ON DIFFERENTIABILITY OF SOLUTIONS WITH RESPECT TO PARAMETERS IN A CLASS OF FUNCTIONAL DIFFERENTIAL EQUATIONS FERENC HARTUNG*

Abstract

In this paper we study differentiability of solutions with respect to parameters in state-dependent delay equations. In particular, we give sufficient conditions for differentiability of solutions in the $W^{1, \infty}$ norm.

1. Introduction. We consider the state-dependent delay system

$$
\begin{equation*}
\dot{x}(t)=f\left(t, x(t), x\left(t-\tau\left(t, x_{t}, \sigma\right)\right), \theta\right), \quad t \in[0, T] \tag{1}
\end{equation*}
$$

with initial condition

$$
\begin{equation*}
x(t)=\varphi(t), \quad t \in[-r, 0] . \tag{2}
\end{equation*}
$$

Here $\theta \in \Theta$ and $\sigma \in \Sigma$ represent parameters in the function f and in the delay function, τ, where Θ and Σ are normed linear spaces with norms $|\cdot|_{\Theta}$ and $|\cdot|_{\Sigma}$, respectively. The notation x_{t} denotes the solution segment function, i.e., $x_{t}:[-r, 0] \rightarrow \mathbb{R}^{n}, x_{t}(s) \equiv x(t+s)$. (See Section 2 below for the detailed assumptions on the initial value problem (IVP) (1)-(2).)

In this paper we study differentiability of solutions of IVP (1)-(2) with respect to (wrt) the parameters φ, σ and θ. Differentiability wrt parameters in delay equations has been investigated, e.g., in [1], [5] and [6]. It has also been studied in state-dependent delay equations in [8], where sufficient conditions were given guaranteeing differentiability of the parameter map $\Gamma \rightarrow W^{1, p}$, $\gamma \mapsto x(\cdot ; \gamma)_{t}$ (where $\gamma \in \Gamma$ is some parameter of the equation, and $1 \leq p<\infty$). In establishing this result a version of the Uniform Contraction Principle for quasi-Banach spaces was used. In many applications (e.g., in parameter identification problems, see, e.g., [2] and [3]) this sort of differentiability (i.e., differentiability in a $W^{1, p}$ norm) is too weak. In this paper we establish sufficient conditions implying "pointwise" differentiability of the parameter map, i.e., differentiability of $\Gamma \rightarrow \mathbb{R}^{n}, \gamma \mapsto x(t ; \gamma)$, and the stronger property, differentiability of the map $\Gamma \rightarrow W^{1, \infty}$, $\gamma \mapsto x(\cdot ; \gamma)_{t}$.

Our main results are contained in Section 3. In Section 2 we list our assumptions on IVP (1)-(2), introduce our notations, and give some necessary preliminary results.
2. Notations, assumptions and preliminaries. Throughout this paper a norm on \mathbb{R}^{n} and the corresponding matrix norm on $\mathbb{R}^{n \times n}$ are denoted by $|\cdot|$ and $\|\cdot\|$, respectively.

[^0]The notation $f:(A \subset X) \rightarrow Y$ will be used to denote that the function maps the subset A of the normed linear space X to Y. This notation emphasizes that the topology on A is defined by the norm of X.

We denote the open ball around a point x_{0} with radius R in a normed linear space $(X,|\cdot| X)$ by $\mathcal{G}_{X}\left(x_{0} ; R\right)$, i.e., $\mathcal{G}_{X}\left(x_{0} ; R\right) \equiv\left\{x \in X:\left|x-x_{0}\right|_{X}<R\right\}$, and the corresponding closed ball by $\overline{\mathcal{G}}_{X}\left(x_{0} ; R\right)$. Similarly, a neighborhood of a set $M \subset X$ with radius R is denoted by $\mathcal{G}_{X}(M ; R)$, i.e., $\mathcal{G}_{X}(M ; R) \equiv\left\{x \in X:\right.$ there exists $y \in M$ such that $\left.|x-y|_{X}<R\right\}$. The closure of this neighborhood is denoted by $\overline{\mathcal{G}}_{X}(M ; R)$.

The space of continuous functions from $[-r, 0]$ to \mathbb{R}^{n} and the usual supremum norm on it are denoted by C and $|\cdot|_{C}$, respectively. The space of absolutely continuous functions from $[-r, 0]$ to \mathbb{R}^{n} with essentially bounded derivatives is denoted by $W^{1, \infty}$. The corresponding norm on $W^{1, \infty}$ is $|\psi|_{W^{1, \infty}} \equiv \max \left\{|\psi|_{C}, \operatorname{ess} \sup \{|\dot{\psi}(s)|: s \in[-r, 0]\}\right\}$.

The partial derivatives of a function $g\left(t, x_{2}, \ldots, x_{n}\right)$ wrt its second, third, etc. arguments are denoted by $D_{2} g, D_{3} g$, etc, and the derivative wrt t is denoted by \dot{g}. Note that all derivatives we use in this paper are Frechét-derivatives.

Next we consider a set of technical conditions, guaranteeing well-posedness and differentiability of solutions wrt parameters, for the state-dependent delay differential equation (1) with initial condition (2).

Let $\Omega_{1} \subset \mathbb{R}^{n}, \Omega_{2} \subset \mathbb{R}^{n}, \Omega_{3} \subset \Theta, \Omega_{4} \subset C$, and $\Omega_{5} \subset \Sigma$ be open subsets of the respective spaces. $T>0$ is finite or $T=\infty$, in which case $[0, T]$ denotes the interval $[0, \infty)$.
(A1) (i) $f:[0, T] \times \Omega_{1} \times \Omega_{2} \times \Omega_{3} \rightarrow \mathbb{R}^{n}$ is continuous,
(ii) $f(t, v, w, \theta)$ is locally Lipschitz-continuous in v, w and θ in the following sense: for every $\alpha>0, M_{1} \subset \Omega_{1}, M_{2} \subset \Omega_{2}, M_{3} \subset \Omega_{3}$, where M_{1} and M_{2} are compact subsets of \mathbb{R}^{n} and M_{3} is a closed, bounded subset of Θ, there exists a constant $L_{1}=L_{1}\left(\alpha, M_{1}, M_{2}, M_{3}\right)$ such that

$$
|f(t, v, w, \theta)-f(t, \bar{v}, \bar{w}, \bar{\theta})| \leq L_{1}\left(|v-\bar{v}|+|w-\bar{w}|+|\theta-\bar{\theta}|_{\Theta}\right)
$$

for $t \in[0, \alpha], v, \bar{v} \in M_{1}, w, \bar{w} \in M_{2}$, and $\theta, \bar{\theta} \in M_{3}$,
(iii) $f:\left([0, T] \times \Omega_{1} \times \Omega_{2} \times \Omega_{3} \subset \mathbb{R} \times \mathbb{R}^{n} \times \mathbb{R}^{n} \times \Theta\right) \rightarrow \mathbb{R}^{n}$ is continuously differentiable wrt its second, third and fourth arguments,
(A2) (i) $\tau:[0, T] \times \Omega_{4} \times \Omega_{5} \rightarrow[0, \infty)$ is continuous, and

$$
t-\tau(t, \psi, \sigma) \geq-r, \quad \text { for } t \in[0, T], \psi \in \Omega_{4}, \text { and } \sigma \in \Omega_{5}
$$

(ii) $\tau(t, \psi, \sigma)$ is locally Lipschitz-continuous in ψ and σ in the following sense: for every $\alpha>0, M_{4} \subset \Omega_{4}$ and $M_{5} \subset \Omega_{5}$, where M_{4} is a compact subset of C, and M_{5} is a closed, bounded subset of Σ, there exists a constant $L_{2}=L_{2}\left(\alpha, M_{4}, M_{5}\right)$ such that

$$
|\tau(t, \psi, \sigma)-\tau(t, \bar{\psi}, \bar{\sigma})| \leq L_{2}\left(|\psi-\bar{\psi}|_{C}+|\sigma-\bar{\sigma}|_{\Sigma}\right)
$$

for $t \in[0, \alpha], \psi, \bar{\psi} \in M_{4}$, and $\sigma, \bar{\sigma} \in M_{5}$,
(iii) $\tau:\left([0, T] \times \Omega_{4} \times \Omega_{5} \subset[0, \alpha] \times C \times \Sigma\right) \rightarrow \mathbb{R}$ is continuously differentiable wrt its second and third arguments.
Note that (A1) (i), (ii) and (A2) (i), (ii) together with $\varphi \in W^{1, \infty}$ are standard assumptions in state-dependent delay equations guaranteeing the existence and uniqueness of the solution (see, e.g., [4] or [8]). If the parameter spaces Θ and Σ are finite dimensional, then (A1) (ii) and (A2) (ii) follow from (A1) (iii) and (A2) (iii), respectively. We refer to [8] for further comments on the particular definition of local Lipschitz-continuity we use in (A1) (ii) and (A2) (ii).

