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Abstract

We present a short argument that for a wide class of recurrence relations of
the formxn+1 = h(xn, . . . , xn−k) and for an arbitrary fixed (forbidden) sequence
(bn) the sequence(xn) avoids(bn) (i.e., ∀n ∈ N xn 6= bn) for almost all ini-
tial values(x−k, . . . , x0) ∈ Rk+1, excluding a set of Lebesgue measure0. These
sequences include algebraic recurrences and our result also generalizes the affir-
mative answer to Professor Ladas’ [5, Conjecture 4.5.1]. We also consider some
further generalizations on avoiding sequences of countable sets.

AMS Subject Classifications:39A10.
Keywords: Recurrence relation, forbidden sequence.

1 Introduction

We start with Ladas’ [5, Problem 4.5.1], which can be stated as follows:

Conjecture1.1 (see [5, 4.5.1]).The recurrence equation

xn+1 =
xn + xn−1 + xn−2 · xn−3

xn · xn−1 + xn−2 + xn−3

(n ≥ 0) (1.1)

has positive solutions which are not eventually equal to 1.

This problem requires finding initial values forx−3, . . . , x0 ∈ R such that the recur-
rence equation (1.1) generates a sequence(xn) for which the property

(∃N ∈ N) (∀n ≥ N) xn = 1 (1.2)
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fails!
So far Conjecture 1.1 was confirmed by Stević in [7]. In the papers [4, 6, 8, 9] the

authors proved the global convergence of all positive solutions to the equilibrium of the
equation (1.1). In [2] a close global convergence result was also obtained.

In this short note we show in Theorems 2.9 and 3.2 that for a wide class of recurrence
relations of the form

xn+1 = h(xn, . . . , xn−k) (n ≥ 0) (1.3)

and for an arbitrary fixed (forbidden) sequence(bn) ⊆ R the sequence(xn) avoids(bn),
that is,

(∀n ∈ N) xn 6= bn

for almost all initial values(x−k, . . . , x0) ∈ Rk+1. “Almost all” means excluding a
subset ofRk+1 of Lebesgue measure0. As a special case, this gives an affirmative
answer to Conjecture 1.1 choosingbn = 1 for all n ∈ N. The class of recurrence
relations (1.3) includes those of the form (1.1). An easy generalization is provided in
Theorem 2.10 below: For the same class of recurrence relations in (1.3) and for any
fixed forbidden sequence of countable sets(Bn) ⊆ P (R) of real numbers, the sequence
(xn) avoids(Bn), i.e.,

∀n ∈ N xn /∈ Bn

for almost all initial values(x−k, . . . , x0) ∈ Rk+1. This result also answers e.g., ques-
tions of the following nature: “Can one choose the initial values of the Fibonacci recur-
rence relationfn+1 = fn + fn−1 so that NO member of the old sequence

{1, 1, 2, 3, 5, 8, 13, 21, . . .}

appears in the new sequence?”, or “Is it possible to choose the initial values of a recur-
rence equation as in (1.3) such that NO member of the sequence would be integer (or
rational, or even algebraic)?” Other directions of research in progress include trying to
avoid neighbourhoods of sequences, i.e., to require

| xn − bn |> εn

for all n ∈ N, or to reveal the set itself of good possible initial values for avoiding a
given sequence. Complex numbers can be used instead of real numbers throughout.

2 Avoiding Sequences

In this section we prove for any fixedN ∈ N that all sequences(xn) ⊆ RN which satisfy
recurrence relations having recursively weak set of roots (see Definition 2.4 below)
avoid any fixed (forbidden) sequence(bn) ⊆ RN (i.e.,∀n xn 6= bn) for almost all initial
valuesx−k, . . . , x0 (excluding a set of Lebesgue measure0). This is Theorem 2.9 below
while Theorem 2.10 provides a generalization of this fact.
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In the next section we will reveal that a wide class of recurrence relations, includ-
ing algebraic ones, have recursively weak set of roots – and so can avoid any forbid-
den sequence. These results give not only a quick and general solution to Professor
Ladas’ [5, Conjecture 4.5.1] but reveal a general behaviour of sequences satisfying a
large class of recurrence relation in connection with their initial values. Some examples
are mentioned at the end of the previous section. Our proof gives an “existence” results
for the above mentioned problems.

