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On Stability of Neural Networks with DelaysIstv�an Gy}ori { Feren HartungAbstratIn this paper to ontinue our previous work for the salar ase, we study theasymptoti stability of the neural network system of the form_xi(t) = �dixi(t)+ nXj=1 aijf(xj(t))+ nXj=1 bijf(xj(t��ij))+ui; t � 0; i = 1; : : : ; n:

1 IntrodutionCellular neural networks (CNNs), introdued by Chua and Yang in 1988 ([4℄), have beensuessfully applied in various engineering and sienti� appliations. In a standardCNN model the model equations are ordinary di�erential equations (ODEs) assumingthat the interations in the system are instantaneous. On the other hand it is knownthat in the real models of eletroni networks time delays are likely to be present, dueto the �nite swithing speed of ampli�ers. So in the so-alled delayed CNNs (DCNNs)the model equations are delay di�erential equations, whih have muh more ompliateddynamis than the ODEs. In the appliations DCNNs are usually required to be globallyasymptotially stable, ompletely stable, absolutely stable or stable independently of thedelays. These di�erent types of stability of DCNNs have been rigorously done and manyriteria have been obtained so far (see, e.g.,[2℄, [3℄, [6℄{[10℄). Most of these methods andresults are devoted to the ase when a non-delayed, linear terms dominate the others.In [5℄ we studied the single neuron model equation desribed by the salar equation_x(t) = �dx(t) + af(x(t)) + bf(x(t� �)) + u; t � 0; (1.1)in the ase when the feedbak funtion f is a Hop�eld ativation funtion de�ned byf(t) = 12(jt+ 1j � jt� 1j) = 8<: 1; t > 1;t; �1 � t � 1;�1; t < �1:Istv�an Gy}ori, Feren Hartung, Department of Mathematis and Computing, University ofVeszpr�em, H-8201 Veszpr�em, P.O.Box 158, Hungary, email: gyori�almos.vein.hu, hartung�szt.vein.huThis researh was partially supported by Hungarian National Foundation for Sienti� Researh GrantNo. T031935.



We proved that ondition d > a+ jbj+ juj (1.2)implies the global asymptoti stability of the unique equilibrium point of (1.1). In thease when b > 0 and a+b�juj < d � a+b+ juj we have a omplete understanding of thedynamis of (1.1) (see [5℄), but in the remaining ases we have only partial theoretialresults. In [5℄ we made numerial studies, and based on those experiments we onjeturethat if b > 0, then every solution of (1.1) tends to a onstant equilibrium, i.e., (1.1) isompletely stable. In the ase when b < 0 and a+b+ juj < d � a+ jbj+ juj we presentednumerial studies and onjetured ases when the solutions of (1.1) are asymptotiallyperiodi.In this paper we generalize ondition (1.2) to the system ase of (1.1), whih extendsthe results of [2℄. Using numerial shemes introdued in [5℄ we illustrate our theoretial�ndings on a numerial example.2 Stability ResultsWe onsider the system version of (1.1), i.e., onsider the neuron model equation_xi(t) = �dixi(t) + nXj=1 aijf(xj(t)) + nXj=1 bijf(xj(t� �ij)) + ui; t � 0; i = 1; : : : ; n;(2.1)wheredi > 0; �ij � 0; aij; bij; ui 2 R (i; j = 1; : : : ; n); and f(t) = 12(jt+ 1j � jt� 1j):(2.2)Let r = maxf�ij : i; j = 1; : : : ; ng. We assoiate the initial onditionsxi(t) = 'i(t); t 2 [�r; 0℄; i = 1; : : : ; n (2.3)to (2.1).To simplify notation we introdue the n�n matries D = diag(d1; : : : ; dn), A = (aij)and B = (bij), and the vetors u = (u1; : : : ; un)T 2 Rn and 1 = (1; : : : ; 1)T 2 Rn . Weuse the relation x < y for vetors x;y 2 Rn , if xi < yi for all i = 1; : : : ; n, wherex = (x1; : : : ; xn)T and y = (y1; : : : ; yn)T .For the matrix A we assoiate the n�n diagonal matrix A0 = diag(a11; a22; : : : ; ann),i.e., the diagonal part of A, and let A1 = A�A0 be the o�-diagonal part of A. Then withthis notation, whih we use throughout this paper, we an rewrite A as A = A0 + A1.For an n� n matrix B the symbol jBj denotes the orresponding n� n matrix withijth element jbijj.We say that the n� n matrix K = (kij) is diagonally dominant, ifjkiij > mXj=1;j 6=i jkijj; i = 1; : : : ; n:



