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Abstract

We present a short argument that for a wide class of recurrence relations of
the formz,, 1 = h(x,,...,z,—x) and for an arbitrary fixed (forbidden) sequence
(bn) the sequencéx,,) avoids(b,) (i.e.,¥n € N z, # b,) for almost all ini-
tial values(z_y, . .., zo) € R¥! excluding a set of Lebesgue meas0réThese
sequences include algebraic recurrences and our result also generalizes the affir-
mative answer to Professor Ladas’ [5, Conjecture 4.5.1]. We also consider some
further generalizations on avoiding sequences of countable sets.

AMS Subject Classifications:39A10.
Keywords: Recurrence relation, forbidden sequence.

1 Introduction

We start with Ladas’ [5, Problem 4.5.1], which can be stated as follows:
Conjecturel.l1(see [5, 4.5.1]).The recurrence equation

Ty + Tpo1 + Ty Ty
Tn+1 = - - K (n = 0) (1.1)
Ty * Tp—1 + Tp—2 + Tp—3

has positive solutions which are not eventually equal to 1.

This problem requires finding initial values for s, . . ., o € R such that the recur-
rence equation (1.1) generates a sequéngefor which the property

ANeN)(VYn>N)  z,=1 (1.2)
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fails!

So far Conjecture 1.1 was confirmed by Stewi [7]. In the papers [4, 6, 8, 9] the
authors proved the global convergence of all positive solutions to the equilibrium of the
equation (1.1). In [2] a close global convergence result was also obtained.

In this short note we show in Theorems 2.9 and 3.2 that for a wide class of recurrence
relations of the form

Tpg1 = h(Tp, ..., Tpk) (n>0) (1.3)

and for an arbitrary fixed (forbidden) sequeriég) C R the sequencér,,) avoids(b,,),
that is,
(VneN) z, #b,

for almost all initial values(z_, ..., 7) € R*™. “Almost all” means excluding a
subset ofR*™ of Lebesgue measur As a special case, this gives an affirmative
answer to Conjecture 1.1 choosihg = 1 for all n € N. The class of recurrence
relations (1.3) includes those of the form (1.1). An easy generalization is provided in
Theorem 2.10 below: For the same class of recurrence relations in (1.3) and for any
fixed forbidden sequence of countable géts) C P(R) of real numbers, the sequence
(x,) avoids(B,,), i.e.,

VneN z,¢ B,

for almost all initial valuegz_, ..., 2¢) € R*™. This result also answers e.g., ques-
tions of the following nature: “Can one choose the initial values of the Fibonacci recur-
rence relatiory,, .1 = f, + f._1 S0 that NO member of the old sequence

{1,1,2,3,5,8,13,21,.. .}

appears in the new sequence?”, or “Is it possible to choose the initial values of a recur-
rence equation as in (1.3) such that NO member of the sequence would be integer (or
rational, or even algebraic)?” Other directions of research in progress include trying to
avoid neighbourhoods of sequences, i.e., to require

|z, — by |> en

for all n € N, or to reveal the set itself of good possible initial values for avoiding a
given sequence. Complex numbers can be used instead of real numbers throughout.

2 Avoiding Sequences

In this section we prove for any fixedl € N that all sequences;,,) € R" which satisfy
recurrence relations having recursively weak set of roots (see Definition 2.4 below)
avoid any fixed (forbidden) sequen@g) C R" (i.e.,vn z,, # b,) for almost all initial
valuesr_y, . .., zy (excluding a set of Lebesgue meastiyeThis is Theorem 2.9 below
while Theorem 2.10 provides a generalization of this fact.
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In the next section we will reveal that a wide class of recurrence relations, includ-
ing algebraic ones, have recursively weak set of roots — and so can avoid any forbid-
den sequence. These results give not only a quick and general solution to Professor
Ladas’ [5, Conjecture 4.5.1] but reveal a general behaviour of sequences satisfying a
large class of recurrence relation in connection with their initial values. Some examples
are mentioned at the end of the previous section. Our proof gives an “existence” results
for the above mentioned problems.

In general we do not use special notation for vectors (elemeris'dbut to avoid
confusion we always try to indicate whether we are speaking about vectors or numbers.
Ny stands forN U {0}. To facilitate the forthcoming notions and notations, first we
present a short look on the detailed effect of the recurrence equation (1.3) on the initial

values. Starting with the fixed initial values, . .., a,.1 € R (where0 < k is fixed),
we have

Tp=m

To = Ak+1

Then, repeating (1.3) we can go further:

r1 = h(zo,...,2_k) =h(ags1,...,01),
re = h(xy,ap1,...,09) = h(h(agir,...,01), ety ..., 02),
ry = h(xa,m1, 0541, ..,a03) =
h(h(h(agsr, ... a1), Q415 ,02), A(agir, ..., a1), Qgyr,...,a3)

To simplify this procedure we suggest the notations below in Definitions 2.1 through
2.4} Moreover, we define these notions for vector-sequelegs C R”, that is, we
allow functions

h:R¥N*E RN foranyN, K € N.

