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Abstract

We present here a complete investigation of Shepard’s one-formula method
for scattered interpolation for general weight functions (see (2) below)
which might help to chooée the optimal one for anyone’s interpolation
purposes.

We investigate, in any dimensiocn, continuity, differentiability, limit
and monotonicity of the approximating function, and at the end of the paper,
the question of multiple measure data. We investigate pro and contra, that is
vwe highlight also the bad properties of the approximating function given by
Shepard’s method!

We do not repeate the wellknown results of the large literature on
Shepard’s method, however the present paper can be read alone, no previous
knowledge of the topic is required. Our general resuits are not easy
generalizations of the ones in the literature.

The method we investigated is, in fact, a single formula, easy to build
in into any computer program, works for any layout of data, and moreover can
have many good properties, depending on the weight functicn o, that is why we

deal with it in a two-part paper.
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O INTRODUCTION and HISTORY

Inspite of the large number of interpolation methods only a few of
them help us in the case of scattered dataset: the dataset do not have any
regularity for its distribution. (The usual methods for aﬁproximation.require
some kind of regularity of the dataset. On the contrary, scattered data
interpolation tasks arise almost everywhere both in practice and also in
theoretical investigation, see eg. [Sz0] through [Sz2].) The problem of
scattered daia ihterpolatian is the following: Let the dataset {Pl,...,PH}
< RN and the real numbers P&,...,Fh € R be given, and we seek for an
interpolation function U:RYR with best possible approximation. (This latter
means that either U(P1)=F1 for each isM is required, or that the quadratic
sum tgl(Fs_U[Pl))z is to be minimized and U(P) would have some other good
properties, too.)
We investigate here Shepard’s method in all of these aspects.



The easiest method for scattered data interpolation is Shepard’s one

which is a single formula. Shepard’s original formula reads

¥
iilFl-T;l'id(P,PJ)
utp) i= (0)
Yy TI dtr.p)
1=1 j=i
which has the simpler version
M F
S S
121 d[P’Pi)
U{P) = — (1)
M
z 1
i=1 d(P’Pl)

where d(P,Q) denotes any Fucledian distance of the points P,QERN. It is
important to note that (0) is suitable for theoretical investigations only,
as demonstrated in [GW], but numerical computations of (0) always do over-
and underflow! In the meantime (1) is always comfortable for computing. It
is plausible that (1) is the 'weighted arithmetic mean of the values Fi with
the inverse distance of the pcint P from the poits

.
d(P,P1)
Pi. That isg, the closer is P to the point P1 the greater weight corresponds to

the weights

F1 . (See [HL] zlso for some other more or less complicated scattered data
interpolation methods. )

The above method has a large number of good properties, among others:
U(P) is defined onr the whole space RY, it is exact (Vi U(Fi)=Pi) and
continucus, it is invariant to many co-ordinate transformations and to
changing measure units, has limit lim U(P}=?=EliLﬁiiEy and many more, we
give a complete list in Section 1. Moreover, beeing this a small formula
only, this simple and quick subroutine can be built in any program (also
short ones, not only packages) and works for any dataset! Its theoretical

and practical behaviour can also easily been investigated!

However, despite of the above numerous excellent properties, Shepard’s
above original methed has a great disadvantage, which is not mentioned in the
literature, and must be the reason why Shepard’s method is not widely used:
U(P) tends to the average F not only when P goes to infinity but even also
when P is in the convex hull of the dataset {P1""’PH} ! This is

illustrated in the l1-dimensional Figure 1 below.
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Sample for some l-dimensional U(P), o¢(d) = 1/d

In Example 4.0 we show that these “bumps" are neccessary and further, in
Theorems 4.1 and 4.2 we even calculate the rate of them. Roughly speaking the
reason of this phenomena is that the weight function % (where d=d(P,Pi) is
the distance) goes slowly to O when dow
points Pil

(when P moves off some of the

This problem could be avoided by choosing another weight function o{(d)

instead of % . To be more precise, in this paper we investigate the below

generalization of Shepard’s formula (1)
Let for PeR" "
% F -o(P,P )

up) = =t (2)

1

H

Z (PP )
1=1 1



where 01R++R+ is any positive, continuous and decreasing function, and for

simplicity we write ¢{PQ) instead of o(d(PQ)) for P,QERK

The main goal of our present paper is to investigate the behaviour of
thig modified interpolation method (2) for different weight functions o .

Section 1 deals with general properties of U{(P) {for any weight
function o{d) while Section 2 is devoted to the exactness, continuity and
differentiability properties of this method. Let us highlight here Theorem
2.1. The monotonicity and "bump" -~ problems pro and contra are investigated
in Section 3, the limit of U in the infinity is dealt in Section 4.

In Section 5 we investigate the problem of multiple data - raised by
specialists in practice. Shortly speaking, in practical applications we may
measure multiple data at the same point, by chance. In Section 5 we reveal
to what extend remain our previous results valid.

In the appendix we collected the notations we use and might be not

COmMmory.

Also we allow arbitrary weight function ¢ in (2) unless we say otherwise.
For example, we tried out the following ones by computer (d>0 unless stated
. o 1 B 1
: — - >0, ——— ; -
otherwise) i/d", Pl exp(-Ad~) for «,B,A>0, T In(d) for
0<d<1 and O for d=1; arccotan(d), and various multiplications and

compositions of them. In Figure 2 we show some of our collection.

