
0

1

.---.

| |

| |

| /~~~\ /~~\ | ===== /~~~\ |~~~\ | |\ /| |

| | | | | | / | | | | \/ | |

| \---\ |----| | | ~ \ | | | | | |

| | | | | | | | | | | | |

| ___/ | | |____ | ___/ |___/ | | | |

| |

| |

 SALT3DIM

 version 1.0 , 1995.dec.6.

 A program for handling 4 component systems

 User's Manual

 Copyright by Dr.István SZALKAI

 Dept.Math.,University of Veszprém,Hungary, H-8200

 tel./fax.: (36) 88 - 423 239

 email: szalkai@almos.vein.hu

 This file (Salt3dim.hlp) contains general information and detailed

User's Manual as well, of the program SALT3DIM.EXE (1995.dec.) .

This file contains no extra ASCII characters and has length of 889 lines.

2

CONTENTS:

~~~~~~~~~ 

  0  GENERAL PURPOSE AND THEORY      2. 

  1  THE FILES CONTAINED IN THE SYSTEM     3. 

  2  SOME TECHNICAL DATA       3. 

  3  THE GRAPHICAL SCREENS       4. 

  4  THE MENU, ie. THE HELP SCREEN       4. 

  5  THE FUNCTIONS in the MENU      5. 

   5.0     ?     = The help screen       5. 

   5.1     f     = new dataFile read     5. 

   5.2   Alt-f   = as f, but Cartesian coord.    6. 

   5.3     b     = Bulb-size data plot on/off    6. 

   5.4    d/D    = modify approximation Domain     6. 

   5.5/0      Shepard's approximating method     7. 

   5.5     a     = Approximate last datafile     7. 

   5.6     e     = find Eutektic intersections     9. 

   5.7   Alt-l   = draw eutectic Lines on/off   10. 

   5.8    g/G    = Grids on/off      10. 

   5.9    m/M    = Move to/from +      10. 

   5.10   z/Z    = Zoom       10. 

   5.11   /   = rotate around z axis    10. 

   5.12   /    = rotate around the line  x = -y   11. 

   5.13    E     = input new position for Eye    11. 

   5.14  1/Alt-1 = move + along the x axis    11. 

                   (similar with 2,3,Alt-2 and Alt-3)  11. 

   5.15    p     = Picture redraw in 3D (centered around+) 11. 

   5.16    o     = Original view      12. 

   5.17  Alt-p   = Project to [xy] plane     12. 

   5.18  Alt-i   = Intersect with constant data   12. 

   5.19    s     = Save picture & computation    13. 

   5.20    l     = Load picture & computation    14. 

   5.21  Ctr-End = End program     14. 

  Figures         15. 

 

 

 

   0  GENERAL PURPOSE and THEORY  

   ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  

 This program offers a graphical and computer computational tool (first of

all for chemics) for investigating more component systems. The present version

is for quaterner systems.

 In short, quaterner systems are mixtures, containing of, let us say, the com-

ponents A,B,C and H, and if xA,xB,xC and xH denote the percent of the cor-

responding component, clearly we have

xA + xB + xC + xH = 1

and not to forget: these real numbers are between 0 and 1.

 The usual graphical illustration of these mixtures in 3-dimension is the fol-

lowing: the inner points and the surface of a unit regular 3-dimensional simplex

(tetrahedron) represent the different possibilities for mixing these four com-

pounds, ie.the different possible values for the quadruples (xA,xB,xC,xH). Trans-

lating to the languagage of geometry: if the vectors, pointing from the origin

to the vertices of the tetrahedron are denoted by a,b,c and h, then the mix-

ture-phase (xA,xB,xC,xH) corresponds to the geometric point

p = xA*a + xB*b + xC*c + xH*h .

In this case mathematician call the numbers (xA,xB,xC,xH) the 'barycentric'

coordinates of p .

3

 Well, since this stuff is wellknown (for chemics), or it is terrible (for

non-mathematicians), LET'S START THE PROGRAM, and see what happens.

 The General Purposes of the Program are:

 (1) to Display Any (1,2 or 3) Sets of Given Data (given in %), in Cartesian

Coordinate System,

 (2) Approximate the Data Sets by Surfaces,

 (3) Finding the Eutektic Lines and Point (ie. Finding the Pairwise Inter-

sections of these Surfaces and with the Sides of the Tetrahedron as Well),

 (4) Making Intersection of the Above Results With Planes, Representing Fixed

(constant) %-Values of One of the Components,

 (5) To Display the Projection of the Above Results to the [xy] Coordinate

Plane

 (6) Saving/Loading Your Computation Results to Continue Your Work after a

break (be aware of blackouts) or Next Midnight.

 This version is for computations and for education purposes only, so sometimes

its appearance and limitations are not as brilliant as I could do! (Eg.there

are not always warnings or 'try again's whenever You are mistaken!) Most of

the error messages do not affect your computations.

 1 THE FILES CONTAINED IN THE SYSTEM

  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

are: 

    SALT3DIM.EXE    -  the exe file  

      *.BGI         -  Turbo Pascal graphic interface files  

    SALT3DIM.HLP    -  this file  

    SGOMB3_1.DAT    -  demo data file  

    SGOMB3_2.DAT    -     - " -  

    SGOMB3_3.DAT    -     - " -  

    SGOMB3-.3DI     -  demo final result from the above data sets for loading 

    and peeping (a pentium PC at 150MHz worked 8 hrs for it) 

    SSIK3_1.100     -  other demo data files to use  

    SGOM3_2.100     -     - " -  

    SGOM3_3.100     -     - " - other demo data files to use  

 

 

 

 

  2  SOME TECHNICAL DATA 