We will use the following function to simplify the notation:

$$
\begin{equation*}
\Lambda:\left([0, T] \times \Omega_{4} \times \Omega_{5} \subset \mathbb{R} \times W^{1, \infty} \times \Sigma\right) \rightarrow \mathbb{R}^{n}, \quad \Lambda(t, \psi, \sigma) \equiv \psi(-\tau(t, \psi, \sigma)) \tag{3}
\end{equation*}
$$

With this notation we can rewrite (1) simply as:

$$
\dot{x}(t)=f\left(t, x(t), \Lambda\left(t, x_{t}, \sigma\right), \theta\right), \quad t \in[0, T] .
$$

It follows from the definition of Λ, (A2) (ii) and the Mean Value Theorem that

$$
\begin{align*}
& |\Lambda(t, \psi, \sigma)-\Lambda(t, \bar{\psi}, \bar{\sigma})| \tag{4}\\
& \quad \leq|\bar{\psi}(-\tau(t, \psi, \sigma))-\bar{\psi}(-\tau(t, \bar{\psi}, \bar{\sigma}))|+|\psi(-\tau(t, \psi, \sigma))-\bar{\psi}(-\tau(t, \psi, \sigma))| \\
& \quad \leq L_{2}|\bar{\psi}|_{W^{1, \infty}}\left(|\psi-\bar{\psi}|_{C}+|\sigma-\bar{\sigma}|_{\Sigma}\right)+|\psi-\bar{\psi}|_{C}
\end{align*}
$$

for $t \in[0, \alpha], \psi, \bar{\psi} \in M_{4}, \bar{\psi} \in W^{1, \infty}$, and $\sigma, \bar{\sigma} \in M_{5}$.
Lemma 1. Assume (A2), and let Λ be defined by (3). Then $D_{2} \Lambda(t, \psi, \sigma)$ and $D_{3} \Lambda(t, \psi, \sigma)$ exist for $t \in[0, T], \psi \in \Omega_{4} \cap C^{1}, \sigma \in \Omega_{5}$, and

$$
\begin{align*}
D_{2} \Lambda(t, \psi, \sigma) h & =-\dot{\psi}(-\tau(t, \psi, \sigma)) D_{2} \tau(t, \psi, \sigma) h+h(-\tau(t, \psi, \sigma)), h \in W^{1, \infty}, \tag{5}\\
D_{3} \Lambda(t, \psi, \sigma) & =-\dot{\psi}(-\tau(t, \psi, \sigma)) D_{3} \tau(t, \psi, \sigma) .
\end{align*}
$$

Moreover, $D_{2} \Lambda(t, \cdot, \cdot)$ and $D_{3} \Lambda(t, \cdot, \cdot)$ are continuous on $\left(\Omega_{4} \cap C^{1}\right) \times \Omega_{5}$ for $t \in[0, T]$.
Proof. Let $\psi \in \Omega_{4} \cap C^{1}$, and introduce $\omega^{\psi}(\bar{s} ; s) \equiv \psi(s)-\psi(\bar{s})-\dot{\psi}(\bar{s})(s-\bar{s})$ for $\bar{s}, s \in[-r, 0]$, and $\omega^{\tau}(t, \psi, \sigma ; \psi+h) \equiv \tau(t, \psi+h, \sigma)-\tau(t, \psi, \sigma)-D_{2} \tau(t, \psi, \sigma) h$ for $t \in[0, T], \psi, \psi+h \in \Omega_{4}$, and $\sigma \in \Omega_{5}$. Let $t \in[0, T], \psi+h \in \Omega_{4}$, and $\sigma \in \Omega_{5}$, and consider

$$
\begin{aligned}
\Lambda(t, \psi+ & +, \sigma)-\Lambda(t, \psi, \sigma) \\
= & \psi(-\tau(t, \psi+h, \sigma))-\psi(-\tau(t, \psi, \sigma))+h(-\tau(t, \psi+h, \sigma)) \\
= & -\dot{\psi}(-\tau(t, \psi, \sigma))(\tau(t, \psi+h, \sigma)-\tau(t, \psi, \sigma))+h(-\tau(t, \psi, \sigma)) \\
& +\omega^{\psi}(-\tau(t, \psi, \sigma) ;-\tau(t, \psi+h, \sigma))+h(-\tau(t, \psi+h, \sigma))-h(-\tau(t, \psi, \sigma)) \\
= & -\dot{\psi}(-\tau(t, \psi, \sigma)) D_{2} \tau(t, \psi, \sigma) h+h(-\tau(t, \psi, \sigma)) \\
& -\dot{\psi}(-\tau(t, \psi, \sigma)) \omega^{\tau}(t, \psi, \sigma ; \psi+h) \\
& +\omega^{\psi}(-\tau(t, \psi, \sigma) ;-\tau(t, \psi+h, \sigma))+h(-\tau(t, \psi+h, \sigma))-h(-\tau(t, \psi, \sigma)) .
\end{aligned}
$$

Relation (5) follows from the last equation, using the continuity of τ, the inequality

$$
|h(-\tau(t, \psi+h, \sigma))-h(-\tau(t, \psi, \sigma))| \leq|h|_{W^{1, \infty}}|\tau(t, \psi+h, \sigma)-\tau(t, \psi, \sigma)|
$$

guaranteed by the Mean Value Theorem, $\left|\omega^{\psi}(\bar{s} ; s)\right| /|s-\bar{s}| \rightarrow 0$ as $s \rightarrow \bar{s}$, and $\mid \omega^{\tau}(t, \psi, \sigma ; \psi+$ $h)\left.\left|/|h|_{W^{1, \infty}} \rightarrow 0\right.$ as $| h\right|_{W^{1, \infty}} \rightarrow 0$. Note that the last relation follows from $\mid \omega^{\tau}(t, \psi, \sigma ; \psi+$ $h)\left.\left|/|h|_{C} \rightarrow 0\right.$ as $| h\right|_{C} \rightarrow 0$. Relation (6) is an immediate consequence of the Chain-rule. The continuity of $D_{2} \Lambda(t, \cdot, \cdot)$ and $D_{3} \Lambda(t, \cdot, \cdot)$ follows readily from (5) and (6) and from the assumed continuity of $\tau, D_{2} \tau$ and $D_{3} \tau$.

We introduce the function

$$
\omega^{\Lambda}(t, \bar{\psi}, \bar{\sigma} ; \psi, \sigma) \equiv \Lambda(t, \psi, \sigma)-\Lambda(t, \bar{\psi}, \bar{\sigma})-D_{2} \Lambda(t, \bar{\psi}, \bar{\sigma})(\psi-\bar{\psi})-D_{3} \Lambda(t, \bar{\psi}, \bar{\sigma})(\sigma-\bar{\sigma})
$$

for $t \in[0, T], \bar{\psi}, \psi \in \Omega_{4}, \bar{\psi} \in C^{1}$, and $\bar{\sigma}, \sigma \in \Omega_{5}$.
Let $\alpha>0, M_{4} \subset \Omega_{4}$ be a compact subset of $C, M_{5} \subset \Omega_{5}$ be a closed and bounded subset of Σ. It is easy to prove, using the definition of ω^{Λ}, (A2) (ii), (iii), (4), (5), and (6), that there exists a constant $K=K\left(\alpha, M_{4}, M_{5}\right)$ such that

$$
\begin{equation*}
\left\|D_{2} \Lambda(t, \bar{\psi}, \bar{\sigma})\right\|_{\mathcal{L}\left(W^{1, \infty}, \mathbb{R}^{n}\right)} \leq K, \quad\left\|D_{3} \Lambda(t, \bar{\psi}, \bar{\sigma})\right\|_{\mathcal{L}\left(\Sigma, \mathbb{R}^{n}\right)} \leq K \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\omega^{\Lambda}(t, \bar{\psi}, \bar{\sigma} ; \psi, \sigma)\right| \leq 2 K\left(|\psi-\bar{\psi}|_{C}+|\sigma-\bar{\sigma}|_{\Sigma}\right) \tag{8}
\end{equation*}
$$

for $t \in[0, \alpha], \psi, \bar{\psi} \in M_{4}, \bar{\psi} \in C^{1}$, and $\sigma, \bar{\sigma} \in M_{5}$.
Similarly to ω^{Λ}, we define

$$
\begin{aligned}
\omega^{f}(t, \bar{x}, \bar{y}, \bar{\theta} ; x, y, \theta) \equiv & f(t, x, y, \theta)-f(t, \bar{x}, \bar{y}, \bar{\theta})-D_{2} f(t, \bar{x}, \bar{y}, \bar{\theta})(x-\bar{x}) \\
& -D_{3} f(t, \bar{x}, \bar{y}, \bar{\theta})(y-\bar{y})-D_{4} f(t, \bar{x}, \bar{y}, \bar{\theta})(\theta-\bar{\theta})
\end{aligned}
$$

for $t \in[0, T], \bar{x}, x \in \Omega_{1}, \bar{y}, y \in \Omega_{2}$, and $\bar{\theta}, \theta \in \Omega_{3}$. Assumption (A1) (iii) implies, that

$$
\begin{equation*}
\frac{\left|\omega^{f}(t, \bar{x}, \bar{y}, \bar{\theta} ; x, y, \theta)\right|}{|x-\bar{x}|+|y-\bar{y}|+|\theta-\bar{\theta}|_{\Theta}} \rightarrow 0, \quad \text { as }|x-\bar{x}|+|y-\bar{y}|+|\theta-\bar{\theta}|_{\Theta} \rightarrow 0 \tag{9}
\end{equation*}
$$

