UNIVERSITY OF VESZPREM
DEPARTMENT OF MATHEMATICS AND COMPUTING

COMPARISON OF INTERPOLATION METHODS FOR
PREDICTING THE VAPOUR PRESSURE OF AQUEOUS
GLYCEROL SOLUTIONS

by

Istvan SZALKAIL", Attila SEBESTYEN’
Ferenc BODI® and Liszlé KOTAL

PREPRINT No. 036

VESZPREM

EGYETEM d. 10.
P. O. Box: 158.
H-8201




0 Introduction

Recently evagoration of aquecus solutions with small glycerol
concentrations obizined from the combined processes of icrn-exchange and
chemisorption on diluted sclutions is ever increasingly preferred instead
of expensive purification of cocncentrated glycerol solutions required by
the cosmetic indusiry. Considering that glycercl loses watsr very
easily at higher concentrations, resuling in acrolein or polycondensed
derivatives, respectively, the control of the appropriate temperature
limits is very inrortant in the industrial technologcal processes.

In the present work mathematical relationships betwesn data-triads
of «concentration - vapour pressure - boiling point temperature of the
clear glycerol ars studied. The possibilities of data interpolation with
the application of several two variable spline-interpolation methods are
studied with the aim of calculation of evaporating conditions at low
pressure and upper temperature limits of the glycerol solutiens with given
concentrations.

In the present paper we compare four basically different methods
with two variaticns to the third and fourth ones, in five sections. These
methods were used to approximate the prediction of the vatocur pressure,
depending on the {emperature and concentration as a two variable function..
That is, t=f(c,p) for some function f:R°»> R where t stands for
temperature (Celsius), ¢ for concentration (%) and p for pressure (MPa).

In the present paper we compare these methods both thecretically and
practically. The difficulties for programming as well cezputing results,
especially the errors are discussed in details, too. In ths last secticn
we also discuss computing experiments.

All the computations are based on the data in Table 1 tazken from
[, Table 44]. These measured values are drawn on Fig.1 in order to
compare them with the approximated values.

Though most of these methods are general methods for approxXimating
any two variable function,not the glycerin one, but this was a good

example to compare these methods in the practice.
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1 A Heuristic Formula

In [SVPK] we find the formula
ale) (el in{p}
In(p)=ale)-t'° that is t= Vv o

0. 5379~0. 1626c+0. 4271c°~0. 7497¢>

Lo

where

Alc)

and 2 s
0. 5307+0. 2310c-0. 6996¢ +0. 753%9¢

alc)

where p denotes the pressure in MPa, ¢ 1is the relative concentration
in % and t stands for temperature in °C. The authors of [SVPK] state that
the error is less than 7% in the interval 10%=c=%90% , 0.0053MPa=p=
=0.1013MPa and 35°C=t=105°C . The authors of [SVPK] state that they
found this formula using mass correlation.

The graph of the approximating function, given by the above formula
is shown on Fig.2 while the absclute error of this method can be seen in

Fig.3 and (for separate concentrarions) in Fig.4 .

The other metheds, discussed in the following sections, are
independent of temperature, concentration or vapour pressure. They are
only general pure mathematical methods for approximating two variable

functions.

2 [Iterated One Dimensional Interpolation

In [DRM] and [PFTV] one finds the well known method of two variable
spline interpolation which repeatedly uses one dimensional spline
interpolations. Though this method is well known and one can find both in
{DRM] and [PFTIV] we shortly describe it to make this paper self-contained.

The present method requires that the domain of the function we are to

approximate be a rectangle [e,blx[c,d] and that the measured points lie
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on lines parallel to the ordinate x axis (see below). So we are given

the measured values zlj at the measured points Pij=(xij,yi) such
that 1=si=M , 1=]j=N , asxijsb s csylsd . We want to constrﬁct a spline
function $S(x,y) such that S(xi J,y1)=zl ] for 1=i=M , 1=i=N .

