
ON DIFFERENTIABILITY OF SOLUTIONS WITH RESPECT TOPARAMETERS IN A CLASS OF FUNCTIONAL DIFFERENTIAL EQUATIONSFERENC HARTUNG�
Funtional Di�erential Equations, 4:1-2 (1997) 65{79.
Abstrat. In this paper we study di�erentiability of solutions with respet to parameters instate-dependent delay equations. In partiular, we give suÆient onditions for di�erentiabilityof solutions in the W 1;1 norm.1. Introdution. We onsider the state-dependent delay system_x(t) = f�t; x(t); x(t� �(t; xt; �)); ��; t 2 [0; T ℄;(1)with initial ondition x(t) = '(t); t 2 [�r; 0℄:(2)Here � 2 � and � 2 � represent parameters in the funtion f and in the delay funtion, � , where� and � are normed linear spaes with norms j � j� and j � j�, respetively. The notation xt denotesthe solution segment funtion, i.e., xt : [�r; 0℄! Rn, xt(s) � x(t+ s). (See Setion 2 below forthe detailed assumptions on the initial value problem (IVP) (1)-(2).)In this paper we study di�erentiability of solutions of IVP (1)-(2) with respet to (wrt) theparameters ', � and �. Di�erentiability wrt parameters in delay equations has been investigated,e.g., in [1℄, [5℄ and [6℄. It has also been studied in state-dependent delay equations in [8℄, wheresuÆient onditions were given guaranteeing di�erentiability of the parameter map � ! W 1;p, 7! x(�; )t (where  2 � is some parameter of the equation, and 1 � p < 1). In establishingthis result a version of the Uniform Contration Priniple for quasi-Banah spaes was used. Inmany appliations (e.g., in parameter identi�ation problems, see, e.g., [2℄ and [3℄) this sort ofdi�erentiability (i.e., di�erentiability in a W 1;p norm) is too weak. In this paper we establishsuÆient onditions implying \pointwise" di�erentiability of the parameter map, i.e., di�erentia-bility of �! Rn,  7! x(t; ), and the stronger property, di�erentiability of the map �!W 1;1, 7! x(�; )t.Our main results are ontained in Setion 3. In Setion 2 we list our assumptions on IVP(1)-(2), introdue our notations, and give some neessary preliminary results.2. Notations, assumptions and preliminaries. Throughout this paper a norm on Rnand the orresponding matrix norm on Rn�n are denoted by j � j and k � k, respetively.� Department of Mathematis and Computing, University of Veszpr�em, P.O. Box 158, H-8201Veszpr�em, HungaryKeywords: delay equations, state-dependent delays, di�erentiability wrt parametersAMS Subjet Classi�ation: 34K05 1



2 F. HARTUNGThe notation f : �A � X�! Y will be used to denote that the funtion maps the subsetA of the normed linear spae X to Y . This notation emphasizes that the topology on A is de�nedby the norm of X.We denote the open ball around a point x0 with radius R in a normed linear spae (X; j � jX )by GX(x0; R), i.e., GX(x0; R) � fx 2 X : jx� x0jX < Rg, and the orresponding losed ball byGX(x0; R). Similarly, a neighborhood of a set M � X with radius R is denoted by GX(M ; R),i.e., GX(M ; R) � fx 2 X : there exists y 2 M suh that jx � yjX < Rg. The losure of thisneighborhood is denoted by GX(M ; R).The spae of ontinuous funtions from [�r; 0℄ to Rn and the usual supremum norm on it aredenoted by C and j � jC , respetively. The spae of absolutely ontinuous funtions from [�r; 0℄ toRn with essentially bounded derivatives is denoted by W 1;1. The orresponding norm on W 1;1is j jW1;1 � maxfj jC ; ess supfj _ (s)j : s 2 [�r; 0℄gg.The partial derivatives of a funtion g(t; x2; : : : ; xn) wrt its seond, third, et. argumentsare denoted by D2g, D3g, et, and the derivative wrt t is denoted by _g. Note that all derivativeswe use in this paper are Freh�et-derivatives.Next we onsider a set of tehnial onditions, guaranteeing well-posedness and di�erentia-bility of solutions wrt parameters, for the state-dependent delay di�erential equation (1) withinitial ondition (2).Let 