  ~~~~~~~~~~~~~~~~~~~~~~ 

 about the present version of the program:

Approx. 1945-1956 (!) lines source code in Turbo Pascal 6, runs even on an 286

AT with 4 MB RAM. The program can handle at most three (3) different sets of

data, each of them may contain at most 1000 entries, approximating each data set

can be refined up to 30x30 grid. The program can store and display up to 3x500

points of pairwise intersections of the approximating surfaces, and up to 3x2x

x300 points of intersections of these surfaces with the sides of the tetrahedron

(see function 'e' = Eutectic intersections in 5.6, these points are called 'eu-

tectic'). Furthermore, when making a 2-dimensional intersection of the 3-dimen-

sional picture with function 'Alt-i' (intersection, see 5.18), the program can

store and display up to 300 points of each surface (and all of the points fal-

ling in the neighbourhood of the intersecting plane of each data set and previ-

ously found eutectic points). Displaying and approximating requires some se-

conds on a 486 PC with 80 MHz, but getting intersections of both kind with fine

resolution needs some hours. These and other limitations of the present quick-

written version are because of the strict warnings of the Turbo Pascal system

('Structure too large', 'Code segment too large', 'Stack/heap overflow',etc.).

Each improvement suggestions or other comments or bug reports from salt- or

4

dimension-fan users are appreciated and are honored with a newer version of the

program, since improvements in all respects are in progress!

 3 THE GRAPHICAL SCREENS

  ~~~~~~~~~~~~~~~~~~~~~~~~ 

  Hitting any key, you (almost) always will see the MAIN SCREEN: the coordinate 

axes, the tetrahedron, the cross-wires (denoted by +), and at the bottom: the 

coordinates of + and your eye. This is the single 3-dimensional picture in our 

program. For understanding some functions of the program, we shortly have to 

learn how this picture is built up, this will be described next. 

  The main picture is built as: we projected everything with lines from Eye to 

the plane, which is orthogonal to and halves the line segment between the fixed 

'cross-wire' and Eye. Unfortunately, the cross-wire is not displayed on this 

screen, the sign + only shows the place you want to put next the cross-wire 

itself.  (For how to move the sign + , see the function  '1/Alt-1' in 5.14.)  

But don't worry: after redrawing the picture with one of the functions  'p' 

(picture redraw) or  'o' (original view)  in  5.15 and in 5.16 resp., the sign + 

is placed exactly to where the cross-wire is, in fact!  

  After reading in data set(s) this screen also shows these data set(s) read in 

(in different colours), his/their domain(s) as smallest rectangle(s) containing 

the orthogonal projections of the data points. Moreover, after some computations 

you will see the interpolating surface(s), also in different colours, and after 

some more computations the eutektic lines and surfaces (in white).  

  The other two screens can be get by the functions  'Alt-p' (project to [xy] 

plane)  and  'Alt-i' (intersection), they are described at those functions in 

5.17 and 5.18, resp.  These are 2-dimensional pictures.  

 

 

 

   4  THE MENU, ie. THE HELP SCREEN  

   ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 Here you are the possible keys you should hit as you see in the program's

built-in help screen (version 1.0, 1995.dec.6), which can be activated simply

pressing the '?' key (whenever the main screen is displayed).

 NOTES: do not mix lower and upper case letters!

 - means hitting two buttoms at the same time

 / separates alternatives.

--

f = new dataFile read | Alt-f = as f,but Cartesian coord.

b = Bulb-size data plot on/off |

d/D = modify approximation Domain |

a = Approximate last datafile |

e = find Eutektic intersections | Alt-l = draw eutectic Lines on/off

g/G = Grids on/off |

m/M = Move to/from + | <-/-> = rotate around z axis

z/Z = Zoom | Curs up/dn = rotate around "x=-y"

E = input new position for Eye |

1/Alt-1 = move + along the x axis |

 (similar with 2 and 3) |

p = Picture redraw in 3D |

 (centered around +) |

o = Original view | Alt-p = Project to [xy] plane

s = Save picture & computation | Alt-i = Intersect with const.data

l = Load picture & computation | Ctr-End = End program

 |

? = This help screen |

--

5

 To choose a function, just hit the buttom(s) listed above. One letter in each

function's above short description is always in UPPER CASE to remind you for the

key(s) of the function (usually the same letter, in fact).

 You are allowed to use these functions when the main 3-dimensional picture is

displayed, and this picture is always redrawn in seconds (exceptions are the

functions 'Alt-p' (projection to the [xy] plane,see 5.17) and 'Alt-i' (inter-

section,see 5.18)).

 You might want to start with the last but one function 'l' (load, see 5.20)

to see one final result of my work, then function 'Alt-p' (project to the [xy]

plane, see in 5.17), and then with 'Alt-i' (intersection, in 5.18, choosing the

preloaded 'previous' intersection screen), and then with ... well, try all of

them a bit please before switching the computer off.

 5 THE FUNCTIONS in the MENU

  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  Now we separately describe each function below. You are warmly advised to read 

all of my warnings before trying them out, but after it, you are warmly recom-

mended to try out all variants in details of that function. Once again note that 

do not mix lower and upper case letters !  

  Have a nice time! 

 

 

5.0  ? = The help screen  