Let $\alpha>0$ be fixed, $M_{i} \subset \Omega_{i}(i=1,2,3)$ be such that M_{1} and M_{2} be compact subsets of \mathbb{R}^{n} and M_{3} be a closed and bounded subset of Θ, and let $L_{1}=L_{1}\left(\alpha, M_{1}, M_{2}, M_{3}\right)$ be the constant from (A1) (ii). Then assumptions (A1) (ii) and (iii) yield that

$$
\begin{equation*}
\left\|D_{2} f(t, \bar{x}, \bar{y}, \bar{\theta})\right\| \leq L_{1},\left\|D_{3} f(t, \bar{x}, \bar{y}, \bar{\theta})\right\| \leq L_{1},\left\|D_{4} f(t, \bar{x}, \bar{y}, \bar{\theta})\right\|_{\mathcal{L}\left(\Theta, \mathbb{R}^{n}\right)} \leq L_{1} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\omega^{f}(t, \bar{x}, \bar{y}, \bar{\theta} ; x, y, \theta)\right| \leq 2 L_{1}\left(|x-\bar{x}|+|y-\bar{y}|+|\theta-\bar{\theta}|_{\Theta}\right) \tag{11}
\end{equation*}
$$

for $t \in[0, \alpha], x, \bar{x} \in M_{1}, y, \bar{y} \in M_{2}$, and $\theta, \bar{\theta} \in M_{3}$.
We define the parameter space $\Gamma=W^{1, \infty} \times \Sigma \times \Theta$, and use the notation $\gamma=(\varphi, \sigma, \theta)$ (or $\gamma=\left(\gamma^{\varphi}, \gamma^{\sigma}, \gamma^{\theta}\right)$) for the components of $\gamma \in \Gamma$, and $|\gamma|_{\Gamma} \equiv|\varphi|_{W^{1, \infty}}+|\sigma|_{\Sigma}+|\theta|_{\Theta}$ for the norm on
Γ. The solution of IVP (1)-(2) corresponding to a parameter γ and its segment function at t are denoted by $x(t ; \gamma)$ and $x(\cdot ; \gamma)_{t}$, respectively.

Introduce

$$
\Pi \equiv\left\{\gamma=(\varphi, \sigma, \theta) \in \Omega_{4} \times \Omega_{5} \times \Omega_{3}: \quad \varphi \in W^{1, \infty}, \quad \varphi(0) \in \Omega_{1}, \quad \Lambda(0, \varphi, \sigma) \in \Omega_{2}\right\}
$$

and

$$
\mathcal{M} \equiv\left\{\gamma=(\varphi, \sigma, \theta) \in \Pi: \quad \varphi \in C^{1}, \quad \dot{\varphi}(0-)=f(0, \varphi(0), \Lambda(0, \varphi, \sigma), \theta)\right\}
$$

Theorem 1. Assume (A1) (i), (ii), (A2) (i), (ii), and let $\bar{\gamma} \in \Pi$. Then there exist $\delta>0$ and $0<\alpha \leq T$ such that
(i) $\mathcal{G}_{\Gamma}(\bar{\gamma} ; \delta) \subset \Pi$,
(ii) IVP (1)-(2) has a unique solution, $x(t ; \gamma)$, on $[0, \alpha]$ for all $\gamma \in \mathcal{G}_{\Gamma}(\bar{\gamma} ; \delta)$,
(iii) there exist $M_{1} \subset \Omega_{1}, M_{2} \subset \Omega_{2}$ and $M_{4} \subset \Omega_{4}$ compact subsets of \mathbb{R}^{n} and C, respectively, such that

$$
\begin{equation*}
x(t ; \gamma) \in M_{1}, \quad \Lambda\left(t, x(\cdot ; \gamma)_{t}, \gamma^{\sigma}\right) \in M_{2}, \quad \text { and } \quad x(\cdot ; \gamma)_{t} \in M_{4} \tag{12}
\end{equation*}
$$

for $t \in[0, \alpha], \gamma \in \mathcal{G}_{\Gamma}(\bar{\gamma} ; \delta)$,
(iv) $x(\cdot ; \gamma)_{t} \in W^{1, \infty}$ for $t \in[0, \alpha], \gamma \in \mathcal{G}_{\Gamma}(\bar{\gamma} ; \delta)$, and there exists $L=L(\alpha, \delta)$, such that

$$
\begin{equation*}
\left|x(\cdot ; \gamma)_{t}-x(\cdot ; ; \bar{\gamma})_{t}\right|_{W^{1, \infty}} \leq L|\gamma-\bar{\gamma}|_{\Gamma} \quad \text { for } t \in[0, \alpha], \gamma \in \mathcal{G}_{\Gamma}(\bar{\gamma} ; \delta), \tag{13}
\end{equation*}
$$

(v) the function $x(\cdot ; \gamma):[-r, \alpha] \rightarrow \mathbb{R}^{n}$ is continuously differentiable for $\gamma \in \mathcal{M} \cap \mathcal{G}_{\Gamma}(\bar{\gamma} ; \delta)$.

Proof. Part (i) and (v) are obvious (see also [7]). For the proof of (ii) we refer to [8], [7] or [4]. Part (iii) and (iv) will be essential in our proofs in the next section, therefore we prove them here. Let $\delta^{1}>0$ and $\alpha>0$ be such that they satisfy (i) and (ii). We will show that $0<\delta \leq \delta^{1}$ can be selected so that (iii) and (iv) are also satisfied.

Let $\bar{\gamma}=(\bar{\varphi}, \bar{\sigma}, \bar{\theta}) \in \Pi$, and define $M_{1}^{*} \equiv\{x(t ; \bar{\gamma}): t \in[0, \alpha]\}, M_{2}^{*} \equiv\left\{\Lambda\left(t, x(\cdot ; \bar{\gamma})_{t}, \bar{\sigma}\right)\right.$,: $t \in[0, \alpha]\}$, and $M_{4}^{*} \equiv\left\{x(\cdot ; \bar{\gamma})_{t}: t \in[0, \alpha]\right\}$. It follows from part (ii) of the theorem that $M_{i}^{*} \subset \Omega_{i}(i=1,2,4)$. Moreover, M_{1}^{*} and M_{2}^{*} are compact subsets of \mathbb{R}^{n} since $t \mapsto x(t ; \bar{\gamma})$ and $t \mapsto \Lambda\left(t, x(\cdot ; \bar{\gamma})_{t}, \bar{\sigma}\right)$ are continuous functions on $[0, \alpha] . M_{4}^{*}$ is also compact in C since $t \mapsto x(\cdot ; \bar{\gamma})_{t}$ is continuous on $[0, \alpha]$. Therefore there exist $\varepsilon^{i}>0(i=1,2,4)$ such that $M_{1} \equiv \overline{\mathcal{G}}_{\mathbb{R}^{n}}\left(M_{1}^{*} ; \varepsilon^{1}\right) \subset \Omega_{1}$, $M_{2} \equiv \overline{\mathcal{G}}_{\mathbb{R}^{n}}\left(M_{2}^{*} ; \varepsilon^{2}\right) \subset \Omega_{2}$, and $\overline{\mathcal{G}}_{C}\left(M_{4}^{*} ; \varepsilon^{4}\right) \subset \Omega_{4}$ since $\Omega_{i}(i=1,2,4)$ are open sets in \mathbb{R}^{n} and C, respectively. Let $M_{4} \equiv \overline{\mathcal{G}}_{W^{1, \infty}}\left(M_{4}^{*} ; \varepsilon^{4}\right)$. Clearly, M_{1} and M_{2} are compact subsets of \mathbb{R}^{n}. We have $M_{4} \subset \Omega_{4}$, and it is compact in C by Arsela-Ascoli's Theorem, since it is a bounded subset of $W^{1, \infty}$.

Let $\delta^{2} \equiv \min \left\{\delta^{1}, \varepsilon^{1}, \varepsilon^{2} /\left(L_{2}|\bar{\varphi}|_{W^{1, \infty}}+1\right), \varepsilon^{4}\right\}$. Let $\gamma=(\varphi, \sigma, \theta) \in \mathcal{G}_{\Gamma}\left(\bar{\gamma} ; \delta^{2}\right)$. We have from (4) and the definition of $|\cdot|_{\Gamma}$ that $|\varphi(0)-\bar{\varphi}(0)|<\varepsilon^{1},|\Lambda(0, \varphi, \sigma)-\Lambda(0, \bar{\varphi}, \bar{\sigma})| \leq L_{2}|\bar{\varphi}|_{W^{1}, \infty}(\mid \varphi-$ $\left.\left.\bar{\varphi}\right|_{C}+|\sigma-\bar{\sigma}|_{\Sigma}\right)+|\varphi-\bar{\varphi}|_{C}<\varepsilon^{2}$, and $|\varphi-\bar{\varphi}|_{C}<\varepsilon^{4}$. Therefore there exists $0<\alpha^{\gamma} \leq \alpha$ such that

$$
\begin{equation*}
|x(t ; \gamma)-x(t ; \bar{\gamma})|<\varepsilon^{1}, \quad\left|\Lambda\left(t, x(\cdot ; \gamma)_{t}, \sigma\right)-\Lambda\left(t, x(\cdot ; \bar{\gamma})_{t}, \bar{\sigma}\right)\right|<\varepsilon^{2} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|x(\cdot ; \gamma)_{t}-x(\cdot ; ; \bar{\gamma})_{t}\right|_{C}<\varepsilon^{4} \tag{15}
\end{equation*}
$$

