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0. Introduction and statement of results

Automorphisms of algebraic structures have been widely investigated. In con-
nection with the characterzation of properties of endomorphism monoids, in [P1] it
was formulated a problem which we are going to investigate with a set-theoretic
approach.

Before formulating the set theoretic version of the problem we need a few defini-
tions:

DEeriNtTION 0.0 (i) For sets 4 and B denote by 24 the set of functions mapping
from B to A and the set of permutations on 4 by §.

(ii) o and t denote the operations of composition and restriction respectively.
(That is for f,g644, Dc A and béA (fog)(b)=f(g(b)), /tDEPA and for every
deD (f1D)(d)=f(d).) Let further f”D=Range (f1D) for fe®4 and DcRange (f)

(i1]) a monoid MC44 is called locally invertible iff for every feM and finite
subset D of A thereis a g€ M such that (gof }D=id.

(iv) for Fc44let Loc(F)={f¢44: VDCA, D finite, Jg€F fiD=g\D} the
local closure of F.

Then the problem is whether the following statement is true:

AP(A)z“M cLoc(S4NLoc (M)) holds for every locally invertible monoid
Mc44”

We denote the negation of P(A) by 71 P(A).

ReMARKS. (a) R. Poschel raised the problem in Szeged, 1983 (see [C, p. 653]).
The problem first appeared in [P3], the original problem is whether “a clone of rela-
tions closed with respect to complementation” is an equivalent definition of Krasner
clones of 2" kind. (For more algebraic background and intuition see [P1, p. 161] or
[P2].)

(b) Stone’s definition in [St, p. 41] is, in fact, equivalent to (iii).

The validity of P(A) depends on the cardinality of A4. It is easy to see that for
cardinal numbers A<x P(x)implies P(A). (If A1is finite then P(A)is trivially true.)
The affirmative answer for countable 4 was first given by J. Kollar (see eg. [P1, p. 164])
and the reader can make up a proof himself also for this case.

Our results are the following (for the definitions of CH or MA see [K]):

THEOREM 2.1. CH implies 71P(2%).

THEOREM 3.1. (2) MA (Martin's axiom) implies 7| P(2%).
(b) MA (1) implies P(L) for A<2% for countable monoids M.

THEOREM 3.2, 2%e=2%=R,+ TMA+ TP(2%) is relative consistent with ZFC.
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THEOREM 3.4. 2*=1" implies “1P(2*) for any cardinal A.

(The same argument shows 7 P(x) for any xif 2*=x for every A<ux.

It remains open whether P (2%) follows from ZFC or P(2%) is consistent. Furt-
her, very little is known about P(1) for 8y<A<2%,

Though Theorem 3.4 generalises all the other theorems, we prove it at the end
because of the following reason. Theorem 3.1 (b) shows that the cardinality of the
monoid plays an important role and in the proof of Theorem 3.4 we construct a mo-
noid of size A while the other proofs (using slightly different arguments) give coun-
table monoids. Theorem 3.1.b shows that countable counterexamples can not be
given in ZFC alone.

In Section 1 we prove Lemma 1.2 which is the key to our results. In Section 2 we
prove our main result: Theorem 2.1. Using the same ideas (but forcing techniques)
we prove generalizations of this theorem (Theorems 3.1, 3.2 and 3.4). The author
thanks R. Péschel, P. Komjath and P. Préhle for helpful discussions.

1. The Lemma

In this Section we prove a lemma which is the starting point of our proofs and
introduce some useful definitions which throw some light to the behaviour of our
monoids.

We start with the notations and definitions we need. @, is the set {0, 1,2, ...}
and k<w, means k€w, and i<k means i€{0,1, ..., k—1} for k€w,.

DrermnrmioN 1.0, i) M <44 is a free monoid iff it has no nontrivial o-equations.
(That s for every f1, fo, f3, Ju€ M if fiofy=f30fy then thereare g,6 M (j=1,2,...,n
for some n<w,) such that fi=gio...08, fi=g+10...08, and f3=g10...08,
f1=81410...08, forsome k,[<n.)

(ii) For a one-to-one function f€44 we denote by f~*! the partial inverse of
f: Dom (f "Y)=Range (f) and f~Ya)=b iff f(b)=a for acDom (f~1).

(iii) For a set Fc44 we denote by (F, o) ((F, o, —1)) the set of functions
generated from F with the help of operation o, the composition (with the help of o
and —1, the partial inverse, resp.). (To be more precise, g€(F, o) and he(F, o, —1)
iff there are k€wy, f1, .--» /it F and &, ..., €{+1, —1} such that g=fio...of;
and h=ffo.. & where we write f*+! for fand /! for the partial inverse of f)
(Sometimes we write f° for id.)

(iv) A monoid Mc44 is finitely generated iff there is FCM finite such that
M=(F, o).

In the next section we extend the elements of the monoid Mc44 (constructed
in this section) to NC2B, BoA M={/f}4:f¢N}. In the meantime we want to
“kill” (every) permutation n€lLoc(M)NS,—{id,}, that is n=gd for all
g€Loc (N)NS5. To achieve this, while extending the elements of M to B, we have to
extend their local inverses in such a way that the partially killed 7 will not rise again.
This is ensured by requiring the existence of local inverses for all feM with good
properties (and Lemma 1.2 (iv); for further details see the sets E; and Lemma 2.2).
These good properties are declared in the following definition. (Any of the finite sets
may be empty.)
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DeriNtTioN 1.1 (weaker version). A set of functions FC44 (A is an arbitrary
set) is called fairly complete iff:

FOR EVERY f¢F, Dc 4 finite, v<w, D, A finite and one-to-one function g,
mapping from D, to 4, g,=idD, and #' CF finite such that ¢iD,>g, for all
@€(H#y, 0, —1) and m<V, THERE ARE infinitely many ¢ F such that fof} D=
=id}D and for every m<v and every ye(#,U{t}, o, —1) we have YD, g,
for m<v. ,

Roughly speaking ¢ is a local inverse for f}D and moreover makes no forbidden
functions in {(#,,U{t}, o, —1) with respect to g,, simultaneously for m<n.

