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In this paper, we investigate the difference of Shepard’s generalized operators Sσ from the approximated
set of data for various weight functions σ . Bounds are given for the sizes of the ‘bumps’shown on the graph
of Sσ for σ(d) = 1/d in dimension N = 1, and the best weight function σ for practical use is proposed.
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1. Introduction

For any given set of datapoints {P1, . . . , PM} ⊆ R
N in any dimension N ≥ 1, real numbers

F1, . . . , FM ∈ R and fixed weight function σ : R+ → R+, we investigate the generalized Shepard
operator Sσ : R

N → R
+ defined for any P ∈ R

N as

S(M)
σ (P ) :=

∑M
i=1 Fiσ (d(P, Pi))∑M

i=1 σ(d(P, Pi))
,

where d : R
N × R

N → R is any distance function on R
N . (For simplicity we omit the superscript

M whenever it is clear from the context.)
The main advantage of the above simple formula is that it is applicable for any set of points

{P1, . . . , PM} ⊆ R
N (which is not our choice in general in practice). Let us highlight our main

point of view: we consider Sσ for constructing a surface matching any given set of data1

{(P1, F1), . . . , (PM, FM)}, i.e. we do not consider Sσ for approximating any pre-given function
f : R

N → R.
This method is widely applied, e.g. in geography for dimension N = 2 (see, e.g. [10]).
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Figure 1. The graph of Sσ for σ(d) = 1/d in dimension N = 1.

For exact approximation (that is, Sσ (Pi) = Fi for all i ≤ M) σ must satisfy

lim
d→0+ σ(d) = +∞. (1)

Further, we require

lim
d→+∞ σ(d) = 0 (2)

since in our investigations M → ∞ and so d → ∞ (see [17]).
In the present paper, we restrict ourselves to dimension N = 1. However, the results we obtain

can be used for any dimension, since any distortion of higher-dimensional surfaces (defined by
Sσ ) can be detected in a suitable one-dimensional intersection.

The starting point of our investigation was the surprising diagram of S1/d , shown in Figure 1
(in dimension N = 1):

(A computer program for demonstrating and investigating different approximation methods is
also in preparation in [13].)

Black dots in the above figure show the pairs (Pi, Fi) for i ≤ M . What disturbs us is that the
approximating formula Sσ (P ) has big differences (‘waves’) in many places despite the almost
linear dataset. (In other words: Sσ tends to the average F̄ := (F1 + · · · + FM)/M not only when
P → ∞ but even when P is inside the convex hull of the dataset {P1, . . . , PM}.)

In this note, we show that these ‘bumps’ (big differences) are present almost in all cases. More
precisely, we calculate the rate of these differences for several weight functions σ :

σ1(d) := 1

dα
(α > 0) (Shepard’s original formula),

σ2(d) := 1

dα
exp(−λdβ) (α, β, λ > 0),

σ3(d) := 1

lnβ(d + 1)
(β > 0),

σ4(d) := 1

dα

1

lnβ(d + 1)
(α, β > 0)
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2840 Biancamaria Della Vecchia and István Szalkai

(σ1 is the original weight function of [7]. The others are our candidates for better approximation.
We do not have so many choices since we have to ensure (1).)

For most of the investigated cases, the size of the differences goes to infinity when the number
of the datapoints M tends to infinity. This latter assumption requires infinite domain for the
approximation. This is why we investigate limM→∞ in Questions 1–3.

Though everyday approximations are done on finite intervals, in most cases we cannot choose
as many datapoints Pi as we like as, e.g. in the application Katona [10]. This could result in the
unexpected waves as in Figure 1.

In the literature, numerous excellent properties of Shepard’s original and generalized formulae
are justified, see, e.g. in Allasia [1], Bojanic et al. [2], Della Vecchia et al. [3,4], Farwig [5], Gál
and Szabados [6], Gordon and Wixom [7], Hoschek and Lasser [8], Mastroianni and Szabados
[12], Szabados [14], Szalkai [16,17] or Zhou [19]. These good approximation properties are
proved either assuming a special set of datapoints {P1, . . . , PM}, or by investigating the limit-
approximation in the case when the number of the datapoints M tends to infinity on a fixed finite
interval. Elimination of these restrictions is the main improvement of our analysis with respect to
other investigations.

Katona [10], Láng-Lázi et al. [11] and Szalkai [15,18] tried to apply Shepard’s original formula
in practice. We suggest using the weight functions that we will select in Section 3.

1.1 Preliminary definitions

We are treating the N = 1-dimensional case2. In the present investigation, let us define the set of
datapoints to be equidistant (they form an arithmetic progression), i.e. we fix u, v > 0 and we let

Pi := P1 + (i − 1)v and Fi := F1 + (i − 1)u, for i = 1, . . . , M (3)

(that is Pi ∈ R are in N = 1-dimension).
We investigate the difference of Sσ from the straight line �(x)

�(x) = F1 + τu for x = P1 + τv (τ ∈ R)

(� connects all the points (Pi, Fi)) at the point xτ ∈ (P1, P2)

xτ = P1 + τv (τ ∈ (0, 1)),

i.e. we calculate

�(xτ ) = Sσ (xτ ) − �(xτ )

for various weight functions σ . Our set of data {(Pi, Fi), i = 1, . . . , M} is equidistant, other sets
of data are investigated in [ [17], Section 4.2].

The difference is

�(xτ ) = Sσ (xτ ) − �(xτ )

= F1σ(τv) + ∑M
i=2(F1 + (i − 1)u)σ ((i − 1 − τ)v)

σ (τv) + ∑M
i=2 σ((i − 1 − τ)v)

− (F1 + τu)

= u

( ∑M−1
j=1 jσ ((j − τ)v)

σ (τv) + ∑M−1
j=1 σ((j − τ)v)

− τ

)
. (4)

We investigate the following questions for fixed τ ∈ (0, 1) (i.e. xτ ∈ (P1, P2) is fixed3):

Question 1 Is limM→∞ �(xτ ) = ∞ or limM→∞ �(xτ ) < ∞?
In the latter case: what is the value of limM→∞ �(xτ )/u approximatively?

D
ow

nl
oa

de
d 

by
 [

Pa
nn

on
 E

gy
et

em
],

 [
Is

tv
an

 S
za

lk
ai

] 
at

 0
3:

41
 0

1 
Se

pt
em

be
r 

20
11

 



International Journal of Computer Mathematics 2841

Question 2 For which weight functions σ do we have limM→∞ Sσ (xτ ) > F2 for some xτ ∈
(P1, P2)?

(This inequality is equivalent to limM→∞ �(xτ )/u > 1 − τ .)

Question 3 For which point xτ ∈ (P1, P2) is limM→∞ �(xτ )/u maximal?
Similar questions might be investigated for the approximation in the finite interval [0, a]

(Sσ is invariant for vertical translation but not for vertical zooming).

The following well-known results will be useful to our work:

Lemma 1 Let a0, a1, . . . ∈ R+ with aj → 0. Then the fractions∑M
j=0 jaj∑M
j=0 aj

have a finite limit for M → ∞ if and only if
∑∞

j=0 jaj < ∞.

2. Investigating the weight functions

Now we investigate the weight functions σ1–σ4 in detail.

2.1 The weight function σ1(d) = 1/dα

Since σ now is homogeneous, we have

�(xτ )

u
=

∑M−1
j=1 jσ (j − τ)

σ (τ ) + ∑M−1
j=1 σ(j − τ)

− τ =
∑M−1

j=1 j/(j − τ)α

1/τα + ∑M−1
j=1 1/(j − τ)α

− τ.

It is well known that the denominator is convergent iff α > 1, while the numerator is convergent
iff α > 2.

This means that Shepard’s original formula

Sα(P ) :=
∑M

i=1 Fi1/(d(P, Pi))
α∑M

i=1 1/(d(P, Pi))α

must have as large bumps as one likes for all 1 < α ≤ 2, while the size of bumps is bounded for
2 < α:

Theorem 1 For all 1 < α ≤ 2 the limit limM→∞ �(xτ )/u = ∞ diverges, while for α > 2 we
have

1/(1 − τ)α + ζ(α − 1) − 1

1/τα + 1/(1 − τ)α + ζ(α)
− τ ≤ lim

M→∞
�(xτ )

u
≤ 1/(1 − τ)α + ζ(α − 1) + ζ(α)

1/τα + 1/(1 − τ)α + ζ(α) − 1
− τ, (5)

where ζ is Riemann’s zeta function.

Proof In the case of α > 2 in order to approximate the value of limM→∞ �(xτ )/u we write for
the denominator

1

τα
+ 1

(1 − τ)α
+

M−1∑
j=2

1

jα
<

1

τα
+

M−1∑
j=1

1

(j − τ)α
<

1

τα
+ 1

(1 − τ)α
+

M−1∑
j=2

1

(j − 1)α
,
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2842 Biancamaria Della Vecchia and István Szalkai

i.e.
1

τα
+ 1

(1 − τ)α
+ ζ(α) − 1 ≤ lim

M→∞(den) ≤ 1

τα
+ 1

(1 − τ)α
+ ζ(α)

and for the numerator

1

(1 − τ)α
+

M−1∑
j=2

j

jα
<

M−1∑
j=1

j

(j − τ)α
<

1

(1 − τ)α
+

M−1∑
j=2

j − 1 + 1

(j − 1)α
,

i.e.
1

(1 − τ)α
+ ζ(α − 1) − 1 ≤ lim

M→∞(num) ≤ 1

(1 − τ)α
+ ζ(α − 1) + ζ(α),

which implies the estimation (5), answering Question 1. �

Question 2 could be answered by the inequality

1 − τ ≤ 1/(1 − τ)α + ζ(α − 1) − 1

1/τα + 1/(1 − τ)α + ζ(α)
− τ,

i.e.
1

τα
+ 1

(1 − τ)α
+ ζ(α) ≤ 1

(1 − τ)α
+ ζ(α − 1) − 1

or by the much simpler one
1

τα
+ 1 ≤ ζ(α − 1) − ζ(α). (6)

For each fixed α the left-hand side has a minimal value for τ = 1, so Equation (6) admits a solution
for τ iff

2 ≤ ζ(α − 1) − ζ(α). (7)

From our computational experiments we learned that Equation (7) holds for

2 < α < 2.3617

and does not hold for 1 < α < 2 or α > 2.3617.
For Question 3, we should find the maximal value(s) of

�(xτ )

u
:= 1/(1 − τ)α + ζ(α − 1) − 1

1/τα + 1/(1 − τ)α + ζ(α)
− τ,

where τ ∈ (0, 1) for each fixed α > 2.

2.2 The weight function σ2(d) = 1/dα exp(−λdβ)

In this case, �(xτ )/u reads as

�(xτ )

u
=

∑M−1
j=1 j exp(−λ((j − τ)v)β)/((j − τ)v)α

exp(−λ(τv)β)/(τv)α + ∑M−1
j=1 exp(−λ((j − τ)v)β)/((j − τ)v)α

− τ

=
∑M−1

j=1 jE(j−τ)β /(j − τ)α

Eτβ
/τα + ∑M−1

j=1 E(j−τ)β /(j − τ)α
− τ (8)

where

E := exp(−λvβ)

(v was defined in Equation (3)).
Since 0 < E and τ < 1, we can easily prove
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International Journal of Computer Mathematics 2843

Theorem 2 limM→∞ �(xτ )/u is convergent for all α, β, λ > 0, τ ∈ (0, 1).

Proof We use Lemma 0 for the sequence aj = E(j−τ)β /(j − τ)α (1 ≤ j),
a0 = Eτβ

/τα . The assumptions aj > 0 and aj → 0 clearly hold since |E| < 1 and 1 ≤ j . The
numerator can be estimated as

∞∑
j=1

j
E(j−τ)β

(j − τ)α
≤ a1 +

∞∑
j=2

jE(j−1)β = a1 +
∞∑
i=1

(i + 1)Eiβ . (9)

Using the fact that

lim
i→∞

iβ

log1/E(i)
= ∞,

we can find i0 ∈ N such that iβ > 3 log1/E(i) for i > i0 . This proves Equation (9) since

∞∑
i=1

(i + 1)Eiβ ≤
i0∑

i=1

(i + 1)Eiβ +
∞∑

i=i0

(i + 1)E3 log1/E(i)

≤ c +
∞∑

i=i0

i + 1

i3
,

which clearly converges. The denominator does not exceed the numerator so it converges as
well. �

Now we present detailed calculations for the case α = β = 1 (calculations for the general case
of α and β are lengthy). In this case, the numerator of Equation (8) is

M−1∑
j=1

j
E(j−τ)

(j − τ)
=

M−1∑
j=1

(
1 + τ

j − τ

)
E(j−τ) = E−τ

M−1∑
j=1

Ej + τ

M−1∑
j=1

E(j−τ)

j − τ

= E

Eτ

EM−1 − 1

E − 1
+ τIM(E, τ),

where

IM(E, τ) :=
M−1∑
j=1

E(j−τ)

(j − τ)
= E1−τ

1 − τ
+

M−1∑
j=2

∫
0
E(j−τ−1) dE

= E1−τ

1 − τ
+

∫
0
E1−τ

M−3∑
J=0

EJ dE = E1−τ

1 − τ
+

∫
0
E1−τ EM−2 − 1

E − 1
dE

= E1−τ

1 − τ
+

∫ E

0
x1−τ xM−2 − 1

x − 1
dx

which has a limit (M → ∞)

I∞(E, τ) := E1−τ

1 − τ
+

∫ E

0
x1−τ 1

1 − x
dx.

So we finally obtain:
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2844 Biancamaria Della Vecchia and István Szalkai

Theorem 3

L(E, τ) := lim
M→∞

�(xτ )

u
= E1−τ /(1 − E) + τI∞(E, τ)

Eτ/τ + I∞(E, τ)
− τ for α = β = 1. (10)

This answers Question 1.

It is easy to see that

∫
x1−τ 1

1 − x
dx = x1−τ

2 F1(1 − τ ; 1; 2 − τ ; x) − 1

1 − τ
,

with 2F1(w, z, y, x) being the hypergeometric function, so that

I∞(E, τ) = E1−τ

1 − τ
·2 F1(1 − τ ; 1; 2 − τ ; E). (11)

Figures 2–4 show 3D views and intersections of L vs. E and τ in different scaling. The hyper-
geometric function on the right-hand-side of Equation (11) was computed by means of a routine
included in the package of special functions by Jin and Zhang [9]. Points 0 and 1 are excluded
from the plots.

Since we are looking for the best approximating function Sσ including E = exp(−λvβ), we
can conclude in the case α = β = 1 the following:

After estimating the largest or most common values of v we must choose λ such that

E = exp(−λv) < 0.6

which will make limM→∞ �(xτ )/u very small!

E

limM D(X
*
)/u

t

Figure 2. Plot lim∞ �(xτ )/u vs. τ and E, scale [−1, 5].
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International Journal of Computer Mathematics 2845

Figure 3. Plot lim∞ �(xτ )/u vs. τ and E, scale [−0.3, 0.4].

Figure 4. Plot lim∞ �(xτ )/u vs. τ for E = 0.1, 0.2, . . . , 0.9.

Let us note that formula (10) for L(E, τ) can also be written as

L(E, τ) = τ [Eτ/τ + I(E, τ)] + E1−τ /(1 − E) − Eτ

Eτ/τ + I(E, τ)
− τ

= E1−τ /(1 − E) − Eτ

Eτ/τ + E1−τ /(1 − τ) + ∫ E

0 x1−τ /(1 − x) dx

= τ(1 − τ)[E1−τ − (1 − E)Eτ ]
(1 − E)[(1 − τ)Eτ + τE1−τ + τ(1 − τ)

∫ E

0 x1−τ /(1 − x) dx] .
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2846 Biancamaria Della Vecchia and István Szalkai

It is easy to see that, for fixed E ∈ (0, 1)

lim
τ→0

L(E, τ) = 0 and lim
τ→1

L(E, τ) = 0,

which correspond to the fact that Sσ is exact (that is, Sσ (Pi) = Fi).
For Question 2, we should solve the inequality

E1−τ /(1 − E) + τI(E, τ)

Eτ/τ + I(E, τ)
− τ > 1 − τ,

that is

E1−τ

1 − E
+ τ

(
E1−τ

1 − τ
+

∫ E

0

x1−τ

1 − x
dx

)
>

Eτ

τ
+ E1−τ

1 − τ
+

∫ E

0

x1−τ

1 − x
dx,

i.e.

E1−τ

1 − E
E − Eτ

τ
> (1 − τ)

∫ E

0

x1−τ

1 − x
dx,

or, using the hypergeometric function 2F1,

E

1 − E
− E2τ−1

τ
>2 F1(1 − τ ; 1; 2 − τ ; E) − 1.

Some more computer experiments are necessary for solving this inequality, we do not include
them here.

2.3 The weight function σ3(d) = 1/lnβ (d+1)

Now �(xτ )/u reads as

�(xτ )

u
=

∑M−1
j=1 j/lnβ((j − τ)v + 1)

1/lnβ(τv + 1) + ∑M−1
j=1 1/lnβ((j − τ)v + 1)

− τ.

Since
∞∑

j=1

1

lnβ((j − τ)v + 1)
≥

∞∑
j=2

1

lnβ(j 2)
− c = ∞

we see that:

Theorem 4 For the weight function σ(d) = 1/lnβ (d + 1) we have for all β > 0

lim
M→∞

�(xτ )

u
= ∞,

answering Question 1.
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2.4 The weight function σ4(d) = 1/dα1/ lnβ (d+1)

In this case, we have

�(xτ )

u
=

∑M−1
j=1 j/(j − τ)αvα lnβ((j − τ)v + 1)

1/ταvα lnβ(τv + 1) + ∑M−1
j=1 1/(j − τ)αvα lnβ((j − τ)v + 1)

− τ

=
∑M−1

j=1 j/(j − τ)α lnβ((j − τ)v + 1)

1/τα lnβ(τv + 1) + ∑M−1
j=1 1/(j − τ)α lnβ((j − τ)v + 1)

− τ.

We will use the following fact from elementary calculus:

Lemma 2 The sum

L(α, β, v) :=
∞∑

j=1
jv �=1

1

jα lnβ(jv)
(v > 0 fixed)

is convergent iff either α = 1 and β > 1 or α > 1 and β > 0.

Now we can start answering Question 1:

∞∑
j=1

1

(j − τ)α lnβ((j − τ)v + 1)
≥

∞∑
j=1

1

jα lnβ(j (v + 1))
= L(α, β, v + 1),

∞∑
j=1

1

(j − τ)α lnβ((j − τ)v + 1)
≤ 1

(1 − τ)α lnβ((1 − τ)v + 1)

+
∞∑

j=2
(j−1)v �=1

1

(j − 1)α lnβ((j − 1)v)

= 1

(1 − τ)α lnβ((1 − τ)v + 1)
+ L(α, β, v)

and
M−1∑
j=1

j

(j − τ)α lnβ((j − τ)v + 1)
≥

∞∑
j=1

1

jα−1 lnβ(j (v + 1))
= L(α − 1, β, v + 1),

∞∑
j=1

j

(j − τ)α lnβ((j − τ)v + 1)
≤ 1

(1 − τ)α lnβ((1 − τ)v + 1)

+
∞∑

j=2
(j−1)v �=1

j − 1

(j − 1)α lnβ((j − 1)v)

+
∞∑

j=2
(j−1)v �=1

1

(j − 1)α lnβ((j − 1)v)

= 1

(1 − τ)α lnβ((1 − τ)v + 1)

+ L(α − 1, β, v) + L(α, β, v),
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Figure 5. The graph of Sσ for σ(d) = 1/d2.01.

which implies

Theorem 5 For the weight function σ(d) = 1/dα1/ lnβ (d + 1) the limit limM→∞ �(xτ )/u is
convergent if and only if either α = 2 and β > 1 or α > 2 and β > 0.

In the above cases we have

L(α − 1, β, v + 1)

1/τα lnβ(τv + 1) + 1/(1 − τ)α lnβ((1 − τ)v + 1) + L(α, β, v)
− τ ≤ lim

M→∞
�(xτ )

u

and

lim
M→∞

�(xτ )

u
≤ 1/(1 − τ)α lnβ((1 − τ)v + 1) + L(α − 1, β, v) + L(α, β, v)

1/τα lnβ(τv + 1) + L(α − 1, β, v + 1)
− τ.

3. Conclusions

In the previous sections, we have seen that for most of the weight functions σ the relative size
�(xτ )/u of the bumps may be convergent or divergent depending on its parameters. In general,
the quicker σ(d) tends to 0 as d → ∞, the smaller �(xτ )/u. In other words we have that:

Among the investigated weight functions σ1 through σ4 we found

σ2(d) := 1

d
exp(−λd)

to be ‘smoothest’, i.e. limM→∞ �(xτ )/u could be acceptably small for suitable λ.
For practical applications we recommend first to estimate the largest, or the most common

values of v (the distances of the measuring datapoints, see Equation (3)), then to choose λ as

exp(−λv) < 0.6.
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Figure 6. The graph of Sσ for σ(d) = e−d/d .

Figure 7. The graph of Sσ for σ(d) = 1/ln3(d + 1).

(In the present paper, we could make detailed computations only in the case α = β = 1 for the
function σ2.)

Though we used the data set (3) for our computations, we think that our conclusions above are
valid also for any other data set, since the ‘smoothness’ of Sσ depends on the rate of Equations
(1) and (2) which is influenced by λ and v above rather than by the data set.

In conclusion, we present some graphs of Sσ for some σ . In all examples in Figures 5–8,
M = 100, Pi = i, Fi = i (1 ≤ i ≤ M).

Computational experiments were made by Derive 4.0 and Maple (Scientific Workplace 3.0).
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Figure 8. The graph of Sσ for σ(d) = 1/d2 ln1.5(d + 1).
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Notes

1. In practice, these data are obtained by measuring and not by using a formula.
2. Which can be embedded in some higher dimensional space.
3. The assumption 0 < τ < 1 is not a restriction in fact, since the limit limM→∞ �(x∗) we are discussing in this paper

is the same for any fixed point x∗ ∈ (P0, ∞). This is why we may restrict ourselves to the interval (P0, P1).
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