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Abstra
t. In this paper we study di�erentiability of solutions with respe
t to parameters instate-dependent delay equations. In parti
ular, we give suÆ
ient 
onditions for di�erentiabilityof solutions in the W 1;1 norm.1. Introdu
tion. We 
onsider the state-dependent delay system_x(t) = f�t; x(t); x(t� �(t; xt; �)); ��; t 2 [0; T ℄;(1)with initial 
ondition x(t) = '(t); t 2 [�r; 0℄:(2)Here � 2 � and � 2 � represent parameters in the fun
tion f and in the delay fun
tion, � , where� and � are normed linear spa
es with norms j � j� and j � j�, respe
tively. The notation xt denotesthe solution segment fun
tion, i.e., xt : [�r; 0℄! Rn, xt(s) � x(t+ s). (See Se
tion 2 below forthe detailed assumptions on the initial value problem (IVP) (1)-(2).)In this paper we study di�erentiability of solutions of IVP (1)-(2) with respe
t to (wrt) theparameters ', � and �. Di�erentiability wrt parameters in delay equations has been investigated,e.g., in [1℄, [5℄ and [6℄. It has also been studied in state-dependent delay equations in [8℄, wheresuÆ
ient 
onditions were given guaranteeing di�erentiability of the parameter map � ! W 1;p,
 7! x(�; 
)t (where 
 2 � is some parameter of the equation, and 1 � p < 1). In establishingthis result a version of the Uniform Contra
tion Prin
iple for quasi-Bana
h spa
es was used. Inmany appli
ations (e.g., in parameter identi�
ation problems, see, e.g., [2℄ and [3℄) this sort ofdi�erentiability (i.e., di�erentiability in a W 1;p norm) is too weak. In this paper we establishsuÆ
ient 
onditions implying \pointwise" di�erentiability of the parameter map, i.e., di�erentia-bility of �! Rn, 
 7! x(t; 
), and the stronger property, di�erentiability of the map �!W 1;1,
 7! x(�; 
)t.Our main results are 
ontained in Se
tion 3. In Se
tion 2 we list our assumptions on IVP(1)-(2), introdu
e our notations, and give some ne
essary preliminary results.2. Notations, assumptions and preliminaries. Throughout this paper a norm on Rnand the 
orresponding matrix norm on Rn�n are denoted by j � j and k � k, respe
tively.� Department of Mathemati
s and Computing, University of Veszpr�em, P.O. Box 158, H-8201Veszpr�em, HungaryKeywords: delay equations, state-dependent delays, di�erentiability wrt parametersAMS Subje
t Classi�
ation: 34K05 1



2 F. HARTUNGThe notation f : �A � X�! Y will be used to denote that the fun
tion maps the subsetA of the normed linear spa
e X to Y . This notation emphasizes that the topology on A is de�nedby the norm of X.We denote the open ball around a point x0 with radius R in a normed linear spa
e (X; j � jX )by GX(x0; R), i.e., GX(x0; R) � fx 2 X : jx� x0jX < Rg, and the 
orresponding 
losed ball byGX(x0; R). Similarly, a neighborhood of a set M � X with radius R is denoted by GX(M ; R),i.e., GX(M ; R) � fx 2 X : there exists y 2 M su
h that jx � yjX < Rg. The 
losure of thisneighborhood is denoted by GX(M ; R).The spa
e of 
ontinuous fun
tions from [�r; 0℄ to Rn and the usual supremum norm on it aredenoted by C and j � jC , respe
tively. The spa
e of absolutely 
ontinuous fun
tions from [�r; 0℄ toRn with essentially bounded derivatives is denoted by W 1;1. The 
orresponding norm on W 1;1is j jW1;1 � maxfj jC ; ess supfj _ (s)j : s 2 [�r; 0℄gg.The partial derivatives of a fun
tion g(t; x2; : : : ; xn) wrt its se
ond, third, et
. argumentsare denoted by D2g, D3g, et
, and the derivative wrt t is denoted by _g. Note that all derivativeswe use in this paper are Fre
h�et-derivatives.Next we 
onsider a set of te
hni
al 
onditions, guaranteeing well-posedness and di�erentia-bility of solutions wrt parameters, for the state-dependent delay di�erential equation (1) withinitial 
ondition (2).Let 
1 � Rn, 
2 � Rn, 
3 � �, 
4 � C, and 
5 � � be open subsets of the respe
tivespa
es. T > 0 is �nite or T =1, in whi
h 
ase [0; T ℄ denotes the interval [0;1).(A1) (i) f : [0; T ℄�
1 �
2 �
3 ! Rn is 
ontinuous,(ii) f(t; v; w; �) is lo
ally Lips
hitz-
ontinuous in v, w and � in the following sense:for every � > 0, M1 � 
1, M2 � 
2, M3 � 
3, where M1 and M2 are 
ompa
tsubsets of Rn and M3 is a 
losed, bounded subset of �, there exists a 
onstantL1 = L1(�;M1;M2;M3) su
h thatjf(t; v; w; �)� f(t; �v; �w; ��)j � L1�jv � �vj+ jw � �wj+ j� � ��j��;for t 2 [0; �℄, v; �v 2M1, w; �w 2M2, and �; �� 2M3,(iii) f : �[0; T ℄�
1�
2�
3 � R�Rn�Rn���! Rn is 
ontinuously di�erentiablewrt its se
ond, third and fourth arguments,(A2) (i) � : [0; T ℄�
4 �
5 ! [0;1) is 
ontinuous, andt� �(t;  ; �) � �r; for t 2 [0; T ℄;  2 
4; and � 2 
5;(ii) �(t;  ; �) is lo
ally Lips
hitz-
ontinuous in  and � in the following sense: for every� > 0, M4 � 
4 and M5 � 
5, where M4 is a 
ompa
t subset of C, and M5 isa 
losed, bounded subset of �, there exists a 
onstant L2 = L2(�;M4;M5) su
hthat j�(t;  ; �)� �(t; � ; ��)j � L2�j � � jC + j� � ��j��for t 2 [0; �℄,  ; � 2M4, and �; �� 2M5,