~~~~~~~~~~~~~~~~~~~~~~~~ 

 When a function does not pop in your mind, just hit this key whenever the

program displays the 3-dimensional main screen, and you'll see the above help

screen. After hitting any key you return again for the main screen.

5.1 f = new dataFile read

~~~~~~~~~~~~~~~~~~~~~~~~~~ 

   The program can handle at most 3 (three) different sets of data. Choosing the  

'f' (file read)  function, you can read the next set of data, given in % quanti-

ties  (mathematicians call them 'barycentric coordinates'). The (ordering) num-

bers of the data sets are counted and displaying automatically for your conveni-

ence, you do not have to bother them!  (The similar is for their colors.) 

   The program offers you the forthcoming one from the three demo data files 

SGOMB3_1.DAT , SGOMB3_2.DAT  and  SGOMB3_3.DAT . So, hitting a pure Enter, you 

will read the next of them in order in an eyeblick. In this case be sure that 

these file are in the current directory. 

   If you want to read another file, you must give full filename with the exten-

sion, moreover, you should give it with full pathname in case your file is in 

other directory.  

   In case you give a nonexistent filename, after a red color warning you are 

asked  'Do you try another file(y/n)?'. Choosing  'y'  (and hitting Enter)  you 

get the next chance, while choosing  'n'  (and Enter)  the program returns to 

the unchanged 3-dim.main screen.  

   The dataset MUST be in the format below  (otherwise the pogram halts with 

runtime error): 

 

n                <= the number of data points, the first number in the file 

a1 b1 c1 h1      <= four positive numbers between 0 and 1, sum of which is  

a2 b2 c2 h2             1.0000  (% values of the components a,b,c and water), 

a3 b3 c3 h3             separated by one or more spaces, Enter after each line 

.  .  .  .                   -"-  

an bn cn hn      <= you need at least  n  many data lines 

 ...             <= all the remainder lines are unread, may contain anything 

 



6 

 

   The maximum size  (n)  of each data set may not exceed 1000, otherwise the 

program halts with Runtime error. The present version of the program does not 

check whether there are exactly  n  many data in the file, it simply runs and 

reads. 

   In case the sum of the data in any line is not exactly  1.000  you receive a 

red error message, but hopefully the program continues reading,you simply should 

hit any key.  

   After succesful reading of the first (1.) data set, the program asks you a 

name for an output file. This is a kind of report file  (plain ASCII),  all your 

computations can be read in it. The filename is up to you, but do not forget: 

the program ultimately overwrites the existing file with the same name in that 

directory!  Again the program offers you a default name for this file. In case 

it suits you, you may just hit 'Enter'. This report file will be stored in the 

active directory unless you specify other pathname. 

   You also are asked whether you want to store in this output file the trans-

formed data set or not. This means, you can see  (and store in a file)  among 

others the Cartesian (!) coordinates of your data.  (Recall, that your data was 

originally given in % values (barycentric coordinates)!) 

   Now, after an OK sign, the program returns to the 3-dim.main screen and you 

can see your data set in the forthcoming color, along the previously read data 

sets in Cartesian coordinate system in the unit tetrahedron.   

   The smallest rectangle whose sides are parallel to the axes x and y , and 

which contains all the projections  (ie.the (x,y)-coordinates)  of the given 

data set, is drawn with the same color. The size of this rectangle can be ad-

justed with the function  'd/D' (domain, see 5.4),  and plays role when approxi-

mating the (last read) data set  (see 5.5 for approximating). 

 

 

5.2   Alt-f  = as f, but Cartesian coord. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 This function is exactly the same as the above function 'f' , but the data

to be read are supposeb to be given in (x,y,z) Cartesian coordinates. That

means, the first three numbers of each line of the datafile will be read, and

will not be transformed.

 When the last dataset is read in with the function 'Alt-f', the tetrahedron

is not displayed.

 This function allows you to use this program for approximating ANY 2-variable

function with the built-in approximation method of Shepard. (Well, this method

is not the best, but do not forget: I had to choose a method for (randomly)

scattered data points, since the chemics'dataset are such.)

5.3 b = Bulb-size data plot on/off

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

   Hitting this buttom once (or more), all the data points are displayed with 

little bulbs (or with points again).  So this buttom is a 'toggle', you can use 

it at any time. 

   This function do has effect for the projected picture  (see 'Alt-p' in 5.17)  

but not for the intersection picture constructed by the help of the function  

'Alt-i' (see in 5.18),  and can only be adjusted when the  3 -dimensional main 

picture is displayed.  (That is, use the bulb-function when the 3-dim picture is 

displayed and use  'Alt-p' afterwards.) 

 

 

5.4   d/D  = modify approximation Domain  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 Hitting 'd' or 'D' the size of the domain-rectangle for the last read in

dataset (that is, the smallest rectangle whose sides are parallel to the axes x

and y and which contains all the projections (the (x,y)-coordinates) of the

given data set, drawn with the same color) can be adjusted, ie. it can be en-

larged/make smaller.

7

 Notify, that only the last-read dataset-rectangle can be modified, the others

not any more! (Well, restart the program.) Moreover, there is no possibility

