ON DIFFERENTIABILITY OF SOLUTIONS WITH RESPECT TO PARAMETERS IN A CLASS OF FUNCTIONAL DIFFERENTIAL EQUATIONS

FERENC HARTUNG*

Abstract. In this paper we study differentiability of solutions with respect to parameters in state-dependent delay equations. In particular, we give sufficient conditions for differentiability of solutions in the $W^{1,\infty}$ norm.

1. Introduction. We consider the state-dependent delay system

(1)
$$\dot{x}(t) = f\left(t, x(t), x(t - \tau(t, x_t, \sigma)), \theta\right), \qquad t \in [0, T],$$

with initial condition

(2)
$$x(t) = \varphi(t), \qquad t \in [-r, 0]$$

Here $\theta \in \Theta$ and $\sigma \in \Sigma$ represent parameters in the function f and in the delay function, τ , where Θ and Σ are normed linear spaces with norms $|\cdot|_{\Theta}$ and $|\cdot|_{\Sigma}$, respectively. The notation x_t denotes the solution segment function, i.e., $x_t : [-r, 0] \to \mathbb{R}^n$, $x_t(s) \equiv x(t+s)$. (See Section 2 below for the detailed assumptions on the initial value problem (IVP) (1)-(2).)

In this paper we study differentiability of solutions of IVP (1)-(2) with respect to (wrt) the parameters φ , σ and θ . Differentiability wrt parameters in delay equations has been investigated, e.g., in [1], [5] and [6]. It has also been studied in state-dependent delay equations in [8], where sufficient conditions were given guaranteeing differentiability of the parameter map $\Gamma \to W^{1,p}$, $\gamma \mapsto x(\cdot; \gamma)_t$ (where $\gamma \in \Gamma$ is some parameter of the equation, and $1 \leq p < \infty$). In establishing this result a version of the Uniform Contraction Principle for quasi-Banach spaces was used. In many applications (e.g., in parameter identification problems, see, e.g., [2] and [3]) this sort of differentiability (i.e., differentiability in a $W^{1,p}$ norm) is too weak. In this paper we establish sufficient conditions implying "pointwise" differentiability of the parameter map, i.e., differentiability of $\Gamma \to \mathbb{R}^n$, $\gamma \mapsto x(t; \gamma)$, and the stronger property, differentiability of the map $\Gamma \to W^{1,\infty}$, $\gamma \mapsto x(\cdot; \gamma)_t$.

Our main results are contained in Section 3. In Section 2 we list our assumptions on IVP (1)-(2), introduce our notations, and give some necessary preliminary results.

2. Notations, assumptions and preliminaries. Throughout this paper a norm on \mathbb{R}^n and the corresponding matrix norm on $\mathbb{R}^{n \times n}$ are denoted by $|\cdot|$ and $||\cdot||$, respectively.

Keywords: delay equations, state-dependent delays, differentiability wrt parameters AMS Subject Classification: 34K05

1

^{*} Department of Mathematics and Computing, University of Veszprém, P.O. Box 158, H-8201 Veszprém, Hungary

F. HARTUNG

The notation $f : (A \subset X) \to Y$ will be used to denote that the function maps the subset A of the normed linear space X to Y. This notation emphasizes that the topology on A is defined by the norm of X.

We denote the open ball around a point x_0 with radius R in a normed linear space $(X, |\cdot|_X)$ by $\mathcal{G}_X(x_0; R)$, i.e., $\mathcal{G}_X(x_0; R) \equiv \{x \in X : |x - x_0|_X < R\}$, and the corresponding closed ball by $\overline{\mathcal{G}}_X(x_0; R)$. Similarly, a neighborhood of a set $M \subset X$ with radius R is denoted by $\mathcal{G}_X(M; R)$, i.e., $\mathcal{G}_X(M; R) \equiv \{x \in X : \text{there exists } y \in M \text{ such that } |x - y|_X < R\}$. The closure of this neighborhood is denoted by $\overline{\mathcal{G}}_X(M; R)$.

The space of continuous functions from [-r, 0] to \mathbb{R}^n and the usual supremum norm on it are denoted by C and $|\cdot|_C$, respectively. The space of absolutely continuous functions from [-r, 0] to \mathbb{R}^n with essentially bounded derivatives is denoted by $W^{1,\infty}$. The corresponding norm on $W^{1,\infty}$ is $|\psi|_{W^{1,\infty}} \equiv \max\{|\psi|_C, \operatorname{ess\,sup}\{|\dot{\psi}(s)| : s \in [-r, 0]\}\}.$

The partial derivatives of a function $g(t, x_2, \ldots, x_n)$ wrt its second, third, etc. arguments are denoted by D_2g , D_3g , etc, and the derivative wrt t is denoted by \dot{g} . Note that all derivatives we use in this paper are Frechét-derivatives.

Next we consider a set of technical conditions, guaranteeing well-posedness and differentiability of solutions wrt parameters, for the state-dependent delay differential equation (1) with initial condition (2).

Let $\Omega_1 \subset \mathbb{R}^n$, $\Omega_2 \subset \mathbb{R}^n$, $\Omega_3 \subset \Theta$, $\Omega_4 \subset C$, and $\Omega_5 \subset \Sigma$ be open subsets of the respective spaces. T > 0 is finite or $T = \infty$, in which case [0, T] denotes the interval $[0, \infty)$.

- (A1) (i) $f : [0,T] \times \Omega_1 \times \Omega_2 \times \Omega_3 \to \mathbb{R}^n$ is continuous,
 - (ii) f(t, v, w, θ) is locally Lipschitz-continuous in v, w and θ in the following sense: for every α > 0, M₁ ⊂ Ω₁, M₂ ⊂ Ω₂, M₃ ⊂ Ω₃, where M₁ and M₂ are compact subsets of ℝⁿ and M₃ is a closed, bounded subset of Θ, there exists a constant L₁ = L₁(α, M₁, M₂, M₃) such that

$$|f(t,v,w,\theta) - f(t,\bar{v},\bar{w},\bar{\theta})| \le L_1 \Big(|v-\bar{v}| + |w-\bar{w}| + |\theta-\bar{\theta}|_{\Theta} \Big),$$

for $t \in [0, \alpha]$, $v, \bar{v} \in M_1$, $w, \bar{w} \in M_2$, and $\theta, \bar{\theta} \in M_3$,

- (iii) $f: ([0,T] \times \Omega_1 \times \Omega_2 \times \Omega_3 \subset \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^n \times \Theta) \to \mathbb{R}^n$ is continuously differentiable wrt its second, third and fourth arguments,
- (A2) (i) $\tau : [0,T] \times \Omega_4 \times \Omega_5 \to [0,\infty)$ is continuous, and

 $t - \tau(t, \psi, \sigma) \ge -r$, for $t \in [0, T]$, $\psi \in \Omega_4$, and $\sigma \in \Omega_5$,

(ii) $\tau(t, \psi, \sigma)$ is locally Lipschitz-continuous in ψ and σ in the following sense: for every $\alpha > 0, M_4 \subset \Omega_4$ and $M_5 \subset \Omega_5$, where M_4 is a compact subset of C, and M_5 is a closed, bounded subset of Σ , there exists a constant $L_2 = L_2(\alpha, M_4, M_5)$ such that

$$|\tau(t,\psi,\sigma)-\tau(t,\bar{\psi},\bar{\sigma})| \leq L_2 \left(|\psi-\bar{\psi}|_C+|\sigma-\bar{\sigma}|_{\Sigma}\right)$$

for $t \in [0, \alpha]$, $\psi, \bar{\psi} \in M_4$, and $\sigma, \bar{\sigma} \in M_5$,

(iii) $\tau : ([0,T] \times \Omega_4 \times \Omega_5 \subset [0,\alpha] \times C \times \Sigma) \to \mathbb{R}$ is continuously differentiable wrt its second and third arguments.

Note that (A1) (i), (ii) and (A2) (i), (ii) together with $\varphi \in W^{1,\infty}$ are standard assumptions in state-dependent delay equations guaranteeing the existence and uniqueness of the solution (see, e.g., [4] or [8]). If the parameter spaces Θ and Σ are finite dimensional, then (A1) (ii) and (A2) (ii) follow from (A1) (iii) and (A2) (iii), respectively. We refer to [8] for further comments on the particular definition of local Lipschitz-continuity we use in (A1) (ii) and (A2) (ii).