ON DIFFERENTIABILITY OF SOLUTIONS WRT PARAMETERS 3(iii) � : �[0; T ℄�
4 �
5 � [0; �℄�C ���! R is 
ontinuously di�erentiable wrt itsse
ond and third arguments.Note that (A1) (i), (ii) and (A2) (i), (ii) together with ' 2 W 1;1 are standard assumptionsin state-dependent delay equations guaranteeing the existen
e and uniqueness of the solution (see,e.g., [4℄ or [8℄). If the parameter spa
es � and � are �nite dimensional, then (A1) (ii) and (A2)(ii) follow from (A1) (iii) and (A2) (iii), respe
tively. We refer to [8℄ for further 
omments on theparti
ular de�nition of lo
al Lips
hitz-
ontinuity we use in (A1) (ii) and (A2) (ii).We will use the following fun
tion to simplify the notation:� : �[0; T ℄� 
4 � 
5 � R �W 1;1 ���! Rn; �(t;  ; �) �  (��(t;  ; �)):(3)With this notation we 
an rewrite (1) simply as:_x(t) = f(t; x(t);�(t; xt; �); �); t 2 [0; T ℄:It follows from the de�nition of �, (A2) (ii) and the Mean Value Theorem thatj�(t;  ; �)� �(t; � ; ��)j(4) � j � (��(t;  ; �))� � (��(t; � ; ��))j+ j (��(t;  ; �))� � (��(t;  ; �))j� L2j � jW1;1 (j � � jC + j� � ��j�) + j � � jCfor t 2 [0; �℄,  ; � 2M4, � 2W 1;1, and �; �� 2M5.Lemma 1. Assume (A2), and let � be de�ned by (3). Then D2�(t;  ; �) and D3�(t;  ; �)exist for t 2 [0; T ℄,  2 
4 \ C1, � 2 
5, andD2�(t;  ; �)h = � _ (��(t; ; �))D2�(t;  ; �)h+ h(��(t;  ; �)); h 2 W 1;1;(5) D3�(t;  ; �) = � _ (��(t; ; �))D3�(t;  ; �):(6)Moreover, D2�(t; �; �) and D3�(t; �; �) are 
ontinuous on (
4 \ C1)� 
5 for t 2 [0; T ℄.Proof. Let  2 
4 \C1, and introdu
e ! (�s; s) �  (s)� (�s)� _ (�s)(s� �s) for �s; s 2 [�r; 0℄,and !� (t;  ; �; +h) � �(t;  +h; �)� �(t;  ; �)�D2�(t;  ; �)h for t 2 [0; T ℄,  ; +h 2 
4, and� 2 
5. Let t 2 [0; T ℄,  + h 2 
4, and � 2 
5, and 
onsider�(t;  + h; �)� �(t;  ; �)=  (��(t; + h; �))�  (��(t; ; �)) + h(��(t;  + h; �))= � _ (��(t;  ; �))(�(t; + h; �)� �(t;  ; �)) + h(��(t;  ; �))+! (��(t; ; �);��(t;  + h; �)) + h(��(t;  + h; �))� h(��(t;  ; �))= � _ (��(t;  ; �))D2�(t;  ; �)h+ h(��(t;  ; �))� _ (��(t;  ; �))!�(t;  ; �; + h)+! (��(t; ; �);��(t;  + h; �)) + h(��(t;  + h; �))� h(��(t;  ; �)):Relation (5) follows from the last equation, using the 
ontinuity of � , the inequalityjh(��(t;  + h; �))� h(��(t;  ; �))j � jhjW1;1 j�(t;  + h; �)� �(t;  ; �)j