for $t \in\left[0, \alpha^{\gamma}\right]$.
Let $L_{1}=L_{1}\left(\alpha, M_{1}, M_{2}, M_{3}\right)$ and $L_{2}=L_{2}\left(\alpha, M_{4}, M_{5}\right)$ be the constants from (A1) (ii) and (A2) (ii), respectively. We have for $t \in\left[0, \alpha^{\gamma}\right]$:

$$
\begin{aligned}
& |x(t ; \gamma)-x(t ; \bar{\gamma})| \\
& \leq|\varphi(0)-\bar{\varphi}(0)|+\int_{0}^{t} \mid f\left(s, x(s ; \gamma), \Lambda\left(s, x(\cdot ; \gamma)_{s}, \sigma\right), \theta\right) \\
& \quad-f\left(s, x(s ; \bar{\gamma}), \Lambda\left(s, x(\cdot ; \bar{\gamma})_{s}, \bar{\sigma}\right), \bar{\theta}\right) \mid d s \\
& \leq|\gamma-\bar{\gamma}|_{\Gamma}+L_{1} \int_{0}^{t}\left(|x(s ; \gamma)-x(s ; \bar{\gamma})|+\left|\Lambda\left(s, x(\cdot ; \gamma)_{s}, \sigma\right)-\Lambda\left(s, x(\cdot ; \bar{\gamma})_{s}, \bar{\sigma}\right)\right|\right. \\
& \left.\quad+|\theta-\bar{\theta}|_{\Theta}\right) d s .
\end{aligned}
$$

Let $N \equiv \max \{\max \{|x(t ; \bar{\gamma})|: t \in[-r, \alpha]\}$, ess $\sup \{|\dot{x}(t ; \bar{\gamma})|: t \in[-r, \alpha]\}\}$. Then (4) yields

$$
\begin{gathered}
|x(t ; \gamma)-x(t ; \bar{\gamma})| \leq|\gamma-\bar{\gamma}|_{\Gamma}+L_{1} \int_{0}^{t}\left(|x(s ; \gamma)-x(s ; \bar{\gamma})|+L_{2} N\left(\left|x(\cdot ; \gamma)_{s}-x(\cdot ; \bar{\gamma})_{s}\right|_{C}\right.\right. \\
\left.\left.+|\sigma-\bar{\sigma}|_{\Sigma}\right)+\left|x(\cdot ; \gamma)_{s}-x(\cdot ; \bar{\gamma})_{s}\right|_{C}+|\gamma-\bar{\gamma}|_{\Gamma}\right) d s
\end{gathered}
$$

Introduce $\eta(t ; \bar{\gamma}, \gamma) \equiv \sup \{|x(s ; \gamma)-x(s ; \bar{\gamma})|: s \in[-r, t]\}$. With this notation we get

$$
|x(t ; \gamma)-x(t ; \bar{\gamma})| \leq\left(1+L_{1}+L_{1} L_{2} N\right)|\gamma-\bar{\gamma}|_{\Gamma}+L_{1}\left(2+L_{2} N\right) \int_{0}^{t} \eta(s ; \bar{\gamma}, \gamma) d s
$$

for $t \in\left[0, \alpha^{\gamma}\right]$. The monotonicity of the right-hand side in t and $\eta(t ; \bar{\gamma}, \gamma) \leq|\gamma-\bar{\gamma}|_{\Gamma}$ for $t \in[-r, 0]$ yield

$$
\eta(t ; \bar{\gamma}, \gamma) \leq\left(1+L_{1}+L_{1} L_{2} N\right)|\gamma-\bar{\gamma}|_{\Gamma}+L_{1}\left(2+L_{2} N\right) \int_{0}^{t} \eta(s ; \bar{\gamma}, \gamma) d s, \quad t \in\left[0, \alpha^{\gamma}\right] .
$$

Applying the Gronwall-Bellmann inequality we get

$$
\begin{equation*}
|x(t ; \gamma)-x(t ; \bar{\gamma})| \leq \eta(t ; \bar{\gamma}, \gamma) \leq L^{*}|\gamma-\bar{\gamma}|_{\Gamma}, \quad t \in\left[-r, \alpha^{\gamma}\right], \tag{16}
\end{equation*}
$$

where $L^{*} \equiv\left(1+L_{1}+L_{1} L_{2} N\right) e^{L_{1}\left(2+L_{2} N\right) \alpha}$. Let $\delta \equiv \min \left\{\delta^{2}, \varepsilon^{1} / L^{*}, \varepsilon^{2} /\left(L_{2} N\left(L^{*}+1\right)+L^{*}\right), \varepsilon^{4} / L^{*}\right\}$. Then it is easy to show, using (16), that $\alpha^{\gamma}=\alpha$ can be used in (14) and (15) for $\gamma \in \mathcal{G}_{\Gamma}(\bar{\gamma} ; \delta)$. This proves (12) as well.

It follows from (1), (16), (A1) (ii) and (A2) (ii) that

$$
\begin{align*}
\mid \dot{x}(t ; \gamma)- & \dot{x}(t ; \bar{\gamma}) \mid \tag{17}\\
= & \left|f\left(t, x(t ; \gamma), \Lambda\left(t, x(\cdot ; \gamma)_{t}, \sigma\right), \theta\right)-f\left(t, x(t ; \bar{\gamma}), \Lambda\left(t, x(\cdot ; \bar{\gamma})_{t}, \bar{\sigma}\right), \bar{\theta}\right)\right| \\
\leq & L_{1}\left(|x(t ; \gamma)-x(t ; \bar{\gamma})|+L_{2} N\left(\left|x(\cdot ; \gamma)_{t}-x(\cdot ; \bar{\gamma})_{t}\right|_{C}+|\sigma-\bar{\sigma}|_{\Sigma}\right)\right. \\
& \left.\quad+\left|x(\cdot ; \gamma)_{t}-x(\cdot ; \bar{\gamma})_{t}\right|_{C}+|\theta-\bar{\theta}|_{\Theta}\right) \\
\quad \leq & L^{* *}|\gamma-\bar{\gamma}|_{\Gamma}, \quad t \in[0, \alpha]
\end{align*}
$$

where $L^{* *} \equiv L_{1}\left(2+L_{2} N\right) L^{*}+L_{1}\left(L_{2} N+1\right)$. Therefore (13) follows from (16), (17) and from $|\dot{\varphi}(t)-\dot{\bar{\varphi}}(t)| \leq|\gamma-\bar{\gamma}| \Gamma$ for almost every $t \in[-r, 0]$ with $L \equiv \max \left\{L^{*}, L^{* *}\right\}$.
3. Differentiability wrt parameters. In this section we study differentiability of solutions of IVP (1)-(2) wrt the initial function, φ, the parameter σ of the delay function τ, and the parameter θ of the function f.

Let $\bar{\gamma}=(\bar{\varphi}, \bar{\sigma}, \bar{\theta}) \in \mathcal{M}$, and $x(\cdot ; \bar{\gamma})$ be the corresponding solution of IVP (1)-(2) on $[0, \alpha]$. Fix $h=\left(h^{\varphi}, h^{\sigma}, h^{\theta}\right) \in \Gamma$ and consider the variational equation

$$
\begin{align*}
\dot{z}(t ; \bar{\gamma}, h)= & D_{2} f\left(t, x(t ; \bar{\gamma}), \Lambda\left(t, x(\cdot ; \bar{\gamma})_{t}, \bar{\sigma}\right), \bar{\theta}\right) z(t ; \bar{\gamma}, h) \tag{18}\\
& +D_{3} f\left(t, x(t ; \bar{\gamma}), \Lambda\left(t, x(\cdot ; \bar{\gamma})_{t}, \bar{\sigma}\right), \bar{\theta}\right)\left(D_{2} \Lambda\left(t, x(\cdot ; \bar{\gamma})_{t}, \bar{\sigma}\right) z(\cdot ; \bar{\gamma}, h)_{t}\right. \\
& \left.+D_{3} \Lambda\left(t, x(\cdot ; \bar{\gamma})_{t}, \bar{\sigma}\right) h^{\sigma}\right)+D_{4} f\left(t, x(t ; \bar{\gamma}), \Lambda\left(t, x(\cdot ; \bar{\gamma})_{t}, \bar{\sigma}\right), \bar{\theta}\right) h^{\theta}, \\
& t \in[0, \alpha], \\
z(t ; \bar{\gamma}, h)= & h^{\varphi}(t), \quad t \in[-r, 0] . \tag{19}
\end{align*}
$$

This is a linear state-independent delay equation for $z(\cdot ; \bar{\gamma}, h)$, and the right-hand side of (18) depends continuously on t and $z(\cdot ; \bar{\gamma}, h)_{t}$ since $x(\cdot ; \bar{\gamma})_{t} \in C^{1}$ by Theorem $1(\mathrm{v})$. Therefore this IVP has a unique solution, $z(\cdot ; \bar{\gamma}, h)$, which depends linearly on h.

