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ON THE ALGEBRAIC STRUCTURE OF PRIMITIVE RECURSIVE FUNCTIONS

by IstvAN SzaLkar in Budapest (Hungary)!)

§ 0. In this paper we consider functions f from N to N. By o, s, p, sg we mean the
functions which are given by

0 if n =0, 0if n=0,
o =|

o(n) =0,  sn)=mn+1, “ln-1ia>9, sg(")={1 tn=1,

respectively. For any ¢ € N let ¢ be the function from N to N which is constant equal ¢
and by a{n) we mean the quadratic residuum of #, i.e. the distance between n and the
greatest square number not greater than ». By o and + we denote the operators of
composition and addition of arithmetical functions respectively. For an arbitrary
function f: N — N and a natural number m we denote by f2¢ the iteration of f from
place m, i.e. {70 is inductively defined by

M) =m, P + 1) = [(f2™(n)).
Instead of [J(0) we write [J.

The first characterizations of the class PR of all primitive recursive functions of
only one variable ([9]) and of the class R of all general recursive functions of only
one variable ([6]) were rather complicated. Gradually the characterizations and the
proofs was simplified. The strongest result for PR seems to be the following, proved
by JuLia RoBinNsoN in [7]: PR can be generated from two suitable functions u, v by
the help of the operators o and [J. However, there does not exist a single function
which generates PR with these operators. This fact is my Theorem 3, a special case
of my Theorem 2 or Theorem 2A. In [7] J. ROBINSON proves a similar result: There
is no single function from which PR can be obtained by o and [J(m), where various
values of m may be used. Her result is another generalization of my Theorem 3, but
my proof seems easier to understand.

Similar results were proved by J. RoBiNson for R in [6] and [8] (some results of [6]
can also be found in [4]). Namely she proves in [6] that there are two suitable compli-
cated functions which generate R by the help of the operators o and -! (where
{~(x) = min{y: f(y) = «} for a surjective function f). For proving this fact she uses
a certain operation * “mirror”’, but my Theorem 1 says that her method is not ap-
plicable in the general case P, because this operation is an endomorphism on (PR, o, []}.
In [8] she examines finally the so-called generalized recursion scheme and proves that
every general recursive function of one variable can be obtained from ¢ and s by
repeated compositions and general recursions from previously defined functions. If we
allow only one of the operators o and [, it is easy to see that we need infinitely many
injtial functions but till now I have not found a really good set of such initial functions.

1) The author thanks Emir. W. Kiss for his useful remarks.
1
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§ 1. In this section we are dealing with the endomorphisms of the structure
(PR, o, [0). For every { we have fo0 = o, therefore o is the only fixed point of 1.
We denote by End(2() the set of all endomorphisms of an algebraic structure . It is
obvious that ¢ is the null-element of PR, ie. 000 =0 and o = 0. So we get that
Id and O are elements of End(¢(PR, o, [1)), where Id(f) = f and O(f) = o for every
element { of PR. In Theorem 1 we prove that End((PR,o, [1)) = {Id, O}. 1t is easy
to see that for ce N, ¢ + 0, if L(f) = & for every fe PR, then L e End(K(PR,0o))
and L ¢ End((PR, [1)). Conversely Ly, [0 € End((PR, 1)) — End({PR, o}), where
[(f) = {7 and Ly(f) = sgo fosg.

Lemms 1. Let u, ve PR be arbitrary functions such that vou = id and u is not
constant. Let L(f) = wo fov for every f € PR. Then L ¢ End<{PR, o).

Proof. Let x,,%,,y and z natural numbers such that vou(z) =y %2 and
u(x,) # u(x,). Furthermore let f, g € PR such that g(x(0)) = z and f(z) = x,, f(y) = =,.
Then :

L(jog) (0) = (wo fogow)(0) = u(x,)
+ u@,) = (wofovouogow)(0) =[L(f)o L(g)] (0). O

In consideration of this lemma the question arises whether there are functions u
and v such that & = wo fo v for every f € PR. It is clear that the answer is no: By
the definition of [] we might have 0 = f5(0) = u(f(»(0))) for every f € PR. For every
natural number n there exists a primitive recursive function f such that f(v(0)) = »
and so 0 = f2(0) = w(f(v(0))) = w(n), ie. u(n) =0 for every =, which leads to
{2(m) = u(f(v(m))) for every f € PR and m € N. This is impossible. _

Lemma 2. Let - be usual inverse function of f with respect to the operation o, i.e.
flof =fof ! =1id. Let f e PR and f(0) = 0. Assume that f-1 exists and f~' € PR.
Then there ewists exactly one g € PR such that f = g°.

Proof. If f = gq, then f(0) = 0 and f(n + 1) = g°(n + 1) = g(g°(n)) = g(f(n)), i.e.
fos=gofandg = fosof ', Le thereis only one possible g and this g is suitable. []

Corollary. id = fO iff f = s.

Theorem 1. There are only two endomorphisms on (PR, o, 1), namely O and Id.