for getting back to the original domain -- so be careful modifying the domain,

since what is even more important: approximation of the last-read dataset will

be done on this domain set, actually displayed in the screen (see 5.5 for

approximating).

 Though, resizing this domain at any time and after it a new approximation

(only for the last-read dataset!), choosing the approximating function 'a'

(see below) is always available.

5.5/0 Shepard's approximating method

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  The program's built-in approximating method  (for the functions 'a'=approxi-

mation, 'e'=eutectic points and 'Alt-i'=intersection with constant data) i . 

Shepard's method  we shortly describe here, to explain the program's query on  

'Shepards exponent'.  (R is for the set of real numbers.)   

  You are qiven a set of data points 

 

         Pi = (xi,yi,zi)       for  i=1,2,...,M  

 

and you are looking for a two variable continuous function U:RxR -> R  such that  

 

(*)      U(xi,yi) = zi         for  i=1,2,...,M . 

 

When the values (xi,yi) lie on a rectangle- grid, many approximating methods are 

(well) known. However, when these values are randomly chosen in the plane RxR, 

there are not so many. Our's is  Shepard's Method: for any point P=(x,y) in RxR  

let  

 

 

 

 

 



 

 





 

 



































M

1i i

M

1i i

i

M

1i ij

j

M

1i ij

ji

P,Pr

1

P,Pr

1
z

P,Pr

P,Prz

:PU  

where  

 

 iP,Pr  := the alpha 'th power of the Eucledian distance of the points P and Pi  

 

and this alpha exponent can be any real number greater or equal than 1,of course 

differrent exponents give different approximating surfaces, all of them are con-

tinuous and give exact approximations  (ie.satisfying (*)).  

  Using our program you are able to investigate and to compare these different 

surfaces for different values of the exponent 'alpha', as described below. We 

got best results with exponents around 10 , too small or too big exponents were 

not so good. 

  For further details see eg.  W.J.Gordon & J.A.Wixom's paper Shepard's Method 

of "Metric Interpolation" to Bivariate and Multivariate Interpolation  in the 

journal: Mathematics of Computation vol.32.(1978),pp. 253-264. 

  Though the functions  'a', 'e' and  'Alt-i'  (approximation/eutectics/inter-

section)  allow you to input different values for alpha, you are NOT advised to 

do so in the same session!  Moreover, saving with the function 's' (=save,see 

5.19)  saves only the last value of alpha!  

 

 

5.5   a  = Approximate last datafile  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 This function combined with 'Alt-f' (reading dataFile, see.5.2) allows you

to use this program for approximating ANY 2- variable function with the built-

in approximation method of Shepard. Hitting the key 'a' the program starts

8

approximating the last read (!) datafile, approximating the others in not

possible any more. (Well,restart the program.)

 The approximating is done on the 'domain'-rectangle, so before starting

approximating please adjust the size of this rectangle with the 'd/D'(=domain)

function as described in 5.4.

 So, after you hit the key 'a' the first you are asked for is Shepard's expo-

nent ('alpha'). In case you give a value smaller than 1, you'll asked for this

exponent again. (Recall from 5.5/0 that Shepard's exponent (alpha) is the para-

meter you can vary for our built-in approximation method.) Though the functions

'a', 'e' and 'Alt-i' (approximation/eutectics/intersection) allow you to input

different values for alpha, you are NOT advised to do so in the same session!

Moreover, saving with the function 's' (=save, see 5.19) saves only the last

value of alpha! We got best results with exponents around 10 , too small or too

big exponents were not so good.

 The next question is 'Consider points only in the simplex? (y/n)'. Since

some parts of our (infinite!) approximating surfaces are out of the tetra-

hedron, especially for large domains (whether you see it or not on the main

screen) you may wish to deal only with the inner points of the tetrahedron (and

with the points on its sides). Since checking this for every point makes the

computation a bit slower, the answer is up to you (try out both).

 Then you can input the (integer) numbers for the division of the sides of

the domain-rectangle to make an equidistant grid on which the approximation will

be carried out. Sorry, each of these numbers must not exceed 30 in the present

version of the program. (Try to input higher numbers...)

 The graphical file which name is asked for next will be a pure datafile con-

taining the approximated values for your further use of the next format:

n <= number of divisions along the x axis

m <= - " - along the y axis

x1 x2 . . . xn <= the x-coordinates of the grid-points

y1 y2 . . . ym <= y-coordinates - " -

z11 z12 . . . z1n

z21 z22 . . . z2n

 . <= the approximated values

 .

 .

zm1 zm2 . . . zmn

 The program offers you a default filename automatically, these names are dif-

ferent for the three data set read in! So, you can even simply press Enter at

this prompt. Note, that any file (if exists) with the same name will be over-

written without any warning!

 And finally, the computation begins, the numbers of the grid points and the

approximated values are displayed in the forthcoming approximating color and the

final picture appears on the main screen!

 Some concluding remarks:

 The approximation for the latest-read dataset can be repeated with other para-

meters and other domain-rectangle at any time, but remember: the previously

computed values will be lost (for the latest-read dataset only).

 The approximation results (for all datasets), displayed on the main screen can

be stored and loaded again with the functions 's' (save,see 5.19) and 'l'

(load,see 5.20). For example, you may wish to save before another approximation