]
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-
-
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U{P) for various o

O: of(d) = exp(-d>)
_ 1

A o(d) = lnﬂgd)

o: of(d) = 1/4

These diagrams demonstrate well the huge difference behaviour of the
weight functions 1/d% and exp(—AdB). Theorem 2.1 and other results of
Sections 2 and 3 explore many more differences between these two iypes of
weight functions. Some type of "crossing" {eg.muitiplication) of these
functions might have better properties, at least from our computer
experiments, However,also the theroretical methods with which these functions
can be dealt, are also very different, so at this moment we do not have any
hope for examinig exp(—dB)/da for «,8>0, for example.

In Sections 2 and 3 we will see that the behaviour of ¢ near to 0 and
around o have prior importance for the behaviour of U. (See eg.our # operator
in Section 3.) Another possibility would be to investigate weight functlons
which are equal to 0 for d>d0 for some fixed number do. We also do not deal
with this interesting problem, but U certainly would have many breaks when
d(P,Pi) leaves do~for any i=M.

We work in the general n-dimensional space RN, and we talk about the
distance of points P and Q, which we denote by d(P,Q)} or simply by (P,QJ,
but we do not restrict ourselves to any specific metric! Though we do not deal
with the guestion which metric d4(P,Q) remain our results valid, but
ceriainly for all the wellknown norms Ln for any'neIR+ will do.

Though monotonicity properties are more important than limit ones, we
have very few results on monotonicity because of the complex and not trivial
problem. In the meantime, results on limits are much more easier to obtain,
we even have a complete characterization in Sectien 3.

Special thanks are said to Profs. Janos Gydrvari {Univ.Veszprém} and

Norbert Herrmann {Univ.Hannover).



1 GENERAL RESULTS

Let us list first here the good properties of U:R%R for o(d)=1/d* for
>0 in (2). (Most of these properties are easy or proved in [GW], [HL].)
U is defined on the whole space(l) RH, it is exact (Vi U(P1}=Fi), it is
continuous on the whole RN, it is even differentiable also at the peints P1

for «>1. In any case we have

?;g Fi = U(P) = max F1 (3)

for all PeR". This especially implies that U(P) is positive if all F1 are
positive, and that U is constant on the whole RN if F =...=FH are the
same. Further, U has the finite limit %%& U(P)=I?':=£3‘:Li;—4'—iEE

is also invariant to any linear co-ordinate transformations P’ :~a-P+b and

. Moreover, U

F;:=c-F_+e for any a,c,eeR, beR™ (i.e.translations and scalaring [changing
i 2

measure units/zocoming] in "both" directions).

Let us now deal with the general case when ¢:R+AR+ is any positive
continuous and decreasing function.

Obviously the domain of U is again the whole R" but possibly excluding
the data points {P1""’Pn} and U is again continuous on its whele domain,
the problem %igiU(P)=Fi is completely handled in Theorem 2.1. Section 3 is
devoted to the question of the limit %32 U(P).

The relation {3) can be easily proved for any positive ¢1R++R: the below

statement gives an easy proof for Theorem 2.2 of [GW].

STATEMENT 1.1 For any positive o:R_sR_ we have
nig F1 = U(p) =

2 4

x F
Mo

[

for all PeR".

PROOF Using (2) and the fact that o is always positive we have by (2)
that the numerator of U is
(qig F)- Eeer) s U ) = (g F)- £eR)

which clearly implies our statement. [

1}
¢ To be more precise U(P) is not defined for P=P1 but using %LgiU(P)ﬂ'i we

N
can extend U to the whole R .



The present Statement implies that U is positive if all the data Fi are
all positive, or that U is constant on the whole R" for any o if F1=...=FH
are the same.

Clearly U is also invariant to the linear co-ordinate transformations
F;:=c-Fi+e and translations P’:=P+b for any c¢,ecR and QERN with no
restriction on ¢. However, the scaling P’:=a-P (aeR) does not effect U only

in the case vhen ¢ is multiplicative, that is if and only if
o(Ad) = f(A)-e(d) (4)

holds for some positive continuous (but any) function f:R >R and for all
A,deR+. The equality (4) is fulfilled for example when o(d)=1/d% {(xeR) Dbut
unfortunately not in the case w(d)=exp(—dB) (B>0). This latter is a serious
withdrawn for the weight function a(d)=exp(—d3) for any BeR -- choosing
too large or too small unit in the domain of U, we get surprisingly different

shapes of U, as shown in Figure 3 below:
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The case 0(d)=exp(—d2) with different units
o: e=10C
A: e= 2

o: e= 0.5



The wellknown diagrams of the weight functions exp(-dB) itself for B>0
explain this phenomena: the larger the units in Dom{U) are, the more equal
weights are used in (2) to compute U(P), that is the more closer to the

average value -- a straight line -- the diagram of U is.

STATEMENT 1.2 U is invariant to vertical translations for any distance
function o, i.e. if F:=Fi+r for all i=M and any fixed rnumber reR, then

U (P)=U(P)+r for any PeR.

PROOF Using (2) we get

M M M
Z(F 4r)-o{P,P ) Z F-o(P,P ) + Z r-o(P,P )
Utp) = ELt i _ 151 1 1 1=1 iU . m

M ) ;4
.z F(P,Pi) 1§1 W(P,Pl)

2 CONTINUITY and DIFFERENTIABILITY

U(P) is clearly continucusly differentiable for P#Pi (i=M) for any
continuously differentiable weight function €:R+¢R. In this section we
investigate the behaviour of U(P} at the points P=P1 for several weight
functions o.

But first consider the following Theorem, which solves completely the

question of continuity of U.

