
Counting Simplexes in R
3

Claude Laflamme∗

Department of Mathematics and Statistics
University of Calgary, Calgary, Alberta, Canada T2N 1N4

email: laf@math.ucalgary.ca

István Szalkai†

Department of Mathematics and Computer Science
University of Veszprém, H-8201 Veszprém, POB.158, Hungary

email: szalkai@risc1.pluto.vein.hu, szalkai@almos.vein.hu

Submitted: September 26, 1997; Accepted: January 22, 1998.

AMS Subject Classification: 05D99, 05B35.

Abstract

A finite set of vectors S ⊆ R
n is called a simplex iff S is linearly dependent but

all its proper subsets are independent. This concept arises in particular from
stoichiometry.

We are interested in this paper in the number of simplexes contained in
some H ⊆ R

n , which we denote by simp(H). This investigation is particularly
interesting for H spanning Rn and containing no collinear vectors.

Our main result shows that for any H ⊆ R
3 of fixed size not equal to 3, 4

or 7 and such that H spans R3 and contains no collinear vectors, simp(H) is
minimal if and only if H is contained in two planes intersecting in H, and one
of which is of size exactly 3. The minimal configurations for |H| = 3, 4, 7 are
also completely described.

The general problem for Rn remains open.
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Co. Hungary, Grant no. 3/1994.
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1 Introduction

Simplexes are used for example in stoichiometry when finding minimal reactions and
mechanisms, or for finding dimensionless groups in dimensional analysis (see [3]).
To explain the notion of minimal reaction, let the chemical species A1, A2, . . . , An
consist of elements E1, E2, . . . , Em as Aj =

∑m
i=1 ai,jEi, (ai,j ∈ N) for j = 1, 2, . . . , n.

Writing Aj for the vector [a1,j , a2,j, . . . , am,j]
T , we know that there (might) exists a

chemical reaction between the species {Aj : j ∈ S} for any S ⊆ {1, 2, . . . , n} if and
only if the homogeneous linear equation∑

j∈S

xjAj = 0 (1)

has a non trivial solution for some xj ∈ Z, j ∈ S; that is if the vector set {Aj : j ∈ S}
is linearly dependent. Further, the reaction is called minimal if for no T ( S might
there be any reaction among the species {Aj : j ∈ T}; that is if the vector set
{Aj : j ∈ T} is linearly independent for any T ( S. Of course the reactions obtained
in the above way are only possibilities, e.g. the reaction

2Au + 6HCl → 2AuCl3 + 3H2

does not occur under normal conditions.
As a specific example, the species A1 =C, A2 =O, A3=CO and A4=CO2 determine

the vectors A1 = [1, 0], A2 = [0, 1], A3 = [1, 1] and A4 = [1, 2], using the “base” {C,O}
in R2 . The vector set H = {A1, A2, A3, A4} contains the simplexes

{A1, A2, A3}, {A1, A2, A4}, {A1, A3, A4} and {A2, A3, A4}.

After solving the corresponding equations (1), we have the following (complete) list
of minimal reactions: C+O=CO, C+2O=CO2, O+CO=CO2 and C+CO2=2CO.
We can build up (minimal) mechanisms from the above reactions in similar way,
which also have important applications (see e.g. [4]).

The investigation can be done without any harm over R instead of Z, and we
arrive at the following abstract definition of a simplex.

Definition 1.1 A collection S ⊆ Rn is called a simplex if S is linearly dependent
but every proper subset is linearly independent. A k-simplex denotes a simplex of
size k.

In [1], we described which subsets of Rn of fixed cardinality contain the largest or
smallest number of simplexes, allowing collinear vectors. This problem relates to the
potential maximal or minimal number of reactions in a given compound.

The largest number of simplexes is easily obtained by placing all vectors in general
position, i.e. any n vectors linearly independent. The minimal number of simplexes
was obtained allowing collinear vectors, a somewhat artificial condition from the point
of view of stoichiometry which translates to having the same species present in various
quantities.
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In this short note, we completely describe the more appropriate problem of how
to obtain the minimal number of simplexes in R3 , allowing no collinear vectors. More
precisely, if for H ⊆ R3 we denote by simp(H) the number of simplexes contained in
H, we have:

Theorem 1.2 For any H ⊆ R3 of fixed size not equal to 3, 4 or 7 such that H
spans R3 and contains no collinear vectors, simp(H) is minimal if and only if H is
contained in two planes intersecting in H, one of contains exactly three vectors of H;
i.e. precisely when H contains three linearly independent vectors {u1, u2, u3}, another
vector v coplanar with u1 and u2 and the rest H \ {u1, u2, u3, v} coplanar with u2

and u3.