1 � Rn, 
2 � Rn, 
3 � �, 
4 � C, and 
5 � � be open subsets of the respetivespaes. T > 0 is �nite or T =1, in whih ase [0; T ℄ denotes the interval [0;1).(A1) (i) f : [0; T ℄�
1 �
2 �
3 ! Rn is ontinuous,(ii) f(t; v; w; �) is loally Lipshitz-ontinuous in v, w and � in the following sense:for every � > 0, M1 � 
1, M2 � 
2, M3 � 
3, where M1 and M2 are ompatsubsets of Rn and M3 is a losed, bounded subset of �, there exists a onstantL1 = L1(�;M1;M2;M3) suh thatjf(t; v; w; �)� f(t; �v; �w; ��)j � L1�jv � �vj+ jw � �wj+ j� � ��j��;for t 2 [0; �℄, v; �v 2M1, w; �w 2M2, and �; �� 2M3,(iii) f : �[0; T ℄�
1�
2�
3 � R�Rn�Rn���! Rn is ontinuously di�erentiablewrt its seond, third and fourth arguments,(A2) (i) � : [0; T ℄�
4 �
5 ! [0;1) is ontinuous, andt� �(t;  ; �) � �r; for t 2 [0; T ℄;  2 
4; and � 2 
5;(ii) �(t;  ; �) is loally Lipshitz-ontinuous in  and � in the following sense: for every� > 0, M4 � 
4 and M5 � 
5, where M4 is a ompat subset of C, and M5 isa losed, bounded subset of �, there exists a onstant L2 = L2(�;M4;M5) suhthat j�(t;  ; �)� �(t; � ; ��)j � L2�j � � jC + j� � ��j��for t 2 [0; �℄,  ; � 2M4, and �; �� 2M5,



ON DIFFERENTIABILITY OF SOLUTIONS WRT PARAMETERS 3(iii) � : �[0; T ℄�
4 �
5 � [0; �℄�C ���! R is ontinuously di�erentiable wrt itsseond and third arguments.Note that (A1) (i), (ii) and (A2) (i), (ii) together with ' 2 W 1;1 are standard assumptionsin state-dependent delay equations guaranteeing the existene and uniqueness of the solution (see,e.g., [4℄ or [8℄). If the parameter spaes � and � are �nite dimensional, then (A1) (ii) and (A2)(ii) follow from (A1) (iii) and (A2) (iii), respetively. We refer to [8℄ for further omments on thepartiular de�nition of loal Lipshitz-ontinuity we use in (A1) (ii) and (A2) (ii).We will use the following funtion to simplify the notation:� : �[0; T ℄� 
4 � 
5 � R �W 1;1 ���! Rn; �(t;  ; �) �  (��(t;  ; �)):(3)With this notation we an rewrite (1) simply as:_x(t) = f(t; x(t);�(t; xt; �); �); t 2 [0; T ℄:It follows from the de�nition of �, (A2) (ii) and the Mean Value Theorem thatj�(t;  ; �)� �(t; � ; ��)j(4) � j � (��(t;  ; �))� � (��(t; � ; ��))j+ j (��(t;  ; �))� � (��(t;  ; �))j� L2j � jW1;1 (j � � jC + j� � ��j�) + j � � jCfor t 2 [0; �℄,  ; � 2M4, � 2W 1;1, and �; �� 2M5.Lemma 1. Assume (A2), and let � be de�ned by (3). Then D2�(t;  ; �) and D3�(t;  ; �)exist for t 2 [0; T ℄,  2 
4 \ C1, � 2 
5, andD2�(t;  ; �)h = � _ (��(t; ; �))D2�(t;  ; �)h+ h(��(t;  ; �)); h 2 W 1;1;(5) D3�(t;  ; �) = � _ (��(t; ; �))D3�(t;  ; �):(6)Moreover, D2�(t; �; �) and D3�(t; �; �) are ontinuous on (
4 \ C1)� 
5 for t 2 [0; T ℄.Proof. Let  2 
4 \C1, and introdue ! (�s; s) �  (s)� (�s)� _ (�s)(s� �s) for �s; s 2 [�r; 0℄,and !� (t;  ; �; +h) � �(t;  +h; �)� �(t;  ; �)�D2�(t;  ; �)h for t 2 [0; T ℄,  ; +h 2 
4, and� 2 
5. Let t 2 [0; T ℄,  + h 2 