process.

 The running time linearly depends on the size of the data set and on the num-

ber of the the grid points and slightly on alpha if the latest is an integer,

but not for other alphas. (Why?) Displaying and approximating requires some

seconds on a 486 PC with 80 MHz for the data sets containing 100 entries and for

a 30x30 grid.

9

5.6 e = find Eutektic intersections

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

   (Lower case letter 'e', please!) 

   This function searches the intersections of the approximating surfaces with 

the sides of the tetrahedron and their pairwise intersections, too. Well, if you 

choose this function when no data set is read in  (with the 'f' or  'Alt-f' = 

read data File in functions, see 5.1 and 5.2),  then a red message warns you to 

this fact, and a gray message gives the hope to you that the system is not 

halted. 

   The behaviour of the program while computing this function is very similar to 

the function  'Alt-i' (intersection,see 5.18)  - you have to learn hard only one 

of them.  

   In case you have already made such an eutectic picture (or, equivalently, you 

loaded a saving file (see 5.20) containing such a picture as our demo file 

SGOMB3-.3DI does), that picture is already displayed on the main screen. Be 

careful: using this function again, no exit possibility exists: the program 

ultimately deletes that previous picture and begins to construct a new one (on 

top of all, the running time is always very long)!  

   Saving your 'eutectic'-pictures is possible with the  's' function (see 5.19)  

and can be loaded again withe the 'l' function (see 5.20).  

   To be more precise: the computation starts on the old picture - this makes 

possible for you to compare the two pictures during the computation, but not 

when it is finished, since the old picture is kept destroying). But before you 

have to input some parameter! 

   One more preliminary WARNING: there is no exit possibility after choosing 

this function while the computation even for reasonable parameters can be very 

long (hours),  only at your socket!  (I mean, switch the computer off.) 

   Since the program searches for the intersection points  (of one surface with 

one side of the tetrahedron, or of two surfaces)  step-by-step investigating all 

the possible points, moving on a grid of some step-length, first you are asked 

for this refinement step-length ('delta'). This has the important consequence 

that the running time linearly depends on  (1/delta)^2  (the square of delta's 

reciprocial) !  May I advice you to choose  delta=0.01 or so ?  

   Next you can vary Shepard's exponent ('alpha')  for our built-in approxi-

mation method, which is described in details at the  'a'  (approximation) func-

tion in 5.5.  Though in the functions  'a' , 'e'  and  'Alt-i' (approximation 

/eutectics/intersection)  the program allows to you to input different values 

for alpha, you are NOT advised to do so in the same session! Saving with the 's' 

function (see 5.19) only saves the last value of alpha! The best-useable inter-

val of alpha's is suggested at the  'a' (approximation) function in 5.5 : in 

general  alpha=10  is the best. 

   The final questuion of the program is:  'Shall we consider points only in the 

simplex? (y/n)'.  Since some parts of our  (infinite!)  approximating surfaces 

are out of the tetrahedron  (whether you see it or not on the main screen),  you 

may wish to deal with the inner and points of the tetrahedron  (and with the 

points of its sides). Though checking this for every point makes the computation 

a bit slower, in this case you should hit  'y'  (and Enter).  

   The (bit long) computation process can be followed on the screen: a little 

circle shows the point the program investigates for intersecting the forthcoming 

surface. (The program investigates your surfaces separately, this makes the 

whole process a bit quicker.)  When the program finds an eutectic point, this 

circle leaves a white coloured dot at this place. Don't worry: after the proce-

dure the whole new picture will be re-displayed!  This way of showing also 

slowers the computation process, but at leat you do not have to worry about 

frozen machines. 

   All moving/zooming/turning possibilities you can use afterwards, though for 

every modifying the picture, the present version of the program redisplays the 

whole picture, which   (on slower machines)  makes slowly to you to go far away  

(in R^3 I mean). 

  The program can store and display up to 3x500 points of pairwise intersections 

of the approximating surfaces, and up to 3x2x300 points of intersections of 



10 

 

these surfaces with the sides of the tetrahedron. The number of the points the 

program finds depend on delta. In case the program would find more than 500/300 

points for one surface, the first 500/300 of them will be stored and the program 

goes to the next surface (if left).  Have a look at the moving point on the 

screen: it shows the order of investigating  (and finding and storing)  inter-

secting points! 

   The running time, as was indicated above, mainly depends linearly on 

(1/delta)^2   (=the square of delta's reciprocial)  and the size of your data 

sets  (in each point we investigate we have to make an approximation). Eg. 

choosing delta=0.005 needed 8 hours on a 486 PC with 150 MHz with the demo data 

sets, each of them containing 100 entries. 

 

 

5.7   Alt-l  = draw eutectic Lines on/off 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 Hitting these buttome once (or more), all the eutectic points (have been com-

puted so far) are connected with lines in their (computing) order. Hitting

these buttoms once again, these points will be displayed only which the default

in our program. In other words, this function is again a 'toggle', you can use

it at any time.

5.8 g/G = Grids on/off