4 F. HARTUNGguaranteed by the Mean Value Theorem, j! (�s; s)j=js � �sj ! 0 as s ! �s, and j!� (t;  ; �; +h)j=jhjW1;1 ! 0 as jhjW1;1 ! 0. Note that the last relation follows from j!� (t;  ; �; +h)j=jhjC ! 0 as jhjC ! 0. Relation (6) is an immediate 
onsequen
e of the Chain-rule. The
ontinuity of D2�(t; �; �) and D3�(t; �; �) follows readily from (5) and (6) and from the assumed
ontinuity of � , D2� and D3� .We introdu
e the fun
tion!�(t; � ; ��; ; �) � �(t;  ; �)� �(t; � ; ��)� D2�(t; � ; ��)( � � )�D3�(t; � ; ��)(� � ��)for t 2 [0; T ℄, � ;  2 
4, � 2 C1, and ��; � 2 
5.Let � > 0, M4 � 
4 be a 
ompa
t subset of C, M5 � 
5 be a 
losed and bounded subsetof �. It is easy to prove, using the de�nition of !�, (A2) (ii), (iii), (4), (5), and (6), that thereexists a 
onstant K = K(�;M4;M5) su
h thatkD2�(t; � ; ��)kL(W1;1;Rn) � K; kD3�(t; � ; ��)kL(�;Rn) � K;(7)and j!�(t; � ; ��; ; �)j � 2K(j � � jC + j� � ��j�)(8)for t 2 [0; �℄,  ; � 2M4, � 2 C1, and �; �� 2M5.Similarly to !�, we de�ne!f (t; �x; �y; ��;x; y; �) � f(t; x; y; �)� f(t; �x; �y; ��)�D2f(t; �x; �y; ��)(x� �x)� D3f(t; �x; �y; ��)(y � �y)�D4f(t; �x; �y; ��)(� � ��)for t 2 [0; T ℄, �x; x 2 
1, �y; y 2 
2, and ��; � 2 
3. Assumption (A1) (iii) implies, thatj!f (t; �x; �y; ��;x; y; �)jjx� �xj+ jy � �yj+ j� � ��j� ! 0; as jx� �xj+ jy � �yj+ j� � ��j� ! 0:(9)Let � > 0 be �xed, Mi � 
i (i = 1; 2; 3) be su
h that M1 and M2 be 
ompa
t subsets of Rn andM3 be a 
losed and bounded subset of �, and let L1 = L1(�;M1;M2;M3) be the 
onstant from(A1) (ii). Then assumptions (A1) (ii) and (iii) yield thatkD2f(t; �x; �y; ��)k � L1; kD3f(t; �x; �y; ��)k � L1; kD4f(t; �x; �y; ��)kL(�;Rn) � L1(10)and j!f(t; �x; �y; ��;x; y; �)j � 2L1(jx� �xj+ jy � �yj+ j� � ��j�)(11)for t 2 [0; �℄, x; �x 2M1, y; �y 2M2, and �; �� 2M3.We de�ne the parameter spa
e � = W 1;1 � � ��, and use the notation 
 = ('; �; �) (or
 = (
'; 
�; 
�)) for the 
omponents of 
 2 �, and j
j� � j'jW1;1 + j�j� + j�j� for the norm on