THEOREM 2.1 Assume that a:R+aR is positive, continuous and liT o does
Q
exists, either finite or infinite. Then U is exact at least on one poini P1
(ie. lim U(P)=F) for any dataset F,...,F If and only if lim o = +o .
P-P1 i —e 1 M o+
Moreover, we may require the above exactness of U either for one or for all

points Pi (i=M).

PROOF For the sake of simplicity, let investigate the case i=1.
Simplifying (2) with c(P,Pi) we get



N 1.8 ) F v 30t
upy = 1 1=z o(P,P1) 5 1 1527 o (s)
1+ ; o{P,Pi]) 1+ ;_cr_i
12 o(P,P1) 1=2 oo
as P—zP1 where
o=0(PP ) = 1lim o(PP ) (2=i=M}
i 11 F3P1 i
and
o =lim o
o o+
Now, the limit of (5) does exist and equals to F1 iff
M ol
zZ (F~F)-—=20. {6)
1 i” 0o

i=2

Since ¢ is continuous and positive on the whole Rf , (6) holds for any dataset

F,...,F if and only if o= @ , [
1 M o

Now we turn to the question: for which weight functions U:R+aR is U
differentiable at the points =Pi for somes/all points Pi ? Our results
below give an almost complete characterization of the guestion, but before we
need a Lemma.

In what follows we use the Euclidean distance (the Lé—norm)
d(p,Q) igl(xl xi)

for any points P,QERH, P=(x1,...,xul, Q=(x$,...,x§). Of course generalizations

of the below results for other distance - functions are also possible.

LEMMA 2.2 The partial derivative of the above distance function, for

fixed QeR", is

8 A XS
-aTt d(P,Q) = “““‘“‘—"‘"‘“‘—‘_‘—d[P’Q) n

To prove our results we are adviced to rewrite the formula {2) for U(P)

as



U(P) := (7)

x| i~
[y
H

%
I
(=4

—
#
-

that is we introduce the function

P(d] HE O—‘T]

for deR :
+

Now, Theorem 2.3 below generalizes the result 3.1 in [GW] while Theorem

2.4 almost completes the remainder cases.

THEOREM 2.3 If a-:[R+—>IR is differentiable on [R+ and 11m p = 11m p' =0
then U:R“SR is differentiable on all RY, moreover -a—-U(P )*—0 for i=M and
t=N .

This statement clearly generalizes the result 3.1 from [GW].

PROOF We have written U(P) as

K M
1}_: Fi- [j;lip{d(P,Pj])] 121 Fi-Bi

— —1 ——
utp) = ” =

M
[ geaere))) 5 B,

where B1 shorten the expressions in the brackets. Now the partial derivative

%—(— of the numerator, denoting d(P,PJ) by dj, is:
t

M M
a _ LR —
[ax (p)] - 1; F B = 1; [Zp (@) —d(d) T et )]

¥,

which has limit, after d1—>0 and separating the term i=1 :

i [2_y ~
lip [6x M(P)] = F Z [p (dj) (d) [T eld )] +
t m¥E1, )

M
P | _6 1,. % 1
ZFi-p (d) a—xt-d(dl) T eta)

m¥i,1

by our assumptions, where dj:=d(P1PJ} (j=M), since p(d1+0)=0 .

The denumerator’s partial derivatives are almost the same, so the rumerator

- 10 ~



of the limit of the partial derivative g—x—U{P) reads

[lim —w—U(P)] =
P3P
NUM

¥
P 1y, 1
- [Fi- Zl[p () Sraid- T p(dm)] +jZ1[F 7 @ data) TT etd )]]

3 m#1, j ¥l ,1

. [ p(d:l)] -
m¥*1

M
[Z[p (d)—d(d) T eta )] +Z[p (d)—d(d) I p(di)]]‘
j*1 iF1

m*1l, J m*i,1

[F T etd )]

m*F1

which can be transformed into

M M
[); [F PRCE —d(d - T p(dl)] ) [p (ah)- —-—d(di) i p(d;)]]'
i*=1 i¥F1

i, 1 w*i,1

e

m¥1

i

H
[Z(Fi—Fl)- 1l p(d:l)]] p’ () ———d(d ). [ﬂp(di)] =0
i#1 o

#i,1 m#E1

since p’ (d:)=0 and Ig-x—d(d:)]=1, and using the assumptions ¢f the Theorem.m
t

THEOREM 2.4 If 0':!R+->1R is differentiable on [R+, li]il o exists and is
: o
finite and 13111 ¢’=0, then U: RR is differentiable on all IRR.

PROOF Clearly we must check the differentiability of U at the datapoints
P1 {i=M) only. Let us investigate the case i=1 for short. Now, for any fixed
t=N and P#P! we have

M
1§ Fi'a‘(d(P,Pi))

e -4
"y

e’(d(P,Pi))

- 11 -



M 8 M N 3 .S
5, F' 5aoW®.P)): £ old(P,P)) ~ E s—o(d(P,P))- % F -cld(R,P))

i=1 i

M 2
(2, caee, )]

(F - a—-—«it (d(P,P ))+A)-(o(d(P,P ))+B) —(a—wit {(d(P,P ))+C)-(F, -« (d(P,P ))+D)

K2

where A,B,C,D,K are appropriate parts of the previous expression. Since the
denumerator is continuous and 1lim K # 0 , we may deal with the numerator
Q

only, which can be transformed into

ax ax

[Qmucp)] = itcr(d(P,Pl))'(FiB—D) + o(d(P,P,)) (AF C) - (A-B-C-D)
t NUM

P1
X - %

= o’ L - (A= — (A-B—(-

= [d(P'Pl)) d(P,Pl) (FlB o + O"(d(P,PI)) (A F1C) (A-B-C-D)