We will use the following function to simplify the notation:

(3)
$$\Lambda : \left([0,T] \times \Omega_4 \times \Omega_5 \subset \mathbb{R} \times W^{1,\infty} \times \Sigma \right) \to \mathbb{R}^n, \quad \Lambda(t,\psi,\sigma) \equiv \psi(-\tau(t,\psi,\sigma)).$$

With this notation we can rewrite (1) simply as:

$$\dot{x}(t) = f(t, x(t), \Lambda(t, x_t, \sigma), \theta), \qquad t \in [0, T]$$

It follows from the definition of Λ , (A2) (ii) and the Mean Value Theorem that

(4)
$$\begin{aligned} |\Lambda(t,\psi,\sigma) - \Lambda(t,\bar{\psi},\bar{\sigma})| \\ &\leq |\bar{\psi}(-\tau(t,\psi,\sigma)) - \bar{\psi}(-\tau(t,\bar{\psi},\bar{\sigma}))| + |\psi(-\tau(t,\psi,\sigma)) - \bar{\psi}(-\tau(t,\psi,\sigma))| \\ &\leq L_2 |\bar{\psi}|_{W^{1,\infty}} (|\psi - \bar{\psi}|_C + |\sigma - \bar{\sigma}|_{\Sigma}) + |\psi - \bar{\psi}|_C \end{aligned}$$

for $t \in [0, \alpha]$, $\psi, \bar{\psi} \in M_4$, $\bar{\psi} \in W^{1,\infty}$, and $\sigma, \bar{\sigma} \in M_5$.

LEMMA 1. Assume (A2), and let Λ be defined by (3). Then $D_2\Lambda(t, \psi, \sigma)$ and $D_3\Lambda(t, \psi, \sigma)$ exist for $t \in [0, T]$, $\psi \in \Omega_4 \cap C^1$, $\sigma \in \Omega_5$, and

(5)
$$D_2\Lambda(t,\psi,\sigma)h = -\dot{\psi}(-\tau(t,\psi,\sigma))D_2\tau(t,\psi,\sigma)h + h(-\tau(t,\psi,\sigma)), \ h \in W^{1,\infty},$$

(6)
$$D_3\Lambda(t,\psi,\sigma) = -\dot{\psi}(-\tau(t,\psi,\sigma))D_3\tau(t,\psi,\sigma).$$

Moreover, $D_2\Lambda(t,\cdot,\cdot)$ and $D_3\Lambda(t,\cdot,\cdot)$ are continuous on $(\Omega_4 \cap C^1) \times \Omega_5$ for $t \in [0,T]$.

Proof. Let $\psi \in \Omega_4 \cap C^1$, and introduce $\omega^{\psi}(\bar{s};s) \equiv \psi(s) - \psi(\bar{s}) - \dot{\psi}(\bar{s})(s-\bar{s})$ for $\bar{s}, s \in [-r,0]$, and $\omega^{\tau}(t,\psi,\sigma;\psi+h) \equiv \tau(t,\psi+h,\sigma) - \tau(t,\psi,\sigma) - D_2\tau(t,\psi,\sigma)h$ for $t \in [0,T]$, $\psi,\psi+h \in \Omega_4$, and $\sigma \in \Omega_5$. Let $t \in [0,T]$, $\psi+h \in \Omega_4$, and $\sigma \in \Omega_5$, and consider

$$\begin{split} \Lambda(t,\psi+h,\sigma) &- \Lambda(t,\psi,\sigma) \\ &= \psi(-\tau(t,\psi+h,\sigma)) - \psi(-\tau(t,\psi,\sigma)) + h(-\tau(t,\psi+h,\sigma)) \\ &= -\dot{\psi}(-\tau(t,\psi,\sigma))(\tau(t,\psi+h,\sigma) - \tau(t,\psi,\sigma)) + h(-\tau(t,\psi,\sigma)) \\ &+ \omega^{\psi}(-\tau(t,\psi,\sigma))(\tau(t,\psi+h,\sigma)) + h(-\tau(t,\psi+h,\sigma)) - h(-\tau(t,\psi,\sigma)) \\ &= -\dot{\psi}(-\tau(t,\psi,\sigma))D_2\tau(t,\psi,\sigma)h + h(-\tau(t,\psi,\sigma)) \\ &- \dot{\psi}(-\tau(t,\psi,\sigma))\omega^{\tau}(t,\psi,\sigma;\psi+h) \\ &+ \omega^{\psi}(-\tau(t,\psi,\sigma))(\tau(t,\psi+h,\sigma)) + h(-\tau(t,\psi+h,\sigma)) - h(-\tau(t,\psi,\sigma)). \end{split}$$

Relation (5) follows from the last equation, using the continuity of τ , the inequality

$$|h(-\tau(t,\psi+h,\sigma)) - h(-\tau(t,\psi,\sigma))| \le |h|_{W^{1,\infty}} |\tau(t,\psi+h,\sigma) - \tau(t,\psi,\sigma)|$$

F. HARTUNG

guaranteed by the Mean Value Theorem, $|\omega^{\psi}(\bar{s};s)|/|s-\bar{s}| \to 0$ as $s \to \bar{s}$, and $|\omega^{\tau}(t,\psi,\sigma;\psi+h)|/|h|_{W^{1,\infty}} \to 0$ as $|h|_{W^{1,\infty}} \to 0$. Note that the last relation follows from $|\omega^{\tau}(t,\psi,\sigma;\psi+h)|/|h|_{C} \to 0$ as $|h|_{C} \to 0$. Relation (6) is an immediate consequence of the Chain-rule. The continuity of $D_2\Lambda(t,\cdot,\cdot)$ and $D_3\Lambda(t,\cdot,\cdot)$ follows readily from (5) and (6) and from the assumed continuity of τ , $D_2\tau$ and $D_3\tau$. \Box

We introduce the function

$$\omega^{\Lambda}(t,\bar{\psi},\bar{\sigma};\psi,\sigma) \equiv \Lambda(t,\psi,\sigma) - \Lambda(t,\bar{\psi},\bar{\sigma}) - D_2\Lambda(t,\bar{\psi},\bar{\sigma})(\psi-\bar{\psi}) - D_3\Lambda(t,\bar{\psi},\bar{\sigma})(\sigma-\bar{\sigma})$$

for $t \in [0, T]$, $\bar{\psi}, \psi \in \Omega_4$, $\bar{\psi} \in C^1$, and $\bar{\sigma}, \sigma \in \Omega_5$.

Let $\alpha > 0$, $M_4 \subset \Omega_4$ be a compact subset of C, $M_5 \subset \Omega_5$ be a closed and bounded subset of Σ . It is easy to prove, using the definition of ω^{Λ} , (A2) (ii), (iii), (4), (5), and (6), that there exists a constant $K = K(\alpha, M_4, M_5)$ such that

(7)
$$\|D_2\Lambda(t,\bar{\psi},\bar{\sigma})\|_{\mathcal{L}(W^{1,\infty},\mathbb{R}^n)} \le K, \qquad \|D_3\Lambda(t,\bar{\psi},\bar{\sigma})\|_{\mathcal{L}(\Sigma,\mathbb{R}^n)} \le K,$$

 and

(8)
$$|\omega^{\Lambda}(t,\bar{\psi},\bar{\sigma};\psi,\sigma)| \le 2K(|\psi-\bar{\psi}|_{C}+|\sigma-\bar{\sigma}|_{\Sigma})$$

for $t \in [0, \alpha]$, $\psi, \bar{\psi} \in M_4$, $\bar{\psi} \in C^1$, and $\sigma, \bar{\sigma} \in M_5$.

