
 PARALLEL MACHINE SCHEDULING PROBLEM 1

Online Algorithms for a Generalized Parallel Machine

Scheduling Problem

István SZALKAI
1,2

, György DÓSA
1,3

1 Department of Mathematics, University of Pannonia, Veszprém, Hungary
2 szalkai@almos.uni-pannon.hu
3 dosagy@almos.uni-pannon.hu

January 25, 2015.

Abstract: We consider different online algorithms for a generalized scheduling

problem for parallel machines, described in details in the first section. This problem is

the generalization of the classical parallel machine scheduling problem, when the make-

span is minimized; in that case each job contains only one task. On the other hand, the

problem in consideration is still a special version of the workflow scheduling problem.

We present several heuristic algorithms and compare them by computer tests.

Keywords: scheduling, parallel machines, online algorithm.

1 The generalized Parallel Machine Scheduling problem

 We are given a list of (types of) tasks T₁,...,Tt , and another list of machines

M₁,...,Mm , and the table I[i,j] which shows the required time what machine Mi

needs to solve the task Tj (1≤i≤m, 1≤j≤t). I[i,j]0 is assumed, but I[i,j]<0 indi-

cates that Mi is unable to solve Tj .

 We receive online the list of jobs J₁,...,JL , where any job Jℓ (1≤ℓ≤L) con-

tains several tasks from the list T₁,...,Tt , in blocks (see /0a/ below). The num-

ber of the jobs, L , and the number of tasks from which Jℓ are build up, are un-

known in advance. We have to schedule all the tasks of the jobs Jℓ (1≤ℓ≤L) to

the machines, fulfilling the following requirements.

/0a/ Jℓ contains of fℓ many blocks

 Jℓ = (Bℓ,1 ,..., Bℓ,fℓ) (1)

/0b/ where any block Bℓ,ϕ (ϕ≤fℓ) contains some tasks

 Bℓ,ϕ = (Tℓ,ϕ,1 ,..., Tℓ,ϕ,Kϕ) (2)

2 I. Szalkai, Gy. Dósa

Kϕ is called the length of Bℓ,ϕ , assuming 1Kϕ . The case fℓ=1 is allowed, too.

The size of the job Jℓ is clearly

 size(Jℓ) = 




f

K
1

 (3)

/0c/ Since Tℓ,ϕ,k are members of the list T₁,...,Tt we can define the function φ as

 φ(ℓ,ϕ,k) = τ if and only if Tℓ,ϕ,k=Tτ (4)

/0d/ any machine Mi can solve any task, starting at any time, assuming I[i,τ]>0.

/1a/ For any ℓL and ϕ≤fℓ the tasks of the block Bℓ,ϕ (see /0b/) can be solved

 (started) at any time, independently from each other (using any machine),

however the blocks Bℓ,2 ,..., Bℓ,ϕ ,..., Bℓ,ϕ+1 must wait for finishing the previous

ones:

/1b/ any task of Bℓ,ϕ+1 may start only when each task of Bℓ,ϕ has already been

 finished.

 In other words: for any ℓL , ϕ1<ϕ2≤fℓ and k1≤Kϕ1 , k2≤Kϕ2 the task Tℓ,ϕ2,k2 can

be started only after the task Tℓ,ϕ1,k1 has been finished.

 We underline that /1b/ refers to blocks of the same job Jℓ :

/1c/ we have no resctriction at all for the starting times of the tasks of the job

 Jℓ1 when comparing to Jℓ1, for ℓ1ℓ2L .

This means, especially, that

/1d/ all tasks (in the first block) of any job may be started even at time 0,

/2/ each machine Mi in every time may work on at most one task Tℓ,ϕ,k , and

 Mi can not stop until it finishes the current task,

/3/ scheduling the task Tℓ,ϕ,k to the machine Mi means, that we choose a (posi-

 tive) number d such that Mi is able to solve the task Tτ in the interval

 (d, d+Ido[i,τ]), assuming τ=φ(ℓ,ϕ,k) and fulfilling /2/.

The goal is to finish all jobs as early as possible:

/4/ We have to finish all tasks of the jobs J1,...,JL such that each machine finis-

 hes all its tasks until the time I, satisfying /0a/ through /3/ and I is minimal.