Now using the assumptions lim ¢’ (d)=0, 1lim o(d)eR and that A,B,C,D,K are
d2a+ d-o+

all finite since 0':iR+—>{R+ is differentiable on [R+ we may conclude that

a—U(}:’) must exist since the part

axt
P1

X - X

t t

d(P.Pl)
of the last expression is bounded. =

We plan to investigate the convexity properties of (U) in a forthcoming

paper.
3 LIMITS

Let us mention again that our investigations are made in any dimension,
that is U:IRN—>IR where N=1 is any number. After clearing the concept "P goes
to infinity" we use, the arguments will show that the main points eof the
results are decided in certain 3-dimensional hyperspaces of R'. Our results

generalize the ones in {GW], but ours are made for any weighi funciion o.

_12_



DEFINITION 3.0 We say (in RN) that a point P goes to infinity along a
straight line ir P= P +le where P veIR are fixed and A+» (AeR) . [ |

LEMMA 3.1 If P goes to infinity along a straight line in R® then
we may suppose (assuming a suitable, fixed renumbering of the points
Pi, - ,PH) that

d(P,Pl) = d(P,Pz) = ... = d(P,PH)

ir d{P,Pi) are all large enough.

The Lemma says that we have to renumber the points P1,. "Pu only once,
before we start to move P, and the order of the distances d(P,Pi) do not
change after a while when the point P tends to infinity along the straight

line. The order of the points, of course, depends on the line P moves along.

PROOF So P=P°+}\! where PO'XE'R“ are fixed and A-« (AcR). Denote
e the straight line {P +AV : AeR} P moves along. For any index 1sM the
distance of P and P can be measured in the two-dimensional hyperplane S
spanned by P and e , no matter wherever S <rM lies. That is, to compare
d(P, Pi) w1th d(Pp, PJ) we may assume that both P and Pj together with e lie
in the same 2- dimensional hyperplane (in other words S1=S_1' say, after
rotating Si around e in order to match Sj). Now, a wellknown geometrical
theorem from secondary school (about the perpendicular straight line halving
the section P P ) says that one of d(P, P ) and d(P, P ) is always the larger
than the other if A is large enough. Exam1ning all the pairs (i, 3) we may
find a threshold ADEI‘R+ such that the order of the distances d(P,Pl),‘ d(P,Pz),

- d(P,PH) is the same for all ;\>7L° . =

While computing _‘)g U{P) in {GW] in one dimension R' (i.e.when
U:IRl-ﬂR), and assuming
d(P,Pl} < d(P'Pt) (8)

we could use the property d(P,Pi)=d(P,P1)+d(P1.,Pi) » which is true for any
three points in the one-dimensional line IR1, but not in higner dimensions.
However, in higher dimensions (i.e.when U:R'sR) we have the triangle-

inequality

_13_



d(P,Pl) = d(P,Pl) + d(P1’Pt) (9)
only, which implies the upper bound
d(P,Pi} - d(P’P1) = d(P1’Pi)

For computing %ﬂ U(P) in R" in Theorem 3.4 we need also a lower bound for
d(P,Pl)-d(P,Pi) which can be derived from {10) below in the next Lemma. Let

us emphasize that (10) below is valid in any dimension R 1

LEMMA 3.2 If P=P +Av goes to infinity along a straight line in ’RY
o X
(A-w but !EIRN is fixed), and d[P,P1)<d[P,Pi) for A large encugh, i=M is any
fixed, then
d(P,Pi) = d(P’P1) + eod[Pl,Pi) (10)
holds for any e, (}<e<mi and for A large enough (mi is some fixed number,

Oﬁmiﬂ, depending on Pi,lz'ie!RN and geIRH).

PROOF So d(P.P1)<d(P,Pi) and P=PO+AX where PO,XEFRM are fixed and
A»w (AeR}. As in the previous proof we may assume that P1’ Pi and the line
e={PD+AX: AeR} 1lie in f.he same 2~dimensional hyperplane of R Now, working
in this 2-dimensional hyperplane we may use a rectangular Cartesian
co-ordinate system, and we may put P1:={G,a), Pi:=(0,-—a) and e: y=mx+b
where either m>0 or m=0 and b>0 since d(P,P1)<d(P,Pl) nust hold for A
1grge enough. Now, if_ P,={xp,yp) moves on e (i.e. yp=mxp+b and xp—m),
then we have

d(P,Pl)—d(P,Pl) = v/xﬁ + (yP+aL)2 - »/xi + (yp-a)2 =

lLayP

-

2 2 2 2
\/xp + (yP+a) + \/xp + (yP a)

4a

TR BT

which has the limit (if yp:mxp+b and xp-m)

- 14 -



LY 2am m
- = ——— = d(P,P) - —— if m>0

2 + 1

1
2
m

and equals to

4a
- -— 0 if m=0 .
/xpzb-!-az ‘/xpzb—az
R * 5| |
So, in both cases we have
m .
d(P,P_}-d(P,P,} — d(Pl,Pi)'———— (11)
i 1 2
m +1
m
This means that m :=———— justifies the statement of the Lemma. ]
1

v m2+1

One can observe that mi=sin(oc) where o is the angle between the lines
P1Pi and e .
Let us further highlight that the limit of the distance~ difference:
d(P,PiJ—-d(P,Pl) -t d(Pl,Pi}-m1 (12}

where %mfl, and mi depends on Pl,lF’iEIRN and '\_JEIRM only. Especially, mi=1
for each i<M in one dimension.
For stating eur main Theorem on the limit of U{P) (when P goes to

infinity along a straight line: P=P +Av and As») we need also a notation:
o L

DEFINITION 3.3 For any function o:R>R*  and real number meR we et

o(d+m) s (13)

