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Abstract:   We consider different online algorithms for a generalized scheduling 

problem for parallel machines, described in details in the first section. This problem is 

the generalization of the classical parallel machine scheduling problem, when the make-

span is minimized; in that case each job contains only one task. On the other hand, the 

problem in consideration is still a special version of the workflow scheduling problem. 

We present several heuristic algorithms and compare them by computer tests. 
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1 The generalized Parallel Machine Scheduling problem  

 We are given a list of (types of) tasks T₁,...,Tt , and another list of machines 

M₁,...,Mm ,  and the table I[i,j] which shows the required time what machine Mi 

needs to solve the task Tj  (1≤i≤m, 1≤j≤t).  I[i,j]0 is assumed, but I[i,j]<0 indi-

cates that Mi is unable to solve Tj .  

 We receive online the list of  jobs  J₁,...,JL ,  where any job  Jℓ  (1≤ℓ≤L) con-

tains several tasks from the list T₁,...,Tt ,  in blocks (see /0a/ below).  The num-

ber of the jobs, L , and the number of tasks from which Jℓ are build up, are un-

known in advance. We have to schedule all the tasks of the jobs Jℓ  (1≤ℓ≤L) to 

the machines, fulfilling the following requirements.  

 

/0a/   Jℓ   contains of  fℓ  many blocks  

 Jℓ = (Bℓ,1 ,..., Bℓ,fℓ) (1) 

/0b/   where any block Bℓ,ϕ  (ϕ≤fℓ)  contains some tasks  

 Bℓ,ϕ = (Tℓ,ϕ,1 ,..., Tℓ,ϕ,Kϕ) (2) 
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Kϕ is called the length of Bℓ,ϕ , assuming  1Kϕ .  The case fℓ=1 is allowed, too.  

The size of the job Jℓ is clearly  

 size(Jℓ) = 




f

K
1

 (3) 

/0c/   Since Tℓ,ϕ,k are members of the list T₁,...,Tt we can define the function φ as  

 φ(ℓ,ϕ,k) = τ   if and only if   Tℓ,ϕ,k=Tτ (4) 

/0d/  any machine Mi can solve any task, starting at any time, assuming I[i,τ]>0. 

 

/1a/   For any ℓL and ϕ≤fℓ the tasks of the block Bℓ,ϕ (see /0b/) can be solved 

 (started) at any time, independently from each other (using any machine),  
 

however the blocks  Bℓ,2 ,..., Bℓ,ϕ ,..., Bℓ,ϕ+1  must wait for finishing the previous 

ones:  
 

/1b/  any task of Bℓ,ϕ+1 may start only when each task of Bℓ,ϕ has already been 

 finished.  
 

   In other words: for any  ℓL , ϕ1<ϕ2≤fℓ and k1≤Kϕ1 , k2≤Kϕ2 the task Tℓ,ϕ2,k2 can 

be started only after the task Tℓ,ϕ1,k1 has been finished.  

   We underline that /1b/ refers to blocks of the same job Jℓ :  
 

/1c/   we have no resctriction at all for the starting times of the tasks of the job 

 Jℓ1 when comparing to Jℓ1, for ℓ1ℓ2L .  
 

This means, especially, that  
 

/1d/   all tasks (in the first block) of any job may be started even at time 0,  
 

/2/    each machine Mi in every time may work on at most one task Tℓ,ϕ,k , and 

 Mi can not stop until it finishes the current task,  
 

/3/   scheduling the task Tℓ,ϕ,k to the machine Mi means, that we choose a (posi-

 tive) number d such that Mi is able to solve the task Tτ in the interval  

 (d, d+Ido[i,τ]),  assuming τ=φ(ℓ,ϕ,k) and fulfilling /2/.  

 

The goal is to finish all jobs as early as possible:  
 

/4/   We have to finish all tasks of the jobs J1,...,JL such that each machine finis-

 hes all its tasks until the time I, satisfying /0a/ through /3/ and I is minimal.  
 