ON DIFFERENTIABILITY OF SOLUTIONS WRT PARAMETERS 5�. The solution of IVP (1)-(2) 
orresponding to a parameter 
 and its segment fun
tion at t aredenoted by x(t;
) and x(�; 
)t, respe
tively.Introdu
e� � n
 = ('; �; �) 2 
4 � 
5 � 
3 : ' 2W 1;1; '(0) 2 
1; �(0; '; �) 2 
2oand M� n
 = ('; �; �) 2 � : ' 2 C1; _'(0�) = f(0; '(0);�(0; '; �); �)o:Theorem 1. Assume (A1) (i), (ii), (A2) (i), (ii), and let �
 2 �. Then there exist Æ > 0and 0 < � � T su
h that(i) G�(�
; Æ) � �,(ii) IVP (1)-(2) has a unique solution, x(t; 
), on [0; �℄ for all 
 2 G�(�
; Æ),(iii) there exist M1 � 
1,M2 � 
2 and M4 � 
4 
ompa
t subsets of Rn and C, respe
tively,su
h that x(t;
) 2M1; �(t; x(�; 
)t; 
�) 2M2; and x(�;
)t 2M4;(12)for t 2 [0; �℄, 
 2 G�(�
; Æ),(iv) x(�; 
)t 2W 1;1 for t 2 [0; �℄, 
 2 G�(�
; Æ), and there exists L = L(�; Æ), su
h thatjx(�; 
)t � x(�; �
)tjW1;1 � Lj
 � �
j� for t 2 [0; �℄; 
 2 G�(�
; Æ);(13)(v) the fun
tion x(�; 
) : [�r; �℄! Rn is 
ontinuously di�erentiable for 
 2 M\G�(�
; Æ).Proof. Part (i) and (v) are obvious (see also [7℄). For the proof of (ii) we refer to [8℄, [7℄ or[4℄. Part (iii) and (iv) will be essential in our proofs in the next se
tion, therefore we prove themhere. Let Æ1 > 0 and � > 0 be su
h that they satisfy (i) and (ii). We will show that 0 < Æ � Æ1
an be sele
ted so that (iii) and (iv) are also satis�ed.Let �
 = (�'; ��; ��) 2 �, and de�ne M�1 � fx(t; �
) : t 2 [0; �℄g, M�2 � f�(t; x(�; �
)t; ��); :t 2 [0; �℄g, and M�4 � fx(�; �
)t : t 2 [0; �℄g. It follows from part (ii) of the theorem thatM�i � 
i (i = 1; 2; 4). Moreover, M�1 and M�2 are 
ompa
t subsets of Rn sin
e t 7! x(t; �
) andt 7! �(t; x(�; �
)t; ��) are 
ontinuous fun
tions on [0; �℄. M�4 is also 
ompa
t in C sin
e t 7! x(�; �
)t is
ontinuous on [0; �℄. Therefore there exist "i > 0 (i = 1; 2; 4) su
h thatM1 � GRn�M�1 ; "1� � 
1,M2 � GRn�M�2 ; "2� � 
2, and GC�M�4 ; "4� � 
4 sin
e 
i (i = 1; 2; 4) are open sets in Rn andC, respe
tively. Let M4 � GW1;1�M�4 ; "4�. Clearly, M1 and M2 are 
ompa
t subsets of Rn. Wehave M4 � 
4, and it is 
ompa
t in C by Arsela-As
oli's Theorem, sin
e it is a bounded subsetof W 1;1.Let Æ2 � minfÆ1; "1; "2=(L2j �'jW1;1 + 1); "4g. Let 
 = ('; �; �) 2 G���
; Æ2�. We have from(4) and the de�nition of j � j� that j'(0)� �'(0)j < "1, j�(0; '; �)� �(0; �'; ��)j � L2j �'jW1;1 (j'��'jC + j�� ��j�) + j'� �'jC < "2, and j'� �'jC < "4. Therefore there exists 0 < �
 � � su
h thatjx(t; 
)� x(t; �
)j < "1; j�(t; x(�; 
)t; �)� �(t; x(�; �
)t; ��)j < "2;(14)and jx(�; 
)t � x(�; �
)tjC < "4(15)



6 F. HARTUNGfor t 2 [0; �
 ℄.Let L1 = L1(�;M1;M2;M3) and L2 = L2(�;M4;M5) be the 
onstants from (A1) (ii) and(A2) (ii), respe
tively. We have for t 2 [0; �
 ℄:jx(t;
)� x(t; �
)j� j'(0)� �'(0)j+ Z t0 ���f(s; x(s;
);�(s; x(�; 
)s; �); �)� f(s; x(s; �
);�(s; x(�; �
)s; ��); ��)��� ds� j
 � �
j� + L1 Z t0 �jx(s; 
)� x(s; �
)j+ j�(s; x(�; 
)s; �)� �(s; x(�; �
)s; ��)j+ j� � ��j�� ds:Let N � maxfmaxfjx(t; �
)j : t 2 [�r; �℄g; ess supfj _x(t; �
)j : t 2 [�r; �℄gg. Then (4) yieldsjx(t;
)� x(t; �
)j � j
 � �
j� + L1Z t0 �jx(s; 
)� x(s; �
)j+L2N(jx(�; 
)s � x(�; �
)sjC+ j� � ��j�) + jx(�; 
)s � x(�; �
)sjC + j
 � �
j�� ds:Introdu
e �(t; �
; 
) � supfjx(s; 
)� x(s; �
)j : s 2 [�r; t℄g. With this notation we getjx(t;
)� x(t; �
)j � (1 + L1 + L1L2N)j
 � �
j� + L1(2 + L2N)Z t0 �(s; �
; 
) ds;for t 2 [0; �
 ℄. The monotoni
ity of the right-hand side in t and �(t; �
; 
) � j
� �
j� for t 2 [�r; 0℄yield �(t; �
; 
) � (1 + L1 + L1L2N)j
 � �
j� + L1(2 + L2N)Z t0 �(s; �
; 
) ds; t 2 [0; �
 ℄:Applying the Gronwall-Bellmann inequality we getjx(t;
)� x(t; �
)j � �(t; �
; 
) � L�j
 � �
j�; t 2 [�r; �
 ℄;(16)where L� � (1+L1+L1L2N)eL1(2+L2N)�. Let Æ � minfÆ2; "1=L�; "2=(L2N(L�+1)+L�); "4=L�g.Then it is easy to show, using (16), that �
 = � 
an be used in (14) and (15) for 
 2 G�(�
; Æ).This proves (12) as well.It follows from (1), (16), (A1) (ii) and (A2) (ii) thatj _x(t;
)� _x(t; �
)j(17) = jf(t; x(t;
);�(t; x(�; 
)t; �); �)� f(t; x(t; �
);�(t; x(�; �
)t; ��); ��)j� L1�jx(t;
)� x(t; �
)j+ L2N(jx(�; 
)t � x(�; �
)tjC + j� � ��j�)+ jx(�; 
)t � x(�; �
)tjC + j� � ��j��� L��j
 � �
j�; t 2 [0; �℄;where L�� � L1(2 + L2N)L� + L1(L2N + 1). Therefore (13) follows from (16), (17) and fromj _'(t)� _�'(t)j � j
 � �
j� for almost every t 2 [�r; 0℄ with L � maxfL�; L��g.



