Functional Differential Equations, 4:1-2 (1997) 65-79.

ON DIFFERENTIABILITY OF SOLUTIONS WITH RESPECT TO
PARAMETERS IN A CLASS OF FUNCTIONAL DIFFERENTIAL EQUATIONS

FERENC HARTUNG"

Abstract. In this paper we study differentiability of solutions with respect to parameters in
state-dependent delay equations. In particular, we give sufficient conditions for differentiability
of solutions in the W'* norm.

1. Introduction. We consider the state-dependent delay system

1) i(t) = 1 (ta(®), 2t~ 7(t,2i,0)).0),  tel0,T],

with initial condition

(2) z(t) = ¢(t),  te[-r0]

Here § € © and o € X represent parameters in the function f and in the delay function, 7, where
© and X are normed linear spaces with norms |-|e and |- |g, respectively. The notation z; denotes
the solution segment function, i.e., x; : [—r,0] = R", 24(s) = (¢t + s). (See Section 2 below for
the detailed assumptions on the initial value problem (IVP) (1)-(2).)

In this paper we study differentiability of solutions of IVP (1)-(2) with respect to (wrt) the
parameters ¢, o and 6. Differentiability wrt parameters in delay equations has been investigated,
e.g., in [1], [5] and [6]. It has also been studied in state-dependent delay equations in [8], where
sufficient conditions were given guaranteeing differentiability of the parameter map I' — W7,
v+ z(-;v): (where v € T' is some parameter of the equation, and 1 < p < o). In establishing
this result a version of the Uniform Contraction Principle for quasi-Banach spaces was used. In
many applications (e.g., in parameter identification problems, see, e.g., [2] and [3]) this sort of
differentiability (i.e., differentiability in a W'? norm) is too weak. In this paper we establish
sufficient conditions implying “pointwise” differentiability of the parameter map, i.e., differentia-
bility of I' = R"™, v +— x(¢;7), and the stronger property, differentiability of the map I' — W,
v = 2(5y)e

Our main results are contained in Section 3. In Section 2 we list our assumptions on IVP

(1)-(2), introduce our notations, and give some necessary preliminary results.

2. Notations, assumptions and preliminaries. Throughout this paper a norm on R"

and the corresponding matrix norm on R™*" are denoted by |- | and || - ||, respectively.
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2 F. HARTUNG

The notation f : (A C X ) = Y will be used to denote that the function maps the subset
A of the normed linear space X to Y. This notation emphasizes that the topology on A is defined
by the norm of X.

We denote the open ball around a point o with radius R in a normed linear space (X, |-|x)
by Gx (zo; R), i.e., Gx(zo; R) = {z € X : |z — zo|x < R}, and the corresponding closed ball by
ax(ﬂio; R). Similarly, a neighborhood of a set M C X with radius R is denoted by Gx(M; R),
ie, Gx(M; R) = {x € X : there exists y € M such that |z — y|x < R}. The closure of this
neighborhood is denoted by Gx (M; R).

The space of continuous functions from [—r, 0] to R™ and the usual supremum norm on it are
denoted by C and |- |¢, respectively. The space of absolutely continuous functions from [—r, 0] to
R™ with essentially bounded derivatives is denoted by W, The corresponding norm on W
i5 [t = max{|plo, esssup{[4(s)] : 5 € [-7, 0]}

The partial derivatives of a function g(t,zo,...,,) wrt its second, third, etc. arguments
are denoted by Dag, Dsg, etc, and the derivative wrt ¢ is denoted by §. Note that all derivatives

we use in this paper are Frechét-derivatives.

Next we consider a set of technical conditions, guaranteeing well-posedness and differentia-
bility of solutions wrt parameters, for the state-dependent delay differential equation (1) with
initial condition (2).

Let @ ¢ R", Oy, c R", Q3 € ©, Q4 C C, and Q5 C X be open subsets of the respective
spaces. T > 0 is finite or T = oo, in which case [0, T'] denotes the interval [0, co).