For |H| = 3, H must consist of three linearly independent vectors as it is required to
span R3 , and therefore simp(H) = 0. For |H| = 4, there are two optimal configura-
tions with 1 simplex. Here and for all subsequent figures, points represent vectors,
and aligned points represent vectors in the same plane.

Figure 1: Two optimal configurations for |H| = 4.

For |H| = 7, the analysis contained in this paper will provide the required tools for
the reader to verify that there are three optimal configurations with 17 simplexes,
one of which is contained in 6 planes each of size 3:

Figure 2: Three optimal configurations for |H| = 7.

Corollary 1.3 Let H ⊆ R3 such that H spans R3 , |H| = m ≥ 4 and contains no
collinear vectors. Then we have:(

m− 2

3

)
+ 1 +

(
m− 3

2

)
≤ simp(H) ≤

(
m

4

)
.
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2 Lower bound in R
3 without collinear vectors

Let H ⊆ R3 spanning R3 but not containing any collinear vectors, which we decom-
pose as

H = P1 ∪ P2 ∪ · · · ∪ Pk ∪ I,

where the Pi’s constitute the maximal coplanar subsets of H of size at least 3, which
we call planes, and I is the rest, i.e. the vectors of H not coplanar with two other
vectors of H. Letting pi = |Pi|, we shall always assume that our decompositions is
listed so that p1 ≥ p2 ≥ · · · ≥ pk ≥ 3.
Notice that in this case, H ⊆ R3 not containing any collinear vectors, the only
simplexes are 3-simplexes and 4-simplexes, i.e. three coplanar vectors or four vectors
no three of which are coplanar. Thus if |H| = m, the number of simplexes of H can
be calculated as

simp(H) =
k∑
i=1

(
pi

3

)
+

(
m

4

)
−

k∑
i=1

(
pi

3

)
(m− pi)−

k∑
i=1

(
pi

4

)
. (2)

We are now ready to undertake the proof of Theorem 1.2. We aim to prove that
for |H| 6= 3, 4, 7, we have a unique minimal configuration as described in the theorem,
which we denote by Mm, or simply M when the size is understood.

We first perform a few simplifications.

Lemma 2.1 The minimal configurations of size ≥ 5 are among those with I = ∅.

Proof: Let H ⊆ R3 of size m. If any three vectors of H are linearly independent,
then

simp(H) =

(
m

4

)
.

Moving one vector to one coplanar with exactly two others yields H′, still spanning
R3 , and

simp(H′) =

(
m− 3

4

)
+ 3

(
m− 3

3

)
+ 3

(
m− 3

2

)
+ 1.

Therefore

simp(H)− simp(H′) = m− 4 > 0.

We can therefore assume that H contains at least one plane P1.
If H \ P1 contains only one vector, then simp(H) =

(
m−1

3

)
, and again

simp(H)− simp(M) = m− 4 > 0.

If now H \ P1 contains exactly two vectors while I 6= ∅, then these two vectors
must actually both be in I and a calculation gives
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simp(H) =

(
m− 2

3

)
+

(
m− 2

2

)
=

(
m− 1

3

)
.

Moving one of vector of P1 within the plane to become coplanar with these two vectors
results in our optimal configuration M, and a simple calculation gives once again

simp(H)− simp(M) = m− 4 > 0.

Finally assume that H \ P1 contains at least three vectors, one of these, say u,
belonging to I. Form H′ by replacing the vector u by a new vector u′ in the plane
P1, not coplanar with any other two vectors of H \ P1. Then, as m ≥ p1 + 3 and
m ≥ 5, we have

simp(H)− simp(H′) =

(
p1

3

)
−

(
p1 + 1

3

)
−

(
p1

3

)
(m− p1)

+

(
p1 + 1

3

)
(m− p1 − 1)−

(
p1

4

)
+

(
p1 + 1

4

)
≥

(
p1

2

)
(m− p1 − 2) > 0.

Before handling the general case, we settle the situation where H is contained in
exactly two planes.

Lemma 2.2 For all collections H ⊆ R3 , |H| 6= 7, contained in two planes, that is
H = P1 ∪ P2, simp(H) is minimal exactly when the two planes intersect (in H) and
H has exactly three vectors in one of the planes.

Proof: Let H = P1 ∪ P2 with p1 ≥ p2 ≥ 3. If the two planes do not intersect, form
H′ by moving one vector of P2 to the intersection. Then

simp(H) =

(
p1

3

)
+

(
p2

3

)
+

(
p1

2

)(
p2

2

)
,

and

simp(H′) =

(
p1 + 1

3

)
+

(
p2

3

)
+

(
p1

2

)(
p2 − 1

2

)
.