(In the construction of the next section, one of the g’s is will be the permutation
7 to be killed, see also Lemma 2.2.)

Observe that if F is fairly complete then it is locally invertible. Further if F is
locally invertible (fairly complete) then so is (F, o) too.

However, in proving Theorem 2.1 (see Case 3 in Claim 2.3) we need a stronger
property:

DerFINITION 1.1 (stronger version). A4 set of functions Fc44 (A is an arbitrary
set) is caled strongly fairly complete iff:

FOR EVERY fcF, Dc A finite, v<aw,, D,,C A4 finite and one-to-one function
8w, mapping from D, to 4, g,3¢id\D,, and #,,C F finite for m<v», THERE ARE
infinitely many #€F such that foftD=id}D and for every m<v and every
yelt,U{t), o, —1) YWD=g, implies DcDom (¥’) and Y'D,=yD, where
Y’ results if we replace ¢~1by (/1D)* (and z='by f1D)iny everywhere.

We need this stronger version becauvse in the main construction (see the proof
of Claim 2.3) we can not ensure that YD, =g, for all y€(#,, o, —1) but for
¥’ only if § is defined as above.

In what follows we always use the stronger version of Definition 1.1.

The following lemma is the key to our results:

LemMa 1.2. There exists a countable monoid MC4A4 on a countable set A
with the following properties:
(i) M is not finitely generated and has independent o — generators F={f;:
i<y},
(ii) Fis strongly fairly complete,
(ii) Loc ({{ /it i<j}, 0o, —I)NS,E{ids} for every j<uwy.

REMARKS M is free by (i) and locally invertible by (ii), We will use (iii) in the
next section to construct some sets E; for j<w,. Using their properties and the
fairly completeness of M we will be able to kill m€Loc (M)NS,.

Proor. We will construct an increasing sequence of countable sets (4,: n<awy),
A4,cA,.; for n<w, and we will take A=U{4,: n<w,}. In order to construct
M, in each step n<w, we will build monoids M, ,,C4n+1(4,,,) by extending
the elements of M, to A,;; and adding some (countable many) elements from
42+1(A4,+1). More precisely we construct the free o—generators of M,,,. Finally
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every element of M, will be extended to A for every n<cw, and at the end we will
take the set of generators of M to be the set of these extended functlons.

(In terms of formulas, the set of generators of M is F={y, ;: i, j<w,}c*4

which we intend to define, v, , “appears first” when constructing M (see below
for definition). In step n<w, we will define the elements of the set F,={y; ;}
I< 0, Jj=n}c4«(4,) only. This is the set of the generators of M,c4 (A ). Slnce
in the n'* step we have not constructed y; ; but y; ;} 4, only, we write ™ instead
of Y; ;) 4, and define after the construction V; ;= U{tpfj‘) nzj}. For convenience
we enumerate F, as {o{": u<am,}.)

From algebraic point of view, if M™* and M} are the abstract monoids represen-
ted by M and M, (n<aw,), then M, is a homomorph image of a submonoid of M,
for all n<w, and so M * is the inverse limit of the system {(M,", 3,): n<w,} where
9, is the homomorphism mentioned above. Since every element of M map hierarchi-
cally (that is Range (f r(A,,H\A,,))CA,,H\A for every feM and n<wm, if
f appeared before n) and is one-to-one; further the sets D, D, for m<v, and v
are finite in the definition of the local invertibility and the fairly completeness,
these things are handled in 4,,, and so in M,, for some m—<w, large enough. Further,
we construct the free generators of M, and M only, so we can manage (i) through
(iii) easily.

Now, let us get down into the details. Let 4, be an arbitrary countable set,
Fyc49(4,) an arbitrary countable set of o—independent injective functions on it,
and put My:={F, o).

Suppose that we have already constructed 4, and M, and now we want to
construct A,.; and M,.,. We have M, =(F,, o) by construction, whele E,=
={yM: i<w,, j=m} for all m=n, and Y=y, for i<w,, j =k=m=n.

We want to extend the elements of F, to A,,+1 and find infinitely many local
inverses for them on A, as independent from each other as possible. To this end
choose countable sets B{™, , and B,f,") disjoint from each other and from A4, for
VeF,, Dc A, finite, u<w, and, let P,_, be not element of any of these sets and put

Apyy=A,UUBPUBM, » y€F,, DcC A4, finite, u< wglU{P 1}

P, ., ensures (iii); for further details see Lemma 1.3. 4,UB{™ will be the Range
os Y€F, after extending it to 4,,, and 4,UB{;, , will be the Range of a new ele-
ment of F,,y, the uth local inverse of 1//rD where YEF, and DC A4, is finite, u<w,.
The disjointness of the sets B and B{", , is the main trick in "the construction
which ensures (i) through (iii). To be more precise, first extend all Yy€F, to 4,., to
be one-to-one arbitrarily such that Y"(4,: \A4)SBE and let {y@V: i<aw,,
J=n} enumerate the set of these extended functions so that YrFih A4, 1//(") (Recall
that every Y€ F, has the form y{"} for some i<aw,, j=n.) Next let ly,p,« be the
following injective function from Aniq to 4,UB{,  for yeF,, DcA, finite
for u<wy: Iy p pX=@D)* and l,,,,D,,,”(A,,H\X)cB,ﬁ,")D . Wwhere X=¢”D.
Finally put

{lﬁ,(f,,*;ll) i< wo} = {l'ﬁ Dyut ‘//EEH Dc An is ﬁnite’ U= wO}'

It is easy to see that all the functions y{V for i<aw,, J<n+1 are o— and
— 1—independent by the disjointness of the sets B{, By, ,, for WcE,, DcA,
finite, #<w,. So we can define F,.,, the set of generators of M,,, as F, .=

Acta Mathematica Hungarica 56, 1990



ON A PROBLEM OF R. POSCHEL 313

={y"V: i<w,, j=n+1}. Finally put M=(F, o) and F=U{{; ;: i, j<wo}
where Y, ;=U{y™ : n=j} for i, j<w,. So we can say that the function =y, ;¢ F
(or Y =y, ;}A;) appeared first in M, or shortly, at j, for any i, j<a,.