# 1
cm = He @

The Theorem below uses the fact that cr# measures the rate of the

quickness of the convergence %_1)2 o(d)=0 . Some main properties of the

# - operator are shortly listed after the following theorem.

- 15 -



THEOREM 3.4 If P=PO+AX goes lo infinity aleng a straight line in ERu
and

d(P,Pl),= d(P,Pz) = ... = d(P,Pj) hS d{P'PJH.) = ... = d(P,PH} (14}

holds for all A large enough and for a suitable fixed index 1=j=M,
then

M
F1+. I = §1F1-cr#(mi)
lim U(P) = } 1= (15)
Pom M +
J 1=3§:° (mi)

where lhe numbers m depend on the relative position of the points P, P1’P1
and of the direction vector v of the straight line where P moves to infinity,

computed in Lemma 3.2.

PROOF So P=PO+7ty_ where Po,xetRM are fixed and A-« (AeR). By Lemma
3.1 we may assume that (14) holds for all AR large enough. Now, after
simplifying the formula of U(P) with a-(PI}, we get

¥ H o(P,Pi) M #
X F +c(P,P ) F+...+F + ZF e—2__C F4...+F + ZF +a (m )
_i=1 i i 1 j i=3j¥1 1 ¢(P,P1) 1 § i=j¥1 1 i
U(P) = —
! ¥ o(P,P1) 1w
i§1 lT(P’Pi) J i=j¥1 o(P,P1) g i=j§1¢ (mx)
using (10) by Lemma 3,2, [

Before some applications of the above result let us deal shortly with the
# -operator itself, defined in (13). We deal mainly but not exclusively with
decreasing positive functions (i.e. for o: R+->IR+ decreasing).

Clearly O<o (m)=1 for meR ;  # is multiplicative (i.e. (o’-p)#=c'#-p# );
c*=1 for constant functions cefR+; (f/g)#=f#/g# for any functions f,g:l}?+—)R 3
(e-+u)#=0'# if o'" is a translation of o with any ueR (i.e. e *(d)=(d+u) for
deR); (o ")*=(c")"Y where o ¥ denotes the v-fold zoom of ¢ for any ueR
(i.e: o "(d)=(v:d) for deR).

In general, the steeper is o(x) for x-»w , the closer is o*g(m) to 0 for any
melR+ ; and conversely, the more gently sloping is ¢(x) for xs=, the closer is
o' (m) to 1 for any me[R+,

1

1+x%

Especially, (l/xa)# =( )# = 1 for any «eR, (arccotan)*=1,

1 # .
(m) =1 , and finally
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0 for g>1
-A # ~Am *
[e ] m) =4 e for g=1 (in this case ¢ =¢) (16)
1 for 0<B<1

since

-h.# v h{d)-h{d+m}
(e )'{m) = %3& e

holds for any function h:R+eR+ and meR.

Now we turn to some applications of Theorem 3.4. A short list below of
several special cases of the above Theorem throws some light on the meaning
of the result (15). We mean special weight-functions ¢ and special positions

of the datapoints P1""’PH

: B
COROLLARY 3.5 If w(d)=e-d for some positive BeR and all the

assumption of Theorem 3.4 hold,' then %ig U(P) has the value

" F‘—"M—ﬂ (the arithmefic mean) if 0<g<1
F;+"'+F * 1§H+i Fi.enm1
lim U(P) = j_17J if B=1
P00 - M —mi
Jj+ z e
i=j+1
+. ..+
- El——r—jy (the arithmetic mean
J of the dominating values)} if B> 1

PROOF Use (15) and (16). ]

Let us remark immediately that in one dimension U:R'-R’ in the B=1 case
the above result imply that %3& U(p) = U(Pll if P1 is the closest point to
P. Moreover, an easy calculation shows that even U(P)=U{P1J just after P
leaves P1 for all P, that is U is constant outside of the dataset {PI,...,PHL

See Figure 2 again for illustration.

The next case, when 0(d)=1/da, we get a new proof for the result (2.18)

of [GW] using our Theorem 3.4 above.
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COROLLARY 3.8 If o(d)=d * for some positive weR and all the

assumption of Theorem 3.4 hold, then for all o we have

+. ..+
1in U(P) = Tif.-- M (17)
P o M
(the arithmetic mean)
# {d+m)—a m, —&
PROOF We have o (m) = lim ———— = lim (1+= =1 for all positive
d =00 d—cx d 5o d

o« and meR. Now use Theorem 3. 4. -

Certainly (17) also holds for all weight function ¢ whenever a#=1, S0 wWe
1

1
can put alsc, for example . arccotan(d}, TYEITN

1+d
multiplication or power of these functions and 1/d* into the role of o to

get (17).