Thus simp(H)− simp(H′) = 1
2
p1(p1(p2 − 2)− p2) + p1 > 0 as p1 ≥ p2 ≥ 3.

So we can assume that H = P1 ∪ P2 with P1 intersecting P2 in H. Put p = |P2|
and |P1| = p + q for some q ≥ 0; thus |H| = 2p + q − 1. We compare simp(H) with
our optimal configuration M of size m.
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simp(H) =

(
p+ q

3

)
+

(
p

3

)
+

(
p+ q − 1

2

)(
p− 1

2

)
,

simp(M) =

(
2p+ q − 3

3

)
+ 1 +

(
2p+ q − 4

2

)
.

Therefore

simp(H)− simp(M) =

q2

4
[(p− 3)(p− 2)] +

q

4
[(p− 3)(2p2 − 9p+ 6)] +

p

4
[(p− 4)(p− 3)2]

and hence simp(H)− simp(M) > 0 for p ≥ 5. For p = 4, the above formula becomes
q
2
(q + 1) strictly positive for q > 0, i.e. |H| > 7; for |H| = 7, there are indeed two

optimal configurations of the given form, which are shown on the right hand side of
Figure 2. In the case p = 3, H is already in the minimal configuration so there is no
change.

A final preparation shows that one of the planes must have size at least four.

Lemma 2.3 For all configurations of the form

H = P1 ∪ P2 ∪ · · · ∪ Pk,

where k ≥ 3 and |H| 6= 7, the optimal ones are among those with |P1| ≥ 4.

Proof: Suppose that all planes are of size 3. Then the formula (2) becomes:

simp(H) =
k∑
i=1

(
pi
3

)
+

(
m

4

)
−

k∑
i=1

(
pi
3

)
(m− pi)−

k∑
i=1

(
pi
4

)

= k +

(
m

4

)
− 0−

k∑
i=1

(m− 3)

=

(
m

4

)
− k(m− 4).

However k ≤
(
m
2

)
/3 and therefore

simp(H) ≥

(
m

4

)
−

(
m

2

)
(m− 4)/3.

A direct calculation versus our minimal configuration M gives:
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simp(H)− simp(M) ≥

(
m

4

)
−

(
m

2

)
(m− 4)/3−

(
m− 2

3

)
− 1−

(
m− 3

2

)
=

1

24
(m4 − 14m3 + 55m2 − 42m− 72)

=
1

24
(m− 3)(m− 4)(m2 − 7m− 6),

which is strictly positive for m ≥ 8.
The cases m = 5, 6 are easily handled separately and 7 is an exception, where a
minimal configuration exists with 6 planes each of size 3 (see Figure 2).

Now we are ready for the final piece.

Lemma 2.4 For all configurations of the form

H = P1 ∪ P2 ∪ · · · ∪ Pk,

the optimal ones are among those with k = 2, unless |H| = 7.

Proof: Recall that H is required to span R3 and thus we must have k ≥ 2; the above
configuration also forces |H| ≥ 5.
Let m = |H|, and assume that k ≥ 3. As before, the number of simplexes in H,
simp(H), is given by the formula (2) above. By Lemma 2.3, we may assume that
p1 = |P1| ≥ 4.
Form H′ by replacing every vector of H \ (P1 ∪P2) by new vectors in P2; also, if the
two planes P1 and P2 do not already intersect, then replace one of the vectors from
P1 with one in this intersection. Clearly |H′| = |H|, and as H′ is the union of only
two planes, formula (2) becomes:

simp(H′) =

(
p1

3

)
+

(
m− p1 + 1

3

)
+

(
m

4

)
−

(
p1

4

)
−

(
m− p1 + 1

4

)
−

(
p1

3

)
(m− p1)−

(
m− p1 + 1

3

)
(p1 − 1).

Therefore, using (2) again for simp(H), we obtain:

simp(H)− simp(H′)

=

(
m− p1 + 1

4

)
+

(
m− p1 + 1

3

)
(p1 − 2)−

k∑
i=2

(
pi

4

)
−

k∑
i=2

(
pi

3

)
(m− pi − 1).