So we have constructed 4 and M. Now we have to show that they have pro-
perties (i) through (iii).

It is easy to see that the elements of F are independent, so (i) holds.

Now we prove (iii). (Recall that F is enumerated as {f;: i<w,U}.)

LEMMA 1.3. There is no permutation except id, in Loc ((H, o, —1)) for any
HCF finite.

Proor. We are given an HC F finite and we must show that Loc ((H, o, —1))
contains no permutation except id,.

First choose an n<¢, large enough such that all the members of H appeared
first far below n (e.g. if h¢ H appeared first in M, , n,<o, then n>n,+1 for hc¢ H.)

Suppose now w€Loc ((H, o, —1))NS,\{id,}. Let a€4 be such that n(a)=a
and D={PB, ., " (B,4+1), a}. Then we have

mD = (piFopy=io...opftogih D

for some k<aw,, ;€ H and ¢;¢{+1, —1} for i=k.

Using the facts that Range (YN(4,+,\4,))CB{® and B¢ B for every yEF
appeared first before n, clearly g,=+1 and since the sets B{ for y¢ F are pair-
wise disjoint we can see (by induction on 7) that ¢;=¢;,, implies ¢;=@,,,. Since
n(a)>=a we can suppose that ¢=1—¢;,; and @;=¢;,; holds for no i=k. This
means that s;=+1 for all i=k. Finally £, ¢Range(¢) for all ¢cH but B,,,€
¢r”’D shows a contradiction. [

So Lemma 1.2 (iii) holds.
Now we prove (ii).

LemMma 1.4. Fis strongly fairly complete.

Let us be given v=<w,, D,,, #,, g, for m<v and fEF, DcA finite as in
Definition 1.1. We have to find some ¢€ F with good properties.

Choose an n<wm, large enough so that all these things appeared below .
That is we require that D 4, where

D:=DUf"DUU{D, URange (g,): m < v}

and every element ¥ of H:={f}U U{s#,,: m<v}appeared first below n. Write
ffor fi4,,so fcF,.

When we built F,,,; we defined some local inverses 7=lIy p,,EF,+; (t<wp)
for the present f and D and this 7 appears in the sequence { fi}4,+1: i<wo}=F, 4,
infinitely many times.

We now show that the functions #€ F for which #4,,.,=1 works. So, fix such
a tc Fand let u<ow, its index.

We may work in M, ., and A, since ¢" (A1 \An) S A,1154, for every.
W€ H and m=>n since the elements of H appeared first at last n+1 and Hc 4,. (That
is, all the functions we use from now on, we can suppose are elements of M, ,,,
their Dom is 4,,,.) Let m=<v be fixed. Roughly speaking our construction works
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because we defined the values of our functions as independently as it was possible,
that is (f stands for f}4,, feF):

() Range (1 (4,\f"D)) < Bfp,, but Range(ft4,)C 4,
(1) Range ((prB}",)D,u) c Ay \A4, for @cM appeared before n
(M) BY,.NA4, =6 and DcC A4,.

Now we verify in details. We have to verify: if g,=id\D,, and g, ¢@tD,, for all
o€{#,, o, —1) then for all @e(s#,U{r}, o, —1) we have ¢iD,#g,. Namely
we prove the following:

STATEMENT 1.5. For arbitrary Y€ (#,,U{t}, o, —1)

(a) EITHER ¢ can be replaced by (ftD)™* and t=* by f1D in \ everywhere
and for the resulted ' we have D,,—Dom (Y} and Y'\D,,=ytD,,,

(b) OR Range (y)N(4,+1\4,)=0.

This statement clearly implies that F is strongly fairly complete.
Proor. Let ye(#,U{t}, o, —1) be fixed. We can write i in the form

ey Y = yiroyitio...opgroyftoppe
where y,€, U{r} and gc{+1, —1} for i=h for some h<w,.

Our goal is to replace # by ( £+ D)~ in s as required in (a) whenever it is possible.
We try to replace ¢ in each of its occurrence in iy separately step by step. (We are
allowed to make a replacement if for the resulted y we have D,cDom (f).) If
we succeed to replace all the occurrences of £ by (ftD)~! (and ¢~ by f}D) then
we reach case (a). If not, we get a breakdown somewhere, we reach case (b).

Now we examine not only the structure of  but the “route” of D,,. That is,
if ;" D,, once pops into 4,+:\4, (J;, is an initial segment of y) then, by our con-
struction, it does for all i=1,, so finally y satisfies case (b). In the remainder part of
the proof we verify the above in details. Now let the sequence (i,: r<w) enumerate
the indices i=#h in increasing order for which y,=¢. We can clearly suppose that
w50,

Casel: eg=+1 for all i<h. (In this case Ye(#,,U{t}, o)) Now define
Yo=Yo=y ¥ =id and for r<w, r>0 put

Yo = }’i,—loyi,—zo---oyj'o‘//r—1
0, = 1oy
vy = (ffD)uloyi,—lo---O)’jO‘M-1
where j=i,_;+1.