ON DIFFERENTIABILITY OF SOLUTIONS WRT PARAMETERS 73. Di�erentiability wrt parameters. In this se
tion we study di�erentiability of solu-tions of IVP (1)-(2) wrt the initial fun
tion, ', the parameter � of the delay fun
tion � , and theparameter � of the fun
tion f .Let �
 = (�'; ��; ��) 2M, and x(�; �
) be the 
orresponding solution of IVP (1)-(2) on [0; �℄. Fixh = (h'; h�; h�) 2 � and 
onsider the variational equation_z(t; �
; h) = D2f(t; x(t; �
);�(t; x(�; �
)t; ��); ��)z(t; �
; h)(18) + D3f(t; x(t; �
);�(t; x(�; �
)t; ��); ��)�D2�(t; x(�; �
)t; ��)z(�; �
; h)t+ D3�(t; x(�; �
)t; ��)h��+D4f(t; x(t; �
);�(t; x(�; �
)t; ��); ��)h� ;t 2 [0; �℄;z(t; �
; h) = h'(t); t 2 [�r; 0℄:(19)This is a linear state-independent delay equation for z(�; �
; h), and the right-hand side of (18)depends 
ontinuously on t and z(�; �
; h)t sin
e x(�; �
)t 2 C1 by Theorem 1 (v). Therefore thisIVP has a unique solution, z(�; �
; h), whi
h depends linearly on h.First we study di�erentiability of the fun
tion x(t;
) = x(t; ('; �; �)) wrt ' and � only. Wedenote this di�erentiation by D(';�)x. LetG';�(Æ; �
) � f('; �) 2 W 1;1 �� : ('; ��; �) 2 G�(�
; Æ)g:(20) Theorem 2. Assume (A1), (A2), and let �
 2 M be �xed. Let Æ > 0 and � > 0 be de�nedby Theorem 1, and x(t; 
) be the solution of IVP (1)-(2) on [0; �℄ for 
 2 G�(�
; Æ), and G';�(�
; Æ)be de�ned by (20). Then the fun
tion x(t; (�; ��; �)) : G';�(�
; Æ) ! Rn is di�erentiable at ( �'; ��)for t 2 [0; �℄, and D(';�)x(t; ( �'; ��; ��))(h'; h�) = z(t; �
; (h'; 0; h�));where z is the solution of IVP (18)-(19), and (h'; h�) 2 W 1;1 ��.Proof. Let �
 2 M, Æ > 0, �, and G';�(�
; Æ) be as in the assumption of the theorem. We
an and do assume that Æ is su
h that M3 � G����; Æ� � 
3 and M5 � G�(��; Æ) � 
5. Leth = (h'; h�; h�) 2 � su
h that jhj� < Æ. (Here, for our future purposes, we do not assumeyet that h� = 0.) Note that z(t; �
; h) is well-de�ned sin
e, by our assumptions, x(�; �
)s 2 C1.Integrating (1) and (18), and using the de�nition of !f and !� we getx(t; �
 + h)� x(t; �
)� z(t; �
; h)= Z t0 �f(s; x(s; �
 + h);�(s; x(�; �
 + h)s; �� + h�); �� + h�)� f(s; x(s; �
);�(s; x(�; �
)s; ��); ��)�D2f(s; x(s; �
);�(s; x(�; �
)s; ��); ��)z(s; �
; h)� D3f(s; x(s; �
);�(s; x(�; �
)s; ��); ��)�D2�(s; x(�; �
)s; ��)z(�; �
; h)s+ D3�(s; x(�; �
)s; ��)h���D4f(s; x(s; �
);�(s; x(�; �
)s; ��); ��)h��ds= Z t0 �!f (s; x(s; �
);�(s; x(�; �
)s; ��); ��;x(s; �
+h);�(s; x(�; �
+h)s; ��+h�); ��+h�)