Similarly to ω^{Λ} , we define

$$\omega^{f}(t,\bar{x},\bar{y},\bar{\theta};x,y,\theta) \equiv f(t,x,y,\theta) - f(t,\bar{x},\bar{y},\bar{\theta}) - D_{2}f(t,\bar{x},\bar{y},\bar{\theta})(x-\bar{x}) - D_{3}f(t,\bar{x},\bar{y},\bar{\theta})(y-\bar{y}) - D_{4}f(t,\bar{x},\bar{y},\bar{\theta})(\theta-\bar{\theta})$$

for $t \in [0, T]$, $\bar{x}, x \in \Omega_1$, $\bar{y}, y \in \Omega_2$, and $\bar{\theta}, \theta \in \Omega_3$. Assumption (A1) (iii) implies, that

(9)
$$\frac{|\omega^f(t,\bar{x},\bar{y},\bar{\theta};x,y,\theta)|}{|x-\bar{x}|+|y-\bar{y}|+|\theta-\bar{\theta}|_{\Theta}} \to 0, \quad \text{as } |x-\bar{x}|+|y-\bar{y}|+|\theta-\bar{\theta}|_{\Theta} \to 0.$$

Let $\alpha > 0$ be fixed, $M_i \subset \Omega_i$ (i = 1, 2, 3) be such that M_1 and M_2 be compact subsets of \mathbb{R}^n and M_3 be a closed and bounded subset of Θ , and let $L_1 = L_1(\alpha, M_1, M_2, M_3)$ be the constant from (A1) (ii). Then assumptions (A1) (ii) and (iii) yield that

(10)
$$||D_2 f(t, \bar{x}, \bar{y}, \bar{\theta})|| \le L_1, ||D_3 f(t, \bar{x}, \bar{y}, \bar{\theta})|| \le L_1, ||D_4 f(t, \bar{x}, \bar{y}, \bar{\theta})||_{\mathcal{L}(\Theta, \mathbb{R}^n)} \le L_1$$

 and

(11)
$$|\omega^{f}(t,\bar{x},\bar{y},\bar{\theta};x,y,\theta)| \leq 2L_{1}(|x-\bar{x}|+|y-\bar{y}|+|\theta-\bar{\theta}|_{\Theta})$$

for $t \in [0, \alpha]$, $x, \bar{x} \in M_1$, $y, \bar{y} \in M_2$, and $\theta, \bar{\theta} \in M_3$.

We define the parameter space $\Gamma = W^{1,\infty} \times \Sigma \times \Theta$, and use the notation $\gamma = (\varphi, \sigma, \theta)$ (or $\gamma = (\gamma^{\varphi}, \gamma^{\sigma}, \gamma^{\theta})$) for the components of $\gamma \in \Gamma$, and $|\gamma|_{\Gamma} \equiv |\varphi|_{W^{1,\infty}} + |\sigma|_{\Sigma} + |\theta|_{\Theta}$ for the norm on

Γ. The solution of IVP (1)-(2) corresponding to a parameter γ and its segment function at t are denoted by $x(t;\gamma)$ and $x(\cdot;\gamma)_t$, respectively.

Introduce

$$\Pi \equiv \left\{ \gamma = (\varphi, \sigma, \theta) \in \Omega_4 \times \Omega_5 \times \Omega_3 : \varphi \in W^{1, \infty}, \quad \varphi(0) \in \Omega_1, \quad \Lambda(0, \varphi, \sigma) \in \Omega_2 \right\}$$

and

$$\mathcal{M}\equivigg\{\gamma=(arphi,\sigma, heta)\in\Pi: \quad arphi\in C^1, \quad \dot{arphi}(0-)=f(0,arphi(0),\Lambda(0,arphi,\sigma), heta)igg\}.$$

THEOREM 1. Assume (A1) (i), (ii), (A2) (i), (ii), and let $\bar{\gamma} \in \Pi$. Then there exist $\delta > 0$ and $0 < \alpha \leq T$ such that

- (i) $\mathcal{G}_{\Gamma}(\bar{\gamma}; \delta) \subset \Pi$,
- (ii) IVP (1)-(2) has a unique solution, $x(t;\gamma)$, on $[0,\alpha]$ for all $\gamma \in \mathcal{G}_{\Gamma}(\bar{\gamma}; \delta)$,
- (iii) there exist $M_1 \subset \Omega_1$, $M_2 \subset \Omega_2$ and $M_4 \subset \Omega_4$ compact subsets of \mathbb{R}^n and C, respectively, such that

(12)
$$x(t;\gamma) \in M_1, \quad \Lambda(t, x(\cdot;\gamma)_t, \gamma^{\sigma}) \in M_2, \quad and \quad x(\cdot;\gamma)_t \in M_4,$$

for $t \in [0, \alpha]$, $\gamma \in \mathcal{G}_{\Gamma}(\bar{\gamma}; \delta)$,

(iv) $x(\cdot;\gamma)_t \in W^{1,\infty}$ for $t \in [0,\alpha]$, $\gamma \in \mathcal{G}_{\Gamma}(\bar{\gamma}; \delta)$, and there exists $L = L(\alpha, \delta)$, such that

(13)
$$|x(\cdot;\gamma)_t - x(\cdot;\bar{\gamma})_t|_{W^{1,\infty}} \leq L|\gamma - \bar{\gamma}|_{\Gamma} \quad \text{for } t \in [0,\alpha], \ \gamma \in \mathcal{G}_{\Gamma}(\bar{\gamma};\delta),$$

(v) the function $x(\cdot; \gamma) : [-r, \alpha] \to \mathbb{R}^n$ is continuously differentiable for $\gamma \in \mathcal{M} \cap \mathcal{G}_{\Gamma}(\bar{\gamma}; \delta)$. *Proof.* Part (i) and (v) are obvious (see also [7]). For the proof of (ii) we refer to [8], [7] or

[4]. Part (i) and (iv) will be essential in our proofs in the next section, therefore we prove them here. Let $\delta^1 > 0$ and $\alpha > 0$ be such that they satisfy (i) and (ii). We will show that $0 < \delta \leq \delta^1$ can be selected so that (iii) and (iv) are also satisfied.

Let $\bar{\gamma} = (\bar{\varphi}, \bar{\sigma}, \bar{\theta}) \in \Pi$, and define $M_1^* \equiv \{x(t; \bar{\gamma}) : t \in [0, \alpha]\}, M_2^* \equiv \{\Lambda(t, x(\cdot; \bar{\gamma})_t, \bar{\sigma}), : t \in [0, \alpha]\}$, and $M_4^* \equiv \{x(\cdot; \bar{\gamma})_t : t \in [0, \alpha]\}$. It follows from part (ii) of the theorem that $M_i^* \subset \Omega_i$ (i = 1, 2, 4). Moreover, M_1^* and M_2^* are compact subsets of \mathbb{R}^n since $t \mapsto x(t; \bar{\gamma})$ and $t \mapsto \Lambda(t, x(\cdot; \bar{\gamma})_t, \bar{\sigma})$ are continuous functions on $[0, \alpha]$. M_4^* is also compact in C since $t \mapsto x(\cdot; \bar{\gamma})_t$ is continuous on $[0, \alpha]$. Therefore there exist $\varepsilon^i > 0$ (i = 1, 2, 4) such that $M_1 \equiv \overline{\mathcal{G}}_{\mathbb{R}^n} (M_1^*; \varepsilon^1) \subset \Omega_1$, $M_2 \equiv \overline{\mathcal{G}}_{\mathbb{R}^n} (M_2^*; \varepsilon^2) \subset \Omega_2$, and $\overline{\mathcal{G}}_C (M_4^*; \varepsilon^4) \subset \Omega_4$ since Ω_i (i = 1, 2, 4) are open sets in \mathbb{R}^n and C, respectively. Let $M_4 \equiv \overline{\mathcal{G}}_{W^{1,\infty}} (M_4^*; \varepsilon^4)$. Clearly, M_1 and M_2 are compact subsets of \mathbb{R}^n . We have $M_4 \subset \Omega_4$, and it is compact in C by Arsela-Ascoli's Theorem, since it is a bounded subset of $W^{1,\infty}$.

Let $\delta^2 \equiv \min\{\delta^1, \varepsilon^1, \varepsilon^2/(L_2|\bar{\varphi}|_{W^{1,\infty}} + 1), \varepsilon^4\}$. Let $\gamma = (\varphi, \sigma, \theta) \in \mathcal{G}_{\Gamma}(\bar{\gamma}; \delta^2)$. We have from (4) and the definition of $|\cdot|_{\Gamma}$ that $|\varphi(0) - \bar{\varphi}(0)| < \varepsilon^1$, $|\Lambda(0, \varphi, \sigma) - \Lambda(0, \bar{\varphi}, \bar{\sigma})| \leq L_2|\bar{\varphi}|_{W^{1,\infty}}(|\varphi - \bar{\varphi}|_C + |\sigma - \bar{\sigma}|_{\Sigma}) + |\varphi - \bar{\varphi}|_C < \varepsilon^2$, and $|\varphi - \bar{\varphi}|_C < \varepsilon^4$. Therefore there exists $0 < \alpha^{\gamma} \leq \alpha$ such that

(14)
$$|x(t;\gamma) - x(t;\bar{\gamma})| < \varepsilon^{1}, \qquad |\Lambda(t,x(\cdot;\gamma)_{t},\sigma) - \Lambda(t,x(\cdot;\bar{\gamma})_{t},\bar{\sigma})| < \varepsilon^{2},$$

and

(15)
$$|x(\cdot;\gamma)_t - x(\cdot;\bar{\gamma})_t|_C < \varepsilon^4$$

for $t \in [0, \alpha^{\gamma}]$.