First we study differentiability of the function $x(t ; \gamma)=x(t ;(\varphi, \sigma, \theta))$ wrt φ and θ only. We denote this differentiation by $D_{(\varphi, \theta)} x$. Let

$$
\begin{equation*}
G^{\varphi, \theta}(\delta, \bar{\gamma}) \equiv\left\{(\varphi, \theta) \in W^{1, \infty} \times \Theta:(\varphi, \bar{\sigma}, \theta) \in \mathcal{G}_{\Gamma}(\bar{\gamma} ; \delta)\right\} \tag{20}
\end{equation*}
$$

Theorem 2. Assume (A1), (A2), and let $\bar{\gamma} \in \mathcal{M}$ be fixed. Let $\delta>0$ and $\alpha>0$ be defined by Theorem 1, and $x(t ; \gamma)$ be the solution of IVP (1)-(2) on $[0, \alpha]$ for $\gamma \in \mathcal{G}_{\Gamma}(\bar{\gamma} ; \delta)$, and $G^{\varphi, \theta}(\bar{\gamma}, \delta)$ be defined by (20). Then the function $x(t ;(\cdot, \bar{\sigma}, \cdot)): G^{\varphi, \theta}(\bar{\gamma}, \delta) \rightarrow \mathbb{R}^{n}$ is differentiable at $(\bar{\varphi}, \bar{\theta})$ for $t \in[0, \alpha]$, and

$$
D_{(\varphi, \theta)} x(t ;(\bar{\varphi}, \bar{\sigma}, \bar{\theta}))\left(h^{\varphi}, h^{\sigma}\right)=z\left(t ; \bar{\gamma},\left(h^{\varphi}, 0, h^{\theta}\right)\right),
$$

where z is the solution of IVP (18)-(19), and $\left(h^{\varphi}, h^{\theta}\right) \in W^{1, \infty} \times \Theta$.
Proof. Let $\bar{\gamma} \in \mathcal{M}, \delta>0, \alpha$, and $G^{\varphi, \theta}(\bar{\gamma}, \delta)$ be as in the assumption of the theorem. We can and do assume that δ is such that $M_{3} \equiv \overline{\mathcal{G}}_{\Theta}(\bar{\theta} ; \delta) \subset \Omega_{3}$ and $M_{5} \equiv \overline{\mathcal{G}}_{\Sigma}(\bar{\sigma} ; \delta) \subset \Omega_{5}$. Let $h=\left(h^{\varphi}, h^{\sigma}, h^{\theta}\right) \in \Gamma$ such that $|h|_{\Gamma}<\delta$. (Here, for our future purposes, we do not assume yet that $h^{\sigma}=0$.) Note that $z(t ; \bar{\gamma}, h)$ is well-defined since, by our assumptions, $x(\cdot ; \bar{\gamma})_{s} \in C^{1}$. Integrating (1) and (18), and using the definition of ω^{f} and ω^{Λ} we get

$$
\begin{aligned}
& x(t ; \bar{\gamma}+h)-x(t ; \bar{\gamma})-z(t ; \bar{\gamma}, h) \\
&= \int_{0}^{t}\left(f\left(s, x(s ; \bar{\gamma}+h), \Lambda\left(s, x(\cdot ; \bar{\gamma}+h)_{s}, \bar{\sigma}+h^{\sigma}\right), \bar{\theta}+h^{\theta}\right)\right. \\
& \quad-f\left(s, x(s ; \bar{\gamma}), \Lambda\left(s, x(\cdot ; \bar{\gamma})_{s}, \bar{\sigma}\right), \bar{\theta}\right)-D_{2} f\left(s, x(s ; \bar{\gamma}), \Lambda\left(s, x(\cdot ; \bar{\gamma})_{s}, \bar{\sigma}\right), \bar{\theta}\right) z(s ; \bar{\gamma}, h) \\
& \quad-D_{3} f\left(s, x(s ; \bar{\gamma}), \Lambda\left(s, x(\cdot ; \bar{\gamma})_{s}, \bar{\sigma}\right), \bar{\theta}\right)\left(D_{2} \Lambda\left(s, x(\cdot ; \bar{\gamma})_{s}, \bar{\sigma}\right) z(\cdot ; \bar{\gamma}, h)_{s}\right. \\
& \quad\left.\left.\quad+D_{3} \Lambda\left(s, x(\cdot ; \bar{\gamma})_{s}, \bar{\sigma}\right) h^{\sigma}\right)-D_{4} f\left(s, x(s ; \bar{\gamma}), \Lambda\left(s, x(\cdot ; \bar{\gamma})_{s}, \bar{\sigma}\right), \bar{\theta}\right) h^{\theta}\right) d s \\
&= \int_{0}^{t}\left(\omega^{f}\left(s, x(s ; \bar{\gamma}), \Lambda\left(s, x(\cdot ; \bar{\gamma})_{s}, \bar{\sigma}\right), \bar{\theta} ; x(s ; \bar{\gamma}+h), \Lambda\left(s, x(\cdot ; \bar{\gamma}+h)_{s}, \bar{\sigma}+h^{\sigma}\right), \bar{\theta}+h^{\theta}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
+ & D_{2} f\left(s, x(s ; \bar{\gamma}), \Lambda\left(s, x(\cdot ; \bar{\gamma})_{s}, \bar{\sigma}\right), \bar{\theta}\right)(x(s ; \bar{\gamma}+h)-x(s ; \bar{\gamma})-z(s ; \bar{\gamma}, h)) \\
+ & D_{3} f\left(s, x(s ; \bar{\gamma}), \Lambda\left(s, x(\cdot ; \bar{\gamma})_{s}, \bar{\sigma}\right), \bar{\theta}\right)\left(\omega^{\Lambda}\left(s, x(\cdot ; \bar{\gamma})_{s}, \bar{\sigma} ; x(\cdot ; \bar{\gamma}+h)_{s}, \bar{\sigma}+h^{\sigma}\right)\right. \\
+ & \left.\left.D_{2} \Lambda\left(s, x(\cdot ; \bar{\gamma})_{s}, \bar{\sigma}\right)\left(x(\cdot ; \bar{\gamma}+h)_{s}-x(\cdot ; \bar{\gamma})_{s}-z(\cdot ; \bar{\gamma}, h)_{s}\right)\right)\right) d s
\end{aligned}
$$

Let $M_{i}(i=1,2,4)$ be defined by Theorem 1 . Let $L_{1}=L_{1}\left(\alpha, M_{1}, M_{2}, M_{3}\right)$ and $L_{2}=L_{2}\left(\alpha, M_{4}, M_{5}\right)$ be the constants from (A1) (ii) and (A2) (ii), respectively, and $K=K\left(\alpha, M_{4}, M_{5}\right)$ be the constant from (7)-(8). Then (10) yields

$$
\begin{align*}
& |x(t ; \bar{\gamma}+h)-x(t ; \bar{\gamma})-z(t ; \bar{\gamma}, h)| \tag{21}\\
& \leq \\
& \quad \int_{0}^{t}\left(G^{f}(s ; \bar{\gamma}, h)+L_{1}|x(s ; \bar{\gamma}+h)-x(s ; \bar{\gamma})-z(s ; \bar{\gamma}, h)|+L_{1} G^{\Lambda}(s ; \bar{\gamma}, h)\right. \\
& \left.\quad+L_{1} K\left|x(\cdot ; \bar{\gamma}+h)_{s}-x(\cdot ; \bar{\gamma})_{s}-z(\cdot ; \bar{\gamma}, h)_{s}\right|_{C}\right) d s, \quad t \in[0, \alpha]
\end{align*}
$$

where $G^{f}(s ; \bar{\gamma}, h) \equiv\left|\omega^{f}\left(s, x(s ; \bar{\gamma}), \Lambda\left(s, x(\cdot ; \bar{\gamma})_{s}, \bar{\sigma}\right), \bar{\theta} ; x(s ; \bar{\gamma}+h), \Lambda\left(s, x(\cdot ; \bar{\gamma}+h)_{s}, \bar{\sigma}+h^{\sigma}\right), \bar{\theta}+h^{\theta}\right)\right|$ and $G^{\Lambda}(s ; \bar{\gamma}, h) \equiv\left|\omega^{\Lambda}\left(s, x(\cdot ; \bar{\gamma})_{s}, \bar{\sigma} ; x(\cdot ; \bar{\gamma}+h)_{s}, \bar{\sigma}+h^{\sigma}\right)\right|$. Introduce $\eta(t ; \bar{\gamma}, h) \equiv \sup _{-r \leq s \leq t} \mid x(s ; \bar{\gamma}+$ $h)-x(s ; \bar{\gamma})-z(s ; \bar{\gamma}, h) \mid$. Inequality (21) implies

$$
\begin{align*}
& |x(t ; \bar{\gamma}+h)-x(t ; \bar{\gamma})-z(t ; \bar{\gamma}, h)| \tag{22}\\
& \quad \leq \int_{0}^{\alpha}\left(G^{f}(s ; \bar{\gamma}, h)+L_{1} G^{\Lambda}(s ; \bar{\gamma}, h)\right) d s+L_{1}(1+K) \int_{0}^{t} \eta(s ; \bar{\gamma}, h) d s .
\end{align*}
$$

Using that $\eta(0 ; \bar{\gamma}, h)=0$, and the right-hand side of (22) is monotone in t, we get from (22)

$$
\eta(t ; \bar{\gamma}, h) \leq \int_{0}^{\alpha}\left(G^{f}(s ; \bar{\gamma}, h)+L_{1} G^{\Lambda}(s ; \bar{\gamma}, h)\right) d s+L_{1}(1+K) \int_{0}^{t} \eta(s ; \bar{\gamma}, h) d s
$$

which, by the Gronwall-Bellman inequality, implies

$$
\begin{equation*}
\eta(t ; \bar{\gamma}, h) \leq \int_{0}^{\alpha}\left(G^{f}(s ; \bar{\gamma}, h)+L_{1} G^{\Lambda}(s ; \bar{\gamma}, h)\right) d s e^{L_{1}(1+K) \alpha}, \quad t \in[0, \alpha] . \tag{23}
\end{equation*}
$$