4, and � 2 
5, and onsider�(t;  + h; �)� �(t;  ; �)=  (��(t; + h; �))�  (��(t; ; �)) + h(��(t;  + h; �))= � _ (��(t;  ; �))(�(t; + h; �)� �(t;  ; �)) + h(��(t;  ; �))+! (��(t; ; �);��(t;  + h; �)) + h(��(t;  + h; �))� h(��(t;  ; �))= � _ (��(t;  ; �))D2�(t;  ; �)h+ h(��(t;  ; �))� _ (��(t;  ; �))!�(t;  ; �; + h)+! (��(t; ; �);��(t;  + h; �)) + h(��(t;  + h; �))� h(��(t;  ; �)):Relation (5) follows from the last equation, using the ontinuity of � , the inequalityjh(��(t;  + h; �))� h(��(t;  ; �))j � jhjW1;1 j�(t;  + h; �)� �(t;  ; �)j



4 F. HARTUNGguaranteed by the Mean Value Theorem, j! (�s; s)j=js � �sj ! 0 as s ! �s, and j!� (t;  ; �; +h)j=jhjW1;1 ! 0 as jhjW1;1 ! 0. Note that the last relation follows from j!� (t;  ; �; +h)j=jhjC ! 0 as jhjC ! 0. Relation (6) is an immediate onsequene of the Chain-rule. Theontinuity of D2�(t; �; �) and D3�(t; �; �) follows readily from (5) and (6) and from the assumedontinuity of � , D2� and D3� .We introdue the funtion!�(t; � ; ��; ; �) � �(t;  ; �)� �(t; � ; ��)� D2�(t; � ; ��)( � � )�D3�(t; � ; ��)(� � ��)for t 2 [0; T ℄, � ;  2 
4, � 2 C1, and ��; � 2 
5.Let � > 0, M4 � 
4 be a ompat subset of C, M5 � 
5 be a losed and bounded subsetof �. It is easy to prove, using the de�nition of !�, (A2) (ii), (iii), (4), (5), and (6), that thereexists a onstant K = K(�;M4;M5) suh thatkD2�(t; � ; ��)kL(W1;1;Rn) � K; kD3�(t; � ; ��)kL(�;Rn) � K;(7)and j!�(t; � ; ��; ; �)j � 2K(j � � jC + j� � ��j�)(8)for t 2 [0; �℄,  ; � 2M4, � 2 C1, and �; �� 2M5.Similarly to !�, we de�ne!f (t; �x; �y; ��;x; y; �) � f(t; x; y; �)� f(t; �x; �y; ��)�D2f(t; �x; �y; ��)(x� �x)� D3f(t; �x; �y; ��)(y � �y)�D4f(t; �x; �y; ��)(� � ��)for t 2 [0; T ℄, �x; x 2 
1, �y; y 2 
2, and ��; � 2 
3. Assumption (A1) (iii) implies, thatj!f (t; �x; �y; ��;x; y; �)jjx� �xj+ jy � �yj+ j� � ��j� ! 0; as jx� �xj+ jy � �yj+ j� � ��j� ! 0:(9)Let � > 0 be �xed, Mi � 
i (i = 1; 2; 3) be suh that M1 and M2 be ompat subsets of Rn andM3 be a losed and bounded subset of �, and let L1 = L1(�;M1;M2;M3) be the onstant from(A1) (ii). Then assumptions (A1) (ii) and (iii) yield thatkD2f(t; �x; �y; ��)k � L1; kD3f(t; �x; �y; ��)k � L1; kD4f(t; �x; �y; ��)kL(�;Rn) � L1(10)and j!f(t; �x; �y; ��;x; y; �)j � 2L1(jx� �xj+ jy � �yj+ j� � ��j�)(11)for t 2 [0; �℄, x; �x 2M1, y; �y 2M2, and �; �� 2M3.We de�ne the parameter spae � = W 1;1 � � ��, and use the notation  = ('; �; �) (or = ('; �; �)) for the omponents of  2 �, and jj� � j'jW1;1 + j�j� + j�j� for the norm on



ON DIFFERENTIABILITY OF SOLUTIONS WRT PARAMETERS 5�. The solution of IVP (1)-(2) orresponding to a parameter  and its segment funtion at t aredenoted by x(t;) and x(�; )t, respetively.Introdue� � n = ('; �; �) 2 
4 � 
5 � 
3 : ' 2W 1;1; '(0) 2 
1; �(0; '; �) 2 
2oand M� n = ('; �; �) 2 � : ' 2 C1; _'(0�) = f(0; '(0);�(0; '; �); �)o:Theorem 1. Assume (A1) (i), (ii), (A2) (i), (ii), and let � 2 �. Then there exist Æ > 0and 0 < � � T suh that(i) G�(�; Æ) � �,(ii) IVP (1)-(2) has a unique solution, x(t; ), on [0; �℄ for all  2 G�(�; Æ),(iii) there exist M1 � 
1,M2 � 
2 and M4 � 