(¥, and , are the initial parts of ¥ and y’ resp., showing the procedure of
replacing each occurrence of ¢ by (/D)™ in y.)

Now our task is to prove by induction on r<w that
{(a) EITHER D, < Dom(y;) and y.D,} =D,

@ ® OR  Range(hnD)N(Ayii\A,) = 0.
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Obviously (2) for all r<w implies that we are done. To see this observe
that y=y,0...0y;0¥,_1 and Y'=y,o0...0p;0¥;,., where j=i, ;+1.

Then (2) (a) for r=w-1 implies D,cDom (¢") and ¥"\D,=vnD, while
(2) (b) for r=w—1 implies Range (YD, )N (A4,::\4,)=08 as required for State-
ment 1.5,

So, the induction step for (2): If case (b) holds in (2) for some r,<w then it is
easy to see that for every r=>r, case (b) holds in (2). So w.l.o.g. case (a) holds for
every r<w. In this case, if we denote (¥{®)”D,, by x, we have two subcases depend-
ing on the position of x:

Subacase (i): xcf”D. Then t can obviously be replaced by (f1D~Y) in ¥,
and Y+D,,=y,D

Subcase (ii): xEf”D. Then it is easy to see that # can not be replaced by
(/1D) tsince t"(x\f"DYCB% p S Ay \A4, and so D, EDom (). So Range
WD, )N (A1 1N\A,)>=0 which proves the induction step for r and so we proved
Case I, too.

Case 11 g=-1 for some i<h. The method for this case is similar to the
previous one but we have to be more careful.
Obviously we may suppose that there is no part like yoy~1! in (1), i.e.

(3) for no i<h we have y;,;=y; and ¢ ,=1—¢

(since g,=idD,). Again we examine the route of D,,. Put now ¥Y_,=D, and
Y;=(y%)"Y;—, for i=h. Letfurther ¢, be the smallest e=h such that ¥;N(4,+1\4,)
#0 if such an e does exist. Again we have two subcases:

Subcase (i): e, does exist. Then we know that for every p€ M, we have Range
(¢t A, and Range (p~1) 4,. But e, was minimal and D,c 4, and HcM,,
so we must have ¢,=i,, for some ry<w. (The sequence (j,: r<w> was defined
before Case 1.) In other words y, =f. Further, by the construction of ¢ and by the
minimality of e, we have ¢, = +1 and ¥,/ (A,,H\A,,)CB}")D e

We know that for every ¢¢E,, DCA finite and i<, all the sets BY” and B,
are all pairwise disjoint, and for every goeM we have Range (qor(A,,H\A ) B‘"’

So, by (3) we can prove by induction on i, €= i=h the following fact (as in
Lemma 1.3), using ACM,: e,=+1 and there is a @=o@(i)€F, such that ¥;N
N(A,+\4,)=B®  or Y ﬂ(A,,+1\A YCB! b (This means that ¢”D,0
ﬂ(AmH\Am)#@) This proves Subcase (i).

Subcase (ii): e, does not exist. Then for i=h we have ¥,C4,. Now define
Y., ¥ and ¥, and prove (2) by induction on r<w exactly on the same way as in
Case L

The induction step in case (7 can be replaced by (/tD)'~% in y, for every
r<w”) is as follows:

Let x=(/®)"D,, and e=¢,. If xcD and e=+1 or xcf”D and &=—1
then clearly we can replace 7 by ( SiDY'~¢ in ¥, and yD,=y\D,,. In any other
case we would have ¥, =(#)"xc A, by the definition of ¢, which is impossible.

So we proved Lemma 14. O

So (ii) also holds in Lemma 1.2 and we concluded the proof of Lemma 1.2. [
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2. Proof of the main theorem

In this section we prove:
TaeoReM 2.1. CH implies 7] P(2%).

Proor. Our task is to define a monoid NcC®B on some set B such
that Loc (N)(Sp={idg}. We start with the monoid Mc“4 constructed in the
previous section. Then, using the main ideas of the previous section to extend the
generators to larger and larger sets as independently as possible, step by step we
extend M to B, killing the elements of Loc (M)NS\{idg}. We do not add any
new generator, we only extend the elements of F (= the set of free generators of
Mc44) to B. Finally we will get N as the generatum of these extended generators.

So, let 4, F and M be guaranteed by Lemma 1.2 and let {r;: i<w,} enumerate
Loc (M)NS\{id,}. In each step j<w,; we extend 4 and the elements of F to a
larger set B;.; (B;DU{B,: u<j} for all j<w,, B;=4, B,=0) in such a way
that 7; does not extend to B; ., for some j=i. (This means that for no g€Loc (M, 1)
ot A=m;, where M;,,CB+(B;.,) is the extended monoid.) In this case we say
that we “killed =;”.

To be somewhat more precise, let 4; be arbitrary countable infinite sets disjoint
from each other for i<w; and A,=4. Put B;=U{4;: i<j} for j=w, and
B=B, . (So B,=0 and B,=A.) Fix further a booking function § mapping
o0, 1} onto w;Xw, with the property: h=j if 6(j)=(h, k) for some j<w,
and for all j,h<w;. (In the j® step we will kill the 6(i)=(h, k)" permutation,
that is the k™ permutation of Loc (M,)c®wB, (the A™ level). We are forced to
use such a booking function since ¢t A=id, for many g¢€Loc (M)\{idg,}, h<aw,
and finally we want to kill every elements of Loc(N)\{idz} and AcCB,CB.)