8 F. HARTUNG+ D2f(s; x(s; �
);�(s; x(�; �
)s; ��); ��)�x(s; �
 + h)� x(s; �
)� z(s; �
; h)�+ D3f(s; x(s; �
);�(s; x(�; �
)s; ��); ��)�!�(s; x(�; �
)s; ��;x(�; �
 + h)s; �� + h�)+ D2�(s; x(�; �
)s; ��)(x(�; �
 + h)s � x(�; �
)s � z(�; �
; h)s)��ds:LetMi (i = 1; 2; 4) be de�ned by Theorem 1. Let L1 = L1(�;M1;M2;M3) and L2 = L2(�;M4;M5)be the 
onstants from (A1) (ii) and (A2) (ii), respe
tively, and K =K(�;M4;M5) be the 
onstantfrom (7)-(8). Then (10) yieldsjx(t; �
 + h)� x(t; �
)� z(t; �
; h)j(21) � Z t0 �Gf (s; �
; h) + L1���x(s; �
 + h)� x(s; �
)� z(s; �
; h)���+ L1G�(s; �
; h)+ L1Kjx(�; �
 + h)s � x(�; �
)s � z(�; �
; h)sjC�ds; t 2 [0; �℄;where Gf (s; �
; h) � j!f (s; x(s; �
);�(s; x(�; �
)s; ��); ��;x(s; �
 + h);�(s; x(�; �
 + h)s; ��+ h�); ��+ h�)jand G�(s; �
; h) � j!�(s; x(�; �
)s; ��;x(�; �
+h)s; ��+h�)j. Introdu
e �(t; �
; h) � sup�r�s�t jx(s; �
+h)� x(s; �
)� z(s; �
; h)j. Inequality (21) impliesjx(t; �
 + h)� x(t; �
)� z(t; �
; h)j(22) � Z �0 �Gf (s; �
; h) + L1G�(s; �
; h)�ds+ L1(1 +K)Z t0 �(s; �
; h) ds:Using that �(0; �
; h) = 0, and the right-hand side of (22) is monotone in t, we get from (22)�(t; �
; h) � Z �0 �Gf (s; �
; h) + L1G�(s; �
; h)�ds+ L1(1 +K)Z t0 �(s; �
; h) ds;whi
h, by the Gronwall-Bellman inequality, implies�(t; �
; h) � Z �0 �Gf (s; �
; h) + L1G�(s; �
; h)�ds eL1(1+K)�; t 2 [0; �℄:(23)Applying (23) we getjx(t; �
 + h)� x(t; �
)� z(t; �
; h)j=jhj�� �(t; �
; h)=jhj�� Z �0 �Gf (s; �
; h)=jhj� + L1G�(s; �
; h)=jhj��ds eL1(1+K)�; t 2 [�r; �℄:Here we used that x(t; �
 + h) � x(t; �
) � z(t; �
; h) = 0 for t 2 [�r; 0℄. We will show thatR �0 Gf (s; �
; h)=jhj� ds! 0 and R �0 G�(s; �
; h)=jhj� ds! 0 as jhj� ! 0.Using (4) and (13), we get that there exists K� = K�(�;M4;M5) su
h thatj�(s; x(�; �
 + h)s; �� + h�)� �(s; x(�; �
)s; ��)j � K�jhj�; jhj� < Æ; s 2 [0; �℄:(24)
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; h)jhj�(25) = !f (s; x(s; �
);�(s; x(�; �
)s; ��); ��; x(s; �
+h);�(s; x(�; �
+h)s; ��+h�); ��+h�)jjx(s; �
 + h)�x(s; �
)j+j�(s; x(�; �
+h)s; ��+h�)��(s; x(�; �
)s; ��)j+jh� j�� jx(s; �
 + h)�x(s; �
)j+j�(s; x(�; �
+h)s; ��+h�)��(s; x(�; �
)s; ��)j+jh� j�jhj� ;(11), (12), (13), (24) and (25) yieldGf (s; �
; h)=jhj� � 2L1(L+K�+1). On the other hand, (9) and(25) imply Gf (s; �
; h)=jhj� ! 0 as jhj� ! 0 for s 2 [0; �℄. Therefore R �0 Gf (s; �
; h)=jhj� ds ! 0as jhj� ! 0 by the Lebesgue's Dominated Convergen
e Theorem.Similarly, inequalities (8) and (13) imply G�(s; �
; h)=jhj� � 2K(L + 1). To show thatG�(s; �
; h)=jhj� ! 0 we now assume that h� = 0. Lemma 1 impliesG�(s; �
; h)=jhj� = j�(s; x(�; �
+h)s; ��)��(s; x(�; �
)s; ��)�D2�(s; x(�; �
)s; ��)(x(�; �
+ h)s�x(�; �
)s)j=jhj� ! 0 as jhj� ! 0 for s 2[0; �℄, sin
e, by (13), jx(�; �
+h)s�x(�; �
)sjW1;1 ! 0 as jhj� ! 0. Therefore R �0 G�(s; �
; h)=jhj� ds!0 as jhj� ! 0.We 
on
lude that jx(t; �
 + h) � x(t; �
)� z(t; �
; h)j=jhj� ! 0 as jhj� ! 0, whi
h proves thetheorem.The proof of the previous theorem implies immediately:Corollary 1. Assume the 
onditions of Theorem 2. Then the fun
tion G';�(�
; Æ)! C,('; �) 7! x(�; ('; ��; �))t is di�erentiable at ( �'; ��) for t 2 [0; �℄, and its derivative is given byD(';�)x(�; ( �'; ��; ��))t(h'; h�) = z(�; �
; (h'; 0; h�))t, (h'; h�) 2W 1;1 ��.Next we study di�erentiability wrt � as well. We will need the following de�nition.Definition 1. Let X and Y be normed linear spa
es, M � X, and x0 2 M be an a