Let $L_1 = L_1(\alpha, M_1, M_2, M_3)$ and $L_2 = L_2(\alpha, M_4, M_5)$ be the constants from (A1) (ii) and (A2) (ii), respectively. We have for $t \in [0, \alpha^{\gamma}]$:

$$\begin{split} |x(t;\gamma) - x(t;\bar{\gamma})| \\ &\leq |\varphi(0) - \bar{\varphi}(0)| + \int_0^t \left| f(s,x(s;\gamma),\Lambda(s,x(\cdot;\gamma)_s,\sigma),\theta) \right. \\ &\quad - f(s,x(s;\bar{\gamma}),\Lambda(s,x(\cdot;\bar{\gamma})_s,\bar{\sigma}),\bar{\theta}) \right| ds \\ &\leq |\gamma - \bar{\gamma}|_{\Gamma} + L_1 \int_0^t \left(|x(s;\gamma) - x(s;\bar{\gamma})| + |\Lambda(s,x(\cdot;\gamma)_s,\sigma) - \Lambda(s,x(\cdot;\bar{\gamma})_s,\bar{\sigma})| \right. \\ &\quad + |\theta - \bar{\theta}|_{\Theta} \right) ds. \end{split}$$

Let $N \equiv \max\{\max\{|x(t;\bar{\gamma})| : t \in [-r,\alpha]\}, \operatorname{ess}\sup\{|\dot{x}(t;\bar{\gamma})| : t \in [-r,\alpha]\}\}$. Then (4) yields

$$\begin{aligned} |x(t;\gamma) - x(t;\bar{\gamma})| &\leq |\gamma - \bar{\gamma}|_{\Gamma} + L_1 \int_0^t \left(|x(s;\gamma) - x(s;\bar{\gamma})| + L_2 N(|x(\cdot;\gamma)_s - x(\cdot;\bar{\gamma})_s|_C + |\sigma - \bar{\sigma}|_{\Sigma}) + |x(\cdot;\gamma)_s - x(\cdot;\bar{\gamma})_s|_C + |\gamma - \bar{\gamma}|_{\Gamma} \right) ds. \end{aligned}$$

Introduce $\eta(t; \bar{\gamma}, \gamma) \equiv \sup\{|x(s; \gamma) - x(s; \bar{\gamma})| : s \in [-r, t]\}$. With this notation we get

$$|x(t;\gamma) - x(t;\bar{\gamma})| \le (1 + L_1 + L_1 L_2 N) |\gamma - \bar{\gamma}|_{\Gamma} + L_1 (2 + L_2 N) \int_0^t \eta(s;\bar{\gamma},\gamma) \, ds,$$

for $t \in [0, \alpha^{\gamma}]$. The monotonicity of the right-hand side in t and $\eta(t; \bar{\gamma}, \gamma) \leq |\gamma - \bar{\gamma}|_{\Gamma}$ for $t \in [-r, 0]$ yield

$$\eta(t;\bar{\gamma},\gamma) \le (1+L_1+L_1L_2N)|\gamma-\bar{\gamma}|_{\Gamma} + L_1(2+L_2N) \int_0^t \eta(s;\bar{\gamma},\gamma) \, ds, \qquad t \in [0,\alpha^{\gamma}].$$

Applying the Gronwall-Bellmann inequality we get

(16)
$$|x(t;\gamma) - x(t;\bar{\gamma})| \le \eta(t;\bar{\gamma},\gamma) \le L^* |\gamma - \bar{\gamma}|_{\Gamma}, \qquad t \in [-r,\alpha^{\gamma}],$$

where $L^* \equiv (1+L_1+L_1L_2N)e^{L_1(2+L_2N)\alpha}$. Let $\delta \equiv \min\{\delta^2, \varepsilon^1/L^*, \varepsilon^2/(L_2N(L^*+1)+L^*), \varepsilon^4/L^*\}$. Then it is easy to show, using (16), that $\alpha^{\gamma} = \alpha$ can be used in (14) and (15) for $\gamma \in \mathcal{G}_{\Gamma}(\bar{\gamma}; \delta)$. This proves (12) as well.

It follows from (1), (16), (A1) (ii) and (A2) (ii) that

(17)

$$\begin{aligned} |\dot{x}(t;\gamma) - \dot{x}(t;\bar{\gamma})| \\
&= |f(t,x(t;\gamma),\Lambda(t,x(\cdot;\gamma)_t,\sigma),\theta) - f(t,x(t;\bar{\gamma}),\Lambda(t,x(\cdot;\bar{\gamma})_t,\bar{\sigma}),\bar{\theta}) \\
&\leq L_1 \Big(|x(t;\gamma) - x(t;\bar{\gamma})| + L_2 N(|x(\cdot;\gamma)_t - x(\cdot;\bar{\gamma})_t|_C + |\sigma - \bar{\sigma}|_{\Sigma}) \\
&+ |x(\cdot;\gamma)_t - x(\cdot;\bar{\gamma})_t|_C + |\theta - \bar{\theta}|_{\Theta} \Big) \\
&\leq L^{**} |\gamma - \bar{\gamma}|_{\Gamma}, \quad t \in [0,\alpha],
\end{aligned}$$

where $L^{**} \equiv L_1(2 + L_2 N)L^* + L_1(L_2 N + 1)$. Therefore (13) follows from (16), (17) and from $|\dot{\varphi}(t) - \dot{\bar{\varphi}}(t)| \leq |\gamma - \bar{\gamma}|_{\Gamma}$ for almost every $t \in [-r, 0]$ with $L \equiv \max\{L^*, L^{**}\}$. \Box

Let $\bar{\gamma} = (\bar{\varphi}, \bar{\sigma}, \bar{\theta}) \in \mathcal{M}$, and $x(\cdot; \bar{\gamma})$ be the corresponding solution of IVP (1)-(2) on $[0, \alpha]$. Fix $h = (h^{\varphi}, h^{\sigma}, h^{\theta}) \in \Gamma$ and consider the variational equation

$$\begin{aligned} \dot{z}(t;\bar{\gamma},h) &= D_2 f(t,x(t;\bar{\gamma}),\Lambda(t,x(\cdot;\bar{\gamma})_t,\bar{\sigma}),\bar{\theta}) z(t;\bar{\gamma},h) \\ &+ D_3 f(t,x(t;\bar{\gamma}),\Lambda(t,x(\cdot;\bar{\gamma})_t,\bar{\sigma}),\bar{\theta}) \left(D_2 \Lambda(t,x(\cdot;\bar{\gamma})_t,\bar{\sigma}) z(\cdot;\bar{\gamma},h)_t \right. \\ &+ D_3 \Lambda(t,x(\cdot;\bar{\gamma})_t,\bar{\sigma}) h^\sigma \right) + D_4 f(t,x(t;\bar{\gamma}),\Lambda(t,x(\cdot;\bar{\gamma})_t,\bar{\sigma}),\bar{\theta}) h^\theta, \\ &t \in [0,\alpha], \end{aligned}$$

$$(19) \qquad z(t;\bar{\gamma},h) = h^{\varphi}(t), \qquad t \in [-r,0]. \end{aligned}$$

This is a linear state-independent delay equation for $z(\cdot; \bar{\gamma}, h)$, and the right-hand side of (18) depends continuously on t and $z(\cdot; \bar{\gamma}, h)_t$ since $x(\cdot; \bar{\gamma})_t \in C^1$ by Theorem 1 (v). Therefore this IVP has a unique solution, $z(\cdot; \bar{\gamma}, h)$, which depends linearly on h.