Step by step we will extend (the generators of) M to B as follows. Let M;=M.
Denote M the monoid already extended to B; (so M;c®B; and M,=By=0,
M, =NES2B) for j=w;. The set of generators of M; for j=w,, j#0 is F=
={f0: k=w}c®B; and they have the property f=f1B, for k<aw,
and O<i7<j=w, by the construction.

Let further {z;;: k<w,} enumerate Loc (M)NSp\[idp} for j<w;. Now
let i be given, 2=i<w®; and suppose that we have already constructed M for all
j<i. Now we want to construct M;. (Recall that M;=(F;,) for j<i and the
elements of F;, extend the elements of Fj, for ji<jy=<i.) '

In case i is limit we clearly take

O =U{fD: j<i} for k< wy;
and
F={f" k<o), M= (F, 0y < (B;)B;.

If i=j+1 then we extend the o—generators of M; to B; (=B;.,=B;UA4)
in such a way that the resulted M, will have the properties (i) through (iii) of Lemma
1.2 and ;) will have been killed. The Jatter means that there will be no permutation
0€Sp, in Loc(M;) such that glB, =7y, where 5(j)=(h, k) for some k<w, (since
Ts(jy 18 the k' element of Loc (My)(1Sp\{id} B}, k<w,, h=j).

This construction ensures that finally we will have a locally invertible (and,
moreover, a still strongly fairly complete) monoid N (=M,) on B (=B,)) such
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that Loc(N)NSp={id}. (To see this use the fact that every element of N maps
A,=B, . \B, into 4, for every n<w; and so does every element of Loc (¥)NSj.
If then m€Loc (N)N Sy, m#idg, then ntB,=idiB, for some A€w,, and so, by
the construction, n}B,€Loc (M) Sp\{idp,} say n}B,=m,;, for some k<wm,.
Then 6(j)=(h, k) for some j<w,, j=h. In the j™ step, defining the elements
of Non A;=B;.\B; we killed 7, s, so ¢\ B,#m, ,=n}B, for each gcLoc (N)N
NSy, which so holds for each g€Loc (N)( Sy, a contradiction.)

Now we present a construction for M,=(F,, o), the other successor steps
i=j+1 are the same. Write for convenience 7 and A, instead of m,)and 4,. (Recall
that By=A,=A, By=AUA, and M;=Mc*®B,, M=(F, o)) Step by step we
extend the elements of F to A, in o, steps (4, and F are countablej and we take
these extended functions into F={/f®: k<w,}c?B,. We intend to define the
values of /¥, k<w, on A, as independent as possible.

After the n'™ step we will have extended the first k™ many elements of F to a
finite set W®™cA,. (The only important thing is that we extended only finitely
many elements of F. We choose the first k™ elements of F for convenience only.)
Further we will have fixed finite sets E;C A4 for every i=k™. These E,=EF sets
are the most important objects in our construction. We require that E;DFE; for
i>j and @\E;=nE; forevery @c({f;: j=i}, o, —1). This can be done by Lemma
1.2 (iii). The sets E; play an important role in choosing locally inverses for the ex-
tended functions and taking care of the fairly completeness of F; (see Case 3). Further-
more, in Lemma 2.2 we prove that if a¢ 4 is fixed, #} A== for some #€Loc (My)N
NS4yua4, and m=c, is large enough then for all @p&(H, o, —1) either ¢(a)=#(a)
or p\E,#=ntE, where H={f®: i=m}; moreover this property is preserved in
all further steps, that is H can be any finite subset of F®, This clearly justifies that
7 will be killed.

Denote the extended functions by f;, that is Dom (f})=AUW® and fit A=f;
for i=k®. To summarize: after the n'™ step (n<w,) we will have WWc 4,
finite, k™ <ew, and {f;: i=k™} where f, extends f; to AUW®, (f; depends
upon # but we do not indicate this.) Finally let 4,={a;: j<w,} and let y be a
function from @, onto the set

@y X[Ae] = X [A,]<0 X 0o X [[4]=*]” X [[4p] =] =0 X [[F]=2] =2 X[4*]<®

and y takes every value infinitely many times, where A*={g\D: gc44, D¢[A]<v}
and [X]=e={YcX: Y is finite} for any set X.

The role of y is similar to that of J: enumerates the requirements for M, to be
locally invertible and fairly complete. The requirements listed by y will be satisfied
during the construction, in Case 3, n=3.

Now let us see the construction itself.

In the 0% step we do nothing: W =0 and no element of F is extended, k=0,

The (n+4-1)" step: let W=W™cC A, be the set constructed in the previous step
and the function f, f1, ..., fr already extended be f;, fi, ..., f with fixed sets
E,, Ey, ..., E, where k=k". In o, steps we have to define f(a) for all fcF, acA,”,
and infinitely many locally inverses of f}.D for all f¢F, Dc AUA, finite. In each
step n<w, we either define f(a) for anew acd, or for a new fEF or we define
some local inverse of an fiD, and we have to make each type of steps cofinally
many times. Enumerate first 4, and F as 4,={a;: j<o,} and F={f;: k<woy}.

9% Acta Mathematica Hungarica 56, 1990



318 1. SZALKAI

Since the order of the steps is unimportant, for easier understanding we work modulo
3 and distinguish three cases:

Case 1: n=3[+1 for some [<wm,. If a;¢ W™ then we have nothing to do
e WotrD=w_  EE+D =0  Otherwise extend 7y, fi, ...r fi (k = k0D = ™)
to Wt — W(")U{a} totally independently from each other and the points used
before. That is, for i=k let fi(a;)) be an arbitrary element of the set

A, —Wh )—{al}— U{Range(fj J= k}—{fj(al): j=<ik
Then we put WD =™ J{a} and k"+D=k®,

Case 2: n=3[+2 for some [<w,. If k=k™=] then we have nothing to do.
(Le. WD =W fw+D = ) If not, then extend all the functions fi 1, frs2s .-/
step by step to W= W™ independently from each other and the points used before.
That is, if W={a,: u<w} for some w<aw, then let for u<w and i, k<i=l
fi(a,) be an arbitrary element of the set

A, ~W—U{Range (f)): j< i}—{fi(a): t < u}.