 Let us observe, that /1b/ is the hardest part of our algorithmic problem. As-

sumption /1a/ is void when Kϕ=1. The other extreme case is when fℓ=1 , in this

case /1a/-/1c/ imply that all tasks of Jℓ can be scheduled in arbitrary manner

(fulfilling /0a/-/0c/ and /2/ of course).

 PARALLEL MACHINE SCHEDULING PROBLEM 3

 Naturally all task Tℓ,ϕ,k we have to schedule, is a member of exactly one

block.

 The problem could be described and solved using Integer Linear Program-

ing,too,but the number of variables and equations grows exponentially ([2],[3]).

2 The algorithms

 Recall, that the input is (in fact) the one-dimensional sequence of the tasks

 T1,1,1 , ... , Tℓ,ϕ,k , ... , TL,ϕfL,KfL (5)

where the terms Tℓ,ϕℓ,k are for 1ℓL , 1 ϕfℓ and 1k Kϕ . Of course the input

contains also the delimiters for determining the jobs and blocks in (4) according

to /0a/ and /0b/. Single tasks without delimiters are considered one-element

blocks: Bℓ,ϕ=(Tℓ,ϕ,1), i.e. Kϕ=1.

 Our problem is the online scheduling: we have to schedule each task Tℓ,ϕ,k

immediately after reading it:

/5/ receiving Tℓ,ϕ,k we have to choose Mi and the starting time d such that Mi

 can solve Tℓ,ϕ,k in the interval (d, d+Ido[i,τ]) without a break, where

 τ=φ(ℓ,ϕ,k) .

Clearly, when deciding /5/, we have no information on the further tasks or on

the length of the job or block we are working on, even not the number of jobs.

Our scheduling in /5/ can not be altered later, of course.

(One illustrative example can be found in the 3rd section.)

 In our research we implemented, tested and compared the following vari-

ants (numberings refer to our developing):

Variant)3(: Give the next task Tℓ,ϕ,k to the machine Mi if

Mi can finish Tℓ,ϕ,k the soonest,

i.e. d+Ido[i,τ] has the possible smallest value, where τ=φ(ℓ,ϕ,k) and d is the

starting time.

Variant)4(: Give the next task Tℓ,ϕ,k to the machine Mi if

Mi can start Tℓ,ϕ,k the soonest,

i.e. d+Ido[i,τ] has the possible smallest value.

Variant)5(: Give the next task Tℓ,ϕ,k to the machine Mi if

Mi can solve Tℓ,ϕ,k in the shortest time,

i.e. Ido[i,τ] has the possible smallest value.

4 I. Szalkai, Gy. Dósa

 All the three variants are clearly greedy ones, but in the great level of lack

of information, we have no other simple idea for solving PMS.

3 Running experiments

So far we have tested the above algorithms on large size input datasets, in

which each block contained only one task, i.e. when the scheduling has no

possibility for solving tasks parallel. Further research for the solution of the ge-

neral problem is in progress, will be summarized in [5] .

 Let us start with a short illustrative example:

Input (Ls4.dat) :

 8 = t = number of Task-types
 3 = H = number of Machines
 2 = K = number of tasks per Jobs

 10 = L = number of Jobs
 -------------------------------------+

 2 5 1 9 5 6 7 2 / Machine 1.| = I[h,]
 3 4 8 7 4 1 3 1 / Machine 2.| table of times

 4 6 9 8 3 4 6 3 / Machine 3.| neccessary for
 -------------------------------------+ M

h
 for T



 1 2 / Job 1.
 3 4 / Job 2.
 1 3 / Job 3.

 2 3 / Job 4.
 3 3 / Job 5.

 2 6 / Job 6.
 5 2 / Job 7.
 3 5 / Job 8.

 1 6 / Job 9.
 4 8 / Job 10.

 0 / END

The solution of variant)3(can be seen on Figure 1.

 Before any running experiments or theoretical investigations one might have

the following prejudices (only few of them were justified during the runs):

 " Variant)3(may give the best scheduling solution but it runs slowest

(since it is the most precise?) " ,

 " Variant)4(may be the quickest but it provides bad solution (since it

deals with the starting time only?) ",

 " Variant)5(may be quickest but it provides not so good + not so bad

solution (since it may give many tasks to some Mho) ".

 PARALLEL MACHINE SCHEDULING PROBLEM 5

Figure 1: A solution of the example Ls4.dat

 We tested the variants)3(-)5(with many (more than 600) large , randomly

(uniformly) generated datasets, each of them containing 500-1000 jobs. We

used a personal computer with Intel Core Quad CPU Q6600 @ 2.40GHz,

4GB RAM, Windows 7 and Delphi 7 language.