For calculating S(X,Y¥) at each point (X,Y)ela,blx[c,d] we use a
couple of one dim.spline interpolations in each horizontal line and a
single further one along a vertical line. That is:

First for each fixed i=M use one 1- dimensional spline approximation
along the points L with the measured values %, (1=j=N) to construct

» »

spline functions si(xJ such that sl(xi’j)=zl-'j for 1=j=N. Call this
procedure horizontal steps. (Observe that Dom(si)=[a,b] and for horizontal
steps we do not need the point (X,Y).)

After this use a single one dimensional spline interpclation based on
the points vy and values si(X) for 1=i=M to get the spline function
SX(y) with Dom[Sx)=[c,d] such that SX(y1)=31(X) . Finally we take the
desired approximation function S as S(X,Y)=SX(Y) . The method is
illustrated in Fig.5.

In practice, of course,we can compute the splines s, in advance, and
after this for each point (¥,Y)e[a,blxl[c,d] we can determine S(X,Y) by

using one more l-dimensional spline interpolation to get SX

In our computations we used cubic spline interpolations (described
in more details in [DRM] and [PFTVI, and here below) in each case. The

approximating function for our glycerol data S(x,y)} is drawn in Fig.é6.

Advantages of this method: the one-dimensional approximation method
is widely known with easily understable theory and an easy implementation

in programming. No equidistance tabulated {measuring) points y, or X

2

are needed. We need only that these points P1j lie on parallel lines

(1)). The method also gives approximation at

(eg.parallel to the x-axis
the margins of the closed rectangle, ie. on the whole Dom{f). Further, the
method can be easily generalized for higher dimensions,eg.using iterated

less-dimensional iterations,by induction on the dimension of the space R”

Disadvantages of this method: the repeated use of the final spline

(1}

That is y.) for 1<i<M, 1<j<N , which means that the second

P =
1,3 71,57

coerdinate depends upon i only.

(x
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approximation ("vertical step") for getting S(X,Y) at each point (X,Y)
makes the computation (slightly) slower: we repeatedly have to buila up

and solve a tridiagonal NxN system of linear equations.

Though the one dimensional cubic spline approximation methed is
well known (see eg. [DRM], [PFTV]), we shortly describe it for the readers’
convenience.

Let a=x1<x2< e <xN=b and yl,yz, e ,ykeR be giver.

We want to construct a one variable function S(x) of which the first
derivative is continuous on the interval [a,b] and such that S{xj)=yj
for 1sjsN . We set (omitting theoretical computations)

S(x) = Sj(x) 1= A(x)-yj + B(x)-yj+1 + C(x)~y; + D(x)'yj+1

for xe[xj,x}u] , 153=N where the functions A(x) through D{x) and the

real numbers y;,y;+leR are to be determined as follows. The method is

a modification of Lagrange’s formula. So

X +1— X

Alx) = 3 , B(x) = 1 - A(x)
X - X

j+1 J

2 2

C(x)}

n

é(AB(x)—A(x))*(xjﬂ-xj) and D(x)=é{Bs[x)-B(x))-{xj+1-xj]

We require the continuity of S’ (x) (the derivative of S(x)} on the

whole interval [a,bl, that is S’ (x )=8" (x
I T R Y g P

can think of y; and y;+1 as the second derivatives S;(xj) and 8" (x )

} for 1=j<N . Further we

J+1 j+1
This gives us a system of N-2 linear equations in N unknown real numbers

vy (1=3<N ) as

X, X X =X X =X v, =y vy =~y
LI O L S T Lo N TR L2 U I W . (1< j<N)
i+ X X X -X
j+1 71 1 T4t

and for the unique solution we may take y;=y;=0 . Solving this system of
linear equations we get S(x)

Summarizing the above: to find a cublic spline function we need to
solve an N-2 dim. (tridiagonal) system of linear equatiocns, at each

vertical step.




3 A Direct Two-Dimensional Interpolation

In [L1] one can find a general direct method, invented by M.Lénard,
for constructing directly a two dimensicnal spline interpolaticn of
minimal degree. Since this general method requires that the measuring
points form an equidistant lattice, some precalculations are needed to
apply this method for our problem. In this section we briefly
sketch this method; the mathematical background can be found in [L1].