Further, for every i, k<i=! by Lemma 1.2 (iii) (and by the induction hypothesis,
that is M, satisfies Lemma (i) through (iii) for every m=w,) we know that there
is no bijection in Loc ({f;: j=i}, o, —1)) except id4. So we can choose an E;C A4
for k—<i=l be finite such that E:)E and 7wt E;=idVE; for j<i and @\E; ;émE
for every @cLoc ({ f;: t=i}, o, —l}) and k=j<i=I So in this case we construct
A e A fk+1,fk+2, vy and Epiq, Epp, ooy By, too, (k=k™)
while f; and E; for i=k remain unchanged.

Case 3: n=3l for some [<w,. Now we have to do something only if y(I)
codes a requirement for F, to be fairly complete.
First we clarify when y(/) codes such a requirement. We have

'Y(Z) = (119 Xs Ya my, Sla st Ca G>

where [, m=<w, and §;={T{: m<vD}c[4;]=<2 for some VP <w,, i=1,2
recall that A,=A, 4,=A4,) and

(= {%m: mE v(3)} C [F]<® for some & = @,
and
G ={g,: msvW}c 4* for some v*¥ < w,.

Then y(/) codes such a requirement iff |G|=|S;|=]|S.|=|{|=v and for every m<yv
Dom (g,)=T,".

If the above statement does not hold then we have nothing to do. If it does,
then we will construct m; many locally inverses of f,l(X UY) with taking care of
the fairly completeness of F, with respect to 4#, and

D,:=TPUTY (m<w).

Now do the following construction =y times, repeatedly. (Repeatedly here
means true physically repetitions: after one construction ends we start the whole
procedure once more again from the very beginning, repeatedly increasing k®+%
and WD)
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First we have to suppose that k=k® and W=W® are large enough, that is
k=1, k=max {t<w,: ficH,, m<v}and W > YUUS,U(f,)"Y. (If not, use the
constructions described in Cases 1 and 2.)

In the construction we use the fairly completeness of F. We have already g,,,
#, for m<v. Now link the sequence mE; and { f;: j=i} for i=k™ to the above
sequence, that is put

gyii=ntE; and #,u={f;: j=} for i=k®, so v=v+k®+1.

Further, write f; and X instead of f and D in Definition 1.1. Since F is fairly
complete we have a function #¢F with good properties; moreover such that
t{ f;: i=k™). tis good in 4. We will extend it to W™ taking care of f, ¥ and
T® and arbitrary functions g, on T,? for m<v. The sets T,¥ for m<v are settled
since U{T®: m=<v}cW®. The sets T for v=m—<v and the functions &, on
T.® for m<v are unimportant since we will define # on W (and later on further
sets) totally independently from the other functions.

Now use the construction described in Case 2 to extend the functions f; for
k<i=k(z) to W® and determine the sets E; with the method described in Case 2
with the restriction #}(f"Y)=( /1Y)~ where k(¢)is defined as #=f;,,€ F. Though
R(?) is not disjoint from W+D=W®W_ we will see in the proof (see Lemmas 2.2
and 2.4) it does not make any trouble. Finally we put W"+D=W® and k"+V=k ()
(and possibly repeat the construction m,;—1 times again). (To be somewhat more
precise: let W®={a,: u<w} and for i, k<i=k(t) and u<w if ik(t) or
a4f"Y then let fi(a,) be an arbitrary element of the set

ANOULFW: r=kN{fi(a): s=u, r<i)).
This ends the construction. O

So we have extended all the generators of M to 4,. Let the o—generators of
M, be F,, the set of these extended f; functions, i<w,. We have to show that M,
satisfies the requirements (i) through (iii) in Lemma 1.2 and that  does not extend
to A4,. (i) and (iii) can be easily verified.

We only have to check that F is strongly fairly complete and that = does not
extend to A,. (The other requirements are clearly satisfied.)

LemMMA 2.2, 7 is not extended to A,,.

Proor. We prove a bit more: n can not be extended to an clement of
Loc (<F:‘Zs 0y — 1>)n SAUA,:-

Suppose it does. Let ac 4, be arbitrary fixed. If thereis a #¢Loc ((&, o, —1)N
NS 4ua, suchthat #} A=mn then b=%(a)=(f;of;,0...0f; )(@) for some i§y,1i, ...,
<. iy<wmy and s<w,. By the construction there is an n<aw, large enough such
that we have already extended all the functions f;, (j=s) till the n™ step so that
(fi,ofi;0...ofi )@ is meaningful and equals bcW®. (That is, k™ =i; for j=s
and (f;0...0 f,-s)(a) for 0<z=s and b are elements of W®.)

Now fix such an arbitrary n<aw,. Recall that till the n'® step we have extended
fi ((=k=k®) to W=W® and fixed the sets E;cA (i=k). By the definition
of the set E, we have ¢tE #n}E,=#}E, for every @c{{f;: i=k}, o, —1) and
7} B, =id} E,. But by our indirect assumption there is a k'<w, such that Y} E,=
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=R\ E,=mntE, for some ycLoc {{f;: j=k'}, o) since #€Loc (M,). Clearly we
have k’>k and we must have extended the functions f, ..., f;, till the n'® step,
w'=>n and k'=k™,

However the following result can be proved by induction on m, m=>n, using
that F, is fairly complete:

CramM 2.3. For arbitrary m=n if we have extended the functions f, (i=k"™)
to W in steps 0, 1, ..., m then for every @c{{fi: i=k™}, o, —1) either ¢(a)#b
or 0V\E,#m\ E, (here k=k' and n is fixed.)