Hence simp(H′) ≤ simp(H) precisely when

k∑
i=2

(
pi

4

)
+

k∑
i=2

(
pi

3

)
(m− pi − 1) ≤

(
m− p1 + 1

4

)
+

(
m− p1 + 1

3

)
(p1 − 2).
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One difficulty is that m is not well defined in terms of the pis, and out attempts
to prove the inequality directly (under our given conditions) have failed. Instead,
we essentially proceed by brute force in defining sets of the appropriate cardinalities
and exhibit a 1-1 map from the sets corresponding to the left hand side to the sets
corresponding to the right hand side; the slight subtlety comes from also using the
structure of these sets to define the map.
Fix two vectors a, b ∈ P1 \ P2 and then choose:

• Pi itself, as a set of cardinality pi, for i = 1, . . . , k,

• P1 \ {a, b} as a set of cardinality p1 − 2,

• (H \ P1) ∪ {b} as a set of cardinality m− p1 + 1,

• for i ≥ 2, define

Hi := H \ (Pi ∪ {a}), if a /∈ Pi, or
Hi := H \ (Pi ∪ {b}) if a ∈ Pi

as a set of cardinality m− pi − 1.

For a set X such as Pi, H or others, we use
(
X
`

)
to denote the collection of `-element

subsets of X , a set of size
(
|X |
`

)
. Therefore it suffices to define a 1-1 map

k⋃
i=2

(
Pi
4

)
∪

k⋃
i=2

(
Pi
3

)
× (Hi)→

(
(H \ P1) ∪ {b}

4

)
+

(
(H \ P1) ∪ {b}

3

)
× (P1 \ {a, b}).

We proceed in several cases.

A: Let V = {v1, v2, v3, v4} ∈
⋃k
i=2

(
Pi
4

)
.

A1: If V ⊆ Pi and V ∩ P1 = ∅, then define
V 7−→ V ∈

(
(H\P1)∪{b}

4

)
.

A2: If V ⊆ Pi and V ∩ P1 6= ∅, say v4 ∈ V ∩ P1, then
A2.1: if v4 /∈ {a, b}, define
V 7−→ V = ({v1, v2, v3}, v4) ∈

(
(H\P1)∪{b}

3

)
× (P1 \ {a, b});

A2.2: if v4 = b, define
V 7−→ V ∈

(
(H\P1)∪{b}

4

)
;

A2.3: if v4 = a, define
V 7−→ {v1, v2, v3, b} ∈

(
(H\P1)∪{b}

4

)
.

B: Let ((V, w) = {v1, v2, v3}, w) ∈
(
Pi
3

)
×Hi, i ≥ 2.

B1: If V ∩ P1 = ∅ and w /∈ P1, the define
(V, w) 7−→ {v1, v2, v3, w} ∈

(
(H\P1)∪{b}

4

)
.

B2: If V ∩ P1 = ∅ and w ∈ P1, then
B2.1: if w /∈ {a, b}, define

(V, w) 7−→ (V, w) ∈
(

(H\P1)∪{b}
3

)
× (P1 \ {a, b});

B2.2: if w = b, then (as a /∈ Pi) define
(V, w) 7−→ {v1, v2, v3, w} ∈

(
(H\P1)∪{b}

4

)
;
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B2.3: Finally w = a is impossible since by construction a /∈ Hi.

B3: If V ∩ P1 6= ∅, say v3 ∈ V ∩ P1, and w /∈ P1, then
B3.1: if v3 /∈ {a, b}, define

(V, w) 7−→ ({v1, v2, w}, v3) ∈
(

(H\P1)∪{b}
3

)
× (P1 \ {a, b});

B3.2: if v3 = b, define
(V, w) 7−→ {v1, v2, v3, w} ∈

(
(H\P1)∪{b}

4

)
;

B3.3: if v3 = a, then as |P1| ≥ 4, choose c ∈ P1 \ {a} not coplanar
with either w and v1 or w and v2. Now define

(V, w) 7−→ ({v1, v2, w}, c) ∈
(

(H\P1)∪{b}
3

)
× (P1 \ {a, b}), if c 6= b,

(V, w) 7−→ {v1, v2, w, b} ∈
(

(H\P1)∪{b}
4

)
if c = b.

B4: If V ∩ P1 6= ∅, say v3 ∈ V ∩ P1, and w ∈ P1, then
B4.1: if v3 /∈ {a, b} and w /∈ {a, b}), define

(V, w) 7−→ ({v1, v2, b}, w) ∈
(

(H\P1)∪{b}
3

)
× (P1 \ {a, b});

B4.2: if v3 /∈ {a, b}, then w = a is impossible
since by construction a /∈ Hi;

B4.3: if v3 /∈ {a, b} and w = b, define
(V, w) 7−→ ({v1, v2, b}, v3) ∈

(
(H\P1)∪{b}

3

)
× (P1 \ {a, b});

B4.4: if v3 = a (and therefore w /∈ {a, b}), define
(V, w) 7−→ ({v1, v2, b}, w) ∈

(
(H\P1)∪{b}

3

)
× (P1 \ {a, b});

B4.5: if v3 = b (and therefore w /∈ {a, b}), define
(V, w) 7−→ (V, w) ∈

(
(H\P1)∪{b}

3

)
× (P1 \ {a, b}).