First we study differentiability of the function $x(t;\gamma) = x(t;(\varphi,\sigma,\theta))$ wrt φ and θ only. We denote this differentiation by $D_{(\varphi,\theta)}x$. Let

(20)
$$G^{\varphi,\theta}(\delta,\bar{\gamma}) \equiv \{(\varphi,\theta) \in W^{1,\infty} \times \Theta : (\varphi,\bar{\sigma},\theta) \in \mathcal{G}_{\Gamma}(\bar{\gamma};\delta)\}.$$

THEOREM 2. Assume (A1), (A2), and let $\bar{\gamma} \in \mathcal{M}$ be fixed. Let $\delta > 0$ and $\alpha > 0$ be defined by Theorem 1, and $x(t;\gamma)$ be the solution of IVP (1)-(2) on $[0,\alpha]$ for $\gamma \in \mathcal{G}_{\Gamma}(\bar{\gamma};\delta)$, and $G^{\varphi,\theta}(\bar{\gamma},\delta)$ be defined by (20). Then the function $x(t;(\cdot,\bar{\sigma},\cdot)) : G^{\varphi,\theta}(\bar{\gamma},\delta) \to \mathbb{R}^n$ is differentiable at $(\bar{\varphi},\bar{\theta})$ for $t \in [0,\alpha]$, and

$$D_{(\varphi,\theta)}x(t;(\bar{\varphi},\bar{\sigma},\bar{\theta}))(h^{\varphi},h^{\sigma})=z(t;\bar{\gamma},(h^{\varphi},0,h^{\theta})),$$

where z is the solution of IVP (18)-(19), and $(h^{\varphi}, h^{\theta}) \in W^{1,\infty} \times \Theta$.

Proof. Let $\bar{\gamma} \in \mathcal{M}, \, \delta > 0, \, \alpha, \text{ and } G^{\varphi,\theta}(\bar{\gamma}, \delta)$ be as in the assumption of the theorem. We can and do assume that δ is such that $M_3 \equiv \overline{\mathcal{G}}_{\Theta}(\bar{\theta}; \delta) \subset \Omega_3$ and $M_5 \equiv \overline{\mathcal{G}}_{\Sigma}(\bar{\sigma}; \delta) \subset \Omega_5$. Let $h = (h^{\varphi}, h^{\sigma}, h^{\theta}) \in \Gamma$ such that $|h|_{\Gamma} < \delta$. (Here, for our future purposes, we do not assume yet that $h^{\sigma} = 0$.) Note that $z(t; \bar{\gamma}, h)$ is well-defined since, by our assumptions, $x(\cdot; \bar{\gamma})_s \in C^1$. Integrating (1) and (18), and using the definition of ω^f and ω^{Λ} we get

$$\begin{split} x(t;\bar{\gamma}+h) &- x(t;\bar{\gamma}) - z(t;\bar{\gamma},h) \\ &= \int_0^t \Big(f(s,x(s;\bar{\gamma}+h),\Lambda(s,x(\cdot;\bar{\gamma}+h)_s,\bar{\sigma}+h^{\sigma}),\bar{\theta}+h^{\theta}) \\ &- f(s,x(s;\bar{\gamma}),\Lambda(s,x(\cdot;\bar{\gamma})_s,\bar{\sigma}),\bar{\theta}) - D_2 f(s,x(s;\bar{\gamma}),\Lambda(s,x(\cdot;\bar{\gamma})_s,\bar{\sigma}),\bar{\theta}) z(s;\bar{\gamma},h) \\ &- D_3 f(s,x(s;\bar{\gamma}),\Lambda(s,x(\cdot;\bar{\gamma})_s,\bar{\sigma}),\bar{\theta}) \Big(D_2 \Lambda(s,x(\cdot;\bar{\gamma})_s,\bar{\sigma}) z(\cdot;\bar{\gamma},h)_s \\ &+ D_3 \Lambda(s,x(\cdot;\bar{\gamma})_s,\bar{\sigma})h^{\sigma} \Big) - D_4 f(s,x(s;\bar{\gamma}),\Lambda(s,x(\cdot;\bar{\gamma})_s,\bar{\sigma}),\bar{\theta})h^{\theta} \Big) ds \\ &= \int_0^t \Big(\omega^f(s,x(s;\bar{\gamma}),\Lambda(s,x(\cdot;\bar{\gamma})_s,\bar{\sigma}),\bar{\theta};x(s;\bar{\gamma}+h),\Lambda(s,x(\cdot;\bar{\gamma}+h)_s,\bar{\sigma}+h^{\sigma}),\bar{\theta}+h^{\theta}) \end{split}$$

$$+ D_2 f(s, x(s;\bar{\gamma}), \Lambda(s, x(\cdot;\bar{\gamma})_s, \bar{\sigma}), \bar{\theta}) \Big(x(s;\bar{\gamma}+h) - x(s;\bar{\gamma}) - z(s;\bar{\gamma},h) \Big)$$

$$+ D_3 f(s, x(s;\bar{\gamma}), \Lambda(s, x(\cdot;\bar{\gamma})_s, \bar{\sigma}), \bar{\theta}) \Big(\omega^{\Lambda}(s, x(\cdot;\bar{\gamma})_s, \bar{\sigma}; x(\cdot;\bar{\gamma}+h)_s, \bar{\sigma}+h^{\sigma})$$

$$+ D_2 \Lambda(s, x(\cdot;\bar{\gamma})_s, \bar{\sigma}) (x(\cdot;\bar{\gamma}+h)_s - x(\cdot;\bar{\gamma})_s - z(\cdot;\bar{\gamma},h)_s) \Big) \Big) ds.$$

Let M_i (i = 1, 2, 4) be defined by Theorem 1. Let $L_1 = L_1(\alpha, M_1, M_2, M_3)$ and $L_2 = L_2(\alpha, M_4, M_5)$ be the constants from (A1) (ii) and (A2) (ii), respectively, and $K = K(\alpha, M_4, M_5)$ be the constant from (7)-(8). Then (10) yields

$$(21) |x(t;\bar{\gamma}+h) - x(t;\bar{\gamma}) - z(t;\bar{\gamma},h)| \\ \leq \int_0^t \Big(G^f(s;\bar{\gamma},h) + L_1 \Big| x(s;\bar{\gamma}+h) - x(s;\bar{\gamma}) - z(s;\bar{\gamma},h) \Big| + L_1 G^{\Lambda}(s;\bar{\gamma},h) \\ + L_1 K |x(\cdot;\bar{\gamma}+h)_s - x(\cdot;\bar{\gamma})_s - z(\cdot;\bar{\gamma},h)_s|_C \Big) ds, \quad t \in [0,\alpha],$$

where $G^{f}(s;\bar{\gamma},h) \equiv |\omega^{f}(s,x(s;\bar{\gamma}),\Lambda(s,x(\cdot;\bar{\gamma})_{s},\bar{\sigma}),\bar{\theta};x(s;\bar{\gamma}+h),\Lambda(s,x(\cdot;\bar{\gamma}+h)_{s},\bar{\sigma}+h^{\sigma}),\bar{\theta}+h^{\theta})|$ and $G^{\Lambda}(s;\bar{\gamma},h) \equiv |\omega^{\Lambda}(s,x(\cdot;\bar{\gamma})_s,\bar{\sigma};x(\cdot;\bar{\gamma}+h)_s,\bar{\sigma}+h^{\sigma})|$. Introduce $\eta(t;\bar{\gamma},h) \equiv \sup_{-r < s < t} |x(s;\bar{\gamma}+h)|$ $h) - x(s; \bar{\gamma}) - z(s; \bar{\gamma}, h)|$. Inequality (21) implies

(22)
$$\begin{aligned} |x(t;\bar{\gamma}+h)-x(t;\bar{\gamma})-z(t;\bar{\gamma},h)| \\ &\leq \int_0^\alpha \Big(G^f(s;\bar{\gamma},h)+L_1G^\Lambda(s;\bar{\gamma},h)\Big)ds+L_1(1+K)\int_0^t\eta(s;\bar{\gamma},h)\,ds. \end{aligned}$$

