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ON A PROBLEM OF R. POSCHEL 
ON LOCALLY INVERTIBLE MONOIDS 

I. SZALKAI (Veszpr6m) 

To the memory of my Parents 

O. Introduction and statement of results 

Automorphisms of algebraic structures have been widely investigated. In con- 
nection with the characterzation of properties of endomorphism monoids, in [P1] it 
was formulated a problem which we are going to investigate with a set-theoretic 
approach. 

Before formulating the set theoretic version of the problem we need a few defini- 
tions : 

DEFINn'IoN 0.0 (i) For sets A and B denote by BA the set of functions mapping 
from B to A and the set of permutations on A by Sa. 

(ii) o and t denote the operations of composition and restriction respectively. 
(That is for f ,  gCaA, D c A  and bEA (fog)(b)=f(g(b)), ftDEDA and for every 
dE D (f~D) (d) =f(d) . )  Let further f "D  = Range (liD) for fE BA and D c Range ( f )  

(iii) a monoid McAA is called locally invertible iff for every f E M  and finite 
subset D of A there is a gEM such that (gof)~D=id. 

(iv) for FcAA let Loc (F)={fEAA: VDcA,  D finite, ~gEF ftD=gtD} the 
local closure of F. 

Then the problem is whether the following statement is true: 
P(A)="McLoc(SAOLoc(M)) holds for every locally invertible monoid 

McAA.  '' 
We denote the negation of P(A) by ~ P(A). 

R~MAR~ZS. (a) R. P6schel raised the problem in Szeged, 1983 (see [C, p. 653]). 
The problem first appeared in [P3], the original problem is whether "a clone of rela- 
tions closed with respect to complementation" is an equivalent definition of Krasner 
clones of 2 "a kind. (For more algebraic background and intuition see [P1, p. 161] or 
[P2].) 

(b) Stone's definition in [St, p. 41] is, in fact, equivalent to (iii). 
The validity of P(A) depends on the cardinality of A. It is easy to see that for 

cardinal numbers 2 < z  P(x) implies P(2). ( l fA is finite then P(A) is trivially true.) 
The affirmative answer for countable A was first given by J. Kollfir (see eg. [Pl, p. 164]) 
and the reader can make up a proof himself also for this case. 

Our results are the following (for the definitions of CH or MA see [K]): 

THEOREM 2.1. CH implies ~ P(2So). 

THEOREM 3.1. (a) MA (Martin's axiom) implies -] P(2~o). 
(b) MA (2) implies P(2)for 2<2~o for countable monoids M. 

THEOREM 3.2. 2so=2~I=R2+-/MA+-IP(2~o) is relative consistent with ZFC. 
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THEOREM 3.4. 2Z----2 + implies -qP(2 z) for any cardinal ,L 

(The same argument shows qP(~) for any x if 2 ~ , n  for every 2<x .  
It remains open whether -1P(2~0) follows from ZFC or P(2~0) is consistent. Furt- 

her, very little is known about P(2) for R0<,~<2~0. 
Though Theorem 3.4 generalises all the other theorems, we prove it at the end 

because of the following reason. Theorem 3.1 (b) shows that the cardinality of the 
monoid plays an important role and in the proof of Theorem 3.4 we construct a mo- 
noid of size 2 while the other proofs (using slightly different arguments) give coun- 
table monoids. Theorem 3.1.b shows that countable counterexamples can not be 
given in ZFC alone. 

In Section 1 we prove Lemma 1.2 which is the key to our results. In Section 2 we 
prove our main result: Theorem 2.1. Using the same ideas (but forcing techniques) 
we prove generalizations of this theorem (Theorems 3.1, 3.2 and 3.4). The author 
thanks R. P6schel, P. Komjfith and P. Pr6hle for helpful discussions. 

1. The Lemma 

In this Section we prove a lemma which is the starting point of our proofs and 
introduce some useful definitions which throw some light to the behaviour of our 
monoids. 

We start with the notations and definitions we need. co 0 is the set {0, 1, 2, ...} 
andk<co  0 means kEco 0 and i<k means iE{0, 1 . . . . .  / c - l }  for kEr 0. 

DEFINmON 1.0. (i) McaA is aJ?ee monoid iff it has no nontrivial o-equations. 
(That is for everyf l , f2 , f3 , f4EM ifflof2=f3of~ then there are gjEM ( j =  1, 2, ..., n 
for some n<c90) such that f l=g lo . . . ogk ,  f2=gk+lo...ogp and f3=glo. . .ogz,  
f~=gl+lo. . .ogn for some k, l<n.) 

(ii) For a one-to-one function fCAA we denote by f - 1  the partial inverse of  
f :  Dora ( f  -1) = Range ( f )  and f-l(a)=b iff f(b)=a for a E D o m ( f - 1 ) .  

(iii) For a set FEaA we denote by (F, o) ((F, o, - 1 ) )  the set of functions 
generated from F with the help of operation o, the composition (with the help of o 
and - 1, the partial inverse, resp.). (To be more precise, gE (F, o) and hE (F, o, - 1) 
iff there are kEr f l  . . . .  , .~EF and el . . . .  , ~kE{+l, --1} such that g--f lo. . .ofk 
and h=fl~lo...f~k where we w r i t e f  +1 f o r f a n d f  -1 for the partial inverse of  f )  
(Sometimes we wr i t e f  ~ for id.) 

(iv) A monoid McaA is finitely generated iff there is F c M  finite such that 
M=(F, o). 

In the next section we extend the elements of the monoid McaA (constructed 
in this section) to NcBB, BDA M={ftA:fEN}. In the meantime we want to 
"kill" (every) permutation nELoc(M)ASA-{ida} ,  that is nCQIA for all 
~ELoc (N)(~ SB. To achieve this, while extending the elements of M to B, we have to 
extend their local inverses in such a way that the partially killed n will not rise again. 
This is ensured by requiring the existence of local inverses for all fEM with good 
properties (and Lemma 1.2 (iv); for further details see the sets E~ and Lemma 2.2). 
These good properties are declared in the following definition. (Any of the finite sets 
may be empty.) 
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DEFINITION 1.1 (weaker version). A set of functions FcAA (A is an arbitrary 
set) is called fairly complete iff: 

FOR EVERYf~ F, D c A  finite, v<co, D,ncA finite and one-to-one function gm 
mapping from Dm to A, gm#id~Dm and ~ c F  finite such that (p~D,~g,, for all 
q~E(~f~,, o, - 1 )  and m<V, THERE ARE infinitely many tCF such that tof~D= 
=id~D and for every m<v andevery ~C(~,,U{t}, o , - 1 )  we have ~fD,,#gm 
for m<v. 