umu-lation point of M . We say that f : �M � X�! Y is di�erentiable at the point x0 with respe
tto the set M if there exists L 2 L(X;Y ) su
h thatlimx!x0x2M jf(x)� f(x0)� L(x� x0)jYjx� x0jX = 0:We have the following result.Theorem 3. Assume (A1), (A2), and let �
 2 M be an a

umulation point of M. LetÆ > 0 and � > 0 be de�ned by Theorem 1, and x(t; 
) be the solution of IVP (1)-(2) on [0; �℄ for
 2 G�(�
; Æ). Then the fun
tion x(t; �) : �(G�(�
; Æ) \M) � ��! Rn is di�erentiable at �
 wrtG�(�
; Æ)\M for t 2 [0; �℄, and its derivative is D
x(t; �
)h = z(t; �
; h), where z is the solution ofIVP (18)-(19), h 2 � is su
h that �
 + h 2 M.Proof. We pro
eed as in the proof of Theorem 2. The only step needs a di�erent argumen-t here is the last one, to show that G�(s; �
; h)=jhj� ! 0 as jhj� ! 0. We have G�(s; �
; h) =j�(s; x(�; �
+h)s; ��+h�)��(s; x(�; �
)s; ��)�D2�(s; x(�; �
)s; ��)(x(�; �
+h)s�x(�; �
)s)�D3�(s; x(�; �
)s; ��)h�j=jhj�.Let h be su
h that �
 + h 2 M. Then, using that �(t; �; �) is 
ontinuously di�erentiable on
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4 \ C1 � 
5, and x(�; �
 + h)s 2 C1 for s 2 [0; �℄, we getG�(s; �
; h)(26) � sup0<�<1


D2�(s; (1� �)x(�; �
)s + �x(�; �
 + h)s; �� + �h�)� D2�(s; x(�; �
)s; ��)


L(W1;1;Rn) � jx(�; �
 + h)s � x(�; �
)sjW1;1+ sup0<�<1


D3�(s; (1� �)x(�; �
)s + �x(�; �
 + h)s; �� + �h�)� D3�(s; x(�; �
)s; ��)


L(�;Rn) � jh�j�:Therefore the 
ontinuity ofD2�(s; �; �) andD3�(s; �; �) (see Lemma 1), and (13) implyG�(s; �
; h)=jhj� !0 as jhj� ! 0.Next we show that, under the assumptions of the previous theorem, x(�; 
)t is di�erentiablewrt 
 (in the sense of De�nition 1) if we use W 1;1 as the state-spa
e of the solutions.Theorem 4. Assume (A1), (A2), and let �
 2 M be an a

umulation point of M. LetÆ > 0 and � > 0 be de�ned by Theorem 1, and x(t; 
) be the solution of IVP (1)-(2) on [0; �℄ for
 2 G�(�
; Æ). Then the fun
tion �(G�(�
; Æ) \M) � �� ! W 1;1, 
 7! x(�; 
)t is di�erentiableat �
 wrt G�(�
; Æ) \M for t 2 [0; �℄, and D
x(�; �
)th = z(�; �
; h)t, where z is the solution of IVP(18)-(19), and h 2 � is su
h that �
 + h 2 M.Proof. We use all the notations introdu
ed in the proof of Theorem 2. It follows from theproofs of Theorems 2 and 3 that jx(�; �
+ h)t � x(�; �
)t � z(�; �
; h)tjC=jhj� ! 0 as �
+ h 2M andjhj� ! 0. Similarly to (22) we getj _x(t; �
 + h)� _x(t; �
)� _z(t; �
; h)j(27) � Gf (t; �
; h) + L1G�(t; �
; h) + L1(1 +K)�(t; �
; h); t 2 [0; �℄:Clearly, _x(t; �
+h)� _x(t; �
)� _z(t; �
; h) = 0 for t 2 [�r; 0℄. Therefore, in view of (23), it suÆ
es toshow that Gf (t; �
; h)=jhj� ! 0 and G�(t; �
; h)=jhj� ! 0 as �
+h 2M and jhj� ! 0 uniformly int 2 [0; �℄. Consider a sequen
e hk = (hk;'; hk;�; hk;�) 2 � su
h that �
 + hk 2 M for k 2 N andjhkj� ! 0 as k !1. We haveGf (t; �
; hk)(28) � sup0<�<1


D2f(t; (1� �)x(t; �
) + �x(t; �
 + hk);(1� �)�(t; x(�; �
)t; ��) + ��(t; x(�; �
 + hk)t; �� + hk;�); �� + �hk;�)� D2f(t; x(t; �
);�(t; x(�; �
)t; ��); ��)


jx(t; �
 + hk)� x(t; �
)j+ sup0<�<1


D3f(t; (1� �)x(t; �
) + �x(t; �
 + hk);(1� �)�(t; x(�; �
)t; ��) + ��(t; x(�; �
 + hk)t; �� + hk;�); �� + �hk;�)� D3f(t; x(t; �
);�(t; x(�; �
)t; ��); ��)