4 ompat subsets of Rn and C, respetively,suh that x(t;) 2M1; �(t; x(�; )t; �) 2M2; and x(�;)t 2M4;(12)for t 2 [0; �℄,  2 G�(�; Æ),(iv) x(�; )t 2W 1;1 for t 2 [0; �℄,  2 G�(�; Æ), and there exists L = L(�; Æ), suh thatjx(�; )t � x(�; �)tjW1;1 � Lj � �j� for t 2 [0; �℄;  2 G�(�; Æ);(13)(v) the funtion x(�; ) : [�r; �℄! Rn is ontinuously di�erentiable for  2 M\G�(�; Æ).Proof. Part (i) and (v) are obvious (see also [7℄). For the proof of (ii) we refer to [8℄, [7℄ or[4℄. Part (iii) and (iv) will be essential in our proofs in the next setion, therefore we prove themhere. Let Æ1 > 0 and � > 0 be suh that they satisfy (i) and (ii). We will show that 0 < Æ � Æ1an be seleted so that (iii) and (iv) are also satis�ed.Let � = (�'; ��; ��) 2 �, and de�ne M�1 � fx(t; �) : t 2 [0; �℄g, M�2 � f�(t; x(�; �)t; ��); :t 2 [0; �℄g, and M�4 � fx(�; �)t : t 2 [0; �℄g. It follows from part (ii) of the theorem thatM�i � 
i (i = 1; 2; 4). Moreover, M�1 and M�2 are ompat subsets of Rn sine t 7! x(t; �) andt 7! �(t; x(�; �)t; ��) are ontinuous funtions on [0; �℄. M�4 is also ompat in C sine t 7! x(�; �)t isontinuous on [0; �℄. Therefore there exist "i > 0 (i = 1; 2; 4) suh thatM1 � GRn�M�1 ; "1� � 
1,M2 � GRn�M�2 ; "2� � 
2, and GC�M�4 ; "4� � 
4 sine 
i (i = 1; 2; 4) are open sets in Rn andC, respetively. Let M4 � GW1;1�M�4 ; "4�. Clearly, M1 and M2 are ompat subsets of Rn. Wehave M4 � 
4, and it is ompat in C by Arsela-Asoli's Theorem, sine it is a bounded subsetof W 1;1.Let Æ2 � minfÆ1; "1; "2=(L2j �'jW1;1 + 1); "4g. Let  = ('; �; �) 2 G���; Æ2�. We have from(4) and the de�nition of j � j� that j'(0)� �'(0)j < "1, j�(0; '; �)� �(0; �'; ��)j � L2j �'jW1;1 (j'��'jC + j�� ��j�) + j'� �'jC < "2, and j'� �'jC < "4. Therefore there exists 0 < � � � suh thatjx(t; )� x(t; �)j < "1; j�(t; x(�; )t; �)� �(t; x(�; �)t; ��)j < "2;(14)and jx(�; )t � x(�; �)tjC < "4(15)



6 F. HARTUNGfor t 2 [0; � ℄.Let L1 = L1(�;M1;M2;M3) and L2 = L2(�;M4;M5) be the onstants from (A1) (ii) and(A2) (ii), respetively. We have for t 2 [0; � ℄:jx(t;)� x(t; �)j� j'(0)� �'(0)j+ Z t0 ���f(s; x(s;);�(s; x(�; )s; �); �)� f(s; x(s; �);�(s; x(�; �)s; ��); ��)��� ds� j � �j� + L1 Z t0 �jx(s; )� x(s; �)j+ j�(s; x(�; )s; �)� �(s; x(�; �)s; ��)j+ j� � ��j�� ds:Let N � maxfmaxfjx(t; �)j : t 2 [�r; �℄g; ess supfj _x(t; �)j : t 2 [�r; �℄gg. Then (4) yieldsjx(t;)� x(t; �)j � j � �j� + L1Z t0 �jx(s; )� x(s; �)j+L2N(jx(�; )s � x(�; �)sjC+ j� � ��j�) + jx(�; )s � x(�; �)sjC + j � �j�� ds:Introdue �(t; �; ) � supfjx(s; )� x(s; �)j : s 2 [�r; t℄g. With this notation we getjx(t;)� x(t; �)j � (1 + L1 + L1L2N)j � �j� + L1(2 + L2N)Z t0 �(s; �; ) ds;for t 2 [0; � ℄. The monotoniity of the right-hand side in t and �(t; �; ) � j� �j� for t 2 [�r; 0℄yield �(t; �; ) � (1 + L1 + L1L2N)j � �j� + L1(2 + L2N)Z t0 �(s; �; ) ds; t 2 [0; � ℄:Applying the Gronwall-Bellmann inequality we getjx(t;)� x(t; �)j � �(t; �; ) � L�j � �j�; t 2 [�r; � ℄;(16)where L� � (1+L1+L1L2N)eL1(2+L2N)�. Let Æ � minfÆ2; "1=L�; "2=(L2N(L�+1)+L�); "4=L�g.Then it is easy to show, using (16), that � = � an be used in (14) and (15) for  2 G�(�; Æ).This proves (12) as well.It follows from (1), (16), (A1) (ii) and (A2) (ii) thatj _x(t;)� _x(t; �)j(17) = jf(t; x(t;);�(t; x(�; )t; �); �)� f(t; x(t; �);�(t; x(�; �)t; ��); ��)j� L1�jx(t;)� x(t; �)j+ L2N(jx(�; )t � x(�; �)tjC + j� � ��j�)+ jx(�; )t � x(�; �)tjC + j� � ��j��� L��j � �j�; t 2 [0; �℄;where L�� � L1(2 + L2N)L� + L1(L2N + 1). Therefore (13) follows from (16), (17) and fromj _'(t)� _�'(t)j � j � �j� for almost every t 2 [�r; 0℄ with L � maxfL�; L��g.