Roughly speaking t is a local inverse for f t D  and moreover makes no forbidden 
functions in (o'/gm U {t}, o, - 1 )  with respect to gm simultaneously for m< v. 

(In the construction of the next section, one of the g's is will be the permutation 
rc to be killed, see also Lemma 2.2.) 

Observe that if F is fairly complete then it is locally invertible. Further if F is 
locally invertible (fairly complete) then so is (F, o) too. 

However, in proving Theorem 2.1 (see Case 3 in Claim 2.3) we need a stronger 
property: 

DEFINITION 1.1 (stronger version). A set of functions F c a A  (A is an arbitrary 
set) is caled stronglyJairly complete iff: 

FOR EVERY fCF, D c A  finite, v<COo, DmcA finite and one-to-one function 
gin, mapping from D,, to A, gm#idtDm and ~g~,cF finite for m<v,  T H E R E A R E  
infinitely many tCF such that toftD=idtD and for every m<v and every 
~pC(~,,U{t}, o , - 1 )  I~tD=g m implies D c D o m ( ~ ' )  and ~'~Dm=~P~D,, where 
~' results if we replace t-1 by ( f fD)  -1 (and t -~ by l iD)  in 0 everywhere. 

We need this stronger version because in the main construction (see the proof 
of Claim 2.3) we can not ensure that OtD,,#g,n for all OC(;/gm, o, - 1 )  but for 
O' only if ~' is defined as above. 

In what follows we always use the stronger version of Definition 1.1. 
The following lemma is the key to our results : 

LEMMA 1.2. There exists a countable monoid M c A A  on a countable set A 
with the following properties: 

(i) M is not finitely generated and has independent o - -  generators F={f~: 
i < 09o}, 

(ii) F is strongly fairly complete, 
(iii) Loc (({f~: i<j}, o, -1))NSa~{idA} for every j<o)0. 

REMARKS M is free by (i) and locally invertible by (ii). We will use (iii) in the 
next section to construct some sets Ej for j<o)0. Using their properties and the 
fairly completeness of M we will be able to kill zcCLoc (M)N SA. 

PROOF. We will construct an increasing sequence of countable sets (An: n<co0), 
AncAn+~ for n<a) o and we will take A =  U{A~: n<Coo}. In order to construct 
M, in each step n<co o we will build monoids M,,+~CA-+~ (A,+I) by extending 
the elements of Mn to An+~ and adding some (countable many) elements from 
a.+~(A,+ 0. More precisely we construct the free o--generators of M,+~. Finally 
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every element of M.  will be extended to A for every n<eOo and at the end we will 
take the set of generators of M to be the set of these extended functions. 

(In terms of formulas, the set of generators of M is F = { ~ , j :  i, j<OOo}cAA 
which we intend to define, Ipi,. "appears first" when constructing M.  (see below 
for definition). In step n<:co 0 we will define the elements of the set F.={~q,jtA.: 
i<co0, j<=n}~A.(A.) only. This is the set of the generators of  M.ca . (A. ) .  Since 
in the n th step we have not constructed ~9i. J but ~p~,flA. only, we write ip},") instead 
of ~.i~A. and define after the construction 4J~,j := LJ {~}I~ : n>=J} �9 For convenience 
we enumerate F. as {9(. "). u <  COo}. ) 

From algebraic point of view, if  M* and M,* are the abstract monoids represen- 
ted by M and M~ (n<co0), then M* is a homomorph image o f a  submonoid of M.*+I 
for all n<o)0 and so M* is the inverse limit of the system {(M.*, 0.): n<COo} where 
0. is the homomorphism mentioned above. Since every element of M map hierarchi- 
cally (that is Range ( f~ (A .+I \A . ) )cA .+I \An  for every fCM and n<co 0 if 
f appeared before n) and is one-to-one; further the sets D, D,. for m<v, and v 
are finite in the definition of the local invertibility and the fairly completeness, 
these things are handled in Am, and so in Mm for some re<COo large enough. Further, 
we construct the free generators of M. and M only, so we can manage (i) through 
(iii) easily. 

Now, let us get down into the details. Let A0 be an arbitrary countable set, 
Foca0(A0) an arbitrary countable set of o--independent injective functions on it, 
and put Mo:=<F0, o). 

Suppose that we have already constructed A. and Mn and now we want to 
construct An+ 1 and M.+I.  We have Mm=(F,., o) by construction, where F,.= 

and ~b(a)--,b(m)tA, for i<co., "<k~m<n =~l~.(m.):t,.~,s i<~~ j<=m} for all m<-n, ~- i , j -~ , j  . ~ J . . . .  
We want to extend the elements of F. to A.+~ and find infinitely many local 

inverses for them on An+~ as independent from each other as possible. To this end 
choose countable sets B(~)o,. and B(o") disjoint from each other and from An for 
OEF., D c A .  finite, u<co0 and, let P.+~ be not element of any of these sets and put 

A.+I:=A.UU~B(")UB (") �9 tfiEF., D c A .  finite, u<co0}O{P.+a}. t q* O,O,u"  

P.+~ ensures (iii); for further details see Lemma 1.3. A~UB~") will be the Range 
os ~EF. after extending it to A.+~ and A.UB(o",)o, ~ will be the Range of a new ele- 
ment of F.+I, the uth local inverse of ~tD where ~EF. and DcAn is finite, u<co0. 
The disjointness of  the sets B~") and ~.,n(")D,n is the main trick in the construction 
which ensures (i) through (iii). To be more precise, first extend all ~,EF. to An+l to 
be one-to-one arbitrarily such that ~"(A.+I\An)~B(~ ") and let {ip},"i+l): i<co0, 
j<=n} enumerate the set of these extended functions so that ~I,(..+I)~A =7.(.). (Recall "Ff, j J ~ n  "Ft , J  " 
that every ~EF. has the form ~,,~,//(- ~). for some i<COo, j~n. )  Next let IO, D, n be the 
following injective function from A.+t to An IIm") for OEF., D~An finite ~ '~ ,  D, u 

for u<a~o: lo,o,u'rX=(~tD)-I and " (,o IO,D,u (An+lX'~X)cB~,,D,u where X=~"D. 
Finally put 

{~},"+~ : i <  COo} = {10w,.: ~flEF., D c A,, is finite, u < coo}. 