 Let us observe, that /1b/ is the hardest part of our algorithmic problem. As-

sumption /1a/ is void when Kϕ=1. The other extreme case is when fℓ=1 , in this 

case /1a/-/1c/ imply that all tasks of Jℓ can be scheduled in arbitrary manner 

(fulfilling /0a/-/0c/ and /2/ of course).  
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 Naturally all task Tℓ,ϕ,k we have to schedule, is a member of exactly one 

block.  
 

 The problem could be described and solved using Integer Linear Program-

ing,too,but the number of variables and equations grows exponentially ([2],[3]).  

2 The algorithms  

 Recall, that the input is (in fact) the one-dimensional sequence of the tasks  

 T1,1,1 , ... , Tℓ,ϕ,k , ... , TL,ϕfL,KfL (5) 

where the terms Tℓ,ϕℓ,k are for 1ℓL , 1 ϕfℓ and 1k Kϕ . Of course the input 

contains also the delimiters for determining the jobs and blocks in (4) according 

to /0a/ and /0b/.  Single tasks without delimiters are considered one-element 

blocks:  Bℓ,ϕ=(Tℓ,ϕ,1),  i.e. Kϕ=1.  
 

 Our problem is the online scheduling: we have to schedule each task Tℓ,ϕ,k 

immediately after reading it:  
 

/5/   receiving Tℓ,ϕ,k we have to choose Mi and the starting time d such that Mi 

 can solve Tℓ,ϕ,k in the interval (d, d+Ido[i,τ]) without a break, where 

 τ=φ(ℓ,ϕ,k) .  
 

Clearly, when deciding /5/, we have no information on the further tasks or on 

the length of the job or block we are working on, even not the number of jobs. 

Our scheduling in /5/ can not be altered later, of course.  

(One illustrative example can be found in the 3rd section.)  
 

 In our research we implemented, tested and compared the following vari-

ants (numberings refer to our developing): 
 

Variant )3( :   Give the next task Tℓ,ϕ,k to the machine Mi  if   
 

Mi can finish  Tℓ,ϕ,k  the soonest,  
 

i.e.  d+Ido[i,τ]  has the possible smallest value, where τ=φ(ℓ,ϕ,k) and d is the 

starting time.  
 

Variant )4( :   Give the next task Tℓ,ϕ,k to the machine Mi  if   
 

Mi can start  Tℓ,ϕ,k  the soonest,  
 

i.e.  d+Ido[i,τ]  has the possible smallest value.  
 

Variant )5( :   Give the next task Tℓ,ϕ,k to the machine Mi  if   
 

Mi can solve  Tℓ,ϕ,k  in the shortest time,  
 

i.e.  Ido[i,τ]  has the possible smallest value. 
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 All the three variants are clearly greedy ones, but in the great level of lack 

of information, we have no other simple idea for solving PMS.  

3 Running experiments  

So far we have tested the above algorithms on large size input datasets, in 

which each block contained only one task, i.e. when the scheduling has no 

possibility for solving tasks parallel. Further research for the solution of the ge-

neral problem is in progress, will be summarized in [5] .  
 

 Let us start with a short illustrative example:  
 

Input (Ls4.dat) :  
 

  8  = t = number of Task-types  
  3  = H = number of Machines  
  2  = K = number of tasks per Jobs 

 10  = L = number of Jobs  
 -------------------------------------+  

  2  5  1  9  5  6  7  2  / Machine 1.| = I[h,] 
  3  4  8  7  4  1  3  1  / Machine 2.|   table of times 

  4  6  9  8  3  4  6  3  / Machine 3.|   neccessary for  
 -------------------------------------+   M

h
 for T


  

 1  2   / Job  1. 
 3  4   / Job  2. 
 1  3   / Job  3. 

 2  3   / Job  4. 
 3  3   / Job  5. 

 2  6   / Job  6. 
 5  2   / Job  7. 
 3  5   / Job  8. 

 1  6   / Job  9. 
 4  8   / Job 10. 

 0   / END  
 

The solution of variant  )3(  can be seen on Figure 1.  
 