(A1) (i) f:[0,T] x Q1 x Q2 x Q3 = R" is continuous,

(i1) f(t,v,w,@) is locally Lipschitz-continuous in v, w and 6 in the following sense:
for every a > 0, My C Qi, Ma C Q2, M3 C Q3, where M; and M> are compact
subsets of R™ and Ms is a closed, bounded subset of ©, there exists a constant
Ly = Li(a, M1, M>, M3) such that

\f(t,v,w,&)—f(t,’,ﬂ),é)\ ng(\v—i|+\w—ﬂ)\+|€—§\@),

for t € [0,a], v, € M1, w, @ € M>, and 0,0 € M3,
(iii) f : ([0, TIx Q1 xQax Qs C RxR"xR" x @) — R" is continuously differentiable
wrt its second, third and fourth arguments,
(A2) (1) 7 :[0,T] x Q4 x Q5 — [0, 00) is continuous, and

t—7(t,,0) > —r, for t € [0,T], ¥ € Q4, and o € Qs,

(ii) 7(t, 4, o) is locally Lipschitz-continuous in ¢ and o in the following sense: for every
a >0, My C Q4 and M5 C Q5, where My is a compact subset of C, and M; is
a closed, bounded subset of ¥, there exists a constant Ly = Ly(a, M4, M5) such
that

hmwawwmﬁﬁnsmow—@c+w—ag

for t € 0,a], 1,9 € My, and 0,5 € Ms,
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(iii) 7 : ([O, T x Q4 x Qs C[0,a] x C % E) — R is continuously differentiable wrt its
second and third arguments.

Note that (A1) (i), (ii) and (A2) (i), (ii) together with ¢ € W are standard assumptions
in state-dependent delay equations guaranteeing the existence and uniqueness of the solution (see,
e.g., [4] or [8]). If the parameter spaces © and ¥ are finite dimensional, then (A1) (ii) and (A2)
(ii) follow from (A1) (iii) and (A2) (iii), respectively. We refer to [8] for further comments on the
particular definition of local Lipschitz-continuity we use in (A1) (ii) and (A2) (ii).

We will use the following function to simplify the notation:
(3) A ([O,T] X Q4 x Q5 C R x W™ x 2) SR, A®W 0, 0) = (=7t 1, 0)).
With this notation we can rewrite (1) simply as:
z(t) = f(t,z(t), A(t, x4, 0),0), t€0,T).
It follows from the definition of A, (A2) (ii) and the Mean Value Theorem that

(4) \A(t,@/),a) - A(ta1Z’75)\
S ‘QZ(_T(tawaa)) - QZ(_T(taiza)N + W(—T(ta%a)) - &(_T(tzwza)ﬂ
Lafylwi.e ([ = Ylc +|o = als) + [ —¢lc

IA

for t € [O,Q], w:& € My, QZ € Wl,oo’ and 0,6 € Ms.

LEMMA 1. Assume (A2), and let A be defined by (3). Then DaA(t,),0) and DsA(t, v, o)
exist fort € [0,T], ¥ € U NC', o € U5, and

(5) DQA(t,1/),U)h = —@/;(—T(tﬂ/),d))DQT(t,@/),U)h+ h(-T(t,’(l),O’)), he Wl,oo’

(6) D3A(ta/¢)70) —1/.)(—T(t,1/),0))D3T(t,1/),U).

Moreover, DaA(t,-,-) and D3A(t,-,-) are continuous on (Q4 N C) x Q5 for t € [0,T].

Proof. Let 1 € Q4N C"', and introduce w? (5;5) = ¢(s) — (5) — ¢(5)(s — 5) for 5,5 € [—r,0],
and w” (¢, ¢, 059 +h) = 7(t, 0+ h,0) —7(t,,0) — Dar(t,2h,0)h for t € [0,T], ¥, +h € Q4, and
o €Qs5. Let t €[0,T], ¥ + h € Q4, and o € Q5, and consider

Alt,Y + h,o) — A(t, ¥, 0)
V(=1 ¢+ h,0)) —p(=7(t,9,0)) + h(=7(t, ¢ + h,0))
= —(=7(t,%,0)(7(t, % + h,0) = 7(t,¢,0)) + h(=7(t,,0))
+w? (=7 (t.,0); —T(t, 9 + h,0)) + h(=7(t, ¢ + h,0)) — h(—7(t, %, 0))
= —(=7(t,9,0))Dar(t, ¢, 0)h + h(=7(t, ¢, 0))
— (=7t 9, 0))w" (8,9, 030 + )
+w? (=7 (t,9,0); =7 (t, 9 + h,0)) + h(=7(t, ¢ + h,0)) — h(—=7(t, 4, )).