ON DIFFERENTIABILITY OF SOLUTIONS WRT PARAMETERS 73. Di�erentiability wrt parameters. In this setion we study di�erentiability of solu-tions of IVP (1)-(2) wrt the initial funtion, ', the parameter � of the delay funtion � , and theparameter � of the funtion f .Let � = (�'; ��; ��) 2M, and x(�; �) be the orresponding solution of IVP (1)-(2) on [0; �℄. Fixh = (h'; h�; h�) 2 � and onsider the variational equation_z(t; �; h) = D2f(t; x(t; �);�(t; x(�; �)t; ��); ��)z(t; �; h)(18) + D3f(t; x(t; �);�(t; x(�; �)t; ��); ��)�D2�(t; x(�; �)t; ��)z(�; �; h)t+ D3�(t; x(�; �)t; ��)h��+D4f(t; x(t; �);�(t; x(�; �)t; ��); ��)h� ;t 2 [0; �℄;z(t; �; h) = h'(t); t 2 [�r; 0℄:(19)This is a linear state-independent delay equation for z(�; �; h), and the right-hand side of (18)depends ontinuously on t and z(�; �; h)t sine x(�; �)t 2 C1 by Theorem 1 (v). Therefore thisIVP has a unique solution, z(�; �; h), whih depends linearly on h.First we study di�erentiability of the funtion x(t;) = x(t; ('; �; �)) wrt ' and � only. Wedenote this di�erentiation by D(';�)x. LetG';�(Æ; �) � f('; �) 2 W 1;1 �� : ('; ��; �) 2 G�(�; Æ)g:(20) Theorem 2. Assume (A1), (A2), and let � 2 M be �xed. Let Æ > 0 and � > 0 be de�nedby Theorem 1, and x(t; ) be the solution of IVP (1)-(2) on [0; �℄ for  2 G�(�; Æ), and G';�(�; Æ)be de�ned by (20). Then the funtion x(t; (�; ��; �)) : G';�(�; Æ) ! Rn is di�erentiable at ( �'; ��)for t 2 [0; �℄, and D(';�)x(t; ( �'; ��; ��))(h'; h�) = z(t; �; (h'; 0; h�));where z is the solution of IVP (18)-(19), and (h'; h�) 2 W 1;1 ��.Proof. Let � 2 M, Æ > 0, �, and G';�(�; Æ) be as in the assumption of the theorem. Wean and do assume that Æ is suh that M3 � G����; Æ� � 
3 and M5 � G�(��; Æ) � 
5. Leth = (h'; h�; h�) 2 � suh that jhj� < Æ. (Here, for our future purposes, we do not assumeyet that h� = 0.) Note that z(t; �; h) is well-de�ned sine, by our assumptions, x(�; �)s 2 C1.Integrating (1) and (18), and using the de�nition of !f and !� we getx(t; � + h)� x(t; �)� z(t; �; h)= Z t0 �f(s; x(s; � + h);�(s; x(�; � + h)s; �� + h�); �� + h�)� f(s; x(s; �);�(s; x(�; �)s; ��); ��)�D2f(s; x(s; �);�(s; x(�; �)s; ��); ��)z(s; �; h)� D3f(s; x(s; �);�(s; x(�; �)s; ��); ��)�D2�(s; x(�; �)s; ��)z(�; �; h)s+ D3�(s; x(�; �)s; ��)h���D4f(s; x(s; �);�(s; x(�; �)s; ��); ��)h��ds= Z t0 �!f (s; x(s; �);�(s; x(�; �)s; ��); ��;x(s; �+h);�(s; x(�; �+h)s; ��+h�); ��+h�)



8 F. HARTUNG+ D2f(s; x(s; �);�(s; x(�; �)s; ��); ��)�x(s; � + h)� x(s; �)� z(s; �; h)�+ D3f(s; x(s; �);�(s; x(�; �)s; ��); ��)�!�(s; x(�; �)s; ��;x(�; � + h)s; �� + h�)+ D2�(s; x(�; �)s; ��)(x(�; � + h)s � x(�; �)s � z(�; �; h)s)��ds:LetMi (i = 1; 2; 4) be de�ned by Theorem 1. Let L1 = L1(�;M1;M2;M3) and L2 = L2(�;M4;M5)be the onstants from (A1) (ii) and (A2) (ii), respetively, and K =K(�;M4;M5) be the onstantfrom (7)-(8). Then (10) yieldsjx(t; � + h)� x(t; �)� z(t; �; h)j(21) � Z t0 �Gf (s; �; h) + L1���x(s; � + h)� x(s; �)� z(s; �; h)���+ L1G�(s; �; h)+ L1Kjx(�; � + h)s � x(�; �)s � z(�; �; h)sjC�ds; t 2 [0; �℄;where Gf (s; �; h) � j!f (s; x(s; �);�(s; x(�; �)s; ��); ��;x(s; � + h);�(s; x(�; � + h)s; ��+ h�); ��+ h�)jand G�(s; �; h) � j!