It is easy to see that all the functions ~.(..+1) for i<co 0, j<=n+l are o - -  and ~ J  
-1-- independent  by the disjointness of the sets B(fl ), n(.) An for OEF., DcA,,  ~ b , D , u ,  
finite, u<O~o. So we can define F.+~, the set of generators of M.+I as F~+~= 
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={r /<COo, j=<n+l}. Finally put M=(F,@ and F = U { ~ q j :  i,J<co0} 
where~r y= U{r : n>=j} for i,j<coo. So we can say that the function ~/=r jEF 
(or r "'~ki,jtAj)' appeared first in Mj, or shortly, at j,  for any i, J<co0. ' 

So we have constructed A and M. Now we have to show that they have pro- 
perties (i) through (iii). 

It is easy to see that the elements of F are independent, so (i) holds. 
Now we prove (iii). (Recall that F is enumerated as {f~: /<co0U}.) 

LEMMA 1.3. There is no permutation except ida in Loc ((H, o, -1 ) )  for any 
H c  F finite. 

PROOF. We are given an H c F  finite and we must show that Loc ((1t, o, -1 ) )  
contains no permutation except ida. 

First choose an n<coo large enough such that all the members of H appeared 
first far below n (e.g. if hEH appeared first in M,~, nh<co, then n>nh+l  for hEH.) 

Suppose now rcELoc ((H, o, -1 ) )OSa\{ ida} .  Let aEA be such that 7r(a)~a 
and D={P,+I,  ~z-l(P.+0, a}. Then we have 

reID ~k ~- = (~Ok O(Ok-lO...ocp~'o(o~~ 

for some k<coo, ~oiEH and eiE{+l, -1 }  for i<=k. 
Using the facts that Range ( I / t~ (An+lNAn) )CB (n) a n d  P,+,~B(o ") for every r  

appeared first before n, clearly eo = +1 and since the sets B(o") for r  are pair- 
wise disjoint we can see (by induction on i) that eir implies r Since 
n(a)#a we can suppose that e i= l - e i+a  and ~o,=~o,+ 1 holds for no i<=k. This 
means that 8 i=+1 for all i<=k. Finally P~+l([Range(q0 for all q~EH but P~+lE 
En"D shows a contradiction. [] 

So Lemma 1.2 (iii) holds. 
Now we prove (ii). 

LEMMA 1.4. F is strongly fairly complete. 

Let us be given v<co0, D,,, O~,n, g,, for m<v and fEF, D c A  finite as in 
Definition 1.1. We have to find some tEF with good properties. 

Choose an n<coo large enough so that all these things appeared below n. 
That is we require that ~ c A ,  where 

/3 := D Uf"D U U {D,. U Range (g,,): m < v} 

and every element ~ o f ~ : = { f } U  U {Jt~,,: m<v}appeared first below n. Write 
f f o r  f tA, ,  so lEFt. 

When we built F,+I we defined some local inverses ~=II, o, uEF.+~ (u<coo) 
for the present f and D and this ~ appears in the sequence {ftA.+~: i<co0}=F,+l 
infinitely many times. 

We now show that the functions tEF for which ttA,+x= ~ works. So, fix such 
a tEFandle t  u<coo its index. 

We may work in M,+I and A,+I since ~k"(A,,+~\A,,)~Am+x\A,, for every. 
O E H and m >n since the elements of  ~ appeared first at last n + 1 and ~ c A , .  (That 
is, all the functions we use from now on, we can suppose are elements of M,+a, 
their Dora is A,+~.) Let m<v be fixed. Roughly speaking our construction works 
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because we defined the values of  our functions as independently as it was possible, 
that is ( f  stands for f t A , ,  fE F): 

o(n) (!) Range( t~ (A , \ f "D) )  = "y,D,,, but Ra nge ( f tA . )  = A. 

(I!) Range (q0,o (") . r~,y,o,,) c A , + I \ A ,  for p E M  appeared before n 

(!!!) B~?D,,NA, = 0  and D = A,. 

Now we verify in details. We have to verify: if gmr and gmr for all 
~oE(~,., o , - 1 )  then for all (pE(~4~ o , - 1 )  we have ~otD,,r Namely 
we prove the following: 

STATEMENT 1.5. For arbitrary ~bE (24em C {t}, o, - 1) 
(a) EITHER t can be replaced by ( f t D )  -1 and t -1 by f f D  in ~ everywhere 

and for the resulted ~' we have D,n=Dorn (~') and O'fDm=OtDm, 
(b) OR Range (~) N (A. + I \ A . )  = 0. 

This statement clearly implies that F is strongly fairly complete. 

PROOF. Let ~pE(~/t',.U {t}, o, - 1 )  be fixed. We can write ~ in the form 

(1) ~ = y"hhoy~h_-,10.., oy~oy[~oy~O 

where yiEa4t',,U{t} and e i E { + l , - 1 }  for i<=h for some h<co 0. 
Our goal is to replace t by ( f t  D) -~ in 0 as required in (a) whenever it is possible. 

We try to replace t in each of  its occurrence in ~ separately step by step. (We are 
allowed to make a replacement if for the resulted q~ we have D , , c D o m  (~).) If  
we succeed to replace all the occurrences of  t by ( f t D )  -~ (and t -1  by f~D) then 
we reach case (a). If  not, we get a breakdown somewhere, we reach case (b). 

Now we examine not only the structure of  lp but the "route" of  Din. That is, 
if 0~o"D,~ once pops into An+~\A . (~o is an initial segment of  ~) then, by our con- 
struction, it does for all i>io, so finally ~k satisfies case (b). In the remainder part of  
the proof  we verify the above in details. Now let the sequence (i,: r<w)  enumerate 
the indices i<-_h in increasing order for which y~=t. We can clearly suppose that 
w e 0 .  

CaseI: e i = + l  for all i<h. (In this case OE(;ft~ @.) Now define 
O0=0;=O0 (~ and for r<w, r > 0  put 

~b(, ~ = yi _ l o yi _ ~o... o y j o ~ _  l 

O, = toO , 

~p; = ( f  t D)-~o y, _,o. . .  o j~o~b'_a 
where j = / , _ ,  + 1. 