Definition 2.1. For any functiom, : RV*X — RY (N, K € N are fixed), we define its

recurrence iterativeshl! : RV*X — R for i € N as follows: For anyiy, ..., a; €
RY, we let

% ag, ... a) = ag,

M ag, ... a1) : =hlag,...,aq)  (i.e., hitself),

W ag,. .. a1) - :h(h[ll(:af> a, ..., as),

Wag, ... a1) = h(hP(a), (@), ar, ..., as), (2.1)

Wi ag, ... a1) = h(hEU(Q),. ..,hm(z), ax),

WE N ag, .. ay) = h(AEHU@Q), . hW(@)) forjeN,

1since we want to extend our result to the most general case, the notation from the end of Definition
2.4 below will be a bit complicated.
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whereq is short for(ag, .. .,a;) (Sequence of vectors).
According to Definition 2.1, we suggest to wrif§a,, . .., a;) for functions f in-
stead off (a4, ..., a,) in many parts of the present paper. Our method will also handle

recurrence equations with cases — using logical formulas. In order to speak easily about
these equations we prefer the generalization with multiindices of recurrence iteratives.

This means, that in each step we take care of all possible former branchings, that is
taking accounts of which former steps were taken.

Definition 2.2. Lethy, ..., hry1 : RV*E — RY be functions and,, . .., ®,, be prop-
erties (formulae) oRY*X. Now the functionh : RV*X — R¥ is defined from the
functionshy, ..., hy.1 with the case®,, ..., oy if and only if

ho (aK,...,al) if (I)o (CLK,...,CL1)

hlag,...,a ] . 2.2
(ax ) hr(ag,...,a1) if  ®p(ak,...,a1) (2:2)
hryi(ak,...,a1)  otherwise.
Definition 2.3. If the function’ : R¥*X — R¥ is defined with cases in (2.2), then we
define its recurrence multi-iterativéd for any multindexi = < 4,...,i, > € N;
(vector of lengths of indices) for anys € N, supposindg <i, < L+ 1forl1 <t <s,
by induction ons as follows: For any:y, ..., ax € RY, we let
h<i1> (CLK,...,G,l) : :h’h (QK,...,CH),
RS2 (ape, ... a1) @ = hy, (h<i1>(3), aK,...,aQ) ,
h<i1’i2’i3> (CLK, . 7a1) L= h“ <h<i1’i2>(§), h<i1>(:a>), ag, ... ,CL3> ,
P (g, ) s = by (K@), R (@), ar)
h<i1 ,,,,, ij+K> (aK7 o 7(11) - = ij+K (h<i1 ..... ij+K,1><E>)7 . ’h<i1 ..... ZJ>(Z>)) 7
whered = (ag,...,a1).

In what follows we always assume that< i, < L+ 1for1 < ¢t < sin any
multiindex: =< iy,...,i; >€ N° (s € N).

Definition 2.4. (i) A functionh : RV*E — R has a recursively weak set of roots
if and only if for eachi € N and for eactb € R”, the set (of solutions)

{ (x1,.oxi) € RVE 2 pll(xy, 0 xi) =D } (2.3)

has Lebesgue measure

2The forthcoming Definition 2.3 is similar to the previous one but rather complicated — we beg the
reader’s pardon.
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(ii) Let the functionh be defined by cases from the functiois. .., ;1. Now h
has a multiple recursively weak set of rootdf and only if for each multiindex
i =<1iy,...,i, > N° and for eaclb € R", the set

{ (x1,...,Xg) € RV h;(xl,...,xK) =b }
has Lebesgue measure

A —1
In other words, we require that the inverse image (or preimégé) (b) of b for

any multindex: and for anyb € R" has Lebesgue measute In what follows, we

talk about functiong which are defined by cases, multiindices and multiple recursively
weak sets, but at the same time we allow, of course simple functions, indices and sets,
too. When talking about Lebesgue measure of sets of different dimensions the following
notations will be useful:

Notation2.5. (i) for any vectorc € R*, we define the séfc, . )] C R” as
[(c, )] :={x€R": (c,x) e R},

(ii) Ly(X) stands for thel-dimensional Lebesgue measure of theX$et R.