Obviously this claim proves Lemma 2.2.

Proor. The proof is an easy induction on m, examining the effect of the con-
struction in all three cases. The heart of our construction is that we always extended
the functions totally independently from everything (the other functions and the
points used before with a small restriction in Case 3).

The proof is rather easy but technical. The claim for m=n is valid. Let m=n
and kU, W™ as usual. We prove for m-+1.

Fix any oc{f;: i=k™+D}, o, —1), say

@ < @ =JRopio..ofs (s <y, &,E{+1,—1} for u=y)

where $,=f,, i,=k™. We have to show that either @p(a)#b of ¢|E=n}E,
(k=k™ is fixed), using that this statement holds for m, that is for all Y& {{f;:
i=k™}, o, —1). Suppose that ¢}E,=n}E, and ¢(a)=a. Then we have ¢t E,=id} E,
since nhE,#1d\E,. So we may suppose that there is no part like fof™* or f~lof
in ¢. (That is in (4) there is no #<s such that y,=y,,, and g,=1—¢,1,.

According to the construction we have to distinguish three cases—which one
was carried out to construct K+, Jn+D etc,

Case 1: m=3[+1 for some [<w,. Then we extended the functions (among
other functions) §, (u=s) to W"+D=W™U(q) totally independently from
each other and the points used before. Since the induction hypothesis holds for m,
by the construction it also holds for m-1.

Case 2: m=31+2 for some I<w,. Then k™+tD=] and we extended the
functions fitm 11, ..-sf; to WD =W totally independently from each other and
the points used before, Since the induction hypothesis holds for m, it also holds
for m+1, as well. (If z’u>k(’"), that is there is a new function in (4), not constructed
till the m'™ step, we must have ¢(a)#b. If not, then ¢ was constructed in the m™
step, and so we can use the induction hypothesis.)

Case 3: m=3l for some [<wm,. This is the most crucial part of our proof.

In this case we constructed for some /;=k™ (several) locally inverses f, of
the function f;, with respect to aset XUYcAUA4, (=k™<t=k™+D, YCWw™).
We took an f,€F, using the strongly fairly completeness of F, with respect to
(among others) A1 E, (k=k™ is fixed) and extended f, to Wm+D=Wwm totally
independently from the functions and points used before (with the only restriction
that fof; 1Y =idtY but this causes no trouble since YU(f )" Y cWw™).

If 7,7t for all u<s (thatis f, does not appear in ¢ in (4)) then by (4) we know
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that ¢ has already been constructed before the (m+ 1) step and using the induction
hypothesis we are done.

So f, appears in (4).

_Write ¢’ for the function we get by replacing f, by (f,H(XUY))~1 and (f)?
by fi,} (XUY) in @. Using the good properties of f; by the strongly fairly complete-
ness of F; and our indirect assumption @tE,=mtE, we may replace f, by (f,}X)™*
in @} 4 everywhere and so we have ¢ \E,=@\E,=n\E, (k=k" is fixed).

Next we show that we can derive ¢’(@)=> using the indirect assumption
@(a)=b. We defined f, totally independently on WO\ Range (f}¥) from the
points used before and we defined f, on Range (f,}Y) to be the inverse of f}7.
It follows that supposing ¢(a) is meaningful and equals to b we have that ¢’ (a) is
meaningful and equals ¢(a)=>b (since b was an old point, too, that is a, be W™
and YU(R) YcWw™).

So we have ¢'V\E,=n}\E, and ¢’(a)=¢(a)=b=#(a). But ¢ only consists of
functions constructed before the (m+1)™* step and by the induction hypothesis
this is a contradiction.

So we proved Claim 2.3 and so Lemma 2.2. too. [

In order to carry out our construction in further steps (for My, M,, ... and for
any M, (i<w,)) we must also to preserve the strongly fairly completeness of F.

LemMmaA 2.4. F, is strongly fairly complete.

Proor. The proof is mainly included in the construction: in Case 3 we manage
the fairly completeness of F,, and do not destroy it in further steps.

Observe first that the following fact is true: for every my<ny<w, if untill the
n-th steps (i=1, 2) we have extended the functions {f;: j=k®} to the functions
{/: j=k®)}, Dom (f®)=AUW® for j=k and i=1,2 then we have
(3) We SWe and fO S]O for j=kO
(6)  Range(f®@Wen)NRange ([P NN =0 for i, j < k.

(That is: (5) says that we keep extending our functions, and (6) says that we define
all functions independently from each other and the points used before.)

This fact can be proved by a simple induction on n,, By =n,<w,.

Now, recall that F={f;: i<w.}, ftd=f€F for i<w,. Let us be given
v<=wy, DCAUA,, f¢F, #,CF, D,cAUA, finite and g,: D,~4UA4, for
m—=<v as in the definition of strongly fairly completeness. We have to find some

t=t(j)=w, such that f, has certain good preperties.
Clearly we may suppose that

Range (g, (AND,)) © 4 and Range(g,}(4,ND,))c 4,

for m<v. Choose an ny<ew, large enough such that in the n,-th step we can talk
about the above funciions and sets, that is we have already extended all the elements

of the set ; R
H = {fpU{fi: [.&#5, m < v}
to the set W®cC 4, and DNA,cW® where
b =pUU{D,URange(g,): m<v}Uf/D.

Acta Mathematica Hungarica 56, 1990



322 I. SZALKAI

We know that there are infinitely many /,>n, large enough such that in the n=3/;-th
step we found a local inverse £, of f;}.D with respect to g,, and #, (m<uv) taking
care of the fairly completeness of F,. (See Case 3 of the construction.) By the con-
struction we have exactly one f€F, such that fpd=f,. We claim that f, works,

Roughly speaking, f, was extended as independently from W™, the points
and the functions used before as possible and this causes f, to work.