Relation (5) follows from the last equation, using the continuity of 7, the inequality

‘h(_T(tv 1/) + hv U)) - h(_T(tvd)v U))| < ‘h|W1’°° ‘T(tv 1/) + hv U) - T(tvd)v U)'
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guaranteed by the Mean Value Theorem, |w¥(5;s)|/|s — 5 — 0 as s = 5, and |w™(t,1), 039 +
h)|/|hlyi,e — 0 as |hly1,0 — 0. Note that the last relation follows from |w”(¢,¢,0;1¢ +
h)|/|hlc — 0 as |h|c — 0. Relation (6) is an immediate consequence of the Chain-rule. The
continuity of DaA(t,,-) and DsA(t,-,-) follows readily from (5) and (6) and from the assumed
continuity of 7, Do and Ds7. 0O

We introduce the function
wA(ta 1;: o; ¢7 U) = A(ta ¢7 U) - A(t7 &: 6) - DQA(ta 1;: 6)(¢ - QZ) - D3A(t5 1&7 6')(0' - 6)

for t € [0,T], ¥, € Qu, b € C', and 7,0 € Qs.

Let a« > 0, M4y C Q4 be a compact subset of C, M5 C Q5 be a closed and bounded subset
of 3. Tt is easy to prove, using the definition of w®, (A2) (ii), (iii), (4), (5), and (6), that there
exists a constant K = K(a, My, Ms) such that

(7) ||D2A(t71r/_)a6)”g(wl,oc,R") S Ka ||D3A(ta/¢_)a 6)”5(2,]1&") S K:
and
(8) W (t, 9, 3, 0)| < 2K (j9p = Plo + |0 — 5l»)

for t € [0,a], ¢, ¥ € M4, ¥ € C', and 0,5 € Ms.
Similarly to w?, we define

wf(t,:i,?j,é;x,y,ﬁ) = f(t,$,y,9) - f(t,ii,g,é) - DQf(tziagzé)(x - i)
- D3f(taizga é)(y - ?j) - D4f(t7i7ga é)(e - é)
for t € [0,T], T,z € 1, §,y € U2, and 0,0 € Q3. Assumption (A1) (iii) implies, that

w!(t,7,5.0;2,y,0)]

(9) - - =
[z =2+ [y -yl +10—6le

— 0, as |t —Z| + |y —g|+ 10 —le — 0.

Let a > 0 be fixed, M; C Q; (¢ = 1,2, 3) be such that M; and M> be compact subsets of R" and
M3 be a closed and bounded subset of O, and let L1 = Li(a, M1, M, M3) be the constant from
(A1) (ii). Then assumptions (A1) (ii) and (iii) yield that

(10) ||D2f(t71_:7g79_)” < L17 ||D3f(t,9_3,g,é)” < Lla ||D4f(tvjvg70_)”g(@1R") <L
and
(11) |wf(t7ia gzéx T,Y, 9)' < 2L1(‘$ - i‘ + |y - g| + ‘9 - é‘@)

for t € [0,a], £, Z € M1, y,5 € Mo, and 6,0 € M.

We define the parameter space I' = W"* x ¥ x O, and use the notation v = (¢, 5,6) (or
v = (v¥,7%,~")) for the components of v € T', and |y|r = |¢|w1.00 + |o|s + |f|e for the norm on
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I'. The solution of IVP (1)-(2) corresponding to a parameter v and its segment function at ¢ are
denoted by z(¢;7) and z(-; )¢, respectively.
Introduce

HE{7=(¢,0,0)EQ4><Q5><93: peWh™ (0) €, A(O,np,o)eflg}

and

m={y=(pob)en: peC', §0-)=10,p0)A0,¢0).6)}.

THEOREM 1. Assume (A1) (i), (1), (A2) (i), (ii), and let 5 € II. Then there exist 6 > 0
and 0 < a < T such that
(i) Gr(%: 6) C TI,
(i) IVP (1)-(2) has a unique solution, x(t;~), on [0,a] for all v € Gr(7; 6),
(iii) there exist My C Qi, My C Q2 and My C Q4 compact subsets of R™ and C, respectively,
such that

(12) x(t;y) € My, A(t,z(7)t,77) € M2, and  z(:;7)t € Ma,

forte [070‘]’ v E Qr(ﬁ; 6);
(iv) x(-;v): € W™ fort € [0,a], v € Gr(¥; §), and there exists L = L(a, ), such that