Using that $\eta(0; \bar{\gamma}, h) = 0$, and the right-hand side of (22) is monotone in t, we get from (22)

$$\eta(t;\bar{\gamma},h) \leq \int_0^\alpha \left(G^f(s;\bar{\gamma},h) + L_1 G^\Lambda(s;\bar{\gamma},h) \right) ds + L_1(1+K) \int_0^t \eta(s;\bar{\gamma},h) \, ds,$$

which, by the Gronwall-Bellman inequality, implies

(23)
$$\eta(t;\bar{\gamma},h) \leq \int_0^\alpha \left(G^f(s;\bar{\gamma},h) + L_1 G^\Lambda(s;\bar{\gamma},h) \right) ds \ e^{L_1(1+K)\alpha}, \qquad t \in [0,\alpha].$$

Applying (23) we get

$$\begin{aligned} |x(t;\bar{\gamma}+h) - x(t;\bar{\gamma}) - z(t;\bar{\gamma},h)|/|h|_{\Gamma} \\ &\leq \eta(t;\bar{\gamma},h)/|h|_{\Gamma} \\ &\leq \int_{0}^{\alpha} \Big(G^{f}(s;\bar{\gamma},h)/|h|_{\Gamma} + L_{1}G^{\Lambda}(s;\bar{\gamma},h)/|h|_{\Gamma} \Big) ds \, e^{L_{1}(1+K)\alpha}, \quad t \in [-r,\alpha]. \end{aligned}$$

Here we used that $x(t; \bar{\gamma} + h) - x(t; \bar{\gamma}) - z(t; \bar{\gamma}, h) = 0$ for $t \in [-r, 0]$. We will show that $\int_0^\alpha G^f(s;\bar{\gamma},h)/|h|_\Gamma \ ds \to 0 \ \text{and} \ \int_0^\alpha G^\Lambda(s;\bar{\gamma},h)/|h|_\Gamma \ ds \to 0 \ \text{as} \ |h|_\Gamma \to 0.$

Using (4) and (13), we get that there exists $K^* = K^*(\alpha, M_4, M_5)$ such that

$$(24) \qquad |\Lambda(s, x(\cdot; \bar{\gamma} + h)_s, \bar{\sigma} + h^{\sigma}) - \Lambda(s, x(\cdot; \bar{\gamma})_s, \bar{\sigma})| \le K^* |h|_{\Gamma}, \quad |h|_{\Gamma} < \delta, \quad s \in [0, \alpha].$$

Using the obvious relation

$$(25) \qquad \frac{G^{f}(s;\bar{\gamma},h)}{|h|_{\Gamma}} \\ = \frac{\omega^{f}(s,x(s;\bar{\gamma}),\Lambda(s,x(\cdot;\bar{\gamma})_{s},\bar{\sigma}),\bar{\theta};x(s;\bar{\gamma}+h),\Lambda(s,x(\cdot;\bar{\gamma}+h)_{s},\bar{\sigma}+h^{\sigma}),\bar{\theta}+h^{\theta})|}{|x(s;\bar{\gamma}+h)-x(s;\bar{\gamma})|+|\Lambda(s,x(\cdot;\bar{\gamma}+h)_{s},\bar{\sigma}+h^{\sigma})-\Lambda(s,x(\cdot;\bar{\gamma})_{s},\bar{\sigma})|+|h^{\theta}|_{\Theta}} \\ \cdot \frac{|x(s;\bar{\gamma}+h)-x(s;\bar{\gamma})|+|\Lambda(s,x(\cdot;\bar{\gamma}+h)_{s},\bar{\sigma}+h^{\sigma})-\Lambda(s,x(\cdot;\bar{\gamma})_{s},\bar{\sigma})|+|h^{\theta}|_{\Theta}}{|h|_{\Gamma}},$$

(11), (12), (13), (24) and (25) yield $G^f(s;\bar{\gamma},h)/|h|_{\Gamma} \leq 2L_1(L+K^*+1)$. On the other hand, (9) and (25) imply $G^f(s;\bar{\gamma},h)/|h|_{\Gamma} \to 0$ as $|h|_{\Gamma} \to 0$ for $s \in [0,\alpha]$. Therefore $\int_0^{\alpha} G^f(s;\bar{\gamma},h)/|h|_{\Gamma} ds \to 0$ as $|h|_{\Gamma} \to 0$ by the Lebesgue's Dominated Convergence Theorem.

Similarly, inequalities (8) and (13) imply $G^{\Lambda}(s;\bar{\gamma},h)/|h|_{\Gamma} \leq 2K(L+1)$. To show that $G^{\Lambda}(s;\bar{\gamma},h)/|h|_{\Gamma} \to 0$ we now assume that $h^{\sigma} = 0$. Lemma 1 implies $G^{\Lambda}(s;\bar{\gamma},h)/|h|_{\Gamma} = |\Lambda(s,x(\cdot;\bar{\gamma}+h)_{s},\bar{\sigma}) - \Lambda(s,x(\cdot;\bar{\gamma})_{s},\bar{\sigma}) - D_{2}\Lambda(s,x(\cdot;\bar{\gamma})_{s},\bar{\sigma})(x(\cdot;\bar{\gamma}+h)_{s} - x(\cdot;\bar{\gamma})_{s})|/|h|_{\Gamma} \to 0$ as $|h|_{\Gamma} \to 0$ for $s \in [0,\alpha]$, since, by (13), $|x(\cdot;\bar{\gamma}+h)_{s} - x(\cdot;\bar{\gamma})_{s}|_{W^{1,\infty}} \to 0$ as $|h|_{\Gamma} \to 0$. Therefore $\int_{0}^{\alpha} G^{\Lambda}(s;\bar{\gamma},h)/|h|_{\Gamma} ds \to 0$ as $|h|_{\Gamma} \to 0$.

We conclude that $|x(t;\bar{\gamma}+h) - x(t;\bar{\gamma}) - z(t;\bar{\gamma},h)|/|h|_{\Gamma} \to 0$ as $|h|_{\Gamma} \to 0$, which proves the theorem.

The proof of the previous theorem implies immediately:

COROLLARY 1. Assume the conditions of Theorem 2. Then the function $G^{\varphi,\theta}(\bar{\gamma},\delta) \to C$, $(\varphi,\theta) \mapsto x(\cdot;(\varphi,\bar{\sigma},\theta))_t$ is differentiable at $(\bar{\varphi},\bar{\theta})$ for $t \in [0,\alpha]$, and its derivative is given by $D_{(\varphi,\theta)}x(\cdot;(\bar{\varphi},\bar{\sigma},\bar{\theta}))_t(h^{\varphi},h^{\theta}) = z(\cdot;\bar{\gamma},(h^{\varphi},0,h^{\theta}))_t,(h^{\varphi},h^{\theta}) \in W^{1,\infty} \times \Theta$.

Next we study differentiability wrt σ as well. We will need the following definition.

DEFINITION 1. Let X and Y be normed linear spaces, $M \subset X$, and $x_0 \in M$ be an accumulation point of M. We say that $f: (M \subset X) \to Y$ is differentiable at the point x_0 with respect to the set M if there exists $L \in \mathcal{L}(X, Y)$ such that

$$\lim_{\substack{x \to x_0 \\ x \in M}} \frac{|f(x) - f(x_0) - L(x - x_0)|_Y}{|x - x_0|_X} = 0.$$

We have the following result.

THEOREM 3. Assume (A1), (A2), and let $\bar{\gamma} \in \mathcal{M}$ be an accumulation point of \mathcal{M} . Let $\delta > 0$ and $\alpha > 0$ be defined by Theorem 1, and $x(t;\gamma)$ be the solution of IVP (1)-(2) on $[0,\alpha]$ for $\gamma \in \mathcal{G}_{\Gamma}(\bar{\gamma}; \delta)$. Then the function $x(t;\cdot) : ((\mathcal{G}_{\Gamma}(\bar{\gamma}; \delta) \cap \mathcal{M}) \subset \Gamma) \to \mathbb{R}^n$ is differentiable at $\bar{\gamma}$ wrt $\mathcal{G}_{\Gamma}(\bar{\gamma}; \delta) \cap \mathcal{M}$ for $t \in [0, \alpha]$, and its derivative is $D_{\gamma}x(t;\bar{\gamma})h = z(t;\bar{\gamma},h)$, where z is the solution of IVP (18)-(19), $h \in \Gamma$ is such that $\bar{\gamma} + h \in \mathcal{M}$.

