_ EOTVOS LORAND TUDOMANYEGYETEM
FACULTY OF NATURAL SCIBNCES

‘Tmnn CONFERENCE oF PROGRAM DESIGNERS
(July 1--3 1987) '

mw»\«w

. Budapest, 1987




FOREWORD

From 1972, the beginning of the special education for com-
puter specialists in Hungary, about 850 batchelors and 300 mas-
ters of science graduated at EBtv8s Lorénd University /ELU/. Up
to the present seven of them’ received the Ph. D. degree.

Since 1981, ELU has organized every year a conference for
young Hungarian and foreign programmers and mathematicians.

In 1985 ELU commemorated the 350-th anniversary of its
foundation. In the framework of the jubilee celebrations our
university has organized a series of events, among others "The
First Conference of Program Designers®™ /PD’85/. More than hun-
dred specialists among them 89 program designers participated in
the work of the conference. '

Continuing the series of the previous conferences we orga-
nized "The Second Conference of Program Designers" [Budapest,
July 8~9, 1986/ and "The Third Conference of Program Designers”
/Budapest, July 1-3, 1987/.

The program of PD’87 consisted of two invited and twenty
six submitted lectures, projection of vidéofilms, chess ‘and
tennis tournaments. According to the propositions of the prog-
ram designers the invited survey lectures were delivered in
Hungarian.

This book contains 34 papers. The authors of the papers
represent 11 countries. The main topics are methodology of
programming, theory of algorithms, probability theory and nume-
rical analysis. The majority of the materials is written in
English, the remaining éart in Russian Ithe'titles are summa -

rized 'in English, in Hungarian and in Russian/.

SEE YOU AGAIN ON THE NEXT PROGRAM DESIGNER CONFERENCE!

Budapest, July 3, 1987
Antal Ivényi
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PROVING THEOREMS IN ANALYSIS USING MATHBMATICAL
IOGICAL METHODS

by Istvdn Joé, Mikiés H dth, I
Mathematical Iasti, JK8tvis %Muggnggﬁﬁmm

The following result was - proved hy NeAJtat

TEBORENY (a3tas, [41],[427) Zet ¥ be a transitive 2PC model
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Suppose further that for every ZFC-models M and N, McK
the following implication holds: :
if L,B,,B, are in M and Mk ¥,(8,)& \fg(BJ&‘l’(_U
' 1 ]
and L’,B’;,B, are in N and NP \h(BL)& ‘fz(Bt)&‘Yu-)
then there areN t;,%, in N such that - A
=" ¢, :(B), — B; is an isometric imbedding .
, v ]
for £ = 1,2, and t,(L0O)=L (£,060) for xeX,
Then for every ZFC-model M

M (¥ 8,,B,, LY[#1(B)2¢.(BI& ¢(4L 15 sontinuous] . m

Using this observation we get absointe theorems fn analy-
s1s. Pirat we verify the assumptions of the Statement 3.
»Tor some metric spaces:

STBP A The Banach space C [0,1] with the supremum-norm
satisfies the first line of the Statement 3.

BIEP B The property "A is a set of Lebesgue measure il e

8TBP C In order to define the spaces |P(0,1) , use the
following known facts. A function $:(0,4) »R is measurable
3f and only it is the pointwise a.e. limit of continuous
functions. Define the meiric %fi9):=infla+[(1f-gi>a) : a0}

‘Then @, generates the convergence in measure which is wesker
than the a.e.convergence. Formalizing the above factswe get
‘that the'apace(l,’(o,i), QY satisfies the first line off Sta-

tement 3. Further for {e LP(0,1)
L. Pt e
u'sﬂ ] “S.”)I(m»t)l-t

consequently the space <LP(0, 1),“'"P> also satisfies the
first line of Statement 3. N

‘8IBP D The Banach space {Co, B WD satisties the first
line of Statement 3.

How fix a sequence {a, : new) of positive numbers conver-
&ing to 'sero and define the operator F:L'0,1) —» Coo

vy Fr={culf)a,: new> tor fell(0,4).
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IHEOREM 4 There is no sequence {ap:n€ewD of positive.

pumbers converging to zero and definable by & first order

formula such that for every #eL‘(O, 1) there exists >0
with [cu(f)| ccpa, (mew). m :

In our paper [.THS-] we generalize the original theorem of
AjJtal fornon-metrizable topological vector-spaces:

IHEOREM 5 [JHSz] 1Iet V be a vector space, V= U v,
where each Vn has a complete semi-metric 8w and consider

the weak topology on V generated by the inclusions Vch‘.
Then the analogy of Theorem 1 holde, namely if {V,t).is

definable by a first order formula, P is a definadble con~-
Vex rational operator on V : then adding a Cohen-~generic
real to an arbitrary model X, FK is continuous in ¥ on V'
vhere N=M[¢]. =

In order to present our folTowing result, some definitions
are needed, !
DEFINITION et H be an arbitrary set. Then
e/ "H Qdenotes the set {2:21sa function,Don(f)= w
E and Ran(f) & H },

b/ I new and Bi€H for j<n then we denote

by <h1xi<n>-’ the element & of ““E for which the
equalities {U)= b, for icn ana Q) = B, for ipzn
holad.

- \—>
e/ Iz ncwem(!_"i> ‘w_l then we denote by (h rn)
the element & of “H for which the equalities
L() = i) for 1e¢n and (i) n(n) for ixn hoid.

IEEOREM ¢ [JHS2] Let ¢ be o formula. Suppose that the

following four statements can be proved in ZFC

8/ For any Banach space (B, P> ana 2° » iz ¢(s,2,1°)
holds, then 1° fe & function with Dom (2°) = “(aY)

i ‘ :
and for eny X from Dom(1%), 2°(F) 1s 2 linear map-
Ping from B to . R U{+ oo} .

Demote then 5:= {Te3” : Ran (2°(T) R}



b/

c/

a/

A
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end by T the restriction of 12° to S.
I£ (B,F) and T are as above and A; € B* for i<n
where neN is arbitrary then 7 ({a,ti<n}’)&BY
12 (B,?) and T are as above, A & “(B*)then for
any n<w and x € B the inequality T°(_A’Xx)>ri
holde if and only if T ((AMm) )0)>n for every lar-
ge mlw .
It (Bl,lj'l) and (32.!‘2) are Banach spaces, B;is a
dense subspace in (BZ,FZ) y By = !2"‘ By end we have
¢(3,,7,,7]) and ¢(B,,7,,73) , and further
(;” e B{ ‘and é?e B; for i ¢ m where m is finite,
and Ai isa continous extension of AT  onto B,
then the functional T, ((A‘t lemd™). »
is also a continuous extension of T.((‘A(?'.(mm)#)
onto B,.

Then the following assertion is also provable in ZPC:

1t (B,F)  1is Banach space, ¢(8,7,7°) ana T e in
Dom (T) then T(1) is continuons. M
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