In general we do not use special notation for vectors (elements ofRN ) but to avoid
confusion we always try to indicate whether we are speaking about vectors or numbers.
N0 stands forN ∪ {0}. To facilitate the forthcoming notions and notations, first we
present a short look on the detailed effect of the recurrence equation (1.3) on the initial
values. Starting with the fixed initial valuesa1, . . . , ak+1 ∈ R (where0 ≤ k is fixed),
we have 

x−k = a1

. . .
x0 = ak+1

Then, repeating (1.3) we can go further:

x1 = h (x0, . . . , x−k) = h (ak+1, . . . , a1) ,

x2 = h (x1, ak+1, . . . , a2) = h (h(ak+1, . . . , a1), ak+1, . . . , a2) ,

x3 = h(x2, x1, ak+1, . . . , a3) =

= h ( h (h(ak+1, . . . , a1), ak+1, . . . , a2) , h(ak+1, . . . , a1), ak+1, . . . , a3 )

. . . .

To simplify this procedure we suggest the notations below in Definitions 2.1 through
2.4.1 Moreover, we define these notions for vector-sequences(xn) ⊆ RN , that is, we
allow functions

h : RN×K → RN , for anyN, K ∈ N.

Definition 2.1. For any functionh : RN×K → RN (N, K ∈ N are fixed), we define its
recurrence iterativesh[i] : RN×K → RN for i ∈ N as follows: For anyaK , . . . , a1 ∈
RN , we let

h[0](aK , . . . , a1) : = aK ,

h[1](aK , . . . , a1) : = h(aK , . . . , a1) (i.e.,h itself),

h[2](aK , . . . , a1) : = h(h[1](
⇒
a), aK , . . . , a2),

h[3](aK , . . . , a1) : = h(h[2](
⇒
a), h[1](

⇒
a), aK , . . . , a3), (2.1)

. . .

h[K](aK , . . . , a1) : = h(h[K−1](
⇒
a), . . . , h[1](

⇒
a), aK),

h[K+j](aK , . . . , a1) : = h(h[K+j−1](
⇒
a), . . . , h[j](

⇒
a)) for j ∈ N,

1Since we want to extend our result to the most general case, the notation from the end of Definition
2.4 below will be a bit complicated.
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where
⇒
a is short for(aK , . . . , a1) (sequence of vectors).

According to Definition 2.1, we suggest to writef (an, . . . , a1) for functionsf in-
stead off (a1, . . . , an) in many parts of the present paper. Our method will also handle
recurrence equations with cases – using logical formulas. In order to speak easily about
these equations we prefer the generalization with multiindices of recurrence iteratives.
This means, that in each step we take care of all possible former branchings, that is
taking accounts of which former steps were taken.2

Definition 2.2. Let h0, . . . , hL+1 : RN×K → RN be functions andΦ0, . . . , ΦL be prop-
erties (formulae) onRN×K . Now the functionh : RN×K → RN is defined from the
functionsh0, . . . , hL+1 with the casesΦ0, . . . , ΦL if and only if

h(aK , . . . , a1) =


h0 (aK , . . . , a1) if Φ0 (aK , . . . , a1)

. . .
hL (aK , . . . , a1) if ΦL (aK , . . . , a1)
hL+1 (aK , . . . , a1) otherwise.

(2.2)

Definition 2.3. If the functionh : RN×K → RN is defined with cases in (2.2), then we
define its recurrence multi-iterativesh[~i] for any multiindex~i = < i1, . . . , is > ∈ Ns

0

(vector of lengths of indices) for anys ∈ N, supposing0 ≤ it ≤ L + 1 for 1 ≤ t ≤ s,
by induction ons as follows: For anya1, . . . , aK ∈ RN , we let

h<i1> (aK , . . . , a1) : = hi1 (aK , . . . , a1) ,

h<i1,i2> (aK , . . . , a1) : = hi2

(
h<i1>(

⇒
a), aK , . . . , a2

)
,

h<i1,i2,i3> (aK , . . . , a1) : = hi3

(
h<i1,i2>(

⇒
a), h<i1>(

⇒
a), aK , . . . , a3

)
,

. . .

h<i1,...,iK> (aK , . . . , a1) : = hiK

(
h<i1,...,iK−1>(

⇒
a), . . . , h<i1>(

⇒
a), aK

)
,

h<i1,...,ij+K> (aK , . . . , a1) : = hij+K

(
h<i1,...,ij+K−1>(

⇒
a), . . . , h<i1,...,ij>(

⇒
a)

)
,

where
⇒
a = (aK , . . . , a1).