We will use also the following well-known lemma which is an easy consequence of
Fubini's theorem (see e.g., [3, Ch. 36, Thm. A]):

Lemma 2.6. Let H C R**" be given.H has Lebesgue measuie
Lysxy(H)=0

if and only if all (except a set of Lebesgue meas)re-dimensional intersections éf
have Lebesgue measuire

for all (but a set of Lebesgue measijevectorsc € R“.
Now we proceed towards Theorem 2.9 below.

Lemma 2.7. Let f : RV*K — RY be any function anth € R" be any vector. If for all
(but a set of Lebesgue meas0jef (K — 1)-tuples(cy, ..., cx_1) € RV*E-D the set
(of solutions)

{XGRN : f(Cl,...,CK_l,X):b} (24)

has Lebesgue measuigthen the inverse imagg(b) € RY*KX has Lebesgue mea-
sure(, too.

Proof. Denote(c, ..., cx_1) by c. Since
oy =U{rimn|(c )] s cermn

andf'(b) N [(3, ﬂ is exactly the set in (2.4), we can use Lemma 2.6. O
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To state our main results, we also need the following notion.
Definition 2.8. (i) Any two sequences$z,), (y,) € R” avoid each otherif and

only if
(VneN)  z, # yn.

(i) The sequencéz,) avoidsthe sequence of set®,,) € P(RY) if and only if
(VneN) =z, & B,.
Now we can state our first main result.

Theorem 2.9. We consider theéV-dimensional recurrence equation (i.éx,,) C R”)

Xp41 = h (Xn7 s aXn—k) ) (25)

where the functiort : R¥** 1) . RY may be defined with cases and has (multiple)
recursively weak set of roots. Léb,) C RY be any fixed /-dimensional) sequence.
Then for almost all initial values_, ..., x, € R (excluding a set of Lebesgue mea-
sure( of RV**+1) the corresponding solutiofx,,) of Eq.(2.5)avoids(b,,).

Proof. Let us denote the initial values fok_y, ..., %) by (ao, ..., a;) € RV**+D),
i.e., let us prescribe

X_j = ag,...,Xo = a. (2.6)

For any fixedn € N the requirementk,, # b,, is ensured by the inequalities

hi(a07"'7ak) ;ébn

for any multindexi € N" of lengthn. But these inequalities (for eache N count-

able many) hold for all but a set of Lebesgue measucé the initial value vectors

(ag, . ..,a,) € RY***1_ The union of these countable times countable many sets has
still Lebesgue measufk which proves our statement. H

In the next theorem we give a generalization of Theorem 2.9.

Theorem 2.10.Let us consider théV-dimensional recurrence equatiq@.5), where

h has a (multiple) recursively weak set of roots. (B,) € P(R") be a fixed se-
guence of countable sets dfF-dimensional vectors. Then for almost all initial values
T g, ..., x9 € RN (excluding a set of Lebesgue measoref RV > +1)) the corre-
sponding solutiorix,, ) of Eq.(2.5)avoids(B,,).

Proof. We introduce the set8,, C R" forn € N by

B, = {0\ :i € N}.
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Now, defining the sequences

b(l) = (bglz) ) neN

for i € N, we have, by Theorem 2.9, for alle N a setZ; C RV**+1 of Lebesgue
measure.(Z;) = 0 of initial value-vectors

(T_p, ..., zo) € RVXKHD

which generates sequendes ) only which does not avoid the sequeng®. The union
of these setg; is still of Lebesgue measufe O

3 Functions which have Recursively Weak Set of Roots

In this section we examine which types of recurrence relations have recursively weak
set of roots. Unfortunately we do not have a general result for this question, but let us
mention at the beginning that not every continuous funcfianR — R, which is not
constant in any interval, has the property that the inverse infagé) has Lebesgue
measurd for anyb € R.2> Furthermore one can easily find even continuous functions
f,g : R — R such that for any € R, the inverse imageg ' (b) andg™~'(b) both have
Lebesgue measufebut for the compositiorf o g this is NOT true.

Definition 3.1. A function h : R™ — RY is calledalgebraic if and only if it can be
expressed with the four basic operators +, -, * , / (of codrgeay contain any real
numbers as constants, too).

In this section we prove the following result.

Theorem 3.2. Any nonconstafitalgebraic functiom, : R” — R has a multiple recur-
sively weak set of roots.

The proof of Theorem 3.2 uses the following easy corollary of the fundamental
theorem of algebra:

Lemma 3.3. For each polynomiap(z,...,x,) not identically0 there arefinite sets
Fi, ..., F, C R with the property such that the equation
p(z1,...,2,) =0 (3.1)

has only finitely many rootéy, ..., z,) € R" satisfyingz; ¢ F; forall j < n. In
other words, the equatiof8.1) may have infinitely many roots only:if € F; for some
Jj<n.