 The summary of one of the runs can be seen in [4], which includes and com-

parises schedulig- and running times, too.

 Let us first serve the details of running of medium size datasets.

N stands for the number of the datasets. Determining

 1≤t≤100, 1≤m≤100, 1≤I(h,)≤100, 1≤L≤200, 1≤K≤20 , N=500 , (6)

the average running time (for each dataset) were some minues, the sizes of the

ouput files were 10kb - 1Mb separately, 100Mb total. These data are valid for

all the three variants.

 There were some differences in running times:

variant)5(is highly faster than)3(, in detail :

 in 14% cases 0.5 *)3(<)5( 0.9 *)3(

 in 75% cases)5(< 0.5 *)3(

 However, the resulted scheduling times (solutions) were totally different (see

[4] for details):

variant)4(has extremaly bad solutions in almost all cases,

variant)3(has the best solution with few exceptions:

 in 6% cases)5(is better, than)3(,

6 I. Szalkai, Gy. Dósa

 in 17% cases)5(is as good as)3(,

variant)5(has not so bad solutions:

 in 29% cases 1.0 *)3(<)5(< 1.2 *)3(

 in 42% cases 1.2 *)3()5(< 2.0 *)3(

As we observed, the above data slightly depend upon the size of the problem.

 Now, let us turn to the experiment of large datasets. Relaying on the bad ex-

periences in the previous subsection, we excluded variant)4(from our further

experiments. Our settings were:

 1 ≤ t, m, I(h,), L, K ≤ 1000 , N=650 . (7)

The average running times (for all the N=650 datasets, total) :

 variant)3(runned for 81 hours (!),

 variant)5(runned for 2 hours,

i.e. the difference is large: variant)5(is tremendously faster than)3(:

 in 23% cases 0.5 *)3(<)5( 0.50 *)3(,

 in 75% cases)5(< 0.05 *)3(!

The sizes of ouput files (separately) were between 1Mb and 50Mb, 4Gb (!) total

for both these variants.

The rate of resulted scheduling times showed oposite direction:

variant)3(has always the best solution,)5(is fairly bad

 in 11% cases 1.0 *)3(<)5(< 1.2 *)3(,

 in 29% cases 1.2 *)3()5(< 2.0 *)3(,

 in 33% cases 2.0 *)3()5(< 3.0 *)3(,

 in 25% cases 3.0 *)3()5(.

Conclusions

 In general, but especially in large size datasets, version)5(was exponen-

tially faster than version)3(, but considering the resulted schedulings, version

)5(gave worse results than version)3(, in moderate manner. This shows again

the old dilemma: "shorter running time" versus "better results " !

 We have no comparison with the absolute (offline) optimum, but)3(might

be optimal (in the offline sense) in many cases, since there are very few idle

time (pause) of the machines, and they finish almost at the same "moment".

 PARALLEL MACHINE SCHEDULING PROBLEM 7

Acknowledgements

We say grateful thanks for the following sponsors.

Research was supported by the Fund TÁMOP and National Research Center

for Development and Market, Introduction of Avanced Information and Com-

munication Technologies, TÁMOP 4.2.2.C-11/1/KONV-2012-0004, II./4.

Publishing of this Conference Proceeding is supported by the Sapientia

University.

References

[1] Dósa, Gy.: "Online workflow scheduling: theoretical and practical results",

Manuscript, 2014. Januar.

[2] Dósa, Gy.: "A heuristic algorithm for maintaning the scheduling resources,

using historic data: developing and testing" (in Hungarian), Project Report, 2014.

November.

[3] Szalkai, I.: "Implementing and testing variants of online scheduling algo-

rithms, including ILP modeling, I.-VI." (in Hungarian), Project Reports, 2014.

[4] Szalkai, I.: "Summary of running experiments LS-500k", Project Report,

2014, http://math.uni-pannon.hu/~szalkai/LS-500k-345-rend-fut-en.xls

[5] Szalkai, I.: "Implementing and testing variants of online scheduling algo-

rithms, VII.: Parallel computations" (in Hungarian), Project Report, 2015.

http://math.uni-pannon.hu/~szalkai/LS-500k-345-rend-fut-en.xls