(13) lz(57)e — (57 elwree < Ly =Alr fort €[0,a], v € Gr(¥; 9),

(v) the function z(-;~) : [—r,a] = R" is continuously differentiable for v € M N Gr(5; §).
Proof. Part (i) and (v) are obvious (see also [7]). For the proof of (ii) we refer to [8], [7] or
[4]. Part (iii) and (iv) will be essential in our proofs in the next section, therefore we prove them
here. Let ' > 0 and @ > 0 be such that they satisfy (i) and (ii). We will show that 0 < § < §'
can be selected so that (iii) and (iv) are also satisfied.
Let ¥ = ($,5,0) € I, and define M{ = {z(t;7) : t € [0,a]}, M5 = {A(t,z(:;7):,5),:
t € [0,a]}, and My = {z(;7)¢ : ¢t € [0,a]}. It follows from part (ii) of the theorem that
M} C Qi (i = 1,2,4). Moreover, M;{ and Mj are compact subsets of R” since ¢ — z(t;7) and
t — A(t,z(:;7)¢,7) are continuous functions on [0, @]. M; is also compact in C since ¢ — z(+;7); is
continuous on [0, a]. Therefore there exist €' > 0 (i = 1,2,4) such that M; = G]R" (Ml*; 61) C Q,
M, = Gpn (MS; 52) C Qy, and G¢ (MZ; 54) C Q4 since Q; (i = 1,2,4) are open sets in R” and
C, respectively. Let My = CWLOC (MZ; 64). Clearly, M and M> are compact subsets of R"™. We
have My C Qu, and it is compact in C by Arsela-Ascoli’s Theorem, since it is a bounded subset
of Whee,
Let 6> = min{d',e",6?/(L2|@|w1.0 + 1),e*}. Let v = (¢,0,0) € gr(’_y; 52). We have from
(4) and the definition of | - |r that |p(0) — @(0)| < €, |A(0, p,0) — A(0,3,5)| < La|@|y1.0 (| —
@le +]o—dls) +lp—@lc < e, and |¢ — @|c < &*. Therefore there exists 0 < a” < a such that

(14) |z(t;y) — x(t;9)| < &', [A(t, z(57)e,0) = At z(5 7)1, 0)] < €7,
and

(15) z(59)e — 2(57)ele <
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for ¢ € [0,a7].
Let Ly = Li(o, M1, M2, M3) and Lo = Lo(c, M4, M5) be the constants from (A1) (ii) and
(A2) (ii), respectively. We have for ¢ € [0, a”]:

lz(t;y) — z(t;7)]

< 1(0) —@(0)I+/ f(s,2(5;7), A(s,2(:57)s,0), 0)

= f(s,2(5:%), A5, 2(-37)s,3), 0) | ds
<hy=Flr+ L /Ot (II(S; 7) = z(s; )| + [A(s, 2(557)s,0) — As, 2(559)s, 7))
46— §|@) ds.
Let N = max{max{|z(¢;¥)| : t € [-r,a]},esssup{|E(¢;7)| : ¢ € [-r,a]}}. Then (4) yields
lz(t;y) —=(&:5) < [y =3l + Ll/ot (IZ(S; 7) — 2(5;9) [+ L2 N(|z(-;7)s — (5 7)slo
+ I =lm) + [0 7)s —2(: ke + 1y = 3lr ) ds.
Introduce n(¢;7,v) = sup{|z(s;v) — z(s;¥)| : s € [-r,t]}. With this notation we get
@(t;y) —2(t;9)| < (1 + L+ LiLaN)|[y = 4|r + L1(2 + L2N) /t n(s;,7) ds,
0

for t € [0,a”]. The monotonicity of the right-hand side in ¢ and n(¢;7,v) < |y —9|r for t € [-r,0]
yield

t
0(t5,7) < (14 Li + L LaN) |y — 3lr + L2 + LoN) / n(si97)ds,  te0,a.
0

Applying the Gronwall-Bellmann inequality we get

(16) [z (t;y) — 2(t;7)] < n(t;7,v) < L'y = Flr, t€[-ra’l,

where L* = (14 L1+ Li Ly N)ef1CHE2Ne et § = min{é?,¢' /L*,e*/(LaN(L* +1)+L*),e"/L*}.
Then it is easy to show, using (16), that @” = o can be used in (14) and (15) for v € Gr(%; 9).
This proves (12) as well.