 Before any running experiments or theoretical investigations one might have 

the following prejudices  (only few of them were justified during the runs): 
 

 " Variant  )3(  may give the best scheduling solution but it runs slowest  

(since it is the most precise?) " , 

 " Variant  )4(  may be the quickest but it provides bad solution  (since it 

deals with the starting time only?) ", 

 " Variant  )5(   may be quickest but it provides not so good + not so bad 

solution  (since it may give many tasks to some Mho ) ".  
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Figure 1: A solution of the example Ls4.dat  

 

 We tested the variants  )3( - )5(  with many (more than 600) large , randomly 

(uniformly) generated datasets, each of them containing 500-1000 jobs. We 

used a personal computer with Intel Core Quad CPU Q6600 @ 2.40GHz, 

4GB RAM, Windows 7 and Delphi 7 language.  

 The summary of one of the runs can be seen in [4], which includes and com-

parises schedulig- and running times, too.  

 

 Let us first serve the details of running of medium size datasets.  

N stands for the number of the datasets. Determining   

 1≤t≤100, 1≤m≤100, 1≤I(h,)≤100, 1≤L≤200, 1≤K≤20 , N=500 , (6) 

the average running time (for each dataset) were some minues, the sizes of the 

ouput files were 10kb - 1Mb separately, 100Mb total. These data are valid for 

all the three variants.  

 There were some differences in running times:  

variant  )5(  is highly faster than )3( ,  in detail : 

   in 14%  cases  0.5 * )3(    <    )5(        0.9 * )3(    

   in 75%   cases                         )5(    <    0.5 * )3(    

 However, the resulted scheduling times (solutions) were totally different (see 

[4] for details):  
 

variant  )4(  has extremaly bad solutions in almost all cases,  

variant  )3(  has the best solution with few exceptions:  

 in   6%  cases          )5(    is better, than    )3( ,  
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 in 17%  cases          )5(    is as good as     )3( ,  

variant  )5(  has not so bad solutions:  

     in 29%  cases  1.0 * )3(    <    )5(    <    1.2 * )3(    

     in 42%  cases  1.2 * )3(        )5(    <    2.0 * )3(    

 

As we observed, the above data slightly depend upon the size of the problem. 

 

 Now, let us turn to the experiment of large datasets. Relaying on the bad ex-

periences in the previous subsection, we excluded variant  )4(  from our further 

experiments. Our settings were:  

 1  ≤  t, m, I(h,), L, K  ≤  1000 ,    N=650 . (7) 

The average running times  (for all the N=650 datasets, total) :  

 variant  )3(  runned for  81 hours (!),  

 variant  )5(  runned for    2 hours,  

i.e. the difference is large: variant  )5(  is tremendously faster than )3(  : 

 in 23%  cases  0.5 * )3(    <    )5(        0.50 * )3(  ,  

 in 75%  cases                         )5(    <    0.05 * )3(    !  
 

The sizes of ouput files (separately) were between 1Mb and 50Mb, 4Gb (!) total 

for both these variants.  
 

The rate of resulted scheduling times showed oposite direction:  
 

variant )3( has always the best solution, )5( is fairly bad   

 in 11%  cases  1.0 * )3(    <    )5(    <    1.2 * )3( ,  

 in 29%  cases  1.2 * )3(        )5(    <    2.0 * )3( ,  

 in 33%  cases  2.0 * )3(        )5(    <    3.0 * )3( ,  

 in 25%  cases  3.0 * )3(        )5(  . 

Conclusions 

 In general, but especially in large size datasets, version )5(  was exponen-

tially faster than version )3( ,  but considering the resulted schedulings, version 

)5(  gave worse results than version )3( , in moderate manner. This shows again 

the old dilemma: "shorter running time" versus "better results " !  

 We have no comparison with the absolute (offline) optimum, but )3( might 

be optimal (in the offline sense) in many cases, since there are very few idle 

time (pause) of the machines, and they finish almost at the same "moment".  
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