In what follows we always assume that0 ≤ it ≤ L + 1 for 1 ≤ t ≤ s in any
multiindex~i =< i1, . . . , is >∈ Ns (s ∈ N).

Definition 2.4. (i) A function h : RN×K → RN has a recursively weak set of roots
if and only if for eachi ∈ N and for eachb ∈ RN , the set (of solutions){

(x1, . . . ,xK) ∈ RN×K : h[i](x1, . . . ,xK) = b
}

(2.3)

has Lebesgue measure0.

2The forthcoming Definition 2.3 is similar to the previous one but rather complicated – we beg the
reader’s pardon.
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(ii) Let the functionh be defined by cases from the functionsh0, . . . , hL+1. Now h
has a multiple recursively weak set of rootsif and only if for each multiindex
~i =< i1, . . . , is >∈ Ns and for eachb ∈ RN , the set{

(x1, . . . ,xK) ∈ RN×K : h
~i(x1, . . . ,xK) = b

}
has Lebesgue measure0.

In other words, we require that the inverse image (or preimage)
(
h

~i
)−1

(b) of b for

any multiindex~i and for anyb ∈ RN has Lebesgue measure0. In what follows, we
talk about functionsh which are defined by cases, multiindices and multiple recursively
weak sets, but at the same time we allow, of course simple functions, indices and sets,
too. When talking about Lebesgue measure of sets of different dimensions the following
notations will be useful:

Notation2.5. (i) for any vectorc ∈ Ru, we define the set[(c, . )] ⊆ Rv as

[(c, . )] :=
{

x ∈ Rv : (c,x) ∈ Ru×v
}

,

(ii) Ld(X) stands for thed-dimensional Lebesgue measure of the setX ⊆ Rd.

We will use also the following well-known lemma which is an easy consequence of
Fubini’s theorem (see e.g., [3, Ch. 36, Thm. A]):

Lemma 2.6. LetH ⊆ Ru×v be given.H has Lebesgue measure0:

Lu×v(H) = 0

if and only if all (except a set of Lebesgue measure0) v-dimensional intersections ofH
have Lebesgue measure0:

Lv(H ∩ [(c, ·)]) = 0

for all (but a set of Lebesgue measure0) vectorsc ∈ Ru.

Now we proceed towards Theorem 2.9 below.

Lemma 2.7. Letf : RN×K → RN be any function andb ∈ RN be any vector. If for all
(but a set of Lebesgue measure0) of (K − 1)-tuples(c1, . . . , cK−1) ∈ RN×(K−1) the set
(of solutions) {

x ∈ RN : f(c1, . . . , cK−1,x) = b
}

(2.4)

has Lebesgue measure0, then the inverse imagef−1(b) ⊆ RN×K has Lebesgue mea-
sure0, too.

Proof. Denote(c1, . . . , cK−1) by
→
c . Since

f−1(b) =
⋃ {

f−1(b) ∩
[(
→
c , ·

)]
:
→
c ∈ RN×(K−1)

}
andf−1(b) ∩

[(
→
c , ·

)]
is exactly the set in (2.4), we can use Lemma 2.6.
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To state our main results, we also need the following notion.

Definition 2.8. (i) Any two sequences(xn), (yn) ⊆ RN avoid each other if and
only if

(∀n ∈ N) xn 6= yn.

(ii) The sequence(xn) avoidsthe sequence of sets(Bn) ⊆ P (RN) if and only if

(∀n ∈ N ) xn 6∈ Bn.

Now we can state our first main result.

Theorem 2.9.We consider theN -dimensional recurrence equation (i.e.,(xn) ⊆ RN )

xn+1 = h (xn, . . . ,xn−k) , (2.5)

where the functionh : RN×(k+1) → RN may be defined with cases and has (multiple)
recursively weak set of roots. Let(bn) ⊆ RN be any fixed (N -dimensional) sequence.
Then for almost all initial valuesx−k, . . . ,x0 ∈ RN (excluding a set of Lebesgue mea-
sure0 of RN×(k+1)) the corresponding solution(xn) of Eq.(2.5)avoids(bn).

Proof. Let us denote the initial values for(x−k, . . . ,x0) by (a0, . . . , ak) ∈ RN×(k+1),
i.e., let us prescribe

x−k := a0, . . . ,x0 := ak. (2.6)

For any fixedn ∈ N the requirementxn 6= bn is ensured by the inequalities

h
~i (a0, . . . , ak) 6= bn

for any multiindex~i ∈ Nn of lengthn. But these inequalities (for eachn ∈ N count-
able many) hold for all but a set of Lebesgue measure0 of the initial value vectors
(a0, . . . , ak) ∈ RN×(k+1). The union of these countable times countable many sets has
still Lebesgue measure0, which proves our statement.