We are given the measuring points (Xj,yk)e[a,b]x[c,d] and the
values uL eR for 0=j=N+1 , 0=k=M+1 such that xﬁ{—xj=h and ,
yj+1—yj=£ for some positive real numbers h,& (ie. the measuring

points form an equidistant lattice}, and further X =a, b, yv =c,

X =
N+l o
yﬁ+1=d . We have to find a two-variable spline function SA(X,Y) such

that SA(><.,yk)=u,k for O0=jsN+1 , O=<k=M+1 .0Of course we want certain
i j

continuity and minimality properties for SA(x,y] . More precisely, we

require the following properties:

(a) SA is twice continuously partially differerentiable in both

variables on its whole domain [a,blx[c,d] ,
(b) SA is a polynomial in both variables of minimal degree on each
latti b t < j=< <k=<
attice subrectangle [xj,xy{]x[yk,yk+1] (0= j=N, 0=k=M) ,

{c) on each lattice rectangle, its degree, as regarded as a iwo-variable

polynomial, is minimal.

In [L1] M.Lénard constructed S, and proved that it satisfied (a)} through

*

i
(c). We describe only the construction itself.

For (X,y)e[xj,xj+1]x[yk—yk+1] (0=j=N, D=k=M) let

(i, v}
At

SA(x,y) =S, k(x,y) = - (x-x )H- (Y-Yk)v
3 ospv=s j

H+V=6

where the constants A‘MY)

3.

of a system of linear equations arising from (a}. The solution is listed

eR are determined in [L1], as the solution

below:




AR = Ujas
A% = 'iif[d”w.n“""’l—‘-d’
AR = %[4°"#J-n+ﬁ°""1-*-ﬂ'

Ajfio) = _Z%A!Jul—“h
AN 1) _.}_[Al Ty, At -n-x]

1 e
ALY = g@d® -

o,
R

) - 2.2 ; -
A}z..x) - [A--l uJ_,_,..;-—A -1k 1

A

2k
1 — 4%ty -4

APD = 14T t

AP = g 47 s
(4.9) - _E.AS-"u'_
AJ- —— 2}14. J l.k

—34% 0
A =

= —i—;!;?[ds"-uj—l.k-l

1 3.2
A}?}zj = —-2—52—‘:2"[A' :u ]_+4A uj-l k—ll

1 3 -—3A"’:J . _1]
A = e 1A Py =3

5
AQY = 'ﬂ:d""'ﬁ.t—l



AND =- 7}: 4%° Mj-1.

AN = 3%7‘ Mj-1

As.ﬂ=_.izl.‘7{ A2y, +24 St TP |

ALY = _.._._[A-’u e+ 24520 1]

- 1
ALP == g7 8775

A{Sl) =———-'l Au Hi-1,2

k®l

Aﬁ') = -—2%‘?[4212-1(1'.[+A2’!uj-1.i;l]
W8) — .1-41 S, g
Aﬁh = IYG Jok=-1

AP = A =0

(G=1 N, k=1, HED).



where A”’Uu_k denotes the finite partial difference of the p -th order
in the first bariable and of the v -th order in the second variable
computed from the set of measured values {uLk:OSjSN+1,05k5M+1} for
0=J=N+1 , O=k=M+1l

Theoretical error estimates for this method (if the measured points

form an equidistant lattice) can be found in [L1I.

Advantages of this method: Although the precomputation of the higher
dimensional arrays “?:E and AI_’:E takes some time, S{X,Y) can then be
computed as a polynomial at any peint (X,Y¥), making the computation fast.
Further, the method can be easily generalized for higher dimensions as
described in [L3] (4
Disadvantages of this method: We ultimately need equidistant

tabulated (measuring) points P, =(y ,x ) where vy, -y =h and x, -x ={
i,j it 141 71 Jj+r ]

for some fixed h,£¢ In some casés the set of measuring peoints can be
transformed to be equidistant. This problem is discussed in the next
section. Further, the method gives no approximation at certain margins of
the rectangle, ie.of Dom(f), since we can not compute the finite partial
differences A“’Du_k of higher order, for J>N+1-u or k=M+l-v at the

Js

margin of Dom(f), and the maximum value of p and v is 6.