It follows from (1), (16), (A1) (ii) and (A2) (ii) that

(7) 12 (t;y) — &(t;7)]
= ‘f(tzx(t;'Y):A(taz(';V)ta 0'),9) - f(tax(tﬁ):/\(t@('ﬁ)t,&), é)'
Ly (ja(t:) = 2(t57)] + LaN (3 9): = 2 Dile + | = )

IA

+lz(57)e — (5 ¥)tle + 10 — 9\@)
L™y — 9|r, t€[0,q],

IA

where L** = L1(2 + LaN)L* + L1(L2N + 1). Therefore (13) follows from (16), (17) and from
|p(t) — @(t)| < |y — 4|r for almost every ¢ € [—r,0] with L = max{L*,L**}. O
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3. Differentiability wrt parameters. In this section we study differentiability of solu-
tions of IVP (1)-(2) wrt the initial function, ¢, the parameter o of the delay function 7, and the
parameter 6 of the function f.

Let 5 = ($,8,0) € M, and z(-; ) be the corresponding solution of IVP (1)-(2) on [0, a]. Fix

h = (h¥,h?, hg) € I" and consider the variational equation

(18) Ht:3,h) = Daf (t.0(t7), Alta(7)1,5), B)2(t:7, b
+ Daf (t,0(ti7), Alt,2(37):9), 8) (DAt 2(57)6, )25, ).
+ DaA(t,a(37)e, 37 ) + Daf (b, 2(t:7), Alt, 23 9)r, 3), DA,
t €10,a],

(19) z(t;7,h) = h? (1), te[-r0].

This is a linear state-independent delay equation for z(-;%,h), and the right-hand side of (18)
depends continuously on t and z(-;#, h); since z(;5); € C' by Theorem 1 (v). Therefore this
IVP has a unique solution, z(+;%, h), which depends linearly on h.

First we study differentiability of the function x(t;y) = z(¢; (p,0,0)) wrt ¢ and 6 only. We
denote this differentiation by D, gyz. Let

(20) G?%(8,7) = {(p,0) e W™ x O : (¢,5,0) € Gr(7; 6)}.

THEOREM 2. Assume (A1), (A2), and let ¥ € M be fized. Let § > 0 and o > 0 be defined
by Theorem 1, and x(t;~) be the solution of IVP (1)-(2) on [0,a] for v € Gr(7; 6), and G¥? (7, 6)
be defined by (20). Then the function z(¢;(-,a,-)) : G¥%(%,8) = R" is differentiable at (3, 0)
fort €10,a], and

Dy, o)z (t; (,5.0))(h%,h7) = 2(t; 7. (h*,0, 1)),

where z is the solution of IVP (18)-(19), and (h¥,h%) € W™ x .

Proof. Let ¥ € M, § > 0, a, and G**?(%,8) be as in the assumption of the theorem. We
can and do assume that ¢ is such that Ms = Ge (9, 5) C Q3 and M5 = gg(o, 0) C Q5. Let
h = (h?,h?,h%) € T such that |h|r < &. (Here, for our future purposes, we do not assume
yet that h? = 0.) Note that z(¢;7,h) is well-defined since, by our assumptions, z(+;7)s € C".
Integrating (1) and (18), and using the definition of w/ and w” we get

x(t;y+h) —x(t;y) — 287, h)
=/(f(saﬂf(s;ﬁ-i-h)yA(S,m(-;ﬁ+h)s,6+h"),0’+h")
- f(saz(s;ﬁ)aA(Szm(';ﬁ)Sza)zé) - D2f(5a$(5;'7)7A(5a $(-;’?)5, 6')79)73(5;7)/’ h)
- D3f(5,$(5;’7)/),A(S,ﬁ(-;’?)s,ﬁ),é) (DQA(Sax(';'?)Saa')Z(';'% h)S

+ Dah(s,2(47)e, 0)7 ) = Daf(s,2(5i7), Als, a1 7)s, 0), 6)A° ) ds

t
N / (wf(sa93(5;5/)7/&(5193(';5/)315)75; m(s;:)/'i'h)aA('9793(';:Y+h)315+h0)7§+h9)
0
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D

+ Daf(s,0(5:9). Als, a5 7)s,),8) ((7 4+ ) = a(5i7) = 2(s:9, 1)
+ D3f(5ax(5;:7)aA(Szw(';'?)sza')zé) (wA(S,ﬁ(-;’?)S,E';ﬁ(-;fy + h)sza' + ha)
+ DaA(s,2(57)e, 3) @7 + B)s = 2(57)e = 2(573,h).)) ) ds.