Proof. There are two cases:

Case (a): L(id) = id where L is the considered endomorphism on (PR, o, ).
Then id = L(id) = L(s°) = L(s)® and so L(s) = s, using the corollary of Lemma 2.
For every ¢ e N and each f: N > N let f© = id and f* = fofo.. .o f for ¢ # 0. Then
for each constant function é we have ¢ = sc0 and e

L(§) = L(s°c0) = L(s°0d®) = L(s)°o L(id)" = s°c0 = ¢,
i.e. L(§) = é. Furthermore for every f e PR and c e N we have
(fe)~ = L((f(¢))") = L(fo &) = L(f) o & = (L(f) (¢))",
i.e. flcy = L(f) (c), which implies f = L(f), i.e. L = d.

Case (b): L(id) % id. For short we set L(f) = f for every fePR, and
N = Ufre(f) | f e PR}, where rg(f) denotes the range of f'. Firstly we examine
whether N’ equals to N or not. For every f € PR we haveido f = fandsoid of =f,
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i i.e. id'(f'(c)) = {'(c) for every ¢ € N and for each f € PR. In other words: id'|y. = td|y-,
and therefore rg(id’) = N’. From this follows N/ &= N.

Now we remark the following simple fact: f'|y- = ¢'|n- implies f' = g¢', for every
function f and g. (Since for every y e N: f(y) = (f o id’) (y) = fld'(y) = g'id'(y)) =
= (g'odd (y) = g'(¥))
Obviously o' = (id9%) = (id’)"" = . Furthermore for every a € N we have:
a' = (s°00) =s5%00 = (%)) =sTod=1d'od,
ie.
1) id'od =id od@, foreveryaeN.
Therefore id" od = id" 0od = (id'0d) =d = a if aeN’, and so id”|y = |y =
= id'|y- and id" = id’ from the previous remark. Furthermore for every f € PR and
- yeN we have (id'ofoid’)(y) e N’ and f =1dd’ of o id’ and therefore
((id' o fo id’) ()~ = [(id' o foid’) (y))~] = [0 foid o F]

—_ z‘dlloflo idl’oj‘;l = ?:dl oflo idloyl’

and using (1) we get :
id'ofoid oy ={foy=(f(y) :

i.e. id' ofoid = j'. We know that rg(id’) = N’ + N, and so td' o id’ % td. Moreover
. id'(0) = §'9(0) = 0, ie. O erg(id’). If id’ is a constant function then id’ = o and

L = 0. Now suppose that id’ were not constant. Then we could apply Lemma 1
- choosing 4 = » = id’, and by this Lemma we obtain a contradiction. []

The following corollary shows the importance of this theorem.

Corollary. Let g,,....,9, € PR and 0, ..., w, be operalors on PR. Suppose that
there is a finite procedure to caloulate O and fog from the functions f,g € PR and
gy, ..., gx by the help of the above operators. If LeEnd((PR,w,, ..., o)) and

L(g) =g, for i =1,2,..., k, then L € End({PR, ¢, 1)) and so L = Id.

The corollary says that the theorem is true in many usual structures of primitive
recursive functions. For example:

(a) Let @, = o and w, = [J(m), where m is a fixed natural number. For every func-
tion f we have f2 = p™o (s"o fo p™)""™. So we can put g, = p and g, = 5. By our
corollary, if L € End({(PR,o,[J(m)>) and L(s) = s, L(p) = p then L = Id.

(b) At this point let f~! be defined only for surjective functions as f~(x) =
= min{y: f(y) = x} for every x. J. ROBINSON showed in [2] how to calculate f2 from
the functions f, s and q by the help of the operators o, =1, and +. (The proof can be
found in [9], Theorems 3.49 and 3.50 in Part I, too ) She also showed how to calculate
{9 from the function f and two certain complicated functions u and v (which are in-
dependent of f) by the help of the operators o and -1, So we got the following state-
ments:

If L e End((PR,o0, 4+, 1)) and L(s) = s, L(q) = ¢, then L = Id.
If L € End(KPR, o, ~*)) and L(») = » and L(v) = v, then L = Id.

The proof of Theorem 1 shows that we used a few properties of our structure
(PR, o, []) only. This implies the following generalizations:

.
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Theorem 1A. Let (P, o, D) be an arbitrary algebraic structure on wkwh the follow-
ing axioms hold: :

(&) (P,o) 18 a semigroup with unit element id.

(b) There exists exaclly one s in P such that s° = id. We denote by P8 the set of the
left-hand singular elements of (P, o), i.e. for every ce PS and f € P let co | = c.

() (Yf,g € P)((Yee PS)foc =goc)=f = g).
(d) (Feo € PS) (Vf € P) fO° = ¢,.

() (Vee PS)(Fk.,eN)c =s080...080¢,.

N— e’
k. times

If L e End({P, 0, 1)) and L(id) = id then L = Id.

Theorem 1B. Let (P, o, [I) be an arbitrary algebraic structure. Suppose that all the
above axioms (a)—(e) and the following axiom hold :

() Vo, 2,,9,2€ PS)(3feP) (foz =2, & foy = x,).
Then there are only two endomorphisms on (P, o, [, namely Id and O.