One can methodically verify that the above map is 1-1 as in every case the exact
preimage is recuperated from the structure of the image.

Indeed, first let (v1, v2, v3, v4) be a 4-tuple in the range
(

(H\P1)∪{b}
4

)
. If b does not

appear, then the tuple can only arise from A1 or B1, and in both cases the preimage is
the tuple itself or the pair ({v1, v2, v3}, v4). Now assume that b appears, say v4 = b. If
all vi’s are coplanar, then it must have been obtained from A2.2, and the preimage is
again the tuple itself. On the other hand, if {v1, v2, v3} is not coplanar, then the tuple
can only have been obtained by B3.3, in which case the preimage is ({v1, v2, v3}, a).
If {v1, v2, v3} is coplanar with a (and therefore b /∈ Hi), then the tuple can only
have been obtained by A2.3, in which case the preimage is (v1, v2, v3, a). Finally if
v4 = b ∈ Pi, then we are in case B3.2, else we are in case B2.2, and in both cases the
preimage is ({v1, v2, v3}, v4).

Finally consider a pair ({v1, v2, v3}, w) in the range
(

(H\P1)∪{b}
3

)
× (P1 \ {a, b}). If

w is coplanar with {v1, v2, v3}, then we are in case A2.1, and the pair came from the
4-tuple (v1, v2, v3, w). If w is coplanar with two of the vectors, say v1 and v2, then we
must be in either case B3.1 or B4.3, which are settled by whether v3 belongs to P1

or not. If it does, which also implies that v3 = b, then we are in case B4.3 and the
preimage is ({v1, v2, w}, v3). If it does not, then we are in case B3.1 and the preimage
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is also ({v1, v2, w}, v3), but without b appearing. If (say) v3 = b, then we are in either
case B4.1, B4.4 or B4.5. If moreover {v1, v2, v3} is coplanar, then we must be in case
B4.5 and the preimage is the pair ({v1, v2, v3}, w) itself. If the plane Pi spanned by
{v1, v2} intersects the plane P1 in a, then we are in case B4.4, and the preimage is
({v1, v2, a}, w). Otherwise, we are in case B4.1, and if u(6= a) denotes the intersection
of the planes Pi and P1, then the preimage is ({v1, v2, u}, w). Now after all this if
{v1, v2, v3} is coplanar, then we are in case B2.1 and the preimage if the pair itself.
The last case is when the plane spanned by two of the vectors, say v1 and v2, also
contains a. Then we are in case B3.3 and the preimage is ({v1, v2, a}, v3).

To conclude the proof of the Lemma, assume that H \ (P1 ∪ P2) 6= ∅, and consider
H′ formed as described above. We have shown that simp(H′) ≤ simp(H), but now
H′ consists of two planes both of size at least 4; so simp(H′) and a priori simp(H) is
not a minimal configuration by Lemma 2.2. This completes the proof.

We now have all the necessary tools to complete the proof of Theorem 1.2. Con-
sider a collection H = P1∪· · ·∪Pk∪I with simp(H) as small as possible. By Lemma
2.1, we can assume that I = ∅ if |H| ≥ 5; by Lemma 2.4, we can assume that k = 2
if |H| 6= 7. But then Lemma 2.2 uniquely determines H as our minimal configuration
M. The exceptional configurations for |H| = 3, 4, 7 are given in figures 1 and 2.

3 Conclusion

The general problem in Rn regarding the minimum size of simp(H) where H is of
fixed size, spans Rn and contains no collinear vectors remains open. However we
conjecture that the minimum is attained precisely for the following configurations.

1 If n is even, H contains n linearly independent vectors {ui : i = 1, . . . , n}
and the remaining divided as evenly as possible between the planes {[ui, ui+1];
i = 1, 3, . . . , n− 1}.

2 If n is odd, H again contains n linearly independent vectors {ui : i = 1, . . . , n},
one extra vector in the plane [un−1, un] and finally the remaining vectors divided
as evenly as possible between the planes {[ui, ui+1]; i = 1, 3, . . . , n−2} with lower
indices having precedence.

The authors are grateful to Professor Árpád Pethő for drawing their attention to
this problem, and thank student Jianzhong Meng for his help with some calculations
with Maple.
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