�(s; x(�; �)s; ��;x(�; �+h)s; ��+h�)j. Introdue �(t; �; h) � sup�r�s�t jx(s; �+h)� x(s; �)� z(s; �; h)j. Inequality (21) impliesjx(t; � + h)� x(t; �)� z(t; �; h)j(22) � Z �0 �Gf (s; �; h) + L1G�(s; �; h)�ds+ L1(1 +K)Z t0 �(s; �; h) ds:Using that �(0; �; h) = 0, and the right-hand side of (22) is monotone in t, we get from (22)�(t; �; h) � Z �0 �Gf (s; �; h) + L1G�(s; �; h)�ds+ L1(1 +K)Z t0 �(s; �; h) ds;whih, by the Gronwall-Bellman inequality, implies�(t; �; h) � Z �0 �Gf (s; �; h) + L1G�(s; �; h)�ds eL1(1+K)�; t 2 [0; �℄:(23)Applying (23) we getjx(t; � + h)� x(t; �)� z(t; �; h)j=jhj�� �(t; �; h)=jhj�� Z �0 �Gf (s; �; h)=jhj� + L1G�(s; �; h)=jhj��ds eL1(1+K)�; t 2 [�r; �℄:Here we used that x(t; � + h) � x(t; �) � z(t; �; h) = 0 for t 2 [�r; 0℄. We will show thatR �0 Gf (s; �; h)=jhj� ds! 0 and R �0 G�(s; �; h)=jhj� ds! 0 as jhj� ! 0.Using (4) and (13), we get that there exists K� = K�(�;M4;M5) suh thatj�(s; x(�; � + h)s; �� + h�)� �(s; x(�; �)s; ��)j � K�jhj�; jhj� < Æ; s 2 [0; �℄:(24)



ON DIFFERENTIABILITY OF SOLUTIONS WRT PARAMETERS 9Using the obvious relationGf (s; �; h)jhj�(25) = !f (s; x(s; �);�(s; x(�; �)s; ��); ��; x(s; �+h);�(s; x(�; �+h)s; ��+h�); ��+h�)jjx(s; � + h)�x(s; �)j+j�(s; x(�; �+h)s; ��+h�)��(s; x(�; �)s; ��)j+jh� j�� jx(s; � + h)�x(s; �)j+j�(s; x(�; �+h)s; ��+h�)��(s; x(�; �)s; ��)j+jh� j�jhj� ;(11), (12), (13), (24) and (25) yieldGf (s; �; h)=jhj� � 2L1(L+K�+1). On the other hand, (9) and(25) imply Gf (s; �; h)=jhj� ! 0 as jhj� ! 0 for s 2 [0; �℄. Therefore R �0 Gf (s; �; h)=jhj� ds ! 0as jhj� ! 0 by the Lebesgue's Dominated Convergene Theorem.Similarly, inequalities (8) and (13) imply G�(s; �; h)=jhj� � 2K(L + 1). To show thatG�(s; �; h)=jhj� ! 0 we now assume that h� = 0. Lemma 1 impliesG�(s; �; h)=jhj� = j�(s; x(�; �+h)s; ��)��(s; x(�; �)s; ��)�D2�(s; x(�; �)s; ��)(x(�; �+ h)s�x(�; �)s)j=jhj� ! 0 as jhj� ! 0 for s 2[0; �℄, sine, by (13), jx(�; �+h)s�x(�; �)sjW1;1 ! 0 as jhj� ! 0. Therefore R �0 G�(s; �; h)=jhj� ds!0 as jhj� ! 0.We onlude that jx(t; � + h) � x(t; �)� z(t; �; h)j=jhj� ! 0 as jhj� ! 0, whih proves thetheorem.The proof of the previous theorem implies immediately:Corollary 1. Assume the onditions of Theorem 2. Then the funtion G';�(�; Æ)! C,('; �) 7! x(�; ('; ��; �))t is di�erentiable at ( �'; ��) for t 2 [0; �℄, and its derivative is given byD(';�)x(�; ( �'; ��; ��))t(h'; h�) = z(�; �; (h'; 0; h�))t, (h'; h�) 2W 1;1 ��.Next we study di�erentiability wrt � as well. We will need the following de�nition.Definition 1. Let X and Y be normed linear spaes, M � X, and x0 2 M be an aumu-lation point of M . We say that f : �M � X�! Y is di�erentiable at the point x0 with respetto the set M if there exists L 2 L(X;Y ) suh thatlimx!x0x2M jf(x)� f(x0)� L(x� x0)jYjx� x0jX = 0:We have the following result.Theorem 3. Assume (A1), (A2), and let � 2 M be an aumulation point of M. LetÆ > 0 and � > 0 be de�ned by Theorem 1, and x(t; ) be the solution of IVP (1)-(2) on [0; �℄ for 2 G�(�; Æ). Then the funtion x(t; �) : �(G�(�; Æ) \M) � ��! Rn is di�erentiable at � wrtG�(�; Æ)\M for t 2 [0; �℄, and its derivative is Dx(t; �)h = z(t; �; h), where z is the solution ofIVP (18)-(19), h 2 � is suh that � + h 2 M.Proof. We proeed as in the proof of Theorem 2. The only step needs a di�erent argumen-t here is the last one, to show that G�(s; �; h)=jhj� ! 0 as jhj� ! 0. We have G�(s; �; h) =j�(s; x(�; �+h)s; ��+h�)��(s; x(�; �)s; ��)�D2�(s; x(�; �)s; ��)(x(�; �+h)s�x(�; �)s)�D3�(s; x(�; �)s; ��)h�j=jhj�.Let h be suh that � + h 2 M. Then, using that �(t; �; �) is ontinuously di�erentiable on