� j�(t; x(�; �
 + hk)t; �� + hk;�)� �(t; x(�; �
)t; ��)j
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D4f(t; (1� �)x(t; �
) + �x(t; �
 + hk);(1� �)�(t; x(�; �
)t; ��) + ��(t; x(�; �
 + hk)t; �� + hk;�); �� + �hk;�)� D4f(t; x(t; �
);�(t; x(�; �
)t; ��); ��)


L(�;Rn)jhk;� j�:LetM�3 � f��+�hk;� : k 2 N ; � 2 [0; 1℄g, and A � [0; �℄�M1�M2�M�3 . The set A is a 
ompa
tsubset of R�Rn�Rn��, sin
eM1 andM2 are 
ompa
t subsets of Rn, and, it is easy to see thatM�3 is a 
ompa
t subset of �. By (A1) (iii) D2f , D3f and D4f are 
ontinuous, therefore uniformly
ontinuous on A. Therefore (28), together with (13) and (24), yields Gf (t; �
; hk)=jhkj� ! 0 ask !1 uniformly in t 2 [0; �℄.Similarly, de�ne M�5 � f�� + �hk;� : k 2 N ; � 2 [0; 1℄g, and B � [0; �℄�M4 �M�5 . Then Bis a 
ompa
t subset of R � C � �, therefore (13) and (26) imply that G�(t; �
; hk)=jhkj� ! 0 ask !1 uniformly in t 2 [0; �℄. This 
on
ludes the proof of the theorem.The next two examples show 
ases when the di�erentiability property of the solution wrtsome parameter guaranteed by Theorem 4 equals to the usual Fre
h�et-di�erentiability of thesolution wrt the parameter.Example 1. Suppose f satis�es (A1) and has the formf(t; x; y; �) = f1(t; x; y) + f2(t; x; y; �);where f2(0; x; y; �) = 0 for all x 2 
1, y 2 
2 and � 2 
3. Then if �
 = (�'; ��; ��) 2 � satis�es �' 2C1 and _�'(0�) = f1(0; �'(0);�(0; �'; ��)), then the solution of IVP (1)-(2), x(�; �)t, is di�erentiablewrt � on 
3 for t 2 [0; �℄ in the usual Fre
h�et-sense as a fun
tion �
3 � �� ! W 1;1, � 7!x(�; �)t.Example 2. Suppose the fun
tion � satis�es (A2) and �(t;  ; �) = � 1(t;  ) + � 2(t;  ; �),where � 2(0;  ; �) = 0 for all  2 
4 and � 2 
5. Then if �
 = (�'; ��; ��) 2 � satis�es �' 2 C1 and_�'(0�) = f(0; �'(0); �'(�� 1(0; �')); ��), then the solution, x(�;�)t, is di�erentiable wrt � on 
5 fort 2 [0; �℄ (in Fre
h�et-sense) as a fun
tion �
5 � ��!W 1;1, � 7! x(�;�)t.Finally, we 
onsider the state-independent version of IVP (1)-(2), i.e., we assume that�(t;  ; �) is independent of  . Let � 2 C1. First we note that (5) yields in this 
ase thatD2�(t; � ; ��)h = h(��(t; � ; ��)), therefore a simple 
al
ulation and (6) implyj!�(t; � ; ��; ; �)j= j � (��(t; ; �))� � (��(t; � ; ��))�D3�(t; � ; ��)(� � ��)+  (��(t; ; �))� � (��(t;  ; �))�  (��(t; � ; ��)) + � (��(t; � ; ��))j� j � (��(t; ; �))� � (��(t; � ; ��)) + _� (��(t; � ; ��))D3�(t; � ; ��)(� � ��)j+ j � � jW1;1 j�(t;  ; �)� �(t; � ; ��)j:Therefore (A2) (iii), the Chain-rule and the Mean Value Theorem yieldj!�(t; � ; ��; ; �)jj � � jW1;1 + j� � ��j� ! 0; as j � � jW1;1 + j� � ��j� ! 0:
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; h)=jhj� ! 0 as jhj� ! 0. Using this relation, it follows easily from theproof of Theorem 4:Corollary 2. Assume (A1), (A2), and let �
 2M be �xed. Assume moreover that �(t;  ; �)is independent of  . Let Æ > 0 and � > 0 be de�ned by Theorem 1, and x(t;
) be the solution ofIVP (1)-(2) on [0; �℄ for 
 2 G�(�
; Æ). Then the fun
tion �G�(�
; Æ) � ��!W 1;1, 
 7! x(�; 
)tis di�erentiable at �
 for t 2 [0; �℄, and D
x(�; �
)th = z(�; �
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