Applying (23) we get

$$
\begin{aligned}
\mid x(t ; & \bar{\gamma}+h)-x(t ; \bar{\gamma})-z(t ; \bar{\gamma}, h)\left|/|h|_{\Gamma}\right. \\
& \leq \eta(t ; \bar{\gamma}, h) /|h|_{\Gamma} \\
& \leq \int_{0}^{\alpha}\left(G^{f}(s ; \bar{\gamma}, h) /|h|_{\Gamma}+L_{1} G^{\Lambda}(s ; \bar{\gamma}, h) /|h|_{\Gamma}\right) d s e^{L_{1}(1+K) \alpha}, \quad t \in[-r, \alpha] .
\end{aligned}
$$

Here we used that $x(t ; \bar{\gamma}+h)-x(t ; \bar{\gamma})-z(t ; \bar{\gamma}, h)=0$ for $t \in[-r, 0]$. We will show that $\int_{0}^{\alpha} G^{f}(s ; \bar{\gamma}, h) /|h|_{\Gamma} d s \rightarrow 0$ and $\int_{0}^{\alpha} G^{\Lambda}(s ; \bar{\gamma}, h) /|h|_{\Gamma} d s \rightarrow 0$ as $|h|_{\Gamma} \rightarrow 0$.

Using (4) and (13), we get that there exists $K^{*}=K^{*}\left(\alpha, M_{4}, M_{5}\right)$ such that

$$
\begin{equation*}
\left|\Lambda\left(s, x(\cdot ; \bar{\gamma}+h)_{s}, \bar{\sigma}+h^{\sigma}\right)-\Lambda\left(s, x(\cdot ; \bar{\gamma})_{s}, \bar{\sigma}\right)\right| \leq K^{*}|h|_{\Gamma}, \quad|h|_{\Gamma}<\delta, \quad s \in[0, \alpha] . \tag{24}
\end{equation*}
$$

Using the obvious relation

$$
\begin{align*}
& \frac{G^{f}(s ; \bar{\gamma}, h)}{|h|_{\Gamma}} \tag{25}\\
& =\frac{\omega^{f}\left(s, x(s ; \bar{\gamma}), \Lambda\left(s, x(\cdot ; \bar{\gamma})_{s}, \bar{\sigma}\right), \bar{\theta} ; x(s ; \bar{\gamma}+h), \Lambda\left(s, x(\cdot ; \bar{\gamma}+h)_{s}, \bar{\sigma}+h^{\sigma}\right), \bar{\theta}+h^{\theta}\right) \mid}{|x(s ; \bar{\gamma}+h)-x(s ; \bar{\gamma})|+\left|\Lambda\left(s, x(\cdot ; \bar{\gamma}+h)_{s}, \bar{\sigma}+h^{\sigma}\right)-\Lambda\left(s, x(\cdot ; \bar{\gamma})_{s}, \bar{\sigma}\right)\right|+\left|h^{\theta}\right|_{\Theta}} \\
& \quad \cdot \frac{|x(s ; \bar{\gamma}+h)-x(s ; \bar{\gamma})|+\left|\Lambda\left(s, x(\cdot ; \bar{\gamma}+h)_{s}, \bar{\sigma}+h^{\sigma}\right)-\Lambda\left(s, x(\cdot ; \bar{\gamma})_{s}, \bar{\sigma}\right)\right|+\left|h^{\theta}\right|_{\Theta}}{|h|_{\Gamma}},
\end{align*}
$$

(11), (12), (13), (24) and (25) yield $G^{f}(s ; \bar{\gamma}, h) /|h|_{\Gamma} \leq 2 L_{1}\left(L+K^{*}+1\right)$. On the other hand, (9) and (25) imply $G^{f}(s ; \bar{\gamma}, h) /|h|_{\Gamma} \rightarrow 0$ as $|h|_{\Gamma} \rightarrow 0$ for $s \in[0, \alpha]$. Therefore $\int_{0}^{\alpha} G^{f}(s ; \bar{\gamma}, h) /|h|_{\Gamma} d s \rightarrow 0$ as $|h|_{\Gamma} \rightarrow 0$ by the Lebesgue's Dominated Convergence Theorem.

Similarly, inequalities (8) and (13) imply $G^{\Lambda}(s ; \bar{\gamma}, h) /|h|_{\Gamma} \leq 2 K(L+1)$. To show that $G^{\Lambda}(s ; \bar{\gamma}, h) /|h|_{\Gamma} \rightarrow 0$ we now assume that $h^{\sigma}=0$. Lemma 1 implies $G^{\Lambda}(s ; \bar{\gamma}, h) /|h|_{\Gamma}=\mid \Lambda(s, x(\cdot ; \bar{\gamma}+$ $\left.h)_{s}, \bar{\sigma}\right)-\Lambda\left(s, x(\cdot ; \bar{\gamma})_{s}, \bar{\sigma}\right)-\left.D_{2} \Lambda\left(s, x(\cdot ; \bar{\gamma})_{s}, \bar{\sigma}\right)\left(x(\cdot ; \bar{\gamma}+h)_{s}-x(\cdot ; \bar{\gamma})_{s}\right)\left|/|h|_{\Gamma} \rightarrow 0\right.$ as $| h\right|_{\Gamma} \rightarrow 0$ for $s \in$ $[0, \alpha]$, since, by $(13),\left|x(\cdot ; \bar{\gamma}+h)_{s}-x(\cdot ; \bar{\gamma})_{s}\right|_{W^{1, \infty}} \rightarrow 0$ as $|h|_{\Gamma} \rightarrow 0$. Therefore $\int_{0}^{\alpha} G^{\Lambda}(s ; \bar{\gamma}, h) /|h|_{\Gamma} d s \rightarrow$ 0 as $|h|_{\Gamma} \rightarrow 0$.

We conclude that $|x(t ; \bar{\gamma}+h)-x(t ; \bar{\gamma})-z(t ; \bar{\gamma}, h)| /|h|_{\Gamma} \rightarrow 0$ as $|h|_{\Gamma} \rightarrow 0$, which proves the theorem.

The proof of the previous theorem implies immediately:
Corollary 1. Assume the conditions of Theorem 2. Then the function $G^{\varphi, \theta}(\bar{\gamma}, \delta) \rightarrow C$, $(\varphi, \theta) \mapsto x(\cdot ;(\varphi, \bar{\sigma}, \theta))_{t}$ is differentiable at $(\bar{\varphi}, \bar{\theta})$ for $t \in[0, \alpha]$, and its derivative is given by $D_{(\varphi, \theta)} x(\cdot ;(\bar{\varphi}, \bar{\sigma}, \bar{\theta}))_{t}\left(h^{\varphi}, h^{\theta}\right)=z\left(\cdot ; \bar{\gamma},\left(h^{\varphi}, 0, h^{\theta}\right)\right)_{t},\left(h^{\varphi}, h^{\theta}\right) \in W^{1, \infty} \times \Theta$.

Next we study differentiability wrt σ as well. We will need the following definition.
Definition 1. Let X and Y be normed linear spaces, $M \subset X$, and $x_{0} \in M$ be an accumulation point of M. We say that $f:(M \subset X) \rightarrow Y$ is differentiable at the point x_{0} with respect to the set M if there exists $L \in \mathcal{L}(X, Y)$ such that

$$
\lim _{\substack{x \rightarrow x_{0} \\ x \in M}} \frac{\left|f(x)-f\left(x_{0}\right)-L\left(x-x_{0}\right)\right|_{Y}}{\left|x-x_{0}\right|_{X}}=0 .
$$

We have the following result.
Theorem 3. Assume (A1), (A2), and let $\bar{\gamma} \in \mathcal{M}$ be an accumulation point of \mathcal{M}. Let $\delta>0$ and $\alpha>0$ be defined by Theorem 1, and $x(t ; \gamma)$ be the solution of IVP (1)-(2) on $[0, \alpha]$ for $\gamma \in \mathcal{G}_{\Gamma}(\bar{\gamma} ; \delta)$. Then the function $x(t ; \cdot):\left(\left(\mathcal{G}_{\Gamma}(\bar{\gamma} ; \delta) \cap \mathcal{M}\right) \subset \Gamma\right) \rightarrow \mathbb{R}^{n}$ is differentiable at $\bar{\gamma}$ wrt $\mathcal{G}_{\Gamma}(\bar{\gamma} ; \delta) \cap \mathcal{M}$ for $t \in[0, \alpha]$, and its derivative is $D_{\gamma} x(t ; \bar{\gamma}) h=z(t ; \bar{\gamma}, h)$, where z is the solution of IVP (18)-(19), $h \in \Gamma$ is such that $\bar{\gamma}+h \in \mathcal{M}$.