We say that an n � n matrix K is an M-matrix, if all of its diagonal elements arenonnegative, and its o�-diagonal elements are nonpositive, and all of its prinipal minorsare positive (see, e.g., [1℄ or [2℄).We an formulate the generalization of ondition (1.2) for the stability of the salarequation (1.1) to neural system (2.1) as follows.Theorem 2.1 Assume (2.2), D � A0 � jA1j � jBj is a diagonally dominant M-matrix,and u is suh that juj < (D � A0 � jA1j � jBj)1: (2.4)Then any solution x of (2.1)-(2.3) satis�eslimt!1x(t) = (D � A� B)�1u; (2.5)i.e., equilibrium (D � A�B)�1u of (2.1)-(2.3) is globally asymptotially stable.One an show that under the onditions of the previous theorem the system hassolutions satisfying jxi(t)j < 1 (i = 1; : : : ; n) for large t, therefore it is equivalent to thelinearized version of (2.1):_xi(t) = �dixi(t) + nXj=1 aijxj(t) + nXj=1 bijxj(t� �ij) + ui; t � 0; i = 1; : : : ; n: (2.6)It is possible to show that under this ondition system (2.6) has a globally stable uniqueequilibrium solution. The above idea of the proof of Theorem 2.1 follows that of Theo-rem 2.3 in [5℄, the details will be given elsewhere.To illustrate this theorem onsider the two-dimensional system_x1(t) = �2x1(t)� f(x1(t)) + f(x2(t)) + f(x2(t� 2)) + u1 (2.7)_x2(t) = �3x2(t) + f(x1(t))� 2f(x2(t))� 2f(x1(t� 1)) + u2; (2.8)where f is de�ned by (2.2). HereD � A0 � jA1j �B0 � jB1j = � 3 �2�3 5 � ;whih is a diagonally dominant M-matrix. Applying ondition (2.4) and Theorem 2.1,we get if ju1j < 1 and ju2j < 2, then the system has a unique equilibrium, whih isglobally asymptotially stable. For example, if u1 = �0:5 and u2 = 1, then system(2.7)-(2.8) has equilibrium (e1; e2)T = (�0:029412; 0:20588)T . Solutions x1(t) and x2(t)of (2.7)-(2.8) orresponding to initial onditions('1(t); '2(t))T = (t2 + 2; os t� 3)T ; (t� 3; 2� t)T and (0; 0)T ; t 2 [�2; 0℄an be seen on Figure 1 and 2, respetively. We an observe the orresponding solutionstend to equilibrium (e1; e2)T .



We an easily �nd u1 and u2 in (2.7)-(2.8) so that ondition (2.4) fails and for somelarge t either jx1(t)j > 1 or jx2(t)j > 1, so in suh ase (2.1) is not equivalent to the linearsystem (2.6). For system (2.7)-(2.8) with a given u1 and u2 it is easy to ompute theequilibrium solutions of (2.1). In eah ase we tried we always got unique equilibriumsolutions, and observed that the numerially generated solutions tend to the equilibrium.It is also easy to onstrut example when the onditions of Theorem 2.1 fail and theorresponding system has periodi solutions. The analytial study of the asymptotibehaviour of solutions in suh ases is an interesting and diÆult open problem.
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