In the next theorem we give a generalization of Theorem 2.9.

Theorem 2.10.Let us consider theN -dimensional recurrence equation(2.5), where
h has a (multiple) recursively weak set of roots. Let(Bn) ⊆ P (RN) be a fixed se-
quence of countable sets ofN -dimensional vectors. Then for almost all initial values
x−k, . . . , x0 ∈ RN (excluding a set of Lebesgue measure0 of RN×(k+1)), the corre-
sponding solution(xn) of Eq.(2.5)avoids(Bn).

Proof. We introduce the setsBn ⊆ RN for n ∈ N by

Bn = {b(i)
n : i ∈ N}.
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Now, defining the sequences
b(i) :=

(
b(i)
n

)
n∈N

for i ∈ N, we have, by Theorem 2.9, for alli ∈ N a setIi ⊆ RN×(k+1) of Lebesgue
measureL(Ii) = 0 of initial value-vectors

(x−k, . . . , x0) ∈ RN×(k+1)

which generates sequences(xn) only which does not avoid the sequenceb(i). The union
of these setsIi is still of Lebesgue measure0.

3 Functions which have Recursively Weak Set of Roots

In this section we examine which types of recurrence relations have recursively weak
set of roots. Unfortunately we do not have a general result for this question, but let us
mention at the beginning that not every continuous functionf : R → R, which is not
constant in any interval, has the property that the inverse imagef−1(b) has Lebesgue
measure0 for anyb ∈ R.3 Furthermore one can easily find even continuous functions
f, g : R → R such that for anyb ∈ R, the inverse imagesf−1(b) andg−1(b) both have
Lebesgue measure0 but for the compositionf ◦ g this is NOT true.

Definition 3.1. A function h : Rm → RN is calledalgebraic if and only if it can be
expressed with the four basic operators + , - , * , / (of courseh may contain any real
numbers as constants, too).

In this section we prove the following result.

Theorem 3.2. Any nonconstant4 algebraic functionh : Rn → R has a multiple recur-
sively weak set of roots.

The proof of Theorem 3.2 uses the following easy corollary of the fundamental
theorem of algebra:

Lemma 3.3. For each polynomialp(x1, . . . , xn) not identically0 there arefinite sets
F1, . . . , Fn ⊂ R with the property such that the equation

p(x1, . . . , xn) = 0 (3.1)

has only finitely many roots(x1, . . . , xn) ∈ Rn satisfyingxj /∈ Fj for all j ≤ n. In
other words, the equation(3.1)may have infinitely many roots only ifxj ∈ Fj for some
j ≤ n.

3For example take any closed setC ⊆ R of positive measure. Since the complement ofC is a union
of disjoint open sets, we can definef : R → R asf(x) = 0 for x ∈ C and the reversed parabola
f(x) := (x− a)(b− x) for a ≤ x ≤ b for any interval(a, b) of C ’s complement. Many more variations
are possible, too.

4The term “nonconstant” (not identically constant) means that there is no real numberc ∈ R such that
h (xn, . . . , x1) = c for all (xn, . . . , x1) ∈ Rn.
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Though Lemma 3.3 may be well known, we include its short proof in the Appendix.
Lemma 3.3 implies easily that the set of roots of each polynomial has Lebesgue measure
0. Theorem 3.2 states that for eachi ∈ N and for eachb ∈ R, the set (of solutions){

(x1, . . . , xn) ∈ Rn : h[i](x1, . . . , xn) = b
}

has Lebesgue measure0. Though all iteratesh[i] are also algebraic, we cannot use
Lemma 3.3 directly: We have to ensure that all iteratesh[i] are not equal identically to
b, too! The following result proves Theorem 3.2.

Theorem 3.4. Let h : Rn → R be a nonconstant algebraic function. Then for every
b ∈ R there exist finite (or empty) setsEb

j,i ⊂ R (j ≤ n, i ∈ N) such that the equality

h[i](xn, . . . , x1) = b (3.2)

has only finitely many roots(x1, . . . , xn) ∈ Rn satisfyingxj /∈ Eb
j,i for all j ≤ n. In

other words, the equality(3.2)may have infinitely many roots only ifxj ∈ Eb
j,i for some

j ≤ n.

