=0

n
∑

j=1

|a
(p)
kj |zj(t)

)

∫ t

τ
(ℓ)
kk

|vk(t − s)| ds

+
(

m
∑

ℓ=0

n
∑

j=1,
j 6=k

|a
(ℓ)
kj |zj(t)

)

∫ t

0

|vk(t − s)| ds, t ≥ r,

and so

|xk(t)| ≤ Mk + zk(r) +
γk

Bk

m
∑

ℓ=1

|a
(ℓ)
kk |2zk(r)

+

n
∑

j=1

( γk

Bk

m
∑

ℓ=1

|a
(ℓ)
kk |(τ

(ℓ)
kk − σ

(ℓ)
k )

m
∑

p=0

|a
(p)
kj |
)

zj(t)

+
n
∑

j=1,
j 6=k

( γk

Bk

m
∑

ℓ=0

|a
(ℓ)
kj |
)

zj(t), t ≥ 0.

Since the right-hand-side is monotone in t, it implies

zk(t) ≤ Mk + zk(r) +
γk

Bk

m
∑

ℓ=1

|a
(ℓ)
kk |2zk(r)
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+
n
∑

j=1

( γk

Bk

m
∑

ℓ=1

|a
(ℓ)
kk |(τ

(ℓ)
kk − σ

(ℓ)
k )

m
∑

p=0

|a
(p)
kj |
)

zj(t)

+

n
∑

j=1,
j 6=k

( γk

Bk

m
∑

ℓ=0

|a
(ℓ)
kj |
)

zj(t), t ≥ 0.

Hence the definition of H yields

Hz(t) ≤ w, t ≥ 0,

where z(t) = (z1(t), . . . , zn(t))T , w = (w1, . . . , wn)T and

wk =
(Mk + zk(r))Bk

γk

+

m
∑

ℓ=1

|a
(ℓ)
kk |2zk(r), k = 1, . . . , n,

and ≤ denotes componentwise inequality for vectors. Therefore

z(t) ≤ H−1w, t ≥ 0,

since H is a nonsingular M-matrix, and so we get that the functions xk are
bounded on [−r,∞) for k = 1, . . . , n.

Next we show that limt→∞ |xk(t)| = 0 for k = 1, . . . , n. Denote

mk = lim
t→∞

|xk(t)|, k = 1, . . . , n.

Using the relation

lim
t→∞

∫ t

T

|vk(t − s)||α(s)| ds ≤

∫ ∞

0

|vk(t)| dt lim
t→∞

|α(t)|, T ≥ 0,

(see, e.g., Lemma 2.3 in [7]), limt→∞ |vk(t)| = 0 and limt→∞ |yk(t)| = 0,
inequality (4.4) yields

mk ≤

m
∑

ℓ=1

|a
(ℓ)
kk |

∫ ∞

0

|vk(t)| dt lim
s→∞

∣

∣

∣

∫ s−τ
(ℓ)
kk

s−σ
(ℓ)
k

m
∑

p=0

n
∑

j=1

a
(p)
kj xj(u − τ

(p)
kj ) du

∣

∣

∣

+

∫ ∞

0

|vk(t)| dt
m
∑

ℓ=0

n
∑

j=1,
j 6=k

|a
(ℓ)
kj |mj

≤
n
∑

j=1

(

γk

Bk

m
∑

ℓ=1

|a
(ℓ)
kk |(τ

(ℓ)
kk − σ

(ℓ)
k )

m
∑

p=0

|a
(p)
kj |

)

mj +
n
∑

j=1,
j 6=k

(

γk

Bk

m
∑

ℓ=0

|a
(ℓ)
kj |

)

mj .

Rearranging the inequalities and using the definition of H we get

Hm ≤ 0,
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where m = (m1, . . . , mn)T . H is a nonsingular M-matrix, therefore m ≤ 0,
and the proof is completed, since, on the other hand, m ≥ 0. �

Note that if m = 1 and we take σk = τ
(1)
kk in the previous theorem, we get

back Theorem 1.2. The advantage of this formulation is that if σ
(ℓ)
k can be

selected so that the fundamental solution of (4.2) is positive, than the exact
value of its absolute integral can be used in the theorem.

Example 4.2 Consider the two-dimensional delay system

ẋ1(t) = −0.1x1(t) − 0.3x1(t − 0.2) − 0.5x1(t − 0.4)

− 0.5x2(t − τ
(1)
12 ) + 0.2x2(t − τ

(2)
12 )

ẋ2(t) = 0.2x1(t − τ
(1)
21 ) + 0.3x1(t − τ

(2)
21 )

− 0.2x2(t) − 0.4x2(t − 0.2)− 0.1x2(t − 0.5),

(4.5)

where τ
(1)
12 , τ

(2)
12 , τ

(1)
21 , τ

(2)
21 ≥ 0. We select σ

(1)
1 = 0.2, σ

(2)
1 = 0.4, σ

(1)
2 = 0.2,

σ
(2)
2 = 0.5. Then the associated equations (4.2) have positive fundamental

solution by Proposition 2.1 (v), therefore γ1 = 1 and γ2 = 1 can be used in
Theorem 4.1. We get the matrix

H =

(

0.7830 −0.7910
−0.5600 0.6160

)

,

which is an M-matrix. Therefore Theorem 4.1 yields that the trivial so-
lution of (4.5) is asymptotically stable independently of the selection of

τ
(1)
12 , τ

(2)
12 , τ

(1)
21 , τ

(2)
21 ≥ 0.