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4 \ C1 � 
5, and x(�; � + h)s 2 C1 for s 2 [0; �℄, we getG�(s; �; h)(26) � sup0<�<1D2�(s; (1� �)x(�; �)s + �x(�; � + h)s; �� + �h�)� D2�(s; x(�; �)s; ��)L(W1;1;Rn) � jx(�; � + h)s � x(�; �)sjW1;1+ sup0<�<1D3�(s; (1� �)x(�; �)s + �x(�; � + h)s; �� + �h�)� D3�(s; x(�; �)s; ��)L(�;Rn) � jh�j�:Therefore the ontinuity ofD2�(s; �; �) andD3�(s; �; �) (see Lemma 1), and (13) implyG�(s; �; h)=jhj� !0 as jhj� ! 0.Next we show that, under the assumptions of the previous theorem, x(�; )t is di�erentiablewrt  (in the sense of De�nition 1) if we use W 1;1 as the state-spae of the solutions.Theorem 4. Assume (A1), (A2), and let � 2 M be an aumulation point of M. LetÆ > 0 and � > 0 be de�ned by Theorem 1, and x(t; ) be the solution of IVP (1)-(2) on [0; �℄ for 2 G�(�; Æ). Then the funtion �(G�(�; Æ) \M) � �� ! W 1;1,  7! x(�; )t is di�erentiableat � wrt G�(�; Æ) \M for t 2 [0; �℄, and Dx(�; �)th = z(�; �; h)t, where z is the solution of IVP(18)-(19), and h 2 � is suh that � + h 2 M.Proof. We use all the notations introdued in the proof of Theorem 2. It follows from theproofs of Theorems 2 and 3 that jx(�; �+ h)t � x(�; �)t � z(�; �; h)tjC=jhj� ! 0 as �+ h 2M andjhj� ! 0. Similarly to (22) we getj _x(t; � + h)� _x(t; �)� _z(t; �; h)j(27) � Gf (t; �; h) + L1G�(t; �; h) + L1(1 +K)�(t; �; h); t 2 [0; �℄:Clearly, _x(t; �+h)� _x(t; �)� _z(t; �; h) = 0 for t 2 [�r; 0℄. Therefore, in view of (23), it suÆes toshow that Gf (t; �; h)=jhj� ! 0 and G�(t; �; h)=jhj� ! 0 as �+h 2M and jhj� ! 0 uniformly int 2 [0; �℄. Consider a sequene hk = (hk;'; hk;�; hk;�) 2 � suh that � + hk 2 M for k 2 N andjhkj� ! 0 as k !1. We haveGf (t; �; hk)(28) � sup0<�<1D2f(t; (1� �)x(t; �) + �x(t; � + hk);(1� �)�(t; x(�; �)t; ��) + ��(t; x(�; � + hk)t; �� + hk;�); �� + �hk;�)� D2f(t; x(t; �);�(t; x(�; �)t; ��); ��)jx(t; � + hk)� x(t; �)j+ sup0<�<1D3f(t; (1� �)x(t; �) + �x(t; � + hk);(1� �)�(t; x(�; �)t; ��) + ��(t; x(�; � + hk)t; �� + hk;�); �� + �hk;�)� D3f(t; x(t; �);�(t; x(�; �)t; ��); ��)� j�(t; x(�; � + hk)t; �� + hk;�)� �(t; x(�; �)t; ��)j



ON DIFFERENTIABILITY OF SOLUTIONS WRT PARAMETERS 11+ sup0<�<1D4f(t; (1� �)x(t; �) + �x(t; � + hk);(1� �)�(t; x(�; �)t; ��) + ��(t; x(�; � + hk)t; �� + hk;�); �� + �hk;�)� D4f(t; x(t; �);�(t; x(�; �)t; ��); ��)L(�;Rn)jhk;� j�:LetM�3 � f��+�hk;� : k 2 N ; � 2 [0; 1℄g, and A � [0; �℄�M1�M2�M�3 . The set A is a ompatsubset of R�Rn�Rn��, sineM1 andM2 are ompat subsets of Rn, and, it is easy to see thatM�3 is a ompat subset of �. By (A1) (iii) D2f , D3f and D4f are ontinuous, therefore uniformlyontinuous on A. Therefore (28), together with (13) and (24), yields Gf (t; �; hk)=jhkj� ! 0 ask !1 uniformly in t 2 [0; �℄.Similarly, de�ne M�5 � f�� + �hk;� : k 2 N ; � 2 [0; 1℄g, and B � [0; �℄�M4 �M�5 . Then Bis a ompat subset of R � C � �, therefore (13) and (26) imply that G�(t; �; hk)=jhkj� ! 0 ask !1 uniformly in t 2 [0; �℄. This onludes the proof of the theorem.The next two examples show ases when the di�erentiability property of the solution wrtsome parameter guaranteed by Theorem 4 equals to the usual Freh�et-di�erentiability of thesolution wrt the parameter.Example 1. Suppose f satis�es (A1) and has the formf(t; x; y; �) = f1(t; x; y) + f2(t; x; y; �);where f2(0; x; y; �) = 0 for all x 2 