Proof. We proceed as in the proof of Theorem 2. The only step needs a different argument here is the last one, to show that $G^{\Lambda}(s ; \bar{\gamma}, h) /|h|_{\Gamma} \rightarrow 0$ as $|h|_{\Gamma} \rightarrow 0$. We have $G^{\Lambda}(s ; \bar{\gamma}, h)=$ $\left|\Lambda\left(s, x(\cdot ; \bar{\gamma}+h)_{s}, \bar{\sigma}+h^{\sigma}\right)-\Lambda\left(s, x(\cdot ; \bar{\gamma})_{s}, \bar{\sigma}\right)-D_{2} \Lambda\left(s, x(\cdot ; \bar{\gamma})_{s}, \bar{\sigma}\right)\left(x(\cdot ; \bar{\gamma}+h)_{s}-x(\cdot ; \bar{\gamma})_{s}\right)-D_{3} \Lambda\left(s, x(\cdot ; \bar{\gamma})_{s}, \bar{\sigma}\right) h^{\sigma}\right| /|h|_{\Gamma}$. Let h be such that $\bar{\gamma}+h \in \mathcal{M}$. Then, using that $\Lambda(t, \cdot, \cdot)$ is continuously differentiable on
$\Omega_{4} \cap C^{1} \times \Omega_{5}$, and $x(\cdot ; \bar{\gamma}+h)_{s} \in C^{1}$ for $s \in[0, \alpha]$, we get

$$
\begin{align*}
& G^{\Lambda}(s ; \bar{\gamma}, h) \tag{26}\\
& \leq \sup _{0<\nu<1} \| D_{2} \Lambda\left(s,(1-\nu) x(\cdot ; \bar{\gamma})_{s}+\nu x(\cdot ; \bar{\gamma}+h)_{s}, \bar{\sigma}+\nu h^{\sigma}\right) \\
& \quad-D_{2} \Lambda\left(s, x(\cdot ; \bar{\gamma})_{s}, \bar{\sigma}\right) \|_{\mathcal{L}\left(W^{1, \infty}, \mathbb{R}^{n}\right)} \cdot\left|x(\cdot ; \bar{\gamma}+h)_{s}-x(\cdot ; \bar{\gamma})_{s}\right|_{W^{1, \infty}} \\
& \quad+\quad \sup _{0<\nu<1} \| D_{3} \Lambda\left(s,(1-\nu) x(\cdot ; \bar{\gamma})_{s}+\nu x(\cdot ; \bar{\gamma}+h)_{s}, \bar{\sigma}+\nu h^{\sigma}\right) \\
& \quad \quad-D_{3} \Lambda\left(s, x(\cdot ; \bar{\gamma})_{s}, \bar{\sigma}\right) \|_{\mathcal{L}\left(\Sigma, \mathbb{R}^{n}\right)} \cdot\left|h^{\sigma}\right|_{\Sigma} .
\end{align*}
$$

Therefore the continuity of $D_{2} \Lambda(s, \cdot, \cdot)$ and $D_{3} \Lambda(s, \cdot, \cdot)$ (see Lemma 1), and (13) imply $G^{\Lambda}(s ; \bar{\gamma}, h) /|h|_{\Gamma} \rightarrow$ 0 as $|h|_{\Gamma} \rightarrow 0$.

Next we show that, under the assumptions of the previous theorem, $x(\cdot ; \gamma)_{t}$ is differentiable wrt γ (in the sense of Definition 1) if we use $W^{1, \infty}$ as the state-space of the solutions.

Theorem 4. Assume (A1), (A2), and let $\bar{\gamma} \in \mathcal{M}$ be an accumulation point of \mathcal{M}. Let $\delta>0$ and $\alpha>0$ be defined by Theorem 1, and $x(t ; \gamma)$ be the solution of IVP (1)-(2) on $[0, \alpha]$ for $\gamma \in \mathcal{G}_{\Gamma}(\bar{\gamma} ; \delta)$. Then the function $\left(\left(\mathcal{G}_{\Gamma}(\bar{\gamma} ; \delta) \cap \mathcal{M}\right) \subset \Gamma\right) \rightarrow W^{1, \infty}, \gamma \mapsto x(\cdot ; \gamma)_{t}$ is differentiable at $\bar{\gamma}$ wrt $\mathcal{G}_{\Gamma}(\bar{\gamma} ; \delta) \cap \mathcal{M}$ for $t \in[0, \alpha]$, and $D_{\gamma} x(\cdot ; \bar{\gamma})_{t} h=z(\cdot ; \bar{\gamma}, h)_{t}$, where z is the solution of IVP (18)-(19), and $h \in \Gamma$ is such that $\bar{\gamma}+h \in \mathcal{M}$.

Proof. We use all the notations introduced in the proof of Theorem 2. It follows from the proofs of Theorems 2 and 3 that $\left|x(\cdot ; \bar{\gamma}+h)_{t}-x(\cdot ; \bar{\gamma})_{t}-z(\cdot ; \bar{\gamma}, h)_{t}\right|_{C} /|h|_{\Gamma} \rightarrow 0$ as $\bar{\gamma}+h \in \mathcal{M}$ and $|h|_{\Gamma} \rightarrow 0$. Similarly to (22) we get

$$
\begin{align*}
& |\dot{x}(t ; \bar{\gamma}+h)-\dot{x}(t ; \bar{\gamma})-\dot{z}(t ; \bar{\gamma}, h)| \tag{27}\\
& \quad \leq G^{f}(t ; \bar{\gamma}, h)+L_{1} G^{\Lambda}(t ; \bar{\gamma}, h)+L_{1}(1+K) \eta(t ; \bar{\gamma}, h), \quad t \in[0, \alpha] .
\end{align*}
$$

Clearly, $\dot{x}(t ; \bar{\gamma}+h)-\dot{x}(t ; \bar{\gamma})-\dot{z}(t ; \bar{\gamma}, h)=0$ for $t \in[-r, 0]$. Therefore, in view of (23), it suffices to show that $G^{f}(t ; \bar{\gamma}, h) /|h|_{\Gamma} \rightarrow 0$ and $G^{\Lambda}(t ; \bar{\gamma}, h) /|h|_{\Gamma} \rightarrow 0$ as $\bar{\gamma}+h \in \mathcal{M}$ and $|h|_{\Gamma} \rightarrow 0$ uniformly in $t \in[0, \alpha]$. Consider a sequence $h^{k}=\left(h^{k, \varphi}, h^{k, \sigma}, h^{k, \theta}\right) \in \Gamma$ such that $\bar{\gamma}+h^{k} \in \mathcal{M}$ for $k \in \mathbb{N}$ and $\left|h^{k}\right|_{\Gamma} \rightarrow 0$ as $k \rightarrow \infty$. We have

$$
\begin{align*}
& G^{f}\left(t ; \bar{\gamma}, h^{k}\right) \tag{28}\\
& \leq \sup _{0<\nu<1} \| D_{2} f\left(t,(1-\nu) x(t ; \bar{\gamma})+\nu x\left(t ; \bar{\gamma}+h^{k}\right),\right. \\
& \left.\quad(1-\nu) \Lambda\left(t, x(\cdot ; \bar{\gamma})_{t}, \bar{\sigma}\right)+\nu \Lambda\left(t, x\left(\cdot ; \bar{\gamma}+h^{k}\right)_{t}, \bar{\sigma}+h^{k, \sigma}\right), \bar{\theta}+\nu h^{k, \theta}\right) \\
& \quad-D_{2} f\left(t, x(t ; \bar{\gamma}), \Lambda\left(t, x(\cdot ; \bar{\gamma})_{t}, \bar{\sigma}\right), \bar{\theta}\right) \|\left|x\left(t ; \bar{\gamma}+h^{k}\right)-x(t ; \bar{\gamma})\right| \\
& \quad+\sup _{0<\nu<1} \| D_{3} f\left(t,(1-\nu) x(t ; \bar{\gamma})+\nu x\left(t ; \bar{\gamma}+h^{k}\right),\right. \\
& \left.\quad(1-\nu) \Lambda\left(t, x(\cdot ; \bar{\gamma})_{t}, \bar{\sigma}\right)+\nu \Lambda\left(t, x\left(\cdot ; \bar{\gamma}+h^{k}\right)_{t}, \bar{\sigma}+h^{k, \sigma}\right), \bar{\theta}+\nu h^{k, \theta}\right) \\
& \quad-D_{3} f\left(t, x(t ; \bar{\gamma}), \Lambda\left(t, x(\cdot ; \bar{\gamma})_{t}, \bar{\sigma}\right), \bar{\theta}\right) \| \\
& \quad \cdot\left|\Lambda\left(t, x\left(\cdot ; \bar{\gamma}+h^{k}\right)_{t}, \bar{\sigma}+h^{k, \sigma}\right)-\Lambda\left(t, x(\cdot ; \bar{\gamma})_{t}, \bar{\sigma}\right)\right|
\end{align*}
$$

$$
\begin{aligned}
& +\sup _{0<\nu<1} \| D_{4} f\left(t,(1-\nu) x(t ; \bar{\gamma})+\nu x\left(t ; \bar{\gamma}+h^{k}\right)\right. \\
& \left.\quad(1-\nu) \Lambda\left(t, x(\cdot ; \bar{\gamma})_{t}, \bar{\sigma}\right)+\nu \Lambda\left(t, x\left(\cdot ; \bar{\gamma}+h^{k}\right)_{t}, \bar{\sigma}+h^{k, \sigma}\right), \bar{\theta}+\nu h^{k, \theta}\right) \\
& -D_{4} f\left(t, x(t ; \bar{\gamma}), \Lambda\left(t, x(\cdot ; \bar{\gamma})_{t}, \bar{\sigma}\right), \bar{\theta}\right) \|_{\mathcal{L}\left(\Theta, \mathbb{R}^{n}\right)}\left|h^{k, \theta}\right|_{\Theta}
\end{aligned}
$$

Let $M_{3}^{*} \equiv\left\{\bar{\theta}+\nu h^{k, \theta}: k \in \mathbb{N}, \nu \in[0,1]\right\}$, and $A \equiv[0, \alpha] \times M_{1} \times M_{2} \times M_{3}^{*}$. The set A is a compact subset of $\mathbb{R} \times \mathbb{R}^{n} \times \mathbb{R}^{n} \times \Theta$, since M_{1} and M_{2} are compact subsets of \mathbb{R}^{n}, and, it is easy to see that M_{3}^{*} is a compact subset of Θ. By (A1) (iii) $D_{2} f, D_{3} f$ and $D_{4} f$ are continuous, therefore uniformly continuous on A. Therefore (28), together with (13) and (24), yields $G^{f}\left(t ; \bar{\gamma}, h^{k}\right) /\left|h^{k}\right|_{\Gamma} \rightarrow 0$ as $k \rightarrow \infty$ uniformly in $t \in[0, \alpha]$.