It is interesting to mention also a two dimensional special case of

or any

Theorem 3.4. So let us focus on the positions of the points and lines on

which P moves in the space Rz :

COROLLARY 3.7 1If Pi,Pz,PseiR2 and F1’FE’FEGR are arbitrary given data-

peoints/numbers respectively, g#(d]=1 and F moves along the line e, then
for lim U(P) we have
P
Fi+Fj
2

F; if Pk is the closest point to P .

if e halves and perpendicular to the segment P1P
lin U = :

>0

Figure 4 below illustrates this case.
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lim U(P) in R® for o*(d)=1 and M=3

4 MONOTONICITY

In higher dimensicns the question of monotonicity means that we must
proceed along straight lines. Since the general case could easily be
transformed into one dimension, we restrict ourselves to the case N=1,
that is when P&,...,Fﬁem and so U:R-R .

One might think at once that the monotonicity of U between P1 and Pi+1
—- that is Fi<l~'i_]_1 implies U(P!)<U(Pi+1) -- requires and also is ensured by
that either the distances of the other points Pj for j=i,i+l are large
enough, or the other values Fj for j#i,i+1 are not so large. This feeling
is Justified in Theorem 4.3 in Subsection 4.2.. But before we show that the
bumps shown in Figure 1 are neccessary bad properties of U for certain weight

functions ¢.
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a) NEGATIVE RESULTS
4.0 The "Hill and Valley" Property

In this subsection we give a short but demecnstrative computation for the
rate of the non-monotonicity of Shepard’s original formula 0’(d)=1/da for
any azl : we estimate the place (frequency) and the size of the bumps shown
in Figure 1.

Here we resirict ourselves to the case N=1, i.e. now we investigate

functions U:R-R.

EXAMPLE 4.0 A special case of U:RsR when o(d)=1/d% .
I.et the dataset Po,...,PMeIR and Fo" ..,FMEIR be equidistant, i.e. let

P1=P0+i-v and Fi=Fo+i-u for i=1,...,M, wvhere PO,Fo,u,vEIR are arbitrary
fixed numbers. Now, using the definition (2) of U with a—(d)=1/d‘x, let us
investigate U at‘the place X = PO:PJ' = P0+;—' . (Similar computations
could be made for the point x = Pn—g , ~or for any other pont xeR.)} The

following Theorem shows that the size of the "bumps" must raise to the

infinity when M goes to infinity.

THEOREM 4.1 U(x°)=u-£(M,or.) where £4(M,¢)sw as Mswo for any fixed oxt.

PROOF By (2) we have

M M
1 2,0 . 1
. e .
LF, CICINI) N Fr@%+ ] iu Gv—vwa)™
1=1 o’ 1 i=2
U(X } = = =
© & 1 2,0 & 1
—_—_——a . —_
! @ Fm 2%+ )
1=1 o i . : i=2
o & i
2R ) (i7"
1=2
= u - " = u - ¢M,a)
o 1
2ran + 122 (i-i727%
An easy computation shows that £(M,a) »@ as Mae for any fixed ozi. n

The order of &(M,1) can alsc be determined easily.
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~ M
STATEMENT 4.2 i(M,1) = O{Tﬁfﬁj] as Moo .

PROOF By the above computation we have

& X 1/2 1 &
2" L Tz 2+ 12; (47 M 2”12; =17z
£(M, 1) = ; = — - = H—
1 1 1
4+ ¥ s s+ ) 1 1+ T o
i=2 i=2 i=2

and recall that

M
lim[ r L - ln(M)] =C + 2-1n(2)
-1/2

i
Hom M=1

where C = 0.57722... is the Eulerian constant (see eg.{GR,0.132}).

So we can write

M+ 11n(M) + C/2+1n(2)-1
2 M
TR ~ 0 {m]
4 + In(M) + C +2-1n(2)-2
as M goes to infinity. u

The Reader could make similar easy but interesting computations in the

case M=3 and varying either P3 or Fs or both of them.

b) POSITIVE RESULTS

In this subsection we justify the monotonicity of U in the sub-interval

[PP 1 for the weight function o(d)=exp(~ B) if either the other peoints

1 i+l
Pj (j#1,1+1) are far enough from this interval or the data FJ are not
extremaly large or small. Not only for curiosity but alse for better under-

standing of the general case we have to deal with the case M=2 first,

4.1 The Case M=2

THECREM 4.3 U(P) is strictly increasing in the closed segment [P1’P2]

for every positive strictly decreasing weight function ¢ if P1<P2 and F1<F2.
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PROOF Let P=P1+r be a point in the segment [Pi,P2], i.e. 0=r=3 where
=P -P . Now we have
2 1

_ Ficol(r)+Fz-o(d-r) _ F2-F1
uld) = ol(r) + o(d-r) - F1 * o(r)
L
olé-r)

which is clearly strictly increasing since F2-—F1>0_ and o is strictly

decreasing. |

Let us mention here that the previous result can also be cbtained by
using the derivative of U , but that method wouldn’t be easier at all.

Second, let us highlight the special case a'(d)% when an easy computation
shows for any PISPst that

UP) = 1__.1 . Fz2-F1

Fapr ()
so the graph of U is the straight line segment connecting the points (P1’F1)

and (P_,F ).
2t 2

4.2 The Case M2

Now we are ready to deal with the general case M>2. We focus here on the
weight functions cr(d)=exp(-}\d3) for fixed A,B>0. The case B=1 is handled in
Theorem 4.4 while in Theorem 4.5 we settle many other exponents g>0. More
precisely, Theorem 4.5 deals with weight functions a'(d)=eﬂd) for certain
functions F‘:[R+—>R+. These results compute precisely how large the distances
of the other points Pj for j#i,i+1 and how small the difference among the
values 13'J for 3#i,i+l1 and Fi’Fi+1 must be (=zee eg.(14))} to ensure the
monotonicity of U between Pi and Pi+1 -~ that is Pi<Pi+1 and F1<Fi+1 would

imply U{PI )<U(Pi+1) .