Let M; (i = 1,2,4) be defined by Theorem 1. Let L1 = L1 (e, M1, M2, M3) and Ly = Lo (o, M4, M5)
be the constants from (A1) (ii) and (A2) (ii), respectively, and K = K (o, M4, M5) be the constant
from (7)-(8). Then (10) yields

(21) @(t; 7 + h) — x(t;7) — 2(t;7, h)|

¢

s/KG%&%M+L1Maﬁ+m—m@ﬂ%w@ﬂmﬂ+hG%aim
0
+ L1K|m(7:)/ + h)s - m(ﬁ:)/)s - Z(';;}@h)s‘c)d& te [0,0t],

where G/ (s;4,h) = |w/ (s, 2(5;7), A(5,2(57)s,0), 0 2(s; 7 + h), A(s,&( 7 + h)s, 0 + h7),0 + h°)
and G*(s; 5, h) = |w™(s,2(57)s,5;2(; 7+ h)s, 5 +h7)|. Introduce n(t; 7, h) = SUP_, o<t [T(557+
h) — z(s;y) — z(s; 7, h)|. Inequality (21) implies
(22) lz(t;5 + h) — z(t;7) — 2(t;7, )|

a t
< / (Gf(s;"y,h)+L1GA(S;"y,h))ds+L1(1+K)/ n(s; 7, h) ds.
0 0

Using that n(0; 7, h) = 0, and the right-hand side of (22) is monotone in ¢, we get from (22)

o t
70 < [ (67 + 16 s ) )ds + L1+ K) [ s s
0 0
which, by the Gronwall-Bellman inequality, implies

(23) 0670 < [ (6657004 TG 5. )as B O e ool
0

Applying (23) we get
[@(t;5 + h) = 2(t;7) = (67, 1)/ |hlr
< n(t;y,h)/|h|r
< [ (657 MMl + LGN s Bl Jas e 0%, ral
0
Here we used that z(t;5 + h) — z(t;5) — 2(¢;%,h) = 0 for t € [-r,0]. We will show that

foo‘ G’ (s;%,h)/|h|r ds — 0 and foa G™(s;7,h)/|h|rds — 0 as |h|r — 0.
Using (4) and (13), we get that there exists K* = K~ (a, M4, M5) such that

(24) |A(Saz(';;y+h)sa6+hg)_A('9793(';:)/)S76)| SK*|h‘F7 |h‘F <51 5 € [O7a]'



ON DIFFERENTIABILITY OF SOLUTIONS WRT PARAMETERS 9

Using the obvious relation

G/ (s;9,h)

(25) e

hlr ’

(11), (12), (13), (24) and (25) yield GY (s; 5, h)/|h|r < 2L1(L+K"+1). On the other hand, (9) and
(25) imply GY(s;7,h)/|h|r = 0 as |h|lr — 0 for s € [0, a]. Therefore foa G’ (s;4,h)/|h|rds — 0
as |h|r — 0 by the Lebesgue’s Dominated Convergence Theorem.

Similarly, inequalities (8) and (13) imply G*(s;#,h)/|h|lr < 2K(L + 1). To show that
G*(s;7,h)/|h|r = 0 we now assume that h” = 0. Lemma 1 implies G*(s;5, h)/|hlr = |A(s, 2(-; 3+
1o, @) — A(5,2(57)0,) — DaA(s, 2(3)s, 3)(@(57 + )s — 2(57))|/Ihlr — 0 as [Blr — 0 for s €
[0, @], since, by (13), |z(:; 7+h)s—z(:; F)s|w1.0c — 0as|h|lr — 0. Therefore foa G™(s;7,h)/|h|r ds —
0 as |hjr — 0.

We conclude that |z(¢;5 + h) — z(t; %) — 2(¢;7, h)|/|hlr = 0 as |h|r — 0, which proves the

theorem. 0O

The proof of the previous theorem implies immediately:

COROLLARY 1. Assume the conditions of Theorem 2. Then the function G¥°%7,68) = C,
(¢,0) = (5 (p,5,0)): is differentiable at ($,0) for t € [0,a], and its derivative is given by
Dy 0)z((2,3,0))e(h*, h%) = 2(57, (h*,0,h7))e, (h*,h?) € Wh™ x ©.

Next we study differentiability wrt o as well. We will need the following definition.