Consider again the special case of (4.1):

ẋk(t) = −

n
∑

j=1

bkjxj(t − τkj), k = 1, . . . , n, t ≥ 0. (4.6)

Corollary 4.3 Suppose

0 < bkkτkk < 1 +
1

e
, k = 1, . . . , n, (4.7)

and matrix H̃ with components

h̃kj =







1 − (bkkτkk − 1
e
)+

1 + (bkkτkk − 1
e
)+

bkk, k = j,

−|bkj |, k 6= j.

(4.8)

is a nonsingular M-matrix. Then the trivial solution of (4.6) is asymptotically
stable for any selection of the delays τkj ≥ 0, k 6= j (k, j = 1, . . . , n).
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Proof The result follows immediately from Theorem 4.1 by taking

σk =

{ 1
ebkk

, 1
e

< bkkτkk < 1 + 1
e
,

τkk, 0 ≤ bkkτkk ≤ 1
e
,

since in this case the fundamental solution of (4.2) is positive, and so γk = 1
can be used in (4.3). �

We comment that Corollary 4.3 follows from Theorems 1.2 and 2.4, as
well. We also note that if condition (1.10) is satisfied, then (4.8) in Corol-
lary 4.3 reduces to (1.11).

Example 4.4 Consider the two-dimensional delay system

ẋ1(t) = −0.6x1(t − 1) − 0.2x2(t − τ12)
ẋ2(t) = 0.8x1(t − τ21) − 0.5x2(t − 0.8),

(4.9)

where τ12, τ21 ≥ 0. Condition (4.7) in Corollary 4.3 is satisfied, and the
matrix

H̃ =

(

0.3739 −0.2000
−0.8000 0.4689

)

defined by (4.8) is an M-matrix. Therefore the trivial solution of (4.9) is
asymptotically stable independently of the selection of τ12 ≥ 0 and τ21 ≥ 0.
One can check easily that the matrices defined by (1.3) and (1.16) are not
M-matrices, so the results of [3], [10], [15] and Theorem 1.3 (see also in [19])
do not apply for this example.

Finally, we compare the conditions of Theorems 1.1, 1.2, 1.3 and Corol-
lary 4.3 applied for (4.6). In these conditions it is required, that the matrix
(1.7), (1.17) and (1.19), respectively, be a nonsingular M-matrix. The larger
is the coefficient of bkk in the respective matrix, the larger is the class of matri-
ces satisfying this condition, i.e., the weaker is the condition of the theorem.
We fix b = bkk = 1 in (1.8), and we consider the inverse of this coefficient as
a parameter of the delay τ = τkk of Equation (1.8), since it is related to the
estimate (1.14). In Figure 4.10 we have plotted the value of estimate (2.8)
(crosses) and estimate (2.11) (circles) for several values of the delay τ , and the

coefficients ω1(τ) =
1+ 1

9 τ(3+2τ)

1− 1
9 τ(3+2τ)

(solid line) and ω2(τ) =
1+(τ− 1

e
)+

1−(τ− 1
e
)+

(dotted

line) in (1.16) and (4.8), respectively, as a function of τ . The graph of ω1(τ)
and ω2(τ) intersect at τ0 = 0.7289341695. Since the function ω1(τ) → ∞ as
τ → 3

2−, at some value τ1 close to 3
2 the graph of ω1 will intersect the graph

corresponding to estimate (2.8).
We can see that for τ ∈ (0, 1

e
] the graph of ω2 is above the graph of ω1 and

the estimates (2.8) and (2.11), so in this region of the parameters Theorem 1.3
has more restrictive condition than that of Theorem 1.1 or Corollary 4.3.
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Figure 4.10: Comparison of Theorems 1.1, 1.2, 1.3 and Corollary 4.3.

For τ ∈ (1
e
, τ0] Corollary 4.3 has the best condition. The graph of estimate

(2.8) crosses that of ω1 at about 0.55, so beyond that Theorem 1.2 combined
with estimates (2.8) gives the worst condition up to τ1.

For τ ∈ (τ0, 1 + 1
e
) Theorem 1.3 has the best condition. Corollary 4.3 is

not applicable beyond 1 + 1
e
.

For τ ∈ [1 + 1
e
, τ1) Theorem 1.3 gives better condition, but for τ ∈ [τ1,

3
2 )

our Theorem 1.2 combined with (2.8) has a weaker condition.

For τ ∈ [ 32 , π
2 ) Theorem 1.3 is no longer applicable. In this region only

Theorem 1.2 or Theorem 4.1 combined with estimates (2.8) or (2.11) can be
applied.

We have summarized these observations in Table 1.

parameter Theorem 1.2 Corollary 4.3 Theorem 1.3
region with (2.8) (see [19])
(0, 1/e] exact exact applicable
(1/e, τ0] applicable best applicable

(τ0, 1 + 1/e) applicable applicable best
[1 + 1/e, τ1) applicable not applicable best

[τ1, 3/2) best not applicable applicable
[3/2, π/2) applicable not applicable not applicable

Table 1: Comparison of Theorems 1.2, 1.3 and Corollary 4.3 for different
values of τ .

It is still an open and interesting problem to improve estimate (2.8), or
find explicit estimates of the absolute integral of the fundamental solution,
and obtain weaker stability conditions for Equation (1.1) or (4.1).
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