Proof. It is easy to see that all algebraic functions have the form

h(xn, . . . , x1) =
k1(xn, . . . , x1)

k2(xn, . . . , x1)

for some polynomialsk1 andk2. So, all equalities

h(xn, . . . , x1) =
k1(xn, . . . , x1)

k2(xn, . . . , x1)
= b

are equivalent to
k1(xn, . . . , x1)− b · k2(xn, . . . , x1) = 0. (3.3)

We now use induction oni ∈ N, i ≥ 1. If i = 1, then, by (3.3), we can let

E
(b)
j,1 := F

(n)
j (k1(xn, . . . , x1)− b · k2(xn, . . . , x1)) .

Let1 � i ≤ n. Using the notation
⇒
x := (xn, . . . , x1), we have to investigate the equality

h[i]
(
⇒
x
)

= h
(
h[i−1]

(
⇒
x
)

, . . . , h[1]
(
⇒
x
)

, xn, . . . , xi

)
= b. (3.4)

By the induction hypothesis, this equality might have infinitely many roots only if

xj ∈ E
(b)
j−i+1, 1 (i ≤ j ≤ n)

and
h[`]

(
⇒
x
)

= β ∈ E
(b)
n−i+`+1, 1 (1 ≤ ` ≤ i− 1),



Avoiding Forbidden Sequences 313

i.e.,

xj ∈ E
(β)
j,` , where β ∈ E

(b)
n−i+`+1, 1 (1 ≤ ` ≤ i− 1, 1 ≤ j ≤ n) .

So, for1 ≤ j < i, we may let

E
(b)
j,i :=

i−1⋃
`=1

(
∪

{
E

(β)
j,` : β ∈ E

(b)
n−i+`+1, 1

})
,

while for i ≤ j ≤ n,

E
(b)
j,i :=

i−1⋃
`=1

(
∪

{
E

(β)
j,` : β ∈ E

(b)
n−i+`+1, 1

})
∪ E

(b)
j−i+1, 1.

If i > n, then (3.4) changes to

h[i]
(
⇒
x
)

= h
(
h[i−1]

(
⇒
x
)

, . . . , h[i−n]
(
⇒
x
))

= b. (3.5)

Similarly to the case1 � i ≤ n, we can let

E
(b)
j,i :=

i−1⋃
`=1

(
∪

{
E

(β)
j,` : β ∈ E

(b)
n−i+`+1, 1

})
for 1 ≤ j ≤ n.

Theorem 3.4 clearly implies Theorem 3.2 (using Lemmas 2.6, 2.7 and Theorem
2.9). Our further research will include higher dimensional, not only algebraic functions
h with cases.

4 Appendix

Though Lemma 3.3 may be well known, we include its short proof here.

Proof of Lemma 3.3.We use induction onn ∈ N. The setsFj depend onp, and we
must handle many polynomials so we use the notationF

(n)
j (p). If n = 1, then we let

F1 = F
(1)
1 := ∅ sincep is nonconstant. Now letn > 1. Write p for 1 ≤ j ≤ n as

p(x1, . . . , xn) =

∆j∑
t=0

(xj)
t · pj,t (x1, . . . , xj−1, xj+1, . . . , xn) ,

where∆j ∈ N and

pj,t : Rn−1→ R (1 ≤ j ≤ n, 0 ≤ t ≤ ∆j)
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are suitable polynomials. (Some ofpj,t may be constant but not all of them.) By the
induction hypothesis, we have finite setsF

(n−1)
`,j (pj,t) ⊂ R such that ifx` /∈ F

(n−1)
`,j (pj,t),

` 6= j, then the polynomialspj,t may have finitely many roots5

(x1, . . . , xj−1, xj+1, . . . , xn) ∈ Rn−1.

Let R(n−1)
`,j (pj,t) bet the set of thex`-components of these roots:

R
(n−1)
`,j (pj,t) := {x` ∈ R | (x1, . . . , xj−1, xj+1, . . . , xn) is a root ofpj,t} (` 6= j)

and further

F
(n)
`,j :=

∆j⋃
t=0

F
(n−1)
`,j (pj,t)

 ∪

∆j⋂
t=0

R
(n−1)
`,j (pj,t)


and finally

F
(n)
` :=

n⋃
j=1,j 6=`

F
(n)
`,j .

The setsF (n)
` for ` ≤ n are clearly finite and satisfy the requirement of the lemma.
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