~~~~~~~~~~~~~~~~~~~~~~~~~ 

   Hitting the buttom  'g' (lower case)  small x signs show  0.1 -unit length on 

the axes  (between 0 and 1)  and on the edges of the tetrahedron. These might 

help you to realise the sizes of the picture.  

   The upper case  'G'  buttom hiddens these signs, but you can display or hid 

them at any time. 

 

 

5.9   m/M  = Move to/from +  

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 This function moves your Eye to/from the cross-wire (see the explanation for

building the main screen in section 3) and redraws the picture.

 The starting coordinates for Eye are (20,30,25), the cross-wire is the center

of the tetrahedron at the beginning of the program. Using the present function

(and the present version of the program), Eye is moved along the line determi-

ned by the cross-wire and the previous position of Eye, BUT it is not checked if

Eye is going to the other side of this line (well, if you want so...).

 Do NOT mix this function with 'z' (zoom, see in 5.10) !

 However keep in mind that the sign + itself, displayed at any time on the

main screen, is NOT always the cross-wire itself (though its coordinates are

always displayed along the coordinates of the Eye)! For further explanation

see the functions '1/Alt-1' (moving +, in 5.14), 'p' (picture redraw,in

5.15) and 'o' (original view,in 5.16).

5.10 z/Z = Zoom

~~~~~~~~~~~~~~~~~~ 

   These buttoms zoom in/out your picture in/out with almost no limits.  (Sorry 

for the computer 'under/overflow' technics ...) 

   In case the points you are interested in are moving out from your monitor, 

remember to use the functions  '1/Alt-1' (moving +, see in 5.14) and then  'p' 

(picture redraw centered around +, see in 5.15). 

 

 

5.11   <- / ->   = rotate around z axis  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 With the 'CursorLeft' and 'CursorRight' buttoms you are able to move

horizontally around the vertical z axis in the full 360 degree (or more).

11

5.12 Curs up/dn = rotate around the line x = -y

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

   These cursor moving buttoms rotate the picture around the line in the [xy] 

coordinate plane  (ie.z=0)  with the equation  x = -y .  This does not only mean 

that you can move your Eye up and down, it is more!  Combining this function 

with the left/right cursor buttoms, you may walk around your dataset(s) and 

their approximating surfaces. 

   Warning: if you move too close to the vertical  z axis, and then move further 

in the same direction you may fall down on the other side of your horse: you 

will not recognize your picture at the first glance! 

 

 

5.13   E  = input new position for Eye  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 (Upper case letter 'E' , please!)

 With this function you can directly modify the Eye's coordinates and to have

a new view. (Recall the explanation how the main screen is biult up in section

3 and the roles of the cross-wire and the sign + described in 5.14.)

 May I advice you to put down the previous (good!) position of the Eye before

trying the present 'E' function, or at least to remember the 'o' (original view)

function in 5.16 ? (The Eye's coordinates are always displayed along the co-

ordinates of the sign + at the bottom of the screen in yellow.)

 The starting coordinates for Eye are (20,30,25) and the original position

for the cross-wire is the center of the tetrahedron when the program starts.

However keep in mind that the sign + itself, displayed at any time on the main

screen, is NOT always the cross-wire itself, they coincide only after redrawing

the picture with one of the functions 'p' (picture redraw, see 5.15) or 'o'

(original view, see 5.16), or restarting the program.

 The Eye's position can also be modified with the 'm/M' (move) function (see

5.9).

5.14 1/Alt-1 = move + along the x axis (similar with 2,3,Alt-2 and Alt-3)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

   Of course I mean the key hittings  '1' , '2' , '3' , 'Alt-1' , 'Alt-2' and 

'Alt-3'. With these keys you can move the sign + in 6 directions in the  3 -

dimensional space (and nothing else).  Each step is approx. 0.1 unit. The exact 

position of the sign + is written at the picture's bottom in yellow  (next to 

Eye's coordinates). 

   The sign + only helps you to plan the next position for the cross-wire, which 

is (in the present version of the program) is not visible, and does not move 

when moving + !  (Recall the explanation for building the main screen in section 

3.) 

   But don't worry, after redrawing the picture with one of the functions 'p' 

(picture redraw, see 5.15)  or  'o' (original view, see 5.16)  the sign + is 

placed to the same place where the cross-wire is, in fact!  So, to avoid con-

fusion, you are advised to use the function  'p'  (picture redraw, see in 5.15)  

as soon as it is possible!  

 

 

5.15   p  = Picture redraw in 3D  (centered around + ) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 Hitting this key the cross-wire is set to the position of the sign + (but

not conversely!) and the picture is redrawn so that the sign + with the cross-

wire are positioned into the center of your screen. (Recall the explanation for

building the main screen and the roles of the cross-wire and the sign + in sec-

tion 3.)

 The sign + can be moved with the function '1/Alt-1' (move + along the axes,

see in 5.14).

12

5.16 o = Original view