3For example take any closed $&tC R of positive measure. Since the complemen€as a union
of disjoint open sets, we can defiffe: R — R as f(z) = 0 for x € C and the reversed parabola
f(z) := (z — a)(b—x) fora < z < bfor any interval(a, b) of C's complement. Many more variations
are possible, too.

“The term “nonconstant” (not identically constant) means that there is no real nuratieisuch that
h(zp,...,x1)=cforall (x,,...,x1) € R".
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Though Lemma 3.3 may be well known, we include its short proof in the Appendix.
Lemma 3.3 implies easily that the set of roots of each polynomial has Lebesgue measure
0. Theorem 3.2 states that for each N and for eachh € R, the set (of solutions)

{ (x1,...,2,) €R" - h[i](xl,...,a:n) :b}

has Lebesgue measude Though all iterates:!’! are also algebraic, we cannot use
Lemma 3.3 directly: We have to ensure that all iterditésare not equal identically to
b, too! The following result proves Theorem 3.2.

Theorem 3.4.Leth : R" — R be a nonconstant algebraic function. Then for every
b € R there exist finite (or empty) sef§; C R (j < n, i € N) such that the equality

Az, . a) =D (3.2)

has only finitely many root&4, ..., z,) € R" satisfyingz; ¢ E;’l forall j < n. In
other words, the equalit{8.2) may have infinitely many roots only:if € E]bZ for some
Jj<n.

Proof. Itis easy to see that all algebraic functions have the form
My, ...,z1) =

for some polynomialé; andk,. So, all equalities

k1<$n7 e ,I1>
h(xn, ..., =T )
(x 33'1) kQ(I‘n,...,JIl)
are equivalent to
k'1<.§Cn,...,Il) —b'kg(ﬂfn,...,.flﬁ) =0. (33)

We now use induction ohe N, 7 > 1. If i = 1, then, by (3.3), we can let

E® = F™ (ky(zp, ..., 21) — b kolzp,...,121)).

J,1 J

Letl 5 i < n. Using the notation’ := (xn, ..., x1), we have to investigate the equality

P (E) = n (W (Z) o B (F) ) = b (3.4)
By the induction hypothesis, this equality might have infinitely many roots only if
Tj € Ej(‘b—)z‘ﬂ, 1 (1<j<n)

and
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i.e.,

v € BY, where e B ., (<(<i-11<j<n).

So, forl < j < i, we may let

i—1

b b
E](z) = U (U {Ej(i) eAS E’r(z_)i+€+1, 1}) )

/=1
while fori < j < n,

i—1

b b b
Ey(z) = U (U {Eg(i) P e Efzzi+€+l, 1}) U Ej('—)i-i-l, 1

(=1

If i > n, then (3.4) changes to

Bl (?) _5 <h“*” (?) .. Bl (?)) — b, (3.5)

Similarly to the casé < i < n, we can let

i—1

b b
EJ(Z) = U (U {Ey(i) pe Er(in+é+1, 1})

(=1
for1 <j <n. O

Theorem 3.4 clearly implies Theorem 3.2 (using Lemmas 2.6, 2.7 and Theorem
2.9). Our further research will include higher dimensional, not only algebraic functions
h with cases.

4  Appendix

Though Lemma 3.3 may be well known, we include its short proof here.

Proof of Lemma 3.3We use induction om € N. The setsF; depend orp, and we
must handle many polynomials so we use the notaﬁﬁﬂ(p). If n = 1, then we let
F = Fl(l) := () sincep is nonconstant. Now let > 1. Writepfor1 < j < n as

A

p(a1,. .., Tn) = Z (xj)t Pyt (T1s e T, gy, T)
t=0

whereA; € N and

pis RVTSR O (1<j<n, 0<t<A))
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are suitable polynomials. (Some pf, may be constant but not all of them.) By the
induction hypothesis, we have finite sé@gf (pj) € Rsuch thatifr, ¢ FZ" 1)(]9j7t),
¢ # j, then the polynomialg; , may have finitely many roots

n—1
(ZL‘17...,I]’_1,I]’+1,...,.Z‘n)GR .

Let Re” 1)(pjvt) bet the set of the,-components of these roots:

RV (pi0) = {ze €R| (w1, 21,2551, .., 1,) iS@TOOLOMD; ) (4 j)

and further
UF(n 1 pjt mR pjt

and finally

J=1,j#¢

The setsFZ(”) for ¢ < n are clearly finite and satisfy the requirement of the lemmal
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