§ 2. In this section we examine the generations of PR. Except from Theorem 3,
we consider arbitrary functions f: N — N.

Lemma 3. Let f be an arbitrary function. If {© is not injective, then fg( 17) 18 a finite set.

Proof. By the definition of f° from f°(n) = fO(m) for any m > n it follows that
g(f%) = {f70), .. ., f%(m - )}. O

Note that in the case above fT is a periodic function and its period is m — n.
L. Lov4sz asked whether for every periodic function f there is a function g such that
f = g°. The answer is the following: Let the sequence f(i) be periodic with the period
m — n, then there exists such a g iff f(0) = 0 and the numbers f(0), f(1), ..., f(m ~ 1)
are all distinct.

Lemma 4. If f is not injective, then f° is not surjective.

Proof. Let i = f(k,) = f(k,), where k, & k,. If {O is surjective, then there exist
natural numbers k,,k, such that %k, = f5(h,) and k, = f°(k,). Then ¢ = f(k;) =
= [(f°(hy)) = %k, + 1) and in similar way we get i = f9(h, + 1). We know that
ki +1 %k, +1 and because of Lemma 3, f° is not surjective. This contradiction
proves the lemma. ]

- From this point on for an arbitrary function a we denote by (a> the closure of {a}
with respect to the operators o and [].

Lemma 5. If a is an arbitrary injective function, then for every member f of {a) either
f 18 injective or rg(f) is finite.

Proof. The order of an element f in {a) is defined as the minimal number of opera-
tions o and [J which are necessary to generate f from a. Now the lemma is proved by
induction on the order of f. As the assertion is true for @, the lemma holds for order 0.
Assume the assertion is true for order k£ < », and let ord(f) = =» + 1.

Case 1: f = ¢g® and ord(g) = n. If rg(g) is finite, then rg(g"”) is also finite. If g is
injective and g is not injective, then by Lemma 3 rg(g”) is finite.
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Case 2: f = gok and ord(g), ord(h) < n. If g and % are injective, then go A is in-
jective. If rg(g) or rg(h) is finite, then rg(go &) is finite. []

Lemma 6. For every element f of '(a) either there exists a suitable natural number k
such that f = a* or (rg(f) < rg(a").

Proof. For every natural number m and each function f we have fmo f9 = 0o gm
and (f™)° = f7o (s")°. Taking these identities into account we get the following scheme
for the construction of {a) on the strength of the definition of the order of the ele-
ments in {a):

a, a2, a®, a?, (az)u =alo (SZ)D, a’® = o,

a*, (@*)° = a%0 (s*)9, a%c al, . . .

a™, (a™)° =a%o (s™5, (@™ = a% (@B)™1, gm0 a® = a0 s" alo g™,
A short look of this scheme yields the proof. [

Theorem 2. Let a be an arbitrary function from N to N. Then either there exists no
bzyectwn in {a) or for every member f of {a) it holds that | is injective or rg(f) is finite.

“Proof. If a is injective, the assertion follows by Lemma 5. If a is not injective,
then @™ is not injective, too. In this case we prove that there is no bijective function
in {a). Assume on the contrary that there exists a bijective member f in (a>. Then
f # a™ because f is injective. But f is surjective and by Lemma 6 then a® must
be a surjective function. By Lemma 4 this is a contradiction which proves the
theorem. [J

Theorem 3. There is no primitive recursive function which generates all monoton
increasing primitive recursive functions. In particular, there 18 no primitive recursive
function a such that {a) = PR.

Proof. Because of Theorem 2 id and p can not be at the same time in {a>. []
We now give a more general algebraic form of Theorem 2 similar to Theorem 1 A.
Let (g) be the following axiom:

(g) PS = {co,¢1,...} (i.e. P8 is countable) and, for every f € P and each natural
number ¢, 7o ¢y = ¢y and ffo¢,,; = fFo foc; hold.

Really it is a very strong axiom: From (c) and (g) one can easily prove the axioms
(d), (e) and half of (b). If we identify the elements f of P with functions f mapping
from PS§ to PS with f(c) = foc, then we can easily prove Lemma 3 — Lemma 6 and
80 we get

Theorem 2A. Let {P,o,[1> an arb@tmry algebraic structure on which axiom (g)
holds. Then for every element a of P either there ewists no bijection in {a) or for every
f €<a) it holds that f is injective or rg(f) is finite.

Note that we can show by the help of Theorem 2 that several subspaces of
{NNo, [1> can not be generated from only one function, e. g {f: /(0) =0 and f is
strlctly monoton} U {0}, ete. Till now I have not found a monotone increasing prim-
itive recursive function which is not in ¢s>. This is not an important question but I
am interested in it. The resilts of this paper seem to be the first ones concerning the
algebraic properties of (PR, o, []}. I think it is interesting and useful to investigate
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similar problems, for example to study other properties of the operators o and [J, to
investigate other operators on PR (e.g. XZ'(f) (n) = f(0) + ... + f(n) or f7!) or to
raise usual or unusual algebraic questions about (PR, o, [1).
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