~~~~~~~~~~~~~~~~~~~~~~~~~  

  Hitting this key all picture -displaying data are set to original default and 

you see the original picture like when the program started. No your data or your 

computation will be lost but only the way you were looking at them! 

 

 

5.17   Alt-p  = Project to [xy] plane  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 Hitting these keys all your data (with the domain sets in their adjusted

sizes) along with the eutectic points are projected to the [xy] coordinate

plane in an eyeblick. No moving/zooming/turning possibilities you have, only the

bulb function (see 5.3) has an effect. Sorry, the present version does not

project Eye, the + sign and the cross-wire. (I just felt like that.)

 The function 'b' (bulb,see 5.3) do has effect for the projected picture but

not for the intersection picture constructed by the help of the function 'Alt-i'

(see in 5.18), and can only be adjusted when the 3-dimensional main picture is

displayed. (That is, use the bulb-function when the 3-dim picture is displayed

first, and use 'Alt-p' afterwards.)

 Hitting the Spacebar you will return to the main screen.

5.18 Alt-i = Intersect with constant data

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  This function makes a 2- dimensional intersection of the 3-dimensional picture 

with a plane, parallel to one of the sides of the tetrahedron.  

  In the behaviour of the program while computing this function there are many 

similarities to the function  'e' (eutectics,see 5.18)  - you have to learn only 

one of them hard.  

  In case you have already made such an intersection picture  (or, equivalently, 

you loaded a saving file (see 5.20) containing such a picture as our demo file  

SGOMB3-.3DI does),  the present version of the program asks you  'Display the 

previous picture (y/n)'. Answering 'y' the programs redisplays that intersec-

tion, but be careful: answering 'n' ultimately deletes that previous picture and 

begins to construct a new one!  (The present version of our program can handle 

only one intersection picture.)  Saving your intersections pictures is possible 

with the 's' function (see 5.19)  and can be loaded again withe the 'l' function 

(see 5.20). 

  One more WARNING: there is no exit possibility after choosing this function 

while the computation even for reasonable parameters can be very long (hours),  

only at your socket!  (I mean, switch the computer off.) 

  And now, what is we are intersecting, in detail: first you are asked for the 

name of the component to be fixed  (the components are denoted by the letters 

a,b and c).  Sorry, there is no built in check at all in the present version of 

the program, so BE SURE to input only the lower case letters a,b or c !  After 

you are asked for the fixed value (in %)  of this component, we call this quan-

tity  'fix' in what follows.  The program checks whether this quantity is bet-

ween 0 and 1 but you are not advised to chose 1 itself. 

  The program intersects with the plane which points  (in the tetrahedron) rep-

resent states of mixtures in which the component you've chosen has fixed quanti-

ty in % . (In other words, the barycentric coordinate concerning of the compo-

nent you have fixed of the points, lying on this plane, have the same fixed 

value.)  This means that this plane intersects the edges of the tetrahedron, 

connected with the vertex you have choosen, in the ratio of (1-fix):fix.  (So, 

this intersection is what I'm talking about.)  This triangle will be drawn in 

green on the screen, its size is in linear connection with its real size, you 

cannot adjust it, sorry. 

  The program first intersects the approximating surfaces fitted on your data-

sets with this plane. For this purpose, you are asked next for is the refinement 

step drawing the picture  ('delta')  and  Shepard's exponent ('alpha').   



13 

 

  Delta is the length of steps the program investigates the points of the inter-

section (green) triangle for intersection points of the surfaces on your data 

set(s).  This has an important consequence: the running time linearly depends on  

(1/delta)^2   (the square of delta's reciprocial)!  May I advice you to choose 

delta=0.01 or so ? 

  Shepard's exponent (alpha) is the parameter you can vary for our built-in 

approximation method, which is described in detail at the  'a'  (approximation) 

function in 5.5.  Though in the functions  'a' , 'e'  and  'Alt-i' (approxima-

tion/eutectics/intersection)  the program allows to you to input different 

values for alpha, you are NOT advised to do so in the same session! Saving with 

the 's' function (see 5.19) only saves the last value of alpha! The best-useable 

interval of alpha's is suggested at the  'a' (approximation) function in 5.5, in 

general  alpha=10  is the best. 