(O, and ~b; are the initial parts of  0 and 0 '  resp., showing the procedure of  
replacing each occurrence of t by ( f f D )  -1 in O.) 

Now our task is to prove by induction on r<w that 

~(a) EITHER Dm c Dom(~b;) and O;D,.t = 0~D, ,  

(2) [(b) OR Range(O,~D,,)fq(A,+~\A,) r O. 
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Obviously (2) for all r<w implies that we are done. To see this observe 
that ~/=yho...oyjot//w_l and ~'=yho...oyjo~/~_l where j = i - , , - l + l .  

Then ( 2 ) ( a ) f o r  r = w - 1  implies D , , c D o m ( ~ ' )  and O'~Dm=~tD m while 
(2) (b) for r=w-1  implies Range (OdDm)N(An+I\A,,)r as required for State- 
ment 1.5. 

So, the induction step for (2): I f  case (b) holds in (2) for some ro-<W then it is 
easy to see that for every r>ro case (b) holds in (2). So w.l.o.g, case (a) holds for 
every r<w. In this case, if  we denote (O(,~ by x, we have two subcases depend- 
ing on the position of  x: 

Subacase (i): x c f "D .  Then t can obviously be replaced by ( f tD  -1) in ~k, 
and O'tD,,=~rtD,,. 

Subcase (ii): x ~ f "D .  Then it is easy to see that t can not be replaced by 
( f t D )  -1 since t"(x\J'"D)cBny.o,,cA,+I\A, and so D, ,~Dom(O;) .  So Range 
(O;tD,,)N(A,+~\A,,)r which proves the induction step for r and so we proved 
Case I, too. 

Case II: e~=--I for some i<h. The method for this case is similar to the 
previous one but we have to be more careful. 

Obviously we may suppose that there is no part like yoy -1 in (1), i.e. 

(3) for no i<h we have yi+l=yi and e i + l = l - e  i 

(since gmr Again we examine the route of D,.. Put now Y_I=Dm and 
Yi=(y~0"Yi_l for i~h. Let further eo be the smallest e~h such that ~ N ( A . + I \ A . )  
r  if such an e does exist. Again we have two subcases: 

Subcase (i): e0 does exist. Then we know that for every q)EM. we have Range 
(q~+~)cA. and Range ((p-1)cA.. But e 0 was minimal and DmcA, and ~ c M , , ,  
so we must have e0=i.o for some ro<W. (The sequence (i.: r<w) was defined 
before Case I.) In other words y~o=t. Further, by the construction of t and by the 
minimality of eo we have e~o = + 1 and Y~o N (A. + ~ \A. )eBb)o , . .  

We know that for every ?CF., D c A .  finite and/<COo all the sets B(. ") and B~",)o. 
are all pairwise disjoint, and for every q)EM. we have Range (q~(A.+~\A.))cB(. n'~. 

So, by (3) we can prove by induction on i, eoNi~h the following fact (as in 
Lemma 1.3), using n ~ M . :  e i = + l  and there is a cp=q)(i)EF,, such that Yif-I 
N(A,,+~\A.)cB(~") or Y~N(A,,+~\A.)cB~,o,.. (This means that IP"Om~ 
N (Am + ~\Am) r 0.) This proves Subcase (i). 

Subcase (ii): eo does not exist. Then for i<-h we have Yi~A.. Now define 
0r, g,}0) and ~ '  and prove (2) by induction on r<w exactly on the same way as in 
Case I. 

The induction step in case ("t~ can be replaced by (ftD)t-~ in ~,, for every 
r<w") is as follows : 

Let x=(~,(.~ and e=%.  If  x c D  and e = + l  or x c f " D  and ~ = - 1  
then clearly we can replace t" by ( f tD) ~-" in ~ and O,~D,,=~/rID,,. In any other 
case we would have Yi=(t")"xcA, by the definition of t, which is impossible. 

So we proved Lemma 1.4. 

So (ii) also holds in Lemma 1.2 and we concluded the proof of  Lemma 1.2. [] 
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2. Proof of the main theorem 

In this section we prove: 

THEOREM 2.1. CH implies q P(2~o). 

PROOF. Our task is to define a monoid Nc~B on some set B such 
that Loc (N)OSB={ids}. We start with the monoid McAA constructed in the 
previous section. Then, using the main ideas of the previous section to extend the 
generators to larger and larger sets as independently as possible, step by step we 
extend M to B, killing the elements of Loc (M) fq Sa\{idn}. We do not add any 
new generator, we only extend the elements of F (=  the set of  free generators of 
McAA) to B. Finally we will get N as the generatum of these extended generators. 

So, let A, F and M be guaranteed by Lemma 1.2 and let {~,: i<col} enumerate 
Loc (M)NSa \{ ida  }. In each step j<col  we extend A and the elements of F to a 
larger set Bj+I (BjDU{B,:  u<j} for all J<col, B1 =A, Bo =0) in such a way 
that rq does not extend to Bj+~ for some j>=i. (This means that for no 0CLoc (Mj+0 
QtA=zc~ where Mj+IcBJ+I(Bj+I) is the extended monoid.) In this case we say 
that we "killed zc~". 

To be somewhat more precise, let A~ be arbitrary countable infinite sets disjoint 
from each other for i<co~ and Ao=A. Put Bj=U{Ai:  i<j} for ./-<-col and 
B=Br (So B0=0 and BI=A.) Fix further a booking function 6 mapping 
r 1} onto r215 1 with the property: h<=j if 6(j)=(h, k) for some j<co~ 
and for all j ,  h<col. (In the jth step we will kill the 6(i)=(h, k) th permutation, 
that is the k tla permutation of Loc (Mh)c(nh)Bh (the h ta level). We are forced to 
use such a booking function since QtA=ida for many 0CLoc (Mh)\{idBh}, h<col 
and finally we want to kill every elements of Loc (N)\{idB} and ACBhCB. ) 

Step by step we will extend (the generators of) M to B as follows. Let Mx=M. 
Denote My the monoid already extended to Bj (so MjcB~Bj and M0=B0= 0, 
M.. =NCRB) for j<-co~ The set of generators of M, for j-<_co~, j r  is Fj= 

t u  1 . ~ " .t . 