1, y 2 
2 and � 2 
3. Then if � = (�'; ��; ��) 2 � satis�es �' 2C1 and _�'(0�) = f1(0; �'(0);�(0; �'; ��)), then the solution of IVP (1)-(2), x(�; �)t, is di�erentiablewrt � on 
3 for t 2 [0; �℄ in the usual Freh�et-sense as a funtion �
3 � �� ! W 1;1, � 7!x(�; �)t.Example 2. Suppose the funtion � satis�es (A2) and �(t;  ; �) = � 1(t;  ) + � 2(t;  ; �),where � 2(0;  ; �) = 0 for all  2 
4 and � 2 
5. Then if � = (�'; ��; ��) 2 � satis�es �' 2 C1 and_�'(0�) = f(0; �'(0); �'(�� 1(0; �')); ��), then the solution, x(�;�)t, is di�erentiable wrt � on 
5 fort 2 [0; �℄ (in Freh�et-sense) as a funtion �
5 � ��!W 1;1, � 7! x(�;�)t.Finally, we onsider the state-independent version of IVP (1)-(2), i.e., we assume that�(t;  ; �) is independent of  . Let � 2 C1. First we note that (5) yields in this ase thatD2�(t; � ; ��)h = h(��(t; � ; ��)), therefore a simple alulation and (6) implyj!�(t; � ; ��; ; �)j= j � (��(t; ; �))� � (��(t; � ; ��))�D3�(t; � ; ��)(� � ��)+  (��(t; ; �))� � (��(t;  ; �))�  (��(t; � ; ��)) + � (��(t; � ; ��))j� j � (��(t; ; �))� � (��(t; � ; ��)) + _� (��(t; � ; ��))D3�(t; � ; ��)(� � ��)j+ j � � jW1;1 j�(t;  ; �)� �(t; � ; ��)j:Therefore (A2) (iii), the Chain-rule and the Mean Value Theorem yieldj!�(t; � ; ��; ; �)jj � � jW1;1 + j� � ��j� ! 0; as j � � jW1;1 + j� � ��j� ! 0:



12 F. HARTUNGConsequently, G�(t; �; h)=jhj� ! 0 as jhj� ! 0. Using this relation, it follows easily from theproof of Theorem 4:Corollary 2. Assume (A1), (A2), and let � 2M be �xed. Assume moreover that �(t;  ; �)is independent of  . Let Æ > 0 and � > 0 be de�ned by Theorem 1, and x(t;) be the solution ofIVP (1)-(2) on [0; �℄ for  2 G�(�; Æ). Then the funtion �G�(�; Æ) � ��!W 1;1,  7! x(�; )tis di�erentiable at � for t 2 [0; �℄, and Dx(�; �)th = z(�; �; h)t, where z is the solution of IVP(18)-(19), and h 2 �. REFERENCES[1℄ D. W. Brewer, The di�erentiability with respet to a parameter of the solution of a linearabstrat Cauhy problem, SIAM J. Math. Anal. 13:4 (1982), 607{620.[2℄ D. W. Brewer, Quasi-Newton methods for parameter estimation in funtional di�erentialequations, Proeedings of the 27th Conferene on Deision and Control, Austin, Texas,Deember 1988, 806{809.[3℄ D. W. Brewer, J. A. Burns, and E. M. Cli�, Parameter identi�ation for an abstrat Cauhyproblem by quasilinearization, Quarterly of Applied Mathematis, LIMarh (1993), 1{22.[4℄ R. D. Driver, Existene theory for a delay-di�erential system, Contributions to Di�erentialEquations, 1 (1961), 317{336.[5℄ J. K. Hale and S. M. Verduyn Lunel, Introdution to Funtional Di�erential Equations,Spingler-Verlag, New York, 1993.[6℄ J. K. Hale and L. A. C. Ladeira, Di�erentiability with respet to delays, J. Di�. Eqns., 92(1991), 14{26.[7℄ F. Hartung, On lasses of funtional di�erential equations with state-dependent delays, Ph.D.Dissertation, University of Texas at Dallas, 1995.[8℄ F. Hartung and J. Turi, On di�erentiability of solutions with respet to parameters in state-dependent delay equations, to appear in J. Di�. Eqns.