  The (bit long) computation process can be followed on the screen: a little 

circle shows the point the program investigates for intersecting the forthcoming 

surface.  (The program investigates your surfaces separately, this makes the 

whole process a bit quicker.)   When the program finds a intersecting point, 

this moving circle leaves a dot of the colour of the surface being investigated 

at present at this place. Don't worry: after the procedure the whole new picture 

will be re-displayed!  

  In general you may get curly intersections of the surfaces with the plane. 

This is because we do not intersect with a vertical plane. 

  After intersecting the approximating surfaces, the program turns to the data 

sets (and previously found eutectic points). Points of them, falling on the 

plane will be displayed by bulb size dots, while other points in the neighbour-

hood of the plane are shown as small color points. Since these data are not 

stored but computed at every time instead, all of them will be displayed at 

every time. 

  No moving/zooming/turning possibilities you have, neither the bulb function 

(see 5.3) has an effect. The size of the triangle is adjusted automatically, 

depending on its real size.  Sorry, the present version does not project Eye, 

the + sign and the cross-wire. (I just felt like that.) ... .  The present ver-

sion of the program can store and display up to 300 points of each surface  (I 

mean at most 3x300 points). The number of the points the program finds depend on 

delta. In case the program would find more than 300 points, the first 300 of 

them is stored and the program goes to the next surface (if left).  Have a look 

at the moving point on the screen: it shows the order of investigating  (and 

finding and storing) intersecting points!  

  The running time,as was indicated above, mainly depends linearly on (1/delta)2  

(=the square of delta's reciprocial)   and on the size of the intersection 

(green) triangle determined by  1-fix .  Furthermore, the running time also 

depends linearly on the size of your data sets  (in each point we investigate we 

have to make an approximation). The number of eutectic points computed so far is 

not so important. Eg.choosing delta=0.005 needed 1.5 hours on a 486 PC with 150 

MHz with the demo data sets, each of them containing 100 entries.  

  Hitting the  Spacebar  you will return to the main screen. 

 

 

5.19   s  = Save picture & computation  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 Using this function ALL of your data and ALL of your computation along with

ALL of your picture adjustement, not to forget about the intersection picture

you've computed with the function 'Alt-i' (see in 5.18) ALL will be stored in

a file of the name you give.

 Combining this with the function 'l' (load,see below) you will be able to

continue your work (after a blackout or next midnight) as you even didn't

switch your computer off!

 Some further WARNINGS of mine:

 The present version of the program does not check if there is a file in the

present directory (or in the directory you give him). I mean that the program

14

simply OVERWRITES the other file with the same name! The present version of the

program also does not shows directories, you are supposed to keep them in mind!

 There is no 'saved' flag in the program, so be sure to save your work after

you have computed some complicated, and before ending the program!

 In general, this function generates a large file (usually 200-400 kb!), so

make sure to have enough space before using the 's' function ! The size of

this file (among others) depens on the refinement of your computations you've

done with functions 'e' (eutectic, see 5.6) and 'Alt-i' (intersection, see

5.18). I mean, on delta.

5.20 l = Load picture & computation

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

   Using this function ALL of your/mine data and computation along with your / 

mine picture adjustement, not to forget about the intersection picture you/me 

have computed with the function  'Alt-i' (see in 5.18)   ALL  will be LOADED  

from a file in which you have already previously saved them with the function 

's' (see above). 

   WARNING: the present version of the program does not warn you to save your 

work before loading!  Since everything in computer's memory will be overwritten 

while loading,  ALL OF YOUR WORK in the present session WILL BE LOST!.  So be 

sure to save them with the function  's'  described above before loading another 

one! 

   The program offers you to load the demo file  SGOMB3-.3DI as default, in this 

case you should hit only Enter and to see what happens.  

   If you want to read another file, you must give full filename with the exten-

sion, moreover, you should give it with full pathname in case your file is in 

other directory.  

   In case you give a nonexistent filename, after a red color warning you are 

asked  'Do you try another file(y/n)?'.  Choosing  'y'  (and hitting Enter)  you 

get the next chance while choosing  'n'  (and Enter)  the program returns to the 

3-dim.main screen, displaying your old data sets and computations (if you had 

any).  

   After succesful loading the program returns to the 3-dimensional main picture 

displaying the new data sets (and the interpolating surfaces and eutectic points 

as well, if there are any). One 2-dimensional intersection-picture (if there was 

one constructed by the function  'Alt-i', see 5.18) was also saved, which can be 

redisplayed by using  'Alt-i' again and chosing the option  'yes, display the 

previous picture'. 

  Combining this function with the function  's' (save,see above)  you will be 

able to continue your work  (after a blackout or next midnight)  as you didn't 

even switch your computer off! 

  A puzzle: what is the escape method when accidentally 'l' (load) was pressed?  

 

 

5.21   Ctr-End  = End program 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 Before this function make sure you have saved all your computation with

function 's' (save,see in 5.19) for further re-use or computations!

 Have a nice time!

   ~~~~~~~~~~~~~~~~~ 

 



15 

 

 



16 

 

 