DEFINITION 1. Let X and'Y be normed linear spaces, M C X, and xo € M be an accumu-
lation point of M. We say that f : (M C X ) — Y is differentiable at the point xo with respect
to the set M if there exists L € L(X,Y") such that

i (@) = f(o) = L@ = o)l

e @ = zo|x

=0.

We have the following result.
THEOREM 3. Assume (A1), (A2), and let ¥ € M be an accumulation point of M. Let
0 >0 and a > 0 be defined by Theorem 1, and x(t;v) be the solution of IVP (1)-(2) on [0,a] for
v € Gr(¥; 8). Then the function z(t;-) : ((QF("y; HNM)C F) — R" is differentiable at 5 wrt
Gr(7; 0)NM fort € [0,a], and its derivative is Dyx(t;5)h = z(t;7, h), where z is the solution of
IVP (18)-(19), h € T is such that ¥+ h € M.
Proof. We proceed as in the proof of Theorem 2. The only step needs a different argumen-
t here is the last one, to show that G*(s;%,h)/|h|r = 0 as |hjr — 0. We have G"(s;7,h) =
|A(s, 2(;74h)s, 0+h7)=A(s, 2(7)s, 0)=D2A(s, x(5;7)s, 0) (@ (5 Y+h)s =2 (57)s) = DsA(s, ()5, 5)A7| /| h|r.
Let h be such that ¥ + h € M. Then, using that A(¢,-,-) is continuously differentiable on



10 F. HARTUNG
QNC! x Qs, and z(-;7 + h)s € C* for s € [0, a], we get

(26) G" (5%, 1)

< sup
o<r<l1

- DQA(Sax(';'?)Saa')

D2A(s, (1 = v)a(57)s +va(57 +h)s, 0 +vh7)

oo ey PG H R =25 )slw e

+ sup
o<r<1

— D3A(s,2(:19)s,5)

DaA(s, (1 = v)a(7)s +va(7 + h)s, & + vh7)

Therefore the continuity of DaA(s, -, ) and DaA(s, -, ) (see Lemma 1), and (13) imply G* (s; 7, h)/|h|r —
0as|hjr—>0. 0O

Next we show that, under the assumptions of the previous theorem, z(-; ) is differentiable
wrt 7 (in the sense of Definition 1) if we use W' as the state-space of the solutions.

THEOREM 4. Assume (A1), (A2), and let ¥ € M be an accumulation point of M. Let
0 >0 and a > 0 be defined by Theorem 1, and x(t;v) be the solution of IVP (1)-(2) on [0,a] for
v € Gr(¥; ). Then the function ((Gr(F; ) N M) CT) = Wh> ~ s x(-;7); is differentiable
at ¥ wrt Gr(y; 6) N M fort € [0,a], and Dyx(-;5)ch = z(-;7, h):, where z is the solution of IVP
(18)-(19), and h € T is such that ¥+ h € M.

Proof. We use all the notations introduced in the proof of Theorem 2. It follows from the
proofs of Theorems 2 and 3 that |z(; 5+ h): — z(:;9): — 2(-; %, h)¢|lc/|hlr = 0 as ¥+ h € M and
|hlr — 0. Similarly to (22) we get

(27) |(t; 5 + h) — &(t;5) — 2(¢; 7, h)|
< G (7, h) + LiGH (49, k) + Lu(L+ K)n(t;7, k), t€[0,a].

Clearly, z(t; 7+ h) — z(¢;5) — 2(¢; 7, h) = 0 for ¢ € [—r,0]. Therefore, in view of (23), it suffices to
show that G7(t; 5, h)/|hlr — 0 and G*(¢;7,h)/|hlr = 0 as ¥ +h € M and |h|r — 0 uniformly in
t € [0,a]. Consider a sequence h* = (h¥:# h*? h*%) € T such that 5 + h* € M for k € N and
|R*|r = 0 as k — co. We have

(28) G/ (t;5,n")

< sup |[Daf(t, (1 — v)a(t;7) + va(t; 5 + hY),

T o<wv<1

(1 - V)A(tam('§:)/)ta6) + I/A(t,m(-;"_}/ + hk)i76 + hk’d)a 0_+ th’e)

— Daf(t,z(t;7), A(t, 2(9)e,3),0)|||z(t; 5 + h*) — z(t;7)]

Dsf(t, (1 —v)z(t;y) +ve(t; 7 + hk),

+ sup
o<r<1

(1= v)A(t,2(39)1,0) + vA(t 2 (55 + h*), 0 + 157), 0+ vh™?)
= Daf(t,a(t:7), Alt.2(:7)1.9).0)

’ \A(t,m(,'_y + hk)ta6 + hk’a) - A(t,I(';"_}/)t,&)‘
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Dsf(t,(1 —v)z(t;7y) + ve(t; 7 + hk),

+ sup
0<r<1

(1 =)t z(59),0) + At z(5 7 + B, 0+ h57), 60 + vh™?)