={fko): k<zco0}ccBPBj and they have the property fk(t)=fk(J)~Bt for k<co0 
and 0<t<j=<co~ by the construction. 

Let further {~zj.k: k<col} enumerate Loc(Mj)ASm\{idB,} for j<coi.  Now 
let i be given, 2<=i<col and suppose that we have alre~dy cofistructed Mj for all 
j<i. Now we want to construct Mz. (Recall that Mj=(Fj,o> for j<i and the 
elements of Fj~ extend the elements of F~ for j~ <j~< i.) 

In case i is limit we clearly take 

j'(o = ~ {f~(J) : j < i} for k < co0; 
and 

Fi = {f~(0 : k < coo}, M, = (F~,0> ~ (B~)B,. 

If i = j + l  then we extend the o--generators of M~ to B~ (=Bj+~=BjUA) 
in such a way that the resulted M~ will have the properties (i) through (iii) of Lemma 
1.2 and rce~j) will have been killed. The latter means that there will be no permutation 
~ S ~  in Loc(M~) such that 0~B~--rc~(~), where 6(j)=(h, k) for some k<co~ (since 
z~(i) is the k t~ element of Loc (Mh)f3S,,\{id~Bh}, k<co~, h<=j). 

This construction ensures that finally we will have a locally invertible (and, 
moreover, a still strongly fairly complete) monoid N (=M,o) on B (=B,,~) such 
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that Loc (N) A SB = {id}. (To see this use the fact that every element of N maps 
A,=B,+I\B, into A, for every n<col and so does every element of Loc (N)OSB. 
I f  then zcCLoc(N)0Sn, zc#idB, then zc~Bhr for some h~col, and so, by 
the construction, ~ztBhCLoc(Mh)OSB~\{idn~ say ~C~Bn=ZChk for some k<col.  
Then 6(j)=(h, k) for some j<co~, j>-h. In the jth step, ciefining the elements 
of  N on Aj=Bj+I\Bj we killed rOb, k, SO otBhCzch,k=~ztB h for each 0ELoc (Nj)f-) 
A S,~ which so holds for each ~ELoc (N) N S , ,  a contradiction.) 

Now we present a construction for M~= ( ~ ,  o), the other successor steps 
i=j+ 1 are the same. Write for convenience ~z and A~ instead of rc~(1) and At. (Recall 
that B~--Ao=A, B2=AUA~ and MI=MCB1BI, M=(F, o).) Step by step we 
extend the elements of  F to A~ in co o steps (A~ and F are countable) and we take 
these extended functions into F~={fk(~): k<co0}cB~B2. We intend to define the 
values of  fk (2), k<coo on A~ as independent as possible. 

After the n TM step we will have extended the first k (") many elements of F to a 
finite set W(")cA,~. (The only important thing is that we extended only finitely 
many elements of F. We choose the first k (') elements of  F for convenience only.) 
Further we will have fixed finite sets E~cA for every i<=k ("). These E~=EF sets 
are the most important objects in our construction. We require that E~Ej  for 
i>j and ~otE~ztE~ for every ~oC({fj: j~i}, o, --1). This can be done by Lemma 
1.2 (iii). The sets E~ play an important role in choosing locally inverses for the ex- 
tended functions and taking care of the fairly completeness of F~ (see Case 3). Further- 
more, in Lemma 2.2 we prove that ifaCA,~ is fixed, ~lA=z~ for some z2~Loc (M~)A 
ASAuA~ and m<co0 is large enough then for all ~oE(H, o, - 1 )  either q~(a)~(a) 
or ~OtEm~rctEm where H={fk(2): i~m}; moreover this property is preserved in 
all further steps, that is H can be any finite subset of F (~). This clearly justifies that 
zc will be killed. 

Denote the extended functions by f~, that is Dora (fi) =A U W (") and fitA =f~ 
for i<=k ("). To summarize: after the n t~ step (n<co0) we will have W(")cA,~ 
finite, k(")<co0 and {f~: ink  (")} where f~ extends f~ to AUW ("). (f~ depends 
upon n but we do not indicate this.) Finally let A,~={aj: J<co0} and let 7 be a 
function from coo onto the set 

coo • • • • [[A]<~ ~ • [[-~l<~]<~ • [[F]<~]<~• <~ 

and ~ takes every value infinitely many times, where A*:{g[D: g~AA, D~[A] <~ 
and [X]<~ Yis finite} for any set X. 

The role of  ~ is similar to that of  6: enumerates the requirements for M~ to be 
locally invertible and fairly complete. The requirements listed by 7 will be satisfied 
during the construction, in Case 3, n=31. 

Now let us see the construction itself. 
In the 0 t~ step we do nothing: W (~ = 0 and no element of F is extended, k (~ 0. 
The (n+ I) TM step: let W =  W(")~A,~ be the set constructed in the previous step 

and the function f0, f~ . . . .  , f~ already extended be 3~, f~ . . . . .  j~ with fixed sets 
Eo,/71 . . . .  , Ek where k=k ("). In coo steps we have to define f (a)  for all f6F, a~A,~", 
and infinitely many locally inverses of f ~ D for all f6  F, D ~ A U A~ finite. In each 
step n<co0 we either define f(a) for a new a6A,~ or for a new f~F or we define 
some local inverse of an f tJg ,  and we have to make each type of steps cofinally 
many times. Enumerate first A~ and F as A~={aj: J<co0} and F={f~ :  k<co0}. 
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Since the order of the steps is unimportant, for easier understanding we work modulo 
3 and distinguish three cases : 

Case 1: n = 3 / + l  for some /<coo. If  ate W (n) then we have nothing to do 
i. e. w(n+I)=W("), k('+l):k("). Otherwise extend f0, f~, ..., fk (k = k ('+1) = k (')) 
to W ("+1) = W (') U {at} totally independently from each other and the points used 
before. That is, for i<=k let f~(at) be an arbitrary element of  the set 

A s - W  (")- {as}- U {Range (fj): j <_- k } -  {fj(a3: j < i}. 

Then we put W ("+1) = W Oo U {at} and k ('+1) = k  ('0. 

Case 2 : n = 3 / + 2  for some /<COo. If  k=k(")>:l then we have nothing to do. 
(I.e. W ("+1) = W  ("), k ("+1) =k(").) If  not, then extend all the functions fk+~, Jk+2, ...,f~ 
step by step to W =  W (") independently from each other and the points used before. 
That is, if W={a , :  u<w} for some w<CO0 then let for u<w and i, k<i<=l 
~,(a,) be an arbitrary element of the set 

A s - W -  U{Range (fj): j < i}-{f~(at): t < u}. 