4 Modifying the Set of the Measuring Points

As we saw in the previous section, Lénard’s method requires that the
measuring points form an equidistant lattice, which was not the case in
our original chemical preoblem for glycerol soluticns. In this section we
discuss some precalculation methods which can be used to modify the

physical set of data in order to use Lénard’s method.

(4) To be more precise: [L3] generalizes the methods from [L2] to higher
dimenzions, where [L2] describes improved variants of the method we presented
here, after [L1]. In [L2] M.Lénard eliminates the restriction of the equi-
distant measuring points, preserves the shape of the dataset (monotonicity,
convexness,etc.), avoids the "bumps” shown in Figures 7 and 8. We intend to

investigate the method from [L2] in practice in a forthcoming paper.




4.a) Using preliminary approximation

Cur first method can be applied for problems where the tabulated
(measuring) points 1:’i ; lie on lines parallel to the x axis; that is

P =(xi j,yi) for 1=i=M, 1=j=N. Further, the sequence Y, is an equi-

d;’sjtant’one; that is yi+1—y1=h for some positive constant heX.
(In our chemical example this was the case.) Before we use Lénard’s
method, we first use one-dimensional interpolations 5| (x) along each line
Li={Pi,j:j‘—=N} for each fixed 1=i=M to approximate the measuring values
at the equidistant tabulated points Ri'j , J=N, (1=i=M , i 1isg fixed)
After these approximations the tabulated points Ri'j form an equidistant
set for 1=i=M, 1=j=N. Using the values given by the functicns s (x) for
1=i=M, we can apply Lénard’s method to¢ obtain a final two-dimensional
interpolation for our two variable problem on the whole domain of f.
However thls method is slow and the error is not smali enough, .
because of the pre-approximation. Further, the computed aprroximating
values are not equal to respective measured data, at the mezsuring points !

(See Fig. 7)

4.b) Transforming the measuring points

Our next transformation is applicable only for problems where the
tabulated (measuring) points Pi,j=(yi.xj) form a rectangular lattice,
not neccessarily equidistant for 1=i=M, 1=<jsN. That is, yi+1-yi=h or
xi+1—xi=£ for some h,feR is NOT required. {In our chemical example this
is also in the case.)

First we use piecewise linear transformations in both of the
variables to transform this set of measuring points into equidistant
cnes; second we perform Léndrd’s method; and . third, we use the inverse of
the piecewise linear transformaticons to get the approximation required. In
more detail:

We are given the measuring points (xj,yk}e[a,b]x[c,d] and the values

u &R for O0sj=N+1, 0sk=M+!1 such that xo=a, XN+1=b’ yo=c and yml:d .

Let

18




t : [a,blx[e,d] — la,blxlc,dl]

be a two variable function such that the points\ t(xi,yj) for O0=j=sN+1,
0=k=M+1 form an equidistant lattice in [a,blx[c,d]. It is easy to see
that

t(x,y) = (tl(x),tz(y])

and further that t1(xj+1)~t1[xj)=h and tz(yk+1)—t2(yk)=8 for some
positive real numbers h,£ for O0=j=N, O=k=M.

i = =y<
More exactly, for points (x,y)eDom(t), xj<x<xj+1 and Y, y<y ,, we have

(x-x )-h (y-y, J-¢
t(x) = ——=—— + t (x) and t (y)=———+t/I(y)
1 XX 173 2 Y1 Ve 27k

Both t1 and t2 are continuous, piecewise linear functions. Then applying
Lénard’s method to the equidistant "measuring” points Rij=(t1(le,t2(yj))
and the measured values uij assigned to Ri s for 0=jsN+1, O=<k=M+1 we

get an interpelating spline So(x,y)- Finally the function ccmpositien
S (xy) == (Soot)(x,y) = So(t[x),t{y))

will interpolate our original problem.