THEOREM 4.4 Let Pl, . ,PHEER and,Fl, . ,FHE[R be any given numbers such
that P <P <...<P , and let
12 ¥ A4
a(d)=e (18)
for some fixed A>0 and for any deR, d>0.
Let further L := min{|F‘i—Fj]:i,j5M} » K= max{|F -F |:1,jsM} and

g := min{[Pi—P.[:i,jﬁM}. Suppose also that
3
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4L -2e

> e (19)
KM
Then, for any io<M index U is strictly monotone increasing/decreasing
on the interval (Pio’Pio+1) according whether Fio<Fio+1 or Fio>Fio+1
In the special case "F1<Fi <F‘j for every 1=isio<jsM" we can drop the
a

agssumption (18), this can easily seen from (24) at the end of the proof below.
In the proof we will use only the below properties of o :

Ix vd g’ (d) = -a-o0(d) (20)

Yu, v c{u-v) =cl)-olv) . (21)
PROOF Let us investigate the case Fio<Fio+1 . By the definition (2) of
U:R+R we have for P, <x<P, , xeR :
1o ie+1

ZF-0(x-P ) +ZF -o(P —x)
T i 1 ] 3 J

Ulx) = Zo(x-P ) + X o(P -x) (22)
i i ] J
ic H
where ¥ means £ while ¥ stands for £ .
i 1=1 3 SRR
Now the numerator of the derivative U’, using ¢’ (d)=-d-c(d), is :
Umm[x) = (?F‘i-(—h)-cr(x—l:’i )‘—?FJ- (—?\)-o*(Pj—x))-(go*(x—Pl)+§¢(Pj—x)) -
- (‘{.Fl-cr(x-Pl]+§:Fj-o—(PJ—x))-(xi‘J(-}\)-o-(wai)—§{-?L)-a'(PJ—x))
has form of (pA-uB)(C+D)~(A+B) (uC-uD), so we can write
Unum(x) = =2Aa-[ (';::Fi-cr(x—Pi))-(§u'(Pj-x)) — (?FJ-a(P}-X))-(iZa'(x—Pi)) ]
= =2A+ X o{x-P_ }-0(P -x) - (F. -F ) (23)
1] i b i J

-x} +

T2l Ry Fy ) (eePy e (Py

+ )Z " c(x—Pio)-O'(Pjvx)- (Fio_Fj) 1

+ Z o-(x—Pi)-O'(Pi°+1—x)- (F1~F10+1] ]

+ 3 >2 “ c’(x—Pi}-O‘(Pj-x)'(Fl—Fj) ]
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= —2?mr(x—l=i ]‘W(Pi ﬂ—x) -L (F1 -F . )+ (24)

o o [+]

*E j>§ o (P +1_Pi]'a(Pj*Pi+1).(F1_Fj) 1
[+]

=] o [}

The second term in the brackets has less than i term, so its absolute

value is surely less than ewZAe-K'z— , while the first one’s absolute value

ig at least L. Using the assumption (18) we can derive that U’{x) is

positive, which concludes the proof. [

Let us observe, that the ratio does not change during any vertical

e

linear transformation of the data Fl,...,FH (translating, zooming, using
another measure units or O-point), so the requirement (i8) of the above

Theorem is independent from these transformations.

Now let us turn to the case c(d]=exp(—dB) where 8>1. To be more
precise, we need only a weaker assumption which, honestly, covers only

the "half" of the cases v(d)=exp(—d8] for g>1.

THEOREM 4.5 Let Pl,..;,PuER be any given numbers such that
P <P <...<P_ . Let further
12 ¥ P
old) = e
be any even positive function with domain deR\{0} such that both o and F’ are
decreasing for d>0 and for deR\{0} respectively. Now, assuming F1<F'2<...<FH

we get that U is strictly monotone increasing, tco.

PROOF Since o is even we can write U(x} for xeR, P.1°<x<Pi +1 (i <M is
4] [s]
any fixed index)
Z F ol{x-P }
U(x) = .__........_._i..._..._....—"..
Zic(x—PIJ

H
where 21 stands for 1§1
By the assumption we have that ¢’ (d)=f(d)-o(d) is an odd function

where f£{d)=F’(d) for deR\{0}. Now the numerator of U’'(x} 1is
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UNUH(X} =

= [ziFlf(x—Pi]w(x—PiH-[Z}w(x—Pi)] - [ZiFia(x—PiH-[ZJf(Pj—x)a(Pj—x}}

which turns, after elementary computation, to

M M

= 1§1 j§1 Fiw(x-Pi)W(Pj—x)-[f(x—Pi)—f(Pj"x)] =

¥ M
2 5 (Fi—F})'W(x'Pi)F(PJ-XJ-[f(x—Pl)»f(Pj_x)}

i<j

which is positive for all x if P1<X<Pj by our assumptions.

We think that sharper results (without assuming that F1<F2<...<FHJ
could be proved with more sophisticated methods. Further, the differences
between the functions d* and exp(—dB] presented in the Introduction and
in this Section show that our present methods are not enough to investigate
their product exp(—dB)/dm (x,B>0). It may be better or worse than the
original ones: computer graphic shows various pictures, see eg. Figure 2 in

[Sz3]. Perhaps certain good pair of some « and B would have good properties

We do not deal here with the cases x<P1 or x>PH with respect of
monotonicity of U.