Further, for every i, k<i<=l by Lemma 1.2 (rio (and by the induction hypothesis, 
that is Mm satisfies Lemma (i) through (iii) for every m_<-CO~) we know that there 
is no bijection in Loc ((f~: j<-i}, o, - 1 ) )  except ida. So we can choose an E~cA 
for k<i<=l be finite such that E~DEj and 7z}Ei#idtE i for j < i  and go}E~#u}E~ 
for every ~oCLoc(({ft: t<:i}, o , - 1 ) )  and k<=j<i<=l. So in this case we construct 
W("+ I)= W("), k ("+1)=l, fk+l,fk+~ . . . .  , fl  and Ek+l, Ek+2 . . . . .  E t, too, (k=k (')) 
whilef~ and E~ for i<=k remain unchanged. 

Case 3: n=3l for some /<co 0. Now we have to do something only if  ?(l) 
codes a requirement for F~ to be fairly complete. 

First we clarify when ?(l) codes such a requirement. We have 

T(I)  = (/1, X,  Y, rot, S t ,  Se, ~, G) 

where ll, rnl<coo and Si={T~O: m<r176 for some r176  o, i = 1 , 2  
recall that A1-A,  A2=A~) and 

= {Jg,: m ~ v O)} c [F]<~ for some v (3) < COo 
and 

G : {gin: m ~_ v O)} c A* for some v (a) < COo. 

Then ?(l) codes such a requirement iff [G]=ISll =IS21 = l [ [=v  and for every m<v 
Dom (gin) = T(i). 

If  the above statement does not hold then we have nothing to do. If  it does, 
then we will construct ml many locally inverses of fl,(XU Y) with taking care of 
the fairly completeness of ~ with respect to 5/t~m and 

b~, := T (~) U T~ (~) (m < v). 

Now do the following construction rn~ times, repeatedly. (Repeatedly here 
means true physically repetitions: after one construction ends we start the whole 
procedure once more again from the very beginning, repeatedly increasing k <~+~) 
and W<"+I).) 

Acta Mathematica [-[ungarlca 56, 1990 



ON A PROBLEM OF R. POSCHEL 3 1 9  

First we have to suppose that k = k  (") and W = W  (") are large enough, that is 
k>=ll, k>max  {t<~o0: fCYm, m < v} and W D YU U S2U(fI1)"Y. (If not, use the 
constructions described in Cases 1 and 2.) 

In the construction we use the fairly completeness of F. We have already g,,, 
Ygm for m<v.  Now link the sequence ~z~Ei and {fj:  j<=i} for i<=k (") to the above 
sequence, that is put 

gv+i:=~tEi and ~r for i< -k  ("), so v = v + k ( " ) + l .  

Further, write ftl and X instead of f and D in Definition 1.1. Since F is fairly 
complete we have a function tCF with good properties; moreover such that 
tr i<=k(")}, t is good in A. We will extend it to W (") taking care of f, Y and 
T~ 2) and arbitrary functions gm on T,~ 2) for m<v.  The sets T~ ~) for rn<v are settled 
since U{T~): m < v } c W  ("). The sets T~ ~) for v<=m<v and the functions ~m on 
T~ 2) for m< v are unimportant since we will define t on W (") (and later on further 
sets) totally independently from the other functions. 

Now use the construction described in Case 2 to extend the functions f~ for 
k<i<-k( t )  to W (") and determine the sets E~ with the method described in Case 2 
with the restriction t t ( f " Y ) = ( f ~ Y ) - I  where k(t)  is defined as t=fk(0CF. Though 
R(f) is not disjoint from W("+I)=W ("), we will see in the proof (see Lemmas 2.2 
and 2.4) it does not make any trouble. Finally we put W ("+1)= W (") and k("+~)=k(t) 
(and possibly repeat the construction mr-1 times again). (To be somewhat more 
precise: let W(")={a,: u<w} and for i, k<i<=k(t) and u < w  if i ~ k ( t )  or 
a , r  then let f~(a,) be an arbitrary element of the set 

A~\W(")U{f ,W("):  r <= kI\{f~(a,):  s <= u, r < i}). 

This ends the construction. [] 

So we have extended all the generators of M to A~. Let the e--generators of  
5/2 be F~, the set of these extended f, functions, /<COo. We have to show that M, 
satisfies the requirements (i) through (iii) in Lemma 1.2 and that rc does not extend 
to A~. (i) and (iii) can be easily verified. 

We only have to check that F~ is strongly fairly complete and that rc does not 
extend to A~. (The other requirements are clearly satisfied.) 

LEMMA 2.2. n is not extended to A~. 

PRoov. We prove a bit more: z can not be extended to an element of 
Loc ((F~, o, - 1 ) ) N S ~ u ~  . 

Suppose it does. Let a(  A~ be arbitrary fixed. If there is a ~E Loc (~F~, e, - 1))A 
NSauA= such that ~ A = r c  then b=~(a)=(fi~ofi~o...ef~)(a ) for some io, il, ..., 
.... i~<~Oo and s<Ogo. By the construction there is an n<coo large enough such 
that we have already extended all the functions f s  (j<=s) till the n ~h step so that 
(f~oOft~o...of~)(a) is meaningful and equals bCW ~). (That is, kC")>=ij for j<=s 
and (f,.,e...ofl)(a) for O<t<=s and b are elements of W~").) 

Now fix such an arbitrary n<COo. Recall that till the n th step we have extended 
f~ (i<-k<=k ~)) to W = W  ~") and fixed the sets E ~ A  (i~k).  By the definition 
of the set E~ we have ~otEg~Tr~E~=~tEk for every ~o(({fi: i<=k}, e, - 1 )  and 
7rtEgr But by our indirect assumption there is a k'<~o0 such that ~k~Ek= 
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=~lEk=~ztEk for some O~Loc({,~:  j<-k'}, @ since ~Loc (M~) .  Clearly we 
have k '>k  and we must have extended the functions J~ . . . . .  fk, till the n th step, 
n'>n and k '=k  ("'). 