Similarly, define $M_{5}^{*} \equiv\left\{\bar{\sigma}+\nu h^{k, \sigma}: k \in \mathbb{N}, \nu \in[0,1]\right\}$, and $B \equiv[0, \alpha] \times M_{4} \times M_{5}^{*}$. Then B is a compact subset of $\mathbb{R} \times C \times \Sigma$, therefore (13) and (26) imply that $G^{\Lambda}\left(t ; \bar{\gamma}, h^{k}\right) /\left|h^{k}\right|_{\Gamma} \rightarrow 0$ as $k \rightarrow \infty$ uniformly in $t \in[0, \alpha]$. This concludes the proof of the theorem.

The next two examples show cases when the differentiability property of the solution wrt some parameter guaranteed by Theorem 4 equals to the usual Frechét-differentiability of the solution wrt the parameter.

Example 1. Suppose f satisfies (A1) and has the form

$$
f(t, x, y, \theta)=f^{1}(t, x, y)+f^{2}(t, x, y, \theta)
$$

where $f^{2}(0, x, y, \theta)=0$ for all $x \in \Omega_{1}, y \in \Omega_{2}$ and $\theta \in \Omega_{3}$. Then if $\bar{\gamma}=(\bar{\varphi}, \bar{\sigma}, \bar{\theta}) \in \Pi$ satisfies $\bar{\varphi} \in$ C^{1} and $\dot{\bar{\varphi}}(0-)=f^{1}(0, \bar{\varphi}(0), \Lambda(0, \bar{\varphi}, \bar{\sigma}))$, then the solution of IVP (1)-(2), $x(\cdot ; \theta)_{t}$, is differentiable wrt θ on Ω_{3} for $t \in[0, \alpha]$ in the usual Frechét-sense as a function $\left(\Omega_{3} \subset \Theta\right) \rightarrow W^{1, \infty}, \theta \mapsto$ $x(\cdot ; \theta)_{t}$.

Example 2. Suppose the function τ satisfies (A2) and $\tau(t, \psi, \sigma)=\tau^{1}(t, \psi)+\tau^{2}(t, \psi, \sigma)$, where $\tau^{2}(0, \psi, \sigma)=0$ for all $\psi \in \Omega_{4}$ and $\sigma \in \Omega_{5}$. Then if $\bar{\gamma}=(\bar{\varphi}, \bar{\sigma}, \bar{\theta}) \in \Pi$ satisfies $\bar{\varphi} \in C^{1}$ and $\dot{\bar{\varphi}}(0-)=f\left(0, \bar{\varphi}(0), \bar{\varphi}\left(-\tau^{1}(0, \bar{\varphi})\right), \bar{\theta}\right)$, then the solution, $x(\cdot ; \sigma)_{t}$, is differentiable wrt σ on Ω_{5} for $t \in[0, \alpha]$ (in Frechét-sense) as a function $\left(\Omega_{5} \subset \Sigma\right) \rightarrow W^{1, \infty}, \sigma \mapsto x(\cdot ; \sigma)_{t}$.

Finally, we consider the state-independent version of IVP (1)-(2), i.e., we assume that $\tau(t, \psi, \sigma)$ is independent of ψ. Let $\bar{\psi} \in C^{1}$. First we note that (5) yields in this case that $D_{2} \Lambda(t, \bar{\psi}, \bar{\sigma}) h=h(-\tau(t, \bar{\psi}, \bar{\sigma}))$, therefore a simple calculation and (6) imply

$$
\begin{aligned}
&\left|\omega^{\Lambda}(t, \bar{\psi}, \bar{\sigma} ; \psi, \sigma)\right| \\
&= \mid \bar{\psi}(-\tau(t, \psi, \sigma))-\bar{\psi}(-\tau(t, \bar{\psi}, \bar{\sigma}))-D_{3} \Lambda(t, \bar{\psi}, \bar{\sigma})(\sigma-\bar{\sigma}) \\
& \quad+\psi(-\tau(t, \psi, \sigma))-\bar{\psi}(-\tau(t, \psi, \sigma))-\psi(-\tau(t, \bar{\psi}, \bar{\sigma}))+\bar{\psi}(-\tau(t, \bar{\psi}, \bar{\sigma})) \mid \\
& \leq\left|\bar{\psi}(-\tau(t, \psi, \sigma))-\bar{\psi}(-\tau(t, \bar{\psi}, \bar{\sigma}))+\dot{\bar{\psi}}(-\tau(t, \bar{\psi}, \bar{\sigma})) D_{3} \tau(t, \bar{\psi}, \bar{\sigma})(\sigma-\bar{\sigma})\right| \\
& \quad+|\psi-\bar{\psi}|_{W^{1, \infty}}|\tau(t, \psi, \sigma)-\tau(t, \bar{\psi}, \bar{\sigma})| .
\end{aligned}
$$

Therefore (A2) (iii), the Chain-rule and the Mean Value Theorem yield

$$
\frac{\left|\omega^{\Lambda}(t, \bar{\psi}, \bar{\sigma} ; \psi, \sigma)\right|}{|\psi-\bar{\psi}|_{W^{1, \infty}}+|\sigma-\bar{\sigma}|_{\Sigma}} \rightarrow 0, \quad \text { as }|\psi-\bar{\psi}|_{W^{1, \infty}}+|\sigma-\bar{\sigma}|_{\Sigma} \rightarrow 0
$$

Consequently, $G^{\Lambda}(t ; \bar{\gamma}, h) /|h|_{\Gamma} \rightarrow 0$ as $|h|_{\Gamma} \rightarrow 0$. Using this relation, it follows easily from the proof of Theorem 4:

Corollary 2. Assume (A1), (A2), and let $\bar{\gamma} \in \mathcal{M}$ be fixed. Assume moreover that $\tau(t, \psi, \sigma)$ is independent of ψ. Let $\delta>0$ and $\alpha>0$ be defined by Theorem 1, and $x(t ; \gamma)$ be the solution of IVP (1)-(2) on $[0, \alpha]$ for $\gamma \in \mathcal{G}_{\Gamma}(\bar{\gamma} ; \delta)$. Then the function $\left(\mathcal{G}_{\Gamma}(\bar{\gamma} ; \delta) \subset \Gamma\right) \rightarrow W^{1, \infty}, \gamma \mapsto x(\cdot ; \gamma)_{t}$ is differentiable at $\bar{\gamma}$ for $t \in[0, \alpha]$, and $D_{\gamma} x(\cdot ; \bar{\gamma})_{t} h=z(\cdot ; \bar{\gamma}, h)_{t}$, where z is the solution of IVP (18)-(19), and $h \in \Gamma$.

REFERENCES

[1] D. W. Brewer, The differentiability with respect to a parameter of the solution of a linear abstract Cauchy problem, SIAM J. Math. Anal. 13:4 (1982), 607-620.
[2] D. W. Brewer, Quasi-Newton methods for parameter estimation in functional differential equations, Proceedings of the 27th Conference on Decision and Control, Austin, Texas, December 1988, 806-809.
[3] D. W. Brewer, J. A. Burns, and E. M. Cliff, Parameter identification for an abstract Cauchy problem by quasilinearization, Quarterly of Applied Mathematics, LI March (1993), 1-22.
[4] R. D. Driver, Existence theory for a delay-differential system, Contributions to Differential Equations, 1 (1961), 317-336.
[5] J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Spingler-Verlag, New York, 1993.
[6] J. K. Hale and L. A. C. Ladeira, Differentiability with respect to delays, J. Diff. Eqns., 92 (1991), 14-26.
[7] F. Hartung, On classes of functional differential equations with state-dependent delays, Ph.D. Dissertation, University of Texas at Dallas, 1995.
[8] F. Hartung and J. Turi, On differentiability of solutions with respect to parameters in statedependent delay equations, to appear in J. Diff. Eqns.

[^0]: * Department of Mathematics and Computing, University of Veszprém, P.O. Box 158, H-8201 Veszprém, Hungary

 Keywords: delay equations, state-dependent delays, differentiability wrt parameters
 AMS Subject Classification: 34K05