Comparing this transformation methed to the previous one we can cbserve
that the present one is not slow and the error is small encugh. The error
is exactly Lénard’s method’s error since t transforms the peints (x,y) with
their error together. The presented method gives exact values at the ’
measured points. The function t can be calcﬁlated fast and easily. However
this piecewise transfermation is not differentiable at tabulated
(measuring) points, so St need not be differentiable anymore but it is
continous anyway, in spite that Lénard’'s S° is twice continously partially
differentiable! However the obtained two variable function is not smooth
enough since the grade of the transformation is different in each cells.

The wawes in Fig.8 are caused by these piecewise linear transformations.

11
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5 Shepard’s method

In [S] D.Shepard presented a general method for continuous
approximation of more variable functions f:R"»R (see also [GW]). This
method does not require any special assumption on the poéitions of the
measuring points: it works for arbitrary distribution of the dataset. Now

we present this general method briefly.

So, we are given arbitrary measuring points Pl'Pz""'Pn e R"
with the corresponding values F1'F2""'Fu € R . Now then the below
function

N
) [Fi- TTe (e, P, )]
i=1 j#1

U(P) := N

’

i; LHp(P. P, )]

defined for all PeR"™ 1is continuous on the whole R", and U(P1)=Fl holds
for each i=N where p(P,Q) denotes the Eucledian distance of the points
P,QeRn. This fact can be seen easily, and moreover is also true for any
metric p:TxT—){R+ in any metric space T .

This easy fact gives a general method for épproximating any function
with arbitrary set of measuring points. In [GW] we find nice figures of U
for small N (below 10 (!)). However, the above formula for larger N

requires a lot of computation, even with tremendous large numbers. In our

example in Table 1, N=150, so the products would be about 10+um !
Fortunately U(P) has an other form which is, in fact, equivalent to the

above formula:

In other words, U(P) is a weighted arithmetic mean of the measured values
Fx‘Fz“"’Fu with weights: the reciprocials of the distances of the point
P from the given points P‘

12



The latter formula can be easily used in practice: neither complicated
nor slow, continuous on the whole space Rn, and is convergent as P runs (in
any way} to = ., The smooth surface shown in Fig.9.a) is generated by this
method. However, investigating Shepard’s function via more grid points, we
can observe "bumps" (hills and valleys) inside the convex hull of the given
points Fl'Fz""’FN (see Fig.9.b): this is the real face of U(P)} ! These
bumps show, that U(P) treates to take his limit values U = %-1»2 U(P) almost
everywhere in . This disadvantage of Shepard’s method is not highlighted in
the literature. Elimination methods for this problem (choosing another weight
functions} will be discussed in detail in [Sz].

Another trick to avoid these “"bumps" is to delimite ourselves for
using for small subset of the given dataset for each approximation. In our
glicerous example (see Table 1) we used 4x4 data points surrounding the
requested approximated point.

We have run two variants of Shepard’s method on computer. The original
version is shown on Fig.9., while using only 4x4 neighbouring measured
points for each approximation point is presented in Fig.10. This
modification of the present method of course makes the method inaccurate,
and must not be continuous since, turning from one cell to another, the 4x4

points, and so the value of U(P) are changed.

6. Computing experiments

Our data set was taken from [K] where in the table there are 10 rows
(concentration) and 15 columns (pressure). The concentrations are equi-
distant but the pressures not. We used an IBM 386 compatible PC on 33 MH=z
and Turbo Pascal 6.0 language. The computation for each method t_ook only
some minutes. We approximated the temperature with the follewing six
variants of the methods described in this paper.

method 1 : Saburov & als’ [SVPK] heuristic formula, see our Section 1,
method 2 : iterated one dimensional splines, see our Section 2,
method 3 : Lénard’'s two dimensional interpolation with preapproximating

in order to make the pressure data set to be equidistant
see Sections 3 and 4.a,
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method 4 : Lénard’s two dimensional interpolation with transfermation
of the measuring points, see Sections 3 and 4.b,

method S : Shepard’s original method, see Section S,

method 6 : Shepard’s method using 4x4 tabulated (measuring) peints for

each approximation, see Section 5.