However the following result can be proved by induction on m, m >n,  using 
that F~ is fairly complete: 

CLAIM 2.3. For arbitrary m ~ n  i f  we have extended the functions fi  (i<=k (")) 
to W (~) in steps O, 1 . . . . .  m then for every ~0c({f~: i_-<k("')}, ~, - 1 )  either ~o(a)r 
or ~o~ E~ r Eg (here k=Ic(") and nisfixed.) 

Obviously this claim proves Lemma 2.2. 

PRoof. The proof is an easy induction on m, examining the effect of the con- 
struction in all three cases. The heart of our construction is that we always extended 
the functions totally independently from everything (the other functions and the 
points used before with a small restriction in Case 3). 

The proof is rather easy but technical. The claim for m=n is valid. Let m>=n 
and k ('), W (m) as usual. We prove for m + l .  

Fix any ~0E({f~: i_<-k(~+a)}, o , - 1 ) ,  say 

(4) =33 0o331 o...o337 (s< coo, for u <=s) 

where 33,,=fi., i, Nk(m). We have to show that either ~o(a)r of q)tEkCmEk 
( k = k  (") is fixed), using that this statement holds for m, that is for all IpC({fi: 
i<=k(")}, o, - 1}. Suppose that ~o~Ek=rc~Ek and ~o(a)=a. Then we have ~o~Ekr 
since ~z~Ekr So we may suppose that there is no part like f o f  -1 or f - l o f  
in ~0. (That is in (4) there is no u<s such that Y~,=Y,+I and e , = l  - e ,+ l . )  

According to the construction We have to distinguish three cases--which one 
was carried out to construct k (m+*), W (re+a), etc. 

Case 1: r n = 3 / + l  for some /<coo. Then we extended the functions (among 
other functions) 33, (u<=s) to w(m+l)=w(m)U(at) totally independently from 
each other and the points used before. Since the induction hypothesis holds for m, 
by the construction it also holds for m +  1. 

Case 2 : m = 3 / + 2  for some /<coo. Then k(m+~)>=l and we extended the 
functions J~<~)+l . . . .  ,fi to W (re+a)= W (') totally independently from each other and 
the points used before. Since the induction hypothesis holds for m, it also holds 
for m + 1, as well. (If iu>k 0"), that is there is a new function in (4), not constructed 
till the mth step, we must have ~o(a)C-b. If  not, then ~0 was constructed in the mth 
step, and so we can use the induction hypothesis.) 

Case 3: m=3l for some /<co 0. This is the most crucial part of our proof. 
In this case we constructed for some l ~ k  (m) (several) locally inverses ft of 

the function fa  with respect to a set XU Y c A U A ~  (l l~k(m)<t~k (re+l), YcW(m)). 
We took an ftEF1, using the strongly fairly comp!eteness of F1, with respect to 
(among others) z~LE k ( k = k  (") is fixed) and extended f~ to W(m+z)=W (~) totally 
independently from the functions and points used before (with the only restriction 
that f~of~ I" = id ~ Y but this causes no trouble since Y U (f.,~)'Yc w(m)). 

If  i , r  for all u<s (that isf~ does not appear in O in (4)) then by (4) we know 
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that go has already been constructed before the (m + 1) ~h step and using the induction 
hypothesis we are done. 

So ft appears in (4). 
Write cp' for the function we get by replacing ft by (ftlt(XU y) ) - I  and (f,)-I 

by flit (XU Y) in go. Using the good properties of ft by the strongly fairly complete- 
ness ofF1 and our indirect assumption go~Ek=mEk we may replace f t  by (ftltX) -1 
in gotA everywhere and so we have go'~E,=gotEk=~Ek (k=k(") is fixed). 

Next we show that we can derive (p'(a)=b using the indirect assumption 
go(a)=b. We defined ft totally independently on W(")\Range(~tY) from the 
points used before and we defined ft on Range (fll~Y) to be the inverse of fl~Y. 
It follows that supposing q)(a) is meaningful and equals to b we have that go'(a) is 
meaningful and equals go(a)=b (since b was an old point, too, that is a, bCW (~) 
and YU (ft~)"Yc W(")). 

So we have go'~Ek=r~tEk and go'(a)=q~(a)=b=~(a). But go" only consists of 
functions constructed before the (m+ 1) th step and by the induction hypothesis 
this is a contradiction. 

So we proved Claim 2.3 and so Lemma 2.2. too. [] 

In order to carry out our construction in further steps (for 2148, )1//4, ... and for 
any M~+~ (i<col)) we must  also to preserve the strongly fairly completeness of F. 

LEMMA 2.4. F~ is strongly fairly complete. 

PROOF. The proof is mainly included in the construction : in Case 3 we manage 
the fairly completeness of F~, and do not destroy it in further steps. 

Observe first that the following fact is true: for every n~<n2<o)0 if untill the 
ncth steps (i=1, 2) we have extended the functions {fj: j<-k(,O} to the functions 
{ffi):j<-k(",)}, Dom(f)O)=AUW(",) for j<_- k(",) and i=1 ,2  then we have 

(5) W(,O ~= W(,O and fj(x) ~ fj(2) for j <- k ~ 

(6) Range(fi(1)~W(~0)f)Range (f)2)~(W(~,)\W('O)) : 0 for i , j  < k("O. 

(That is : (5) says that we keep extending our functions, and (6) says that we define 
all functions independently from each other and the points used before.) 

This fact can be proved by a simple induction on n2, n~<--n~<coo. 
Now, recall that F2={f~: i<o)0}, f~A=f~CF~ for i<co 0. Let us be given 

v<co0, DcAUA~, f~EF~, ~ c F ~ ,  DmcAUA~ finite and gin: D~-~AUA~ for 
m<v as in the definition of strongly fairly completeness. We have to fred some 
t=t(j)<o~ o such that ft has certain good preperties. 

Clearly we may suppose that 

Range(g,,~(AODm)) ~ A and Range(g,,~(A~ND,,)) c A~ 

for m<v. Choose an n0<~Oo large enough such that in the n0-th step we can talk 
about the above functions and sets, that is we have already extended all the elements 
of the set 

to the set W("o)cA,, and J~f)A,~W("o) where 

b = DU U {D,,URange (g,,): m < v}Uf~'D. 
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We know that there are infinitely many 10 >no large enough such that in the n =3/0-th 
step we found a local inverse ft of  f j tD with respect to gm and W,~ (re<v) taking 
care of  the fairly completeness of F2. (See Case 3 of the construction.) By the con- 
struction we have exactly one ftCFo, such that ftlA=ft. We claim that ft works, 

Roughly speaking, ft was extended as independently from W ("), the points 
and the functions used before as possible and this causes ft to work. 