Proof. We proceed as in the proof of Theorem 2. The only step needs a different argument t here is the last one, to show that $G^{\Lambda}(s;\bar{\gamma},h)/|h|_{\Gamma} \to 0$ as $|h|_{\Gamma} \to 0$. We have $G^{\Lambda}(s;\bar{\gamma},h) = |\Lambda(s, x(\cdot;\bar{\gamma}+h)_s, \bar{\sigma}+h^{\sigma}) - \Lambda(s, x(\cdot;\bar{\gamma})_s, \bar{\sigma}) - D_2\Lambda(s, x(\cdot;\bar{\gamma})_s, \bar{\sigma})(x(\cdot;\bar{\gamma}+h)_s - x(\cdot;\bar{\gamma})_s) - D_3\Lambda(s, x(\cdot;\bar{\gamma})_s, \bar{\sigma})h^{\sigma}|/|h|_{\Gamma}$. Let h be such that $\bar{\gamma} + h \in \mathcal{M}$. Then, using that $\Lambda(t, \cdot, \cdot)$ is continuously differentiable on $\Omega_4 \cap C^1 \times \Omega_5$, and $x(\cdot; \bar{\gamma} + h)_s \in C^1$ for $s \in [0, \alpha]$, we get

$$(26) \qquad G^{\Lambda}(s;\bar{\gamma},h) \\ \leq \sup_{0<\nu<1} \left\| D_{2}\Lambda(s,(1-\nu)x(\cdot;\bar{\gamma})_{s} + \nu x(\cdot;\bar{\gamma}+h)_{s},\bar{\sigma}+\nu h^{\sigma}) - D_{2}\Lambda(s,x(\cdot;\bar{\gamma})_{s},\bar{\sigma}) \right\|_{\mathcal{L}(W^{1,\infty},\mathbb{R}^{n})} \cdot |x(\cdot;\bar{\gamma}+h)_{s} - x(\cdot;\bar{\gamma})_{s}|_{W^{1,\infty}} \\ + \sup_{0<\nu<1} \left\| D_{3}\Lambda(s,(1-\nu)x(\cdot;\bar{\gamma})_{s} + \nu x(\cdot;\bar{\gamma}+h)_{s},\bar{\sigma}+\nu h^{\sigma}) - D_{3}\Lambda(s,x(\cdot;\bar{\gamma})_{s},\bar{\sigma}) \right\|_{\mathcal{L}(\Sigma,\mathbb{R}^{n})} \cdot |h^{\sigma}|_{\Sigma}.$$

Therefore the continuity of $D_2\Lambda(s,\cdot,\cdot)$ and $D_3\Lambda(s,\cdot,\cdot)$ (see Lemma 1), and (13) imply $G^{\Lambda}(s;\bar{\gamma},h)/|h|_{\Gamma} \to 0$ as $|h|_{\Gamma} \to 0$. \Box

Next we show that, under the assumptions of the previous theorem, $x(\cdot; \gamma)_t$ is differentiable wrt γ (in the sense of Definition 1) if we use $W^{1,\infty}$ as the state-space of the solutions.

THEOREM 4. Assume (A1), (A2), and let $\bar{\gamma} \in \mathcal{M}$ be an accumulation point of \mathcal{M} . Let $\delta > 0$ and $\alpha > 0$ be defined by Theorem 1, and $x(t;\gamma)$ be the solution of IVP (1)-(2) on $[0,\alpha]$ for $\gamma \in \mathcal{G}_{\Gamma}(\bar{\gamma}; \delta)$. Then the function $\left((\mathcal{G}_{\Gamma}(\bar{\gamma}; \delta) \cap \mathcal{M}) \subset \Gamma\right) \to W^{1,\infty}, \gamma \mapsto x(\cdot;\gamma)_t$ is differentiable at $\bar{\gamma}$ wrt $\mathcal{G}_{\Gamma}(\bar{\gamma}; \delta) \cap \mathcal{M}$ for $t \in [0,\alpha]$, and $D_{\gamma}x(\cdot;\bar{\gamma})_t h = z(\cdot;\bar{\gamma},h)_t$, where z is the solution of IVP (18)-(19), and $h \in \Gamma$ is such that $\bar{\gamma} + h \in \mathcal{M}$.

Proof. We use all the notations introduced in the proof of Theorem 2. It follows from the proofs of Theorems 2 and 3 that $|x(\cdot; \bar{\gamma} + h)_t - x(\cdot; \bar{\gamma})_t - z(\cdot; \bar{\gamma}, h)_t|_C / |h|_{\Gamma} \to 0$ as $\bar{\gamma} + h \in \mathcal{M}$ and $|h|_{\Gamma} \to 0$. Similarly to (22) we get

(27)
$$\begin{aligned} |\dot{x}(t;\bar{\gamma}+h)-\dot{x}(t;\bar{\gamma})-\dot{z}(t;\bar{\gamma},h)| \\ &\leq G^{f}(t;\bar{\gamma},h)+L_{1}G^{\Lambda}(t;\bar{\gamma},h)+L_{1}(1+K)\eta(t;\bar{\gamma},h), \qquad t\in[0,\alpha]. \end{aligned}$$

Clearly, $\dot{x}(t;\bar{\gamma}+h)-\dot{x}(t;\bar{\gamma})-\dot{z}(t;\bar{\gamma},h)=0$ for $t\in[-r,0]$. Therefore, in view of (23), it suffices to show that $G^{f}(t;\bar{\gamma},h)/|h|_{\Gamma} \to 0$ and $G^{\Lambda}(t;\bar{\gamma},h)/|h|_{\Gamma} \to 0$ as $\bar{\gamma}+h\in\mathcal{M}$ and $|h|_{\Gamma}\to 0$ uniformly in $t\in[0,\alpha]$. Consider a sequence $h^{k}=(h^{k,\varphi},h^{k,\sigma},h^{k,\theta})\in\Gamma$ such that $\bar{\gamma}+h^{k}\in\mathcal{M}$ for $k\in\mathbb{N}$ and $|h^{k}|_{\Gamma}\to 0$ as $k\to\infty$. We have

$$(28) \qquad G^{f}(t;\bar{\gamma},h^{k}) \\ \leq \sup_{0 < \nu < 1} \left\| D_{2}f(t,(1-\nu)x(t;\bar{\gamma}) + \nu x(t;\bar{\gamma} + h^{k}), (1-\nu)\Lambda(t,x(\cdot;\bar{\gamma})_{t},\bar{\sigma}) + \nu\Lambda(t,x(\cdot;\bar{\gamma} + h^{k})_{t},\bar{\sigma} + h^{k,\sigma}),\bar{\theta} + \nu h^{k,\theta}) \right\| \\ - D_{2}f(t,x(t;\bar{\gamma}),\Lambda(t,x(\cdot;\bar{\gamma})_{t},\bar{\sigma}),\bar{\theta}) \left\| |x(t;\bar{\gamma} + h^{k}) - x(t;\bar{\gamma})| \right\| \\ + \sup_{0 < \nu < 1} \left\| D_{3}f(t,(1-\nu)x(t;\bar{\gamma}) + \nu x(t;\bar{\gamma} + h^{k}), (1-\nu)\Lambda(t,x(\cdot;\bar{\gamma})_{t},\bar{\sigma}) + \nu\Lambda(t,x(\cdot;\bar{\gamma} + h^{k})_{t},\bar{\sigma} + h^{k,\sigma}),\bar{\theta} + \nu h^{k,\theta}) \right\| \\ - D_{3}f(t,x(t;\bar{\gamma}),\Lambda(t,x(\cdot;\bar{\gamma})_{t},\bar{\sigma}),\bar{\theta}) \right\| \\ \cdot |\Lambda(t,x(\cdot;\bar{\gamma} + h^{k})_{t},\bar{\sigma} + h^{k,\sigma}) - \Lambda(t,x(\cdot;\bar{\gamma})_{t},\bar{\sigma})|$$

$$+ \sup_{0 < \nu < 1} \left\| D_4 f(t, (1-\nu)x(t;\bar{\gamma}) + \nu x(t;\bar{\gamma} + h^k), \\ (1-\nu)\Lambda(t, x(\cdot;\bar{\gamma})_t, \bar{\sigma}) + \nu \Lambda(t, x(\cdot;\bar{\gamma} + h^k)_t, \bar{\sigma} + h^{k,\sigma}), \bar{\theta} + \nu h^{k,\theta}) \right. \\ \left. - D_4 f(t, x(t;\bar{\gamma}), \Lambda(t, x(\cdot;\bar{\gamma})_t, \bar{\sigma}), \bar{\theta}) \right\|_{\mathcal{L}(\Theta, \mathbb{R}^n)} |h^{k,\theta}|_{\Theta}.$$

Let $M_3^* \equiv \{\bar{\theta} + \nu h^{k,\theta} : k \in \mathbb{N}, \nu \in [0,1]\}$, and $A \equiv [0,\alpha] \times M_1 \times M_2 \times M_3^*$. The set A is a compact subset of $\mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^n \times \Theta$, since M_1 and M_2 are compact subsets of \mathbb{R}^n , and, it is easy to see that M_3^* is a compact subset of Θ . By (A1) (iii) D_2f , D_3f and D_4f are continuous, therefore uniformly continuous on A. Therefore (28), together with (13) and (24), yields $G^f(t; \bar{\gamma}, h^k)/|h^k|_{\Gamma} \to 0$ as $k \to \infty$ uniformly in $t \in [0, \alpha]$.