Obviously we have fio( f;t D)=id. We have no trouble with the sets D14,
D,,NA and g,}(D,,N A) (m=<v) since all members of F, map 4 into 4 and 4, into
A, and F, was strongly fairly complete. We also do not have trouble with the sets
DNA,, D,NA, and g,}(D,,N4,) (m=<v) using the construction (that is f, was
defined totally independently) and (5) and (6) for induction for m=>n. By the con-
struction the set {f;®: i=k®™} is strongly fairly complete for the full sets D, D,,
g. and #,, (m<v). Further (5) and (6) ensure that we can not damage these good
properties of f, in any further step m<w, for m=>n.

Finally, since this holds for all m<w, (m is large enough), it must hold for
F, also (better to say, for f,¢ F,).

This proves Lemma 2.4 and so Theorem 2.1. 0O

3. Further results

In this section we use the ideas of Sections 1 and 2 to prove further theorems.

TureoreM 3.1. (2) MA implies 7] P(2%).
(b) MA(2) implies P(A) for A<2% and for countable monoids.

Proor. (a) The method is rather similar to the one presented in the proof of
Theorem 2.1. Let {r;: i<2%} enumerate Loc (M)NS,—{id,}, let 4; be pairwise
disjoint countable sets for j<2%, A4y=A and let B,=U{4;: j<i} for i=2%.
Extend the elements of M succesively to B; by killing =; (and of course use the
coding function §: 2% —2%x2% as in Theorem 2.1 and use the fact that MA
implies 2°=2% for t<2%). The only difference is the succesive step: killing a
permutation « € Loc (M)N.S.

First we briefly sketch how to find a suitable forcing notion (P, =) in the proof
of Theorem 2.1. We know that the set of generators of M is F={f; i<cw,} and
there is no permutation in Loc (({f;: j<i}, o, —1)) for every i<w,. So for
every i<w, we can fix a finite subset E;C A4 such that @t E;#n\E; for every ¢ ¢
Loc ({{ f;: j<i}, 0, —1)) and E,CE; for i<j<aw,, Let (P, =) be the following
forcing notion: P© consists of the forcing conditions of the form

p = (DD, (o, ..., ‘,f(l’g)»
such that k¥ <w,, D® is a finite subset of 4, and f{»’ is a one-to-one extension
of f; to AUD for i=k®,

Define the partial order =@ on P@ as p, = ©p, iff k¥ =k® and for every i=kw
fied Sf @0, Now define the subordering = of = as p,=p, iff we obtained p;
from p, using some (but finite) steps described in the proof of theorem 2.1. Clearly
the largest element of P? is 1,=(0,0). Then we define (P, =) as P={pcP®:
p=1,} and we have already defined = above.
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Pis countable so it satisfies the ccc.
The following subsets of P are dense:

D, = {pcP: acDW} for acA,,

D; = {pcP: j=kP} for j=a,,
and . R
Dj wp = {pEP: j=k® and DUf/D c DP

and fer has at least m locally inverse among the functions { fj: jék(")}}

for j,m<=w, and DcAUA, finite . ‘
Applying Martin’s axiom we get the desired extension of our monoid M to
AUA, as in Theorem 2.1. [

(b) Let |A|=2. The forcing notions
P p = {g\H; ge M, He[A]=*, f1(HND) = gt(HND)} (feM, DE[A]=*)

ordered by reversed inclusion satisfy the ccc since M is countable. By MA we get
a generic subset GC P intersecting all the dense sets D,={gtH¢P, p: acH &
acRange (gt H)} for ac A. This proves Theorem 3.1. O

THEOREM 3.2, 2%=g,+ IMA with T1P(2%) is consistent.

Proor. The forcing notion P defined in the proof of Theorem 3.1 is countable
so we can apply a weak form of Martin’s axiom which is consistent with 2% =g, +
+TMA:

TraeoREM 3.3 (C. Hernik, [W, Theorem 5.7, p. 848)). If there is a model of set
theory then there is one in which we have '
(i) Zo=x,,
(i) SH,
(iil) MA (§&,-linked)
(iv) 1 MA.

(For the definitions see e.g. [K] or [W].)

We only have to know that every countable poset is §,-linked. Then we proceed
as in the proof of Theorem 3.1 (a) and apply Herink’s theorem. Use the fact that
MA (8,-linked) also implies 2°=2% for t<2%. This proves Theorem 3.2.

REMARK. We could get a suitable model for Theorem 3.2 simply adding Ks
Cohen reals to an arbitrary model of ZFC (well-known or see e.g. [I¥]).

TueoReM 3.4. 2*=2% implies 71 P(2%) for any cardinal 1.

Proor. First construct a set C and a monoid M, SC both of power A taking
/ disjoint copies of M constructed in Lemma 1.2. (In other words let C=U{C;: i<21}
where C; are pairwise disjcint sets of power &, and let M;CSC; be a monoid
isomorphic to A of Lemma 1.2 with generator set F;.) Put E={fecC: f1C=f
and fHC—C)=id for some f'¢F} and let Fy=U{F: i<} and M,=(F,0).
Clearly F, satisfies the properties described in Lemma 1.2. Now extend M step by
step to a set of power of A+ by killing every permutation in Loc (M) using a coding
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function §: A—>AXA. When we kill a single permutation = we extend the elements
of F, to CUC, where |C,|=4, in 4 setps (where the sets C, are pairwise disjoint).
I do not think the details are worth writing down. [J

The same argument proves 7} P(x) for x strong limit.
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