— Duf(t, o), At o D02).0)| o e,
c©,R™
Let M3 = {6+vh*® : k€N, v €[0,1]}, and A = [0,a] x M1 x M2 x M3. The set A is a compact
subset of R x R” x R" x ©, since M; and M, are compact subsets of R”, and, it is easy to see that
M3 is a compact subset of ©. By (A1) (iii) D2 f, D3 f and D4 f are continuous, therefore uniformly
continuous on A. Therefore (28), together with (13) and (24), yields G’ (¢;5,h*)/|h*|r — 0 as
k — oo uniformly in ¢ € [0, o.

Similarly, define M; = {6 +vh*? : ke N, v €[0,1]}, and B = [0,a] x M4 x M. Then B
is a compact subset of R x C' x %, therefore (13) and (26) imply that G*(¢;7, h*)/|h*|r — 0 as
k — oo uniformly in ¢ € [0, @]. This concludes the proof of the theorem. 0O

The next two examples show cases when the differentiability property of the solution wrt
some parameter guaranteed by Theorem 4 equals to the usual Frechét-differentiability of the
solution wrt the parameter.

ExAMPLE 1. Suppose f satisfies (A1) and has the form

f(t5$5y79) = fl(t’x’y) +f2(tﬂx5y79)5

where f2(0,z,y,0) =0 for all z € Q1, y € Q2 and § € Q3. Then if ¥ = (p, 7, 0) € II satisfies @ €
C! and ¢(0-) = f1(0, (0), A(0, @, 5)), then the solution of IVP (1)-(2), z(-;6):, is differentiable
wrt 6 on Qg for ¢t € [0,a] in the usual Frechét-sense as a function (Q3 C @) - Wt 8 —
z(-;0):.

EXAMPLE 2. Suppose the function 7 satisfies (A2) and 7(t,4,0) = 7*(t,9) + 72(t,,0),
where 72(0,1,0) = 0 for all 9 € Q4 and 0 € Q5. Then if ¥ = (,5,0) € II satisfies p € C' and
¢(0=) = £(0,¢(0), ag(=7(0, %)), ), then the solution, z(-;0):, is differentiable wrt o on Qs for
t € [0, ] (in Frechét-sense) as a function (Q5 C Z) S W o 2(50).

Finally, we consider the state-independent version of IVP (1)-(2), i.e., we assume that
7(t,1,0) is independent of 1. Let ¢» € C'. First we note that (5) yields in this case that
DoA(t,1h,5)h = h(—7(t,1,5)), therefore a simple calculation and (6) imply

W' (t, 9,539, 0))
= |[(=7(t, ¢, 0)) = (=7 (t, 4, 7)) — DaA(t, ¢,
+ (=7, 9,0)) = P(=7(t, ¢, 0)) — Y(~7(t,
< [p(=1(t,9.0)) = $(=7(t,$,5)) + O(~7(t,$,5)) Dar (t, %, 5)(0 — 7))
+ | = Plwreo Tt 0, 0) = T(E,4,5)|.

)
$,5)) + 9 (=7(t,%,5))l

Therefore (A2) (iii), the Chain-rule and the Mean Value Theorem yield

WA (1. .51 9.0),
[0~ Gl + o~ als

— 0, as |1/)—QZ‘W1,DO +|0’—5’|2—)0.
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Consequently, G*(¢;4,h)/|hlr — 0 as |hjr — 0. Using this relation, it follows easily from the

proof of Theorem 4:

COROLLARY 2. Assume (A1), (A2), and let ¥ € M be fized. Assume moreover that T(t,1, o)

is independent of . Let § > 0 and o > 0 be defined by Theorem 1, and x(t;7) be the solution of
IVP (1)-(2) on [0,a] for v € Gr(7; §). Then the function (Gr(3; 6) CT) = W', v 2( )
is differentiable at 5 for t € [0,a], and Dyz(-;7)th = z(-;7, h)¢, where z is the solution of IVP
(18)-(19), and h € T.
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