Similarly, define $M_5^* \equiv \{\bar{\sigma} + \nu h^{k,\sigma} : k \in \mathbb{N}, \nu \in [0,1]\}$, and $B \equiv [0,\alpha] \times M_4 \times M_5^*$. Then B is a compact subset of $\mathbb{R} \times C \times \Sigma$, therefore (13) and (26) imply that $G^{\Lambda}(t;\bar{\gamma},h^k)/|h^k|_{\Gamma} \to 0$ as $k \to \infty$ uniformly in $t \in [0,\alpha]$. This concludes the proof of the theorem. \Box

The next two examples show cases when the differentiability property of the solution wrt some parameter guaranteed by Theorem 4 equals to the usual Frechét-differentiability of the solution wrt the parameter.

EXAMPLE 1. Suppose f satisfies (A1) and has the form

$$f(t, x, y, \theta) = f^{1}(t, x, y) + f^{2}(t, x, y, \theta),$$

where $f^2(0, x, y, \theta) = 0$ for all $x \in \Omega_1$, $y \in \Omega_2$ and $\theta \in \Omega_3$. Then if $\bar{\gamma} = (\bar{\varphi}, \bar{\sigma}, \bar{\theta}) \in \Pi$ satisfies $\bar{\varphi} \in C^1$ and $\bar{\varphi}(0-) = f^1(0, \bar{\varphi}(0), \Lambda(0, \bar{\varphi}, \bar{\sigma}))$, then the solution of IVP (1)-(2), $x(\cdot; \theta)_t$, is differentiable wrt θ on Ω_3 for $t \in [0, \alpha]$ in the usual Frechét-sense as a function $(\Omega_3 \subset \Theta) \to W^{1,\infty}, \theta \mapsto x(\cdot; \theta)_t$.

EXAMPLE 2. Suppose the function τ satisfies (A2) and $\tau(t, \psi, \sigma) = \tau^1(t, \psi) + \tau^2(t, \psi, \sigma)$, where $\tau^2(0, \psi, \sigma) = 0$ for all $\psi \in \Omega_4$ and $\sigma \in \Omega_5$. Then if $\bar{\gamma} = (\bar{\varphi}, \bar{\sigma}, \bar{\theta}) \in \Pi$ satisfies $\bar{\varphi} \in C^1$ and $\dot{\varphi}(0-) = f(0, \bar{\varphi}(0), \bar{\varphi}(-\tau^1(0, \bar{\varphi})), \bar{\theta})$, then the solution, $x(\cdot; \sigma)_t$, is differentiable wrt σ on Ω_5 for $t \in [0, \alpha]$ (in Frechét-sense) as a function $(\Omega_5 \subset \Sigma) \to W^{1,\infty}, \sigma \mapsto x(\cdot; \sigma)_t$.

Finally, we consider the state-independent version of IVP (1)-(2), i.e., we assume that $\tau(t, \psi, \sigma)$ is independent of ψ . Let $\bar{\psi} \in C^1$. First we note that (5) yields in this case that $D_2\Lambda(t, \bar{\psi}, \bar{\sigma})h = h(-\tau(t, \bar{\psi}, \bar{\sigma}))$, therefore a simple calculation and (6) imply

$$\begin{aligned} |\omega^{\Lambda}(t,\bar{\psi},\bar{\sigma};\psi,\sigma)| \\ &= |\bar{\psi}(-\tau(t,\psi,\sigma)) - \bar{\psi}(-\tau(t,\bar{\psi},\bar{\sigma})) - D_{3}\Lambda(t,\bar{\psi},\bar{\sigma})(\sigma-\bar{\sigma}) \\ &+ \psi(-\tau(t,\psi,\sigma)) - \bar{\psi}(-\tau(t,\psi,\sigma)) - \psi(-\tau(t,\bar{\psi},\bar{\sigma})) + \bar{\psi}(-\tau(t,\bar{\psi},\bar{\sigma}))| \\ &\leq |\bar{\psi}(-\tau(t,\psi,\sigma)) - \bar{\psi}(-\tau(t,\bar{\psi},\bar{\sigma})) + \dot{\bar{\psi}}(-\tau(t,\bar{\psi},\bar{\sigma}))D_{3}\tau(t,\bar{\psi},\bar{\sigma})(\sigma-\bar{\sigma})| \\ &+ |\psi - \bar{\psi}|_{W^{1,\infty}} |\tau(t,\psi,\sigma) - \tau(t,\bar{\psi},\bar{\sigma})|. \end{aligned}$$

Therefore (A2) (iii), the Chain-rule and the Mean Value Theorem yield

$$\frac{|\omega^{\Lambda}(t,\bar{\psi},\bar{\sigma};\psi,\sigma)|}{|\psi-\bar{\psi}|_{W^{1,\infty}}+|\sigma-\bar{\sigma}|_{\Sigma}}\to 0, \qquad \text{as } |\psi-\bar{\psi}|_{W^{1,\infty}}+|\sigma-\bar{\sigma}|_{\Sigma}\to 0.$$

Consequently, $G^{\Lambda}(t; \bar{\gamma}, h)/|h|_{\Gamma} \to 0$ as $|h|_{\Gamma} \to 0$. Using this relation, it follows easily from the proof of Theorem 4:

COROLLARY 2. Assume (A1), (A2), and let $\bar{\gamma} \in \mathcal{M}$ be fixed. Assume moreover that $\tau(t, \psi, \sigma)$ is independent of ψ . Let $\delta > 0$ and $\alpha > 0$ be defined by Theorem 1, and $x(t;\gamma)$ be the solution of IVP(1)-(2) on $[0, \alpha]$ for $\gamma \in \mathcal{G}_{\Gamma}(\bar{\gamma}; \delta)$. Then the function $\left(\mathcal{G}_{\Gamma}(\bar{\gamma}; \delta) \subset \Gamma\right) \to W^{1,\infty}, \gamma \mapsto x(\cdot;\gamma)_t$ is differentiable at $\bar{\gamma}$ for $t \in [0, \alpha]$, and $D_{\gamma}x(\cdot;\bar{\gamma})_t h = z(\cdot;\bar{\gamma}, h)_t$, where z is the solution of IVP(18)-(19), and $h \in \Gamma$.

REFERENCES

- D. W. Brewer, The differentiability with respect to a parameter of the solution of a linear abstract Cauchy problem, SIAM J. Math. Anal. 13:4 (1982), 607–620.
- [2] D. W. Brewer, Quasi-Newton methods for parameter estimation in functional differential equations, Proceedings of the 27th Conference on Decision and Control, Austin, Texas, December 1988, 806-809.
- [3] D. W. Brewer, J. A. Burns, and E. M. Cliff, Parameter identification for an abstract Cauchy problem by quasilinearization, *Quarterly of Applied Mathematics*, LI March (1993), 1-22.
- [4] R. D. Driver, Existence theory for a delay-differential system, Contributions to Differential Equations, 1 (1961), 317-336.
- [5] J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Spingler-Verlag, New York, 1993.
- [6] J. K. Hale and L. A. C. Ladeira, Differentiability with respect to delays, J. Diff. Eqns., 92 (1991), 14–26.
- [7] F. Hartung, On classes of functional differential equations with state-dependent delays, Ph.D. Dissertation, University of Texas at Dallas, 1995.
- [8] F. Hartung and J. Turi, On differentiability of solutions with respect to parameters in statedependent delay equations, to appear in *J. Diff. Eqns.*