In Table 2 we present a part of our computational results,
simultanecusly for all the six method. Figures 1, 2 and 6 through 10 show
the (global) original measured datas and the approximating functions given
by these six methods. Fig. 11 is a common graph of sections of the above

six methods’ surfaces to the fixed concentration c=30% .
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The common intersections of the previuvos metheds at

Figure 11 :
concentration 30X
x - Iterated one dimensional splines
o - Lénadrd’s methed with pre-approximation
* - Lénard’s method with linear transformations

2 - Shepard's original formula



The comparison table of the methods at cc=30%

Table 2 °
Pressure| Iterated Léndrd’s Léndrd’s Shepard’s Pressurs| measured
1-dim. method method method values
MPa) splines transform| preapprox!4xd points (¥2a)
Q.0053 35.500 3%.500 35.500 66.400 D.00z3 35.5
0.0075 41.170 43,171 43.412 66.684
0.0098 46.544 50.842 51.325 67.128
0.0121 51.325 58.51¢ 51.325 67.057 0.0133 53.4
0.0144 55.228 58.43% 60.848 67.088
0.0167 58.287 63,110 58.645 67.043
0.0190 60.848 64,132 60.848 67.758
0.0213 63.263 65.667 67.924 67.796 0.0252 62.1
pD.0235 65.659 71.207 65.181 68.465
D.0258 . 67.924 72.040 67.924 68.623 0.0285 68.6
0-0281 69.%849 72.321 73.398 68.803
0.0304 71.745 76.338 74.332 69.525
D.0327 73.398 67.333 73.39%8 69.526 0.0333 73.8
0.0350 74.989 77.282 78.004 69.885
Q.-0373 . 76.531 80.852 81.033 71.0490
0D.0395 78.004 72.492 78.004 71.110 0.03%3 78.2
0.0418 79.389 81.580 81.918 71.779 )
0.0441 80.690 84.670 84 .502 F3.421 :
0.0464 81.918 80.700 81.918 73.503 0.04835 82.0°
0. .04&87 83.083 85.14% 85.300 74.702 ’
0.051¢ 84.203 86.962 86.679 77.3659
0.0533 85.300 85.300 85.300 77.600 0.0533 85.3
p.055% 86.386 88.51%. 88.517 79.769
0.0578 87.461 91.517 91.9%98 g84.059 )
o .060QL 88.517 88.74% 88.517 84.330 0.03%¢ 88.4
n.0624 89.545 91.67%1 91.464 82.586
0 .0647 90.532 95.973 94.660 98.145
n.0670 51.464 91.782 91.464 98.030 0.0&&88 91.3
0 -0693 92.337 94.30= 94.0089 127.24
0.0715 93.176 93.318 94 .812 206.38
0738 94.00%9 94 .43 94 .009 233.99 0.9733 93.8
0 07el 94.845 36.88=% ©6.483 135.71
0784 95.682 100.68 990.696 118.89
0 L0807 56 .488 87.032 96.488 103.48 0.0729 96.2
0830 97.257 99.212 98.701 115.56
0.0833 97.994 101.17 1CC.29 103.49 0.08&5 9g.4
0.0875 98.701 99.275 93.70L 101.87
0 .0898 99.337 i01L.2%9 100.73 106.52
00221 100.06 39.810 101.80 101.32% 0.0°33 100.-4
0.0944 10Q0.73 101.37 i00.73 161.09
p .D9867 101.42 103.55 162.80 104.97
o.ogsoJ 102.11 106.03 104 .83 102.74
0_1013 102 .11 102.8¢2 102.80 100.032 0.1C13 10z2.8
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