Obviously we have f to ( f j~D)=id .  We have no trouble with the sets D~qA, 
DmAA and gmt(DmfqA) (re<v) since all members of F~ map A into A and A~ into 
A~ and F~ was strongly fairly complete. We also do not have trouble with the sets 
DfqA~, Dm~A ~ and gmt(D,~fqAm) (re<v) using the construction (that is ft was 
defined totally independently) and (5) and (6) for induction for m>n. By the con- 
struction the set {f,("): i<-_k (n)} is strongly fairly complete for the full sets D, Din, 
gm and Wm (re<v). Further (5) and (6) ensure that we can not damage these good 
properties of f t  in any further step m <  COo for m>n. 

Finally, since this holds for all re<co0 (m is large enough), it must hold for 
F2 also (better to say, for ft6F~). 

This proves Lemma 2.4 and so Theorem 2.1. [] 

3. Further results 

In this section we use the ideas of Sections 1 and 2 to prove further theorems. 

TIaEOR~M 3.1. (a) MA implies qP(2~0). 
(b) MA(2) implies P(2) for ~< 2~0 and for countable monoids. 

PROOF. (a) The method is rather similar to the one presented in the proof  of  
Theorem 2.1. Let {Th: i<2~o} enumerate Loc(M)ASA-{idA}, let Aj be pairwise 
disjoint countable sets for j<2~o, Ao=A and let Bi= U{Aj: j<i} for i<_-2~o. 
Extend the elements of  M succesively to B~ by killing ~h (and of  course use the 
coding function 6:2s0~2eo• as in Theorem 2.1 and use the fact that MA 
implies 2~=2~0 for z<2~0). The only difference is the succesive step: killing a 
permutation zc E Loc (M) A Sa. 

First we briefly sketch how to find a suitable forcing notion (P, <_-) in the proof  
of  Theorem 2.1. We know that the set of  generators of  M is F = { f i  /<COo} and 
there is no permutation in Loc( ({ f j :  j<i}, o , -1 ) )  for every /<COo. So for 
every /<COo we can fix a finite subset E~cA such that q~tE~r for every (p 
Loc (({fj :  j<i}, O, - 1 ) )  and EFEj  for i<J<CO0, Let (p(0), <=(0)) be the following 
forcing notion : p(0) consists of  the forcing conditions of the form 

such that k(P)<CO 0, D (p) is a finite subset of A~ and f~(P) is a one-to-one extension 
of f~  to A U D f o r  i<=k (p). 

Define the partial order <=(0) on p(0) as p ~  (~ iff k (2) ~ !r and for every i _  <- k(f2) 
f~(p~) ~f~(m). Now define the subordering <= of <_(0) as P~P2 iff we obtained p~ 
from P2 using some (but finite) steps described in the proof  of  theorem 2.1. Clearly 
the largest element of p0 is l e=(0 ,  0). Then we define (P, <_-) as p={p~p(o): 
p-<le} and we have already defined <= above. 
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Pis countable so it satisfies the ccc. 
The following subsets of P are dense: 

D, = {pEP: aED (v)} for aCA~, 

D~={pCP:j<=k (v)} for j<-coo, 
and 

Di, m,D = {pEP: j <= k (p) and Dufj 'D c D (p) 

and f j tD has at least m locally inverse among the functions {fj: j~k(P)}} 

for j,  m<co 0 and D c A U A ~  finite. 
Applying Martin's axiom we get the desired extension Of our monoid M to 

A UA~ as in Theorem 2.1. [] 

(b) Let [A[=2. The forcing notions 

P~,D = {g~H; g~M, HE[A]'% f I (H~D )  = gI(HOD)} (fEM, DC[A] "~'~) 

ordered by reversed inclusion satisfy the ccc since M is countable. By MA we get 
a generic subset G c P  intersecting all the dense sets Da={gfHEP~,v: aEH & 
aERange (gill)} for aEA. This proves Theorem 3.1. [] 

THEOREM 3.2. 2~0=~2+ -1MA with "1P(2~0 is consistent. 

PROOF. The forcing notion P defined in the proof of Theorem 3.1 is countable 
so we can apply a weak form of Martin's axiom which is consistent with 2~0 = 1t3 + 
+ ] M A :  

THEOREM 3.3 (C. Hernik, [W, Theorem 5.7, p. 848]). I f  there is a model of  set 
theory then there is one in which we have 

(i) 2~0= ~ ,  
(ii) SH, 

(iii) MA(tto-linked) 
(iv) -1 MA. 

(For the definitions see e.g. [K] or [W].) 
We only have to know that every countable poset is no-linked. Then we proceed 

as in the proof of Theorem 3.1 (a) and apply Herink's theorem. Use the fact that 
MA(~o-linked) also implies 2~=2~0 for z<2~0. This proves Theorem 3.2. 

RFMARK. We could get a suitable model for Theorem 3.2 simply adding R2 
Cohen reals to an arbitrary model of ZFC (well-known or see e.g. [V/I). 

THEOREM 3.4. 2~=2 + implies -1P(2~) for any cardinal 2. 

PROOF. First construct a set C and a monoid MzcCC both of power 2 taking 
2 disjoint copies of M constructed in Lemma 1.2. (In other words let C =  U {Ci: i~2} 
where Ci are pairwise disjoint sets of power Ro and let Mi~c,c  i be a monoid 
isomorphic to M of Lemma 1.2 with generator set Fi.) Put Fi={fEcc: f tC~=f '  
and ft(C--C~)=id for some J'CF~} and let Fx= U{~: i<2} and M~=(Fa, 0}. 
Clearly F~ satisfies the properties described in Lemma 1.2. Now extend M~ step by 
step to a set of power of 2 + by killing every permutation in Loc (Ma) using a coding 
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function 6: 2 -+2X2.  When  we kill a single permutat ion 7z we extend the elements 
o f  Fz to C U C ~  where IC~l = 2 ,  in 2 setps (where the sets C= are pairwise disjoint). 
I do no t  think the details are wor th  writing down. [] 

The same argument  proves -1P(e) for e strong limit. 
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