Interesting (theoretical) computations can be made in the case M=3, the
rate of the disturbing effect of F2 can be investigated when the distance
]Pz—Pll goes to =. However we have not found any close connection between the

functions U constructed from M=2, M=3 or more datapoints.

S DUPLICATE DATAPOINTS

In the practice not only the values what we measure but the points where
we measure them could not be determined precisely. One way to express this
phenomena is that we suppose the fact of multiple measurements at the points

P1 {1=i=M}. Denote these values by Ffl), F;Z), cens F:ki) vhere kizl is
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the number of all data we suceeded in measuring at the point Pi (i=M).

Using this assumption, (2) is replaced by the following fdrmula:

M
ZF.-o(P.P )
U{P) = — " (25)
1§1k1'¢(P’P1)
where
Ff o P @ (k)
i i i 1
is the sum (1 of the values measured at the point PleR“ for i=1,... ,M.

Let us highlight here that M is only the number of points P1 where we

finally "managed" to measure, while the total number of measurememts is
=gk

Let us mention again that the domain of U is the N-dimensional space RY .

Cohcerning basic-, limit and monotonicity properties of the function
U(P) in (25) we mainly have to repeat almost all the theorems in the previous
sections but with minor modifications.

Again we have Dom(U)QRN\{Pl,...,PH}, moreover U can be defined
continuously also at the points Pi for each i=M if lgm o€ R+u{+m} -- see
Theorem 5.1 below.

Since o is always positive, we again have that

(1)

min {F
1

Pg<k,1=M} = U(P) = max {Fij):jski,iSM}

and we again have iis consequences, too {as seen in Section 1).

U is also invariant to linear transformations on F: and translations on
Pi , etc.

Continuity properties of the modified U are similar to the ones in

Section 2: Theorem 2.1 remains valid with the below medification:

THEOREM 5.1 Lef o:R-R be any positive weight function, such that o is

bounded on a neighbourhood of each distance d{PiPJJ. Then U is "exact”,

ie. (1, (2 (k) *
F OO4F 7+, +Fi i i
x 1 1
m U = =
%ip (F) k
i i i
(1) (1) (2) (k)
and NOT any arithmetic mean of the values F , F N s, F. 1

i H R |
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for any dataset F1""’Fn and for any i=M  if and only if lim o =+w .

Q
Moreover, we may require the above "exactness” of U either for one or for all
of the poits Pi.

Let us remark that the quotient F;'t/k1 is the arithmetic mean of the

(1) (2) (ki)

dataset Fl_ s F oy ey F‘i measured at the point P1 for any i=M .

i
PROOF Let i=1 for simplicity. Simplifying (25) with a’(PPI] we get

).§

U'(PPI)
F_+ F oo
Lt U'(PPI)
U(p) = M U'{PPi)
k * Eki' o(pp_)
1=2 1
E
F1 O'(PPi)
which clearly goes to K, since -_O’FPI_) + 0 when d=d(PP1]->O .
The other direction of the Theorem can be proved on a similar way. n

The differentiability of U depends on ¢ exactly on the same way as we
sew in Section 2, we do not repeat the big expressions here again.
Limit questions are similar to the ones in Sectlion 3 of [Sz3], =as

follows below.

THEOREM 5.2 If P=Po+?\! goes to infinity along a straight line in in
H
R and

d{P,P1)=. . .=d(P,P5) s d(P,P}H)S. . .ﬁd(P,PH)

holds for all A large enough and for a suitable fixed index 1=jsM, then

M
* & L
F +. .+F)+ 1—j>+:1F1"r (m )
lim U(P) = ; H (26)

Tk + Sk-ci(m)
i=1 i i=j+1 1t i

where the numbers m depend on the common position of the points 1"1,Pi and of
the direction vector v of the straight line where P moves to infinity.

PROOF The same as was in Theorem 3. 4. u

The below results are also obvious generalizations of Corollaries 3.3

and 3.6 from Section 3 of [Sz3].
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8
COROLLARY 5.3 If o(d)=e S for some positive BeR and all the

assumptions of Theorem 5.2 hold, then %3@ U(P) has the value

* L3
- Eliﬁﬁ4:55 (the arithmetic mean) if 0<g<l
Jp u® = L if 61
)k o+ 2% e
1=1 iSj+1
F*-i— +F¥
S & s I (the arithmetic mean
igi k of the dominating values) if g>1

Again, in one dimension U:Rlaml in the B=1 case the above result imply

that U(P)=U(P1] (U is constant)} if P is outside of the dataset {PI,...,PHL

COROLLARY 5.4 If w(d)=d—a for some positive acR and all the
assumptions of Theorem 5.2 hold, then for all a we have
#* #
im U(P) = Fi+. . .+Fd
Se m

(the arithmetic mean) -

1
P

Concerning monotonicity, the result in Theorem 4.4 can not be
‘transformed easily: though X and £ would play the same role as in Theorem 4.2
but L would ultimately be small. This question iz planned to be investigated

in a forthcoming paper.

6 GLOSSARY of NOTATIONS

R+ = the set of positive real numbers
N
M

the dimension of R® where U is defined

the number of the datapoints Pi, 1=1i=M

Pl""PH e R = the data/measuring points
Fl,...,Fhe R = the data/measured valugs
U: &Y 5 R
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d: Rux RNa R = distance d{P,Q), often shortened as PQ

R+ = set of positive real numbers

o R++ R

o(P,Q) instead of o(d(P,Q)) for P,QEIRN
# _ q:. o{d+